职高数学知识点的总结
职高生数学必考知识点总结
![职高生数学必考知识点总结](https://img.taocdn.com/s3/m/7044faf1970590c69ec3d5bbfd0a79563c1ed4e4.png)
职高生数学必考知识点总结一、函数及其图像1. 定义:函数是一个对应关系,每个自变量对应唯一的因变量。
2. 函数的性质:- 定义域和值域:定义域是自变量的取值范围,值域是因变量的取值范围。
- 奇偶性:若对任意x∈D,有f(-x) = f(x),则称函数是偶函数;若对任意x∈D,有f(-x) = -f(x),则称函数是奇函数。
- 增减性:若对任意x1<x2,有f(x1)<f(x2),则称函数在区间(x1,x2)上是增函数;若对任意x1<x2,有f(x1)>f(x2),则称函数在区间(x1,x2)上是减函数。
3. 常见函数:- 线性函数:f(x) = kx + b,其中k为斜率,b为截距。
- 幂函数:f(x) = x^n,其中n为自然数。
- 指数函数:f(x) = a^x,其中a>0且a≠1。
- 对数函数:f(x) = loga(x),其中a>0且a≠1。
4. 图像与性质:- 函数的图像可以用坐标系中的曲线表示,例如线性函数的图像是一条直线。
- 图像的特征包括对称性、间断点、渐近线等。
二、三角函数1. 基本概念:- 弧度制:以单位圆上圆心角所对的弧长为一单位。
- 正弦、余弦、正切等三角函数。
2. 三角函数的性质:- 周期性:sin(x+2π) = sinx, cos(x+2π) = cosx, tan(x+π) = tanx。
- 奇偶性:sin(-x) = -sinx, cos(-x) = cosx, tan(-x) = -tanx。
- 上下界:-1 ≤ sinx ≤ 1, -1 ≤ cosx ≤ 1, tanx的定义域是全体实数。
3. 常用三角函数的图像:- sinx和cosx的图像是正弦曲线和余弦曲线,它们的周期为2π。
- tanx的图像是一条无穷长的曲线,它的周期是π。
三、导数与微分1. 导数的定义:- 函数f(x)在x0处的导数定义为f'(x0) = lim(h→0)[f(x0+h)-f(x0)]/h。
职高数学知识点总结及公式大全
![职高数学知识点总结及公式大全](https://img.taocdn.com/s3/m/ef267e93c0c708a1284ac850ad02de80d4d806d5.png)
职高数学知识点总结及公式大全一、数学知识点总结1. 数列与数列的概念数列是由一系列有序数按照一定排列顺序组成的数集合。
常见的数列有等差数列、等比数列等。
2. 几何图形的性质几何图形的性质包括平行四边形的性质、三角形的性质、圆的性质等。
3. 概率与统计概率与统计是数学中重要的分支,包括事件的概率、随机变量、概率分布、统计参数估计等内容。
4. 三角函数三角函数是用来描述角度与边长之间关系的函数,包括正弦函数、余弦函数、正切函数等。
5. 导数与微分导数是描述函数变化率的概念,微分是导数的一种形式化表达。
6. 积分积分是导数的逆运算,用来求函数与坐标轴之间的面积。
二、常见公式大全1. 等差数列求和公式等差数列的前n项和公式为:Sn = n * (a1 + an) / 2,其中n为项数,a1为首项,an为末项。
2. 二项式定理(a + b)^n = C(n,0)*a^n*b^0 + C(n,1)*a^(n-1)*b^1 + ... +C(n,k)*a^(n-k)*b^k + ... + C(n,n)*a^0*b^n。
3. 正弦定理在三角形ABC中,有a/sinA = b/sinB = c/sinC。
4. 求导法则常用的求导法则包括幂函数的导数、指数函数的导数、对数函数的导数等。
5. 积分表积分表包括基本积分表、换元法、分部积分法等。
6. 概率公式常用的概率公式包括加法法则、乘法法则、独立事件的概率计算等。
三、数学知识点的应用1. 在工程中的应用数学知识在工程领域中有着广泛的应用,包括力学、材料力学、电路原理、数值计算等方面。
2. 在金融中的应用金融数学是数学在金融领域的应用,包括利率计算、复利计算、金融衍生品定价等。
3. 在科学研究中的应用科学研究中常常需要运用数学方法进行建模、分析数据、进行实验设计等。
4. 在日常生活中的应用数学知识在日常生活中有着广泛的应用,比如计算购物折扣、理财规划、家庭预算等。
职高数学知识点的掌握对于学生的学习和未来的发展都具有重要意义。
职高高中数学知识点全总结
![职高高中数学知识点全总结](https://img.taocdn.com/s3/m/371cb6a3afaad1f34693daef5ef7ba0d4b736d4c.png)
职高高中数学知识点全总结一、数学基础1. 数的基本概念- 自然数、整数、有理数和无理数的定义与性质- 实数的分类与运算法则- 复数的基本概念及四则运算2. 代数表达式- 单项式与多项式的构成及运算- 因式分解的基本方法- 分式与分式方程的解法3. 初等函数- 线性函数、二次函数的图像与性质- 指数函数、对数函数和幂函数的基本概念与运算- 三角函数的定义、基本关系式及图像4. 初等代数方程- 一元一次方程、一元二次方程的解法- 不等式的基本性质与解集表示- 系统方程组的解法,包括代入法、消元法二、几何知识1. 平面几何- 点、线、面的基本性质- 三角形、四边形的基本性质与计算- 圆的基本性质与相关公式2. 空间几何- 空间直线与平面的方程及其关系- 柱、锥、台、球的体积与表面积计算- 空间向量的概念及其在几何中的应用3. 解析几何- 平面直角坐标系与曲线方程- 空间直角坐标系与空间图形- 圆锥曲线(椭圆、双曲线、抛物线)的标准方程三、概率与统计1. 概率基础- 随机事件的概率定义与计算- 条件概率与独立事件的概念- 随机变量及其分布类型2. 统计初步- 数据的收集、整理与描述- 样本及其分布特征(均值、方差、标准差)- 总体参数的估计与假设检验四、数学应用1. 生活中的数学应用- 利率、复利与折现- 比例、百分数与利率的实际应用- 统计图表的解读与制作2. 职业领域的数学应用- 工程图纸的阅读与计算- 生产流程中的优化问题- 经济活动中的成本与收益分析五、数学思维与方法1. 逻辑思维与证明- 演绎推理与归纳推理- 数学证明的基本方法- 反证法与数学归纳法2. 解题策略- 问题转化与化归- 分类讨论与数形结合- 函数思想与方程思想3. 数学软件应用- 常用数学软件的基本操作- 数据处理与图形绘制- 数值计算与符号计算总结职高高中数学课程旨在培养学生的数学基础知识和应用能力,同时注重数学思维的培养。
通过对上述知识点的系统学习,学生能够掌握数学的基本理论和方法,为未来的职业生涯和终身学习打下坚实的基础。
职高数学各章节知识点汇总
![职高数学各章节知识点汇总](https://img.taocdn.com/s3/m/a0faf2c24bfe04a1b0717fd5360cba1aa8118cb5.png)
职高数学各章节知识点汇总一. 第一章概率统计基础1. 概率的概念及其计算2. 随机事件与样本空间3. 古典概型、几何概型及其应用4. 条件概率、独立性及其应用5. 贝叶斯公式的应用6. 随机变量及其概率分布7. 数学期望、方差及其应用8. 离散型和连续型随机变量及其性质9. 正态分布及其应用二. 第二章数据的搜集1. 调查与抽样2. 问卷设计及其质量评估3. 采样方法及其应用4. 质量控制及其应用5. 数据质量评估三. 第三章数据的表示和分析1. 描述统计学基本概念及其应用2. 基本统计量及其计算方法3. 频率分布表与图的绘制4. 偏态与峰态的概念及其计算5. 相关系数及其应用6. 线性回归分析及其应用7. 方差分析及其应用四. 第四章指数与对数函数1. 指数函数及其性质2. 对数函数及其性质3. 指数与对数的运算法则4. 指数函数、对数函数的图像与性质5. 带底数的指数函数、对数函数及其运算法则6. 指数函数、对数函数的应用五. 第五章三角函数1. 角度与弧度的转换2. 常用角度的三角函数及其图像3. 三角函数的周期性及其应用4. 三角函数的基本公式及其应用5. 立体角与球面三角学的基本概念六. 第六章数列和数学归纳法1. 数列的概念及其性质2. 等差数列与等比数列的求和公式3. 递推与递归数列及其应用4. 数学归纳法的基本思想及其应用七. 第七章函数的基本概念1. 函数的定义及其性质2. 常用函数的图像与性质3. 函数的分类及其应用4. 复合函数的定义与应用5. 反函数的定义与应用八. 第八章一次函数与二次函数1. 一次函数的定义、图像、性质及其应用2. 二次函数的定义、图像、性质及其应用3. 一次函数、二次函数的解析式及其应用4. 一次函数、二次函数的应用九. 第九章不等式与方程1. 不等式的基本概念及其性质2. 一次不等式的求解方法及其应用3. 二次不等式的求解方法及其应用4. 绝对值不等式的求解方法及其应用5. 方程的基本概念及其性质6. 一次方程的解法及其应用7. 二次方程的解法及其应用十. 第十章平面向量1. 平面向量的基本概念及其表示方法2. 平面向量的数量积、向量积及其性质3. 向量共线、垂直的判定及其应用4. 平面向量的应用,如平移、旋转等十一. 第十一章平面几何图形的性质1. 基本特征及其图形的分类2. 三角形的基本性质3. 四边形、多边形的基本性质4. 圆的基本性质5. 圆锥、圆柱、球体的基本概念及其应用。
数学职高知识点总结
![数学职高知识点总结](https://img.taocdn.com/s3/m/d08891916e1aff00bed5b9f3f90f76c661374cb4.png)
数学职高知识点总结一、基础知识数学是一门基础学科,离不开基础知识的掌握。
在职业教育中,学生应系统学习数学基础知识,以夯实数学基础。
基础知识主要包括:1. 数与代数数与代数是数学中的基础,学生应掌握数的认识、整数、有理数、无理数、代数式、方程式等基础知识。
2. 几何几何是数学中的一个重要分支,包括平面几何和立体几何。
学生应掌握几何的相关知识,如图形的性质、平行线与相交线、实际问题的解析几何等。
3. 函数函数是数学中的重要概念,学生应掌握函数的概念、性质、类型和应用。
二、数学运算数学运算是数学学习的重要组成部分,学生应掌握各种数学运算的方法和技巧。
数学运算主要包括:1. 四则运算四则运算是基本的数学运算,包括加法、减法、乘法和除法。
学生应掌握四则运算的运算规则和注意事项,并能够灵活运用四则运算解决实际问题。
2. 代数运算代数运算是数学中的一个重要内容,包括有理数的四则运算、整式的加减、乘除等。
学生应掌握代数运算的相关方法和技巧,并能够熟练运用代数运算解决实际问题。
3. 方程与不等式方程与不等式是数学中的重要概念,学生应掌握方程与不等式的解法和应用,如一元一次方程与一元二次方程的解法、线性方程组的解法等。
三、数学应用数学知识在职业教育中有着广泛的应用,学生应能够将数学知识运用到实际工作中。
数学应用主要包括:1. 实际问题实际问题是数学知识的重要应用,学生应能够将数学知识应用到实际问题中,并能够根据实际情况解决问题,如利润、成本、税收等实际问题的数学分析。
2. 统计与概率统计与概率是数学中的重要概念,学生应掌握统计与概率的基本知识和方法,并能够应用到实际工作中,如市场调研、投资决策、风险评估等。
四、数学思维数学思维是数学学习的重要内容,学生应培养良好的数学思维方式。
数学思维主要包括:1. 逻辑思维逻辑思维是数学学习的重要组成部分,学生应培养良好的逻辑思维方式,能够理清问题的逻辑关系,找出问题的解决方法。
职高数学知识点整理
![职高数学知识点整理](https://img.taocdn.com/s3/m/b68baefa77eeaeaad1f34693daef5ef7ba0d12ce.png)
职高数学知识点整理
一、幂函数:
1、定义形如y=xα的函数叫幂函数,其中α为常数,在中学阶段只研究α为有理数的情形
二、指数函数和对数函数:
1、定义:指数函数,y=ax(a>0,且a≠1),注意与幂函数的区别。
对数函数y=logax(a>0,且a≠1)。
指数函数y=ax与对数函数y=logax互为反函数.
2、指数函数:y=ax(a>0,且a≠1)与对数函数y=logax(a>0,且a≠1)的图象和性质。
三、指数方程和对数方程:
指数方程和对数方程属于超越方程,在中学阶段只要求会解一些简单的特殊类型指数方程和对数方程,基本思想是将它们化成代数方程来解。
四、数列的概念:
1、数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。
记作na,在数列第一个位置的项叫第1项(或首项)。
在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作na。
五、函数的表示方法:
表示函数的方法,常用的有解析法、列表法、图象法三种。
解析法:就是用数学表达式表示两个变量之间的对应关系。
列表法:就是列出表格来表示两个变量之间的对应关系。
图象法:就是用图象表示两个变量之间的对应关系。
六、函数的图象:
1、确定函数的定义域;
2、化解函数解析式;
3、讨论函数的性质(奇偶性、单调性);
4、画出函数的图象。
七、利用基本函数图象的变换作图:
要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象。
职高数学归纳总结知识点
![职高数学归纳总结知识点](https://img.taocdn.com/s3/m/27d800f7c67da26925c52cc58bd63186bceb9239.png)
职高数学归纳总结知识点数学是一门抽象而又实用的学科,它在职业高中的学习中占据着重要的地位。
为了帮助职高学生更好地掌握数学知识,下面将对职高数学的重要知识点进行归纳总结,以便学生们更好地理解和应用。
一、整数与有理数1. 整数的概念及性质:- 正整数、零和负整数的概念;- 整数的加法、减法和乘法运算规律;- 整数的相反数及其性质。
2. 有理数的概念与运算:- 有理数的概念及其表示;- 有理数的加法、减法、乘法和除法运算;- 有理数的大小比较和性质。
二、代数式与多项式1. 代数式的概念与性质:- 代数式的基本概念;- 代数式的加减乘除运算法则。
2. 多项式及其运算:- 多项式的概念及分类;- 多项式的加减法和乘法运算;- 多项式的因式分解和最简形式。
三、函数与方程1. 函数的概念与性质:- 函数的基本概念;- 函数的自变量、因变量和定义域、值域的关系;- 常见函数及其图像。
2. 方程的概念与解法:- 一元一次方程的定义与解法;- 一元二次方程的定义与解法;- 两个未知数的线性方程组的解法。
四、几何1. 图形的基本概念:- 点、线、面、角的概念与性质;- 垂直、平行、相交线的关系;- 正多边形及其性质。
2. 相似与全等:- 全等三角形及判定方法;- 相似三角形及判定方法;- 相似三角形的性质与应用。
3. 三角函数:- 三角函数的概念与性质;- 基本三角函数的计算与图像;- 三角函数在实际问题中的应用。
五、统计与概率1. 数据的收集与整理:- 数据的分类及表示方法;- 数据的频数分布表和统计图表。
2. 概率的基本概念与计算:- 概率的定义及性质;- 事件的概率计算;- 抽样与概率应用。
六、解题方法与技巧1. 数学解题方法:- 反证法、归纳法、递归法等常用解题方法;- 数学建模与解题思路。
2. 数学问题的解题技巧:- 空间想象能力训练;- 抽象思维能力培养;- 推理与证明能力提升。
本文对职高数学的重要知识点进行了归纳总结,帮助学生们更好地掌握数学知识。
职高数学知识点的总结
![职高数学知识点的总结](https://img.taocdn.com/s3/m/0c1cd8e3b1717fd5360cba1aa8114431b80d8e74.png)
职高数学知识点的总结职高数学是针对职业高中学生的数学课程,内容相对于普通高中数学来说更加实用和职业导向。
下面是一些职高数学的知识点总结。
1.初等代数初等代数是数学中的一门分支学科,职高数学中的初等代数主要包括数的运算、字母代数、方程与不等式、函数、数列等内容。
掌握初等代数的基本概念和运算法则,能够解决各种实际问题。
2.几何几何是研究空间形状、大小和相互关系的学科。
在职高数学中,几何主要包括平面几何和立体几何。
学习几何能够培养学生的空间想象力,提高解决实际问题的能力。
3.数与量数与量是数学中的基本概念,职高数学中的数与量主要包括整数、有理数、实数、复数、无穷与无限等概念。
学习数与量可以提高学生的计算能力和逻辑思维能力。
4.数据分析与统计数据分析与统计是数学中的一个重要分支,它用来描述和分析数据以及从中得出结论。
在职高数学中,数据分析与统计主要包括数据收集与整理、频数与频率、平均数与中位数、概率与统计等内容。
学习数据分析与统计可以培养学生的数据处理与分析能力。
5.函数与方程函数与方程是数学中的重要概念,职高数学中的函数与方程主要包括线性函数、二次函数、指数函数、对数函数、三角函数等内容。
学习函数与方程可以提高学生的分析与解决问题的能力。
6.三角学三角学是数学中的一个分支,它研究角和三角比的关系。
在职高数学中,三角学主要包括三角比的定义与性质、三角函数与其图像等内容。
学习三角学可以提高学生的几何问题解决能力和图形识别与绘制能力。
7.概率与统计概率与统计是数学中的重要分支,职高数学中的概率与统计主要包括概率的定义与性质、事件的计数与概率计算、概率分布与统计参数、随机变量与概率分布等内容。
学习概率与统计可以提高学生的判断与决策能力,培养学生的数据分析能力。
8.向量与解析几何向量与解析几何是数学中的一个分支,它研究空间中的向量和向量与几何图形的关系。
在职高数学中,向量与解析几何主要包括向量的运算与表示、向量的数量积与向量积、平面与直线方程等内容。
职高数学各章节知识点汇总
![职高数学各章节知识点汇总](https://img.taocdn.com/s3/m/a7d44fdd534de518964bcf84b9d528ea81c72f1c.png)
职高数学各章节知识点汇总第一章:集合与函数集合•概念与表示方法•集合的运算•常见集合:空集、全集、单一集合、补集、交集、并集函数•概念与表示方法•函数的性质与判定•常见函数:一次函数、二次函数、反比例函数、指数函数和对数函数第二章:数与式整数•概念和表示方法•整数的运算法则和性质:加法、减法、乘法、除法、整数幂的计算法则有理数•概念和表示方法•有理数的运算法则和性质:加法、减法、乘法、除法、有理数幂的计算法则代数式•概念和表示方法•代数式的加减乘除•代数式的化简和因式分解•代数式的公因式、因式分解和左右展开分式•概念和表示方法•分式的加减乘除•分式的化简和通分•分式的大小比较和约分第三章:方程与不等式一元二次方程•概念和表示方法•一元二次方程的解法:配方法、公式法、图像法和因式分解法一元二次不等式•概念和表示方法•一元二次不等式的解法:图像法和分式法线性方程组•概念和表示方法•线性方程组的解法:消元法和矩阵法绝对值不等式•概念和表示方法•绝对值不等式的解法:图像法和分析法含有根式的方程和不等式•概念和表示方法•根号的加减法和乘除法•含有根式的方程和不等式的解法第四章:函数及其应用一次函数•概念和表示方法•一次函数的性质与图像•一次函数的应用二次函数•概念和表示方法•二次函数的性质与图像•二次函数的应用反比例函数•概念和表示方法•反比例函数的性质与图像•反比例函数的应用指数函数和对数函数•概念和表示方法•指数函数和对数函数的性质与图像•指数函数和对数函数的应用第五章:平面几何基本概念点线面•概念和表示方法•点线面的性质和关系角•角的定义和表示方法•角的分类与性质:锐角、直角、钝角、对顶角、同位角、内错角和补角、余角直线与平面•直线与平面的定义和表示方法•相关概念:角度、直线的位置关系、平面的位置关系、三角形的性质和构造第六章:三角函数三角函数的基本概念和关系•角的正弦、余弦、正切、余切的定义和表示方法•三角函数的初等关系式和辅助角公式三角函数的应用•三角函数的解析式和图像•三角函数的周期性及其性质•三角函数在几何问题和物理问题中的应用三角恒等式•基本三角恒等式•倍角、半角、和角、差角公式•卷积模式以上为职高数学各章节的知识点汇总,希望本文能够对学习职高数学的同学们有所帮助。
职高数学重要知识点总结
![职高数学重要知识点总结](https://img.taocdn.com/s3/m/059e788fd4bbfd0a79563c1ec5da50e2524dd1f4.png)
职高数学重要知识点总结一、代数1. 一元一次方程及其应用(1) 一次方程的概念与性质(2) 一元一次方程的解(3) 实际问题的一元一次方程建立与解决(4) 一元一次方程的应用题2. 一元二次方程及其应用(1) 一元二次方程的一般形式及其性质(2) 一元二次方程的求解(3) 一元二次方程的判别式与根的关系(4) 一元二次方程的应用题3. 不等式及其应用(1) 不等式的性质(2) 一元一次不等式与一元一次方程的关系(3) 一元二次不等式与一元二次方程的关系(4) 不等式的应用题4. 描述函数关系的方法(1) 函数的概念及函数的表示(2) 函数的性质(3) 直线函数与一次函数(4) 二次函数的图像、性质及应用(5) 一次函数与二次函数的实际问题5. 二元一次方程组的解法(1) 二元一次方程组的概念和性质(2) 二元一次方程组的解法及其应用(3) 实际问题的二元一次方程组建立与解决6. 一元一次不等式组的解法(1) 一元一次不等式组的概念和性质(2) 一元一次不等式组的解法及其应用(3) 实际问题的一元一次不等式组建立与解决7. 分式方程(1) 分式方程的概念及性质(2) 分式方程的解法(3) 实际问题的分式方程建立与解决8. 根据实际问题建立方程或不等式(1) 问题的解析和设方程、不等式(2) 实际问题建立方程或不等式的基本方法二、几何1. 平面直角坐标系(1) 平面直角坐标系(2) 点和点的坐标(3) 线段、直线和线段的长度(4) 点和线段的中点(5) 角的概念与性质(6) 用坐标表示角2. 平面图形的认识与计算(1) 三角形① 三角形的基本性质② 三角形的分类③ 三角形的全等、相似④ 三角形的中线、角平分线、垂心、外心、内心和重心(2) 四边形① 四边形的分类② 四边形的性质(3) 多边形① 多边形的分类② 多边形的性质(4) 圆① 圆的性质② 圆的图形(5) 平行四边形和梯形① 平行四边形的性质② 梯形的性质3. 空间图形的认识与计算(1) 三棱锥、四棱锥、棱柱的认识及性质(2) 三棱锥、四棱锥、棱柱的计算(3) 圆柱、圆锥与球的认识及性质(4) 圆柱、圆锥与球的计算4. 空间图形的展开与网格(1) 空间图形在展开时的性质(2) 制作空间图形的展开图(3) 网格纸和图形的展开与叠合5. 三视图(1) 三视图(2) 空间图形的三视图及其绘图6. 地图与比例(1) 地图的制图和使用(2) 比例尺(3) 直接与反比例关系三、概率统计1. 概率(1) 随机事件与概率(2) 概率的性质(3) 概率的计算与应用2. 统计(1) 统计调查(2) 统计图形(3) 统计参数以上是职业高中数学课程中的一些重要知识点,希望同学们在学习数学时认真学习,掌握这些知识点,为日后的学习和生活打下坚实的基础。
职高数学必备知识点总结
![职高数学必备知识点总结](https://img.taocdn.com/s3/m/089433f7fc0a79563c1ec5da50e2524de518d0f5.png)
职高数学必备知识点总结数学作为一门基础学科,在职高教育中扮演着非常重要的角色。
掌握数学知识不仅可以帮助学生在日常生活和工作中解决问题,还可以为将来的升学和就业打下坚实的基础。
下面将对职高数学必备知识点进行总结,希望可以帮助学生更好地学习和掌握数学知识。
一、基本运算1. 加法和减法:掌握加法和减法的运算方法是数学学习的基础,学生需要熟练掌握进位和借位的操作。
2. 乘法和除法:学生需要掌握乘法和除法的运算方法,并理解乘法和除法的运算规律,包括乘法和除法的性质和运算法则。
二、整数和分数1. 整数:学生需要掌握整数的概念、表示方法、运算法则和性质。
2. 分数:学生需要理解分数的概念和表示方法,掌握分数的加减乘除运算,以及分数的化简和比较大小。
三、代数1. 代数式和方程:学生需要能够理解代数式和方程的含义,解方程的方法和步骤,以及代数式和方程的应用。
2. 函数:学生需要了解函数的概念、性质和表示方法,掌握函数的图像和性质,以及函数的应用。
四、几何1. 图形的基本概念:学生需要了解线段、角、三角形、四边形等基本图形的概念和性质。
2. 同类图形和相似图形:学生需要理解同类图形和相似图形的概念和性质,能够应用相似性判定图形是否相似。
3. 圆的基本性质:学生需要了解圆的概念和性质,包括圆的周长、面积和圆心角的性质。
五、解析几何1. 直角坐标系:学生需要了解直角坐标系的概念和性质,能够根据坐标系的特点进行相应的运算和应用。
2. 空间几何体:学生需要了解空间几何体的概念和性质,包括球、柱体、锥体等的表面积和体积的计算方法。
六、统计与概率1. 统计:学生需要掌握数据的收集、整理、分析和表示方法,理解频率分布、均值、中位数和众数的含义和计算方法。
2. 概率:学生需要了解概率的概念和性质,掌握概率的计算方法和应用,包括排列和组合的计算方法。
总之,职高数学必备知识点涵盖了基本运算、整数和分数、代数、几何、解析几何、统计与概率等内容。
职高数学必考知识点总结
![职高数学必考知识点总结](https://img.taocdn.com/s3/m/b855ed5058eef8c75fbfc77da26925c52cc591d2.png)
职高数学必考知识点总结一、集合与函数1. 集合的概念集合是由一些确定的对象所构成的整体,可以用大括号{}表示。
例如,集合A={1,2,3,4,5}表示由1,2,3,4,5这些对象组成的集合A。
2. 集合的运算集合的运算包括并集、交集和差集。
- 并集:集合A和集合B的并集,表示为A∪B,是包含了所有属于A或B中的元素的新集合。
- 交集:集合A和集合B的交集,表示为A∩B,是包含了同时属于A和B中的元素的新集合。
- 差集:集合A和集合B的差集,表示为A-B,是包含了属于A但不属于B的元素的新集合。
3. 函数的概念函数是一种对应关系,它把一个集合的每个元素映射到另一个集合的唯一元素上。
常用的表示方法有图像法、集合法和公式法。
4. 函数的图像函数的图像是指函数的输入和输出之间的对应关系所确定的点所构成的集合。
5. 函数的性质函数的性质有定义域、值域、单调性、奇偶性等。
其中,定义域是函数中所有可能的输入值的集合,值域是函数中所有可能的输出值的集合。
单调性是指函数在定义域内的增减关系。
二、代数1. 一元一次方程一元一次方程是指只含有一个未知数的一次方程,通常表示为ax+b=0。
解方程的步骤一般是移项、合并同类项、消元和求解。
2. 一元一次不等式一元一次不等式是指只含有一个未知数的一次不等式,通常表示为ax+b>0或ax+b<0。
解不等式的步骤一般是移项、合并同类项、消元和求解。
3. 二元一次方程二元一次方程是指含有两个未知数的一次方程,通常表示为ax+by=c。
解方程的步骤一般是消元、求解。
4. 幂的运算幂的运算包括幂的乘法、幂的除法、幂的加法和幂的减法。
5. 分式的运算分式的运算包括分式的乘法、分式的除法、分式的加法和分式的减法。
6. 因式分解因式分解是把一个多项式表示为多个一次式的乘积的过程。
一般采用提公因式法、公式法和分组法进行因式分解。
三、几何1. 直线和角直线是由一系列不同点组成的集合,角是由两条射线共同端点组成的图形。
职高数学知识点总结
![职高数学知识点总结](https://img.taocdn.com/s3/m/aa55961ea8956bec0875e30c.png)
职高数学知识点总结1、相反数、绝对值、分数的运算;2、因式分解:提公因式:xy-3x=(y-3)x字相乘法如:配方法如:公式法:(x+y)2=x2+2xy+y2 (x-y)2=x2-2xy+y2 x2-y2=(x-y)(x+y)3、一元一次方程、一元二次方程、二元一次方程组的解法:(1)代入法(2)消元法6、完全平方和(差)公式:7、平方差公式:8、立方和(差)公式:第一章集合1、构成集合的元素必须满足三要素:确定性、互异性、无序性。
2、集合的三种表示方法:列举法、描述法、图像法(文氏图)。
注:描述法;另重点类型如:3、常用数集:(自然数集)、(整数集)、(有理数集)、(实数集)、(正整数集)、(正整数集)4、元素与集合、集合与集合之间的关系:(1)元素与集合是“”与“”的关系。
(2)集合与集合是“” “”“”“”的关系。
注:(1)空集是任何集合的子集,任何非空集合的真子集。
(做题时多考虑是否满足题意)(2)一个集合含有个元素,则它的子集有个,真子集有个,非空真子集有个。
5、集合的基本运算(用描述法表示的集合的运算尽量用画数轴的方法)(1):与的公共元素(相同元素)组成的集合(2):与的所有元素组成的集合(相同元素只写一次)。
(3):中元素去掉中元素剩下的元素组成的集合。
注:6、逻辑联结词:且()、或()非()如果……那么……()量词:存在()任意()真值表::其中一个为假则为假,全部为真才为真;:其中一个为真则为真,全部为假才为假;:与的真假相反。
(同为真时“且”为真,同为假时“或”为假,真的“非”为假,假的“非”为真;真“推”假为假,假“推”真假均为真。
)7、命题的非(1)是不是都是不都是(至少有一个不是)(2)……,使得成立对于……,都有成立。
对于……,都有成立……,使得成立(3)8、充分必要条件是的……条件是条件,是结论(充分条件)(必要条件) (充要条件)第二章不等式1、不等式的基本性质:注:(1)比较两个实数的大小一般用比较差的方法;另外还可以用平方法、倒数法如:(倒数法)等。
职高数学知识点总结
![职高数学知识点总结](https://img.taocdn.com/s3/m/92f8e344773231126edb6f1aff00bed5b9f373d2.png)
职高数学知识点总结数学作为一门基础学科,对于职高学生来说是非常重要的一门课程,它不仅是一个工具,更是一种思维方式。
数学的学习不仅能提高人的逻辑思维能力,还可以培养人的数学分析能力,这对于职业生涯的发展是非常有帮助的。
下面就来总结一下职高数学的知识点,以帮助学生更好地学习和掌握这门课程。
一、函数与方程1.函数的概念及其性质1)函数的定义:设任意非空的数集A和B,如果存在一个对应关系f,使对于集合A内的任意一个元素x,都有唯一确定的元素y与之对应,则称这种对应关系为函数,一般记为y=f(x).2)函数的性质:定义域、值域、奇偶性、周期性、单调性等。
2.一次函数与二次函数1)一次函数:y=kx+b,其中k是斜率,b是截距。
2)二次函数:y=ax^2+bx+c,其中a,b,c为实数,a≠0。
3)一次函数与二次函数的图像、性质及应用。
3.方程的应用1)一元一次方程、一元二次方程及含有绝对值的方程应用。
2)解方程的方法:整理系数、配方法、代换法、分组因式集法、公式法、求和、先化简、奇偶分离法等。
4.直线方程1)直线的方程:点斜式、斜截式、两点式等。
2)直线方程的性质及应用:知道直线上的一点及斜率,求直线方程、已知直线与坐标轴的交点,求直线的方程、判断直线的位置关系等。
二、数列与数学归纳法1.数列的概念及其表达方式1)数列的定义:数列是按照一定规律排列的一列数,这个规律一般可以用一个函数表示。
2)数列的不通表达方式:通项公式、递推关系式、分段函数表达式。
2.数列的基本性质1)公式数列中的元素一般是可以用一个数学公式表示的,这个公式一般称为通项公式。
2)等差数列、等比数列及应用:如何求等差数列的通项公式、求等比数列的通项公式。
3.数学归纳法1)数学归纳法的严密性。
2)数列、恒等式证明。
三、不等式1.不等式的基本性质1)不等式的定义:对于两个不同的数,如果它们之间存在大小关系,则称这种关系为不等关系。
2)不等式的解集、图像等。
职高数学全集知识点总结
![职高数学全集知识点总结](https://img.taocdn.com/s3/m/16ca7447ba68a98271fe910ef12d2af90242a8d2.png)
职高数学全集知识点总结一、函数与方程组1. 函数的定义与性质(1)定义:函数是集合间的一种对应关系,即每个自变量(x值)对应唯一的因变量(y 值)。
(2)性质:单调性、奇偶性、周期性等。
2. 一元二次方程(1)一元二次方程一般形式为ax^2+bx+c=0,其中a≠0。
(2)求解一元二次方程的方法:因式分解、配方法、公式法等。
3. 线性方程组(1)定义:由线性方程组成的方程组。
(2)解法:代入消元法、矩阵法等。
二、数列与级数1. 数列的概念与性质(1)定义:按照一定规律排列而成的数。
(2)常见数列:等差数列、等比数列等。
2. 数列的通项公式(1)等差数列的通项公式:an=a1+(n-1)d。
(2)等比数列的通项公式:an=a1*q^(n-1)。
三、平面几何1. 直角三角形(1)勾股定理:a^2+b^2=c^2,其中a、b为直角三角形的直角边,c为斜边。
(2)三角函数:sinθ、cosθ、tanθ等。
2. 圆的性质(1)圆的面积与周长:S=πr^2,C=2πr。
(2)弧与弦的关系:弧长公式、弦长公式等。
四、立体几何1. 立体图形的表面积与体积(1)表面积:直接计算法、母线法等。
(2)体积:立方体、长方体、圆柱体、圆锥体、球体的体积计算公式。
2. 空间坐标系(1)三维坐标系:x轴、y轴、z轴。
(2)空间直角坐标系中的点、直线、平面的性质。
五、概率与统计1. 概率(1)概率的基本概念:事件、样本空间、基本事件等。
(2)概率的计算方法:古典概型、几何概型、频率概率等。
2. 统计(1)数据的收集与整理:频数、频率、分组表等。
(2)数据的表示与分析:图表、平均数、中位数、众数等。
以上便是职高数学全集知识点的总结,希望能对你的学习有所帮助。
数学职高知识点总结
![数学职高知识点总结](https://img.taocdn.com/s3/m/3699f6613868011ca300a6c30c2259010202f3ad.png)
数学职高知识点总结一、代数基础集合与函数概念:集合的基本概念、表示方法及其运算(并集、交集、差集)。
函数的定义、性质和常见类型(如一次函数、二次函数、指数函数、对数函数、三角函数)。
代数式的运算:整式的加减乘除运算规则。
因式分解的基本方法(提公因式、公式法、分组分解法)。
分式的约分与通分,分式方程的解法。
方程与不等式:一元一次与一元二次方程的解法。
不等式的基本性质,一元一次不等式及其解法,一元二次不等式的解法,不等式组的解集求解。
序列与数列:等差数列和等比数列的定义、性质和求和公式。
数列的极限概念及其计算。
二、几何知识平面几何:点、线、面的基本概念。
直线、线段、射线的定义、性质和表示方法。
角的概念、度量和分类。
三角形的分类及性质。
四边形的分类及性质。
多边形的分类及性质。
圆的基本属性和相关定理。
平行线与平行四边形的性质。
等腰三角形、等边三角形的性质。
相似三角形的性质和判定方法。
立体几何:空间几何体的基本概念。
正方体、长方体、三棱柱的特征及性质。
圆柱、圆锥、球的特征及性质。
空间图形的投影。
空间几何体的表面积和体积计算方法。
空间几何体的展开图和几何体展开式。
三、其他重要知识点三角函数:三角函数的图形与性质,三角恒等变化与解三角形。
概率与统计:概率的基本概念,条件概率,全概率公式,贝叶斯定理;离散型随机变量及其分布;统计与统计案例。
逻辑推理与证明:基本的逻辑推理方法,数学证明的技巧和策略。
数学建模与应用:函数模型及其运用,数列的简单应用,数学在实际问题中的应用。
以上只是职高数学知识点的一部分总结,实际学习过程中还会涉及到更多的细节和深入的内容。
在学习数学时,建议注重理论与实践的结合,多做习题,加深对知识点的理解和掌握。
数学职高知识点总结
![数学职高知识点总结](https://img.taocdn.com/s3/m/955d04d3b9f67c1cfad6195f312b3169a451eaa0.png)
数学职高知识点总结数学是一门基础学科,也是职业教育的重要科目之一。
在数学职高课程学习中,掌握并理解一些核心知识点是非常重要的。
下面是数学职高课程中的常见知识点总结,供参考。
1. 二次函数与一次函数- 二次函数的定义、图像特征及其应用- 一次函数的定义、图像特征及其应用- 二次函数与一次函数之间的关系及区别2. 三角函数- 常用三角函数的定义、图像特征及其应用- 三角函数之间的关系,如正弦函数与余弦函数的关系等- 利用三角函数解决实际问题的方法3. 平面几何- 平面的点、线、面的相关概念及其性质- 常见平面图形的性质,如三角形、四边形、圆等- 平面几何的证明方法与技巧4. 空间几何- 空间的点、线、面、体的相关概念及其性质- 常见空间图形的性质,如球体、圆锥、圆柱等- 利用空间几何解决实际问题的方法5. 统计与概率- 统计的基本概念,如数据收集、整理与分析等- 概率的基本概念,如事件、样本空间、概率分布等- 利用统计与概率解决实际问题的方法6. 导数与微分- 导数的定义、基本性质与应用,如相关速度、变化率等- 微分的基本概念及其应用- 利用导数与微分解决实际问题的方法7. 积分与定积分- 积分的定义、基本性质与应用,如曲线下面积、定积分等- 定积分的定义及其应用,如平均值、面积等- 利用积分与定积分解决实际问题的方法以上只是数学职高课程中的一部分知识点总结,同时也是数学职业教育的基础。
掌握这些知识点对于以后的学习和工作都具有重要意义。
参考内容:1. 《数学(高职高专示范教材)》(舒新华主编,清华大学出版社)2. 《职业数学》(刘洪波主编,中国农业出版社)3. 《高职高专数学全程与全封闭训练》(唐玉红主编,高等教育出版社)4. 《高职高专应用数学教程》(徐吾荣主编,同济大学出版社)5. 《高职高专教育数学基础》(徐吾荣主编,人民教育出版社)。
职高数学各章总结知识点
![职高数学各章总结知识点](https://img.taocdn.com/s3/m/8642b16ba4e9856a561252d380eb6294dd88229b.png)
职高数学各章总结知识点1. 基础知识基础知识是数学学习的基石,它包括了整数、有理数、整式、方程、不等式等方面的知识。
在学习这些内容时,我们首先需要掌握整数加减乘除、有理数的四则运算以及整式的加减乘除等基本运算法则。
另外,对于一元一次方程、一元一次不等式等基本内容也要有所了解。
这些知识对建立后续更加深入的数学知识打下了坚实的基础。
2. 几何知识几何知识包括了平面几何和立体几何两部分内容。
在平面几何中,我们需要掌握诸如角的概念、直线、线段、射影、平行线与相交线、全等图形、相似图形、三角形及其性质等知识。
而在立体几何中,我们需要了解诸如立体图形的概念、立体图形的表面积和体积计算等知识。
几何知识对我们理解空间结构和形态特征有着不可忽视的作用。
3. 函数知识函数知识是数学学习中的重点内容之一,它包括了函数的概念、函数的性质、函数的图像、常用函数及其性质等内容。
在学习函数知识时,我们需要了解函数的定义、定义域和值域、函数的奇偶性、周期性、单调性等基本性质,以及一些常用函数如一次函数、二次函数、指数函数、对数函数、幂函数、三角函数等的概念和性质。
函数知识在数学学习中有着非常广泛的应用,它对后续的数学学习和解题能力起着决定性的作用。
4. 导数知识导数知识是微积分的基础内容之一,它包括了导数的概念、导数的计算、导数的性质、导数与函数的关系等内容。
在学习导数知识时,我们需要了解导数的定义、导数的计算方法、导数的求解过程和性质等基本知识,以及导数在函数图像、函数极值、函数凹凸性、弧微分、极限等方面的应用。
导数知识在数学学习中有着非常重要的地位,它不仅是理解微积分的基础,也为后续的数学学习和解题能力打下了基础。
5. 积分知识积分知识是微积分的另一个重要内容,它包括了积分的概念、积分的计算、定积分和不定积分、积分与导数的关系等内容。
在学习积分知识时,我们需要了解积分的定义、积分的计算方法、积分的性质和应用等基本知识,以及积分在几何、物理、经济等领域的广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
职高数学概念与公式初中基础知识:1. 相反数、绝对值、分数的运算;2. 因式分解:提公因式:xy-3x=(y-3)x十字相乘法 如:)2)(13(2532-+=--x x x x配方法 如:825)41(23222-+=-+x x x公式法:(x+y )2=x 2+2xy+y 2 (x-y)2=x 2-2xy+y 2 x 2-y 2=(x-y)(x+y)3. 一元一次方程、一元二次方程、二元一次方程组的解法:(1) 代入法 (2) 消元法6.完全平方和(差)公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+-7.平方差公式:))((22b a b a b a -+=-8.立方和(差)公式:))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=-第一章 集合1. 构成集合的元素必须满足三要素:确定性、互异性、无序性。
2. 集合的三种表示方法:列举法、描述法、图像法(文氏图)。
注:∆描述法 },|取值范围元素性质元素{⋯∈⋯=x x x ;另重点类型如:}{]3,1(,13|y 2-∈+-=x x x y 3. 常用数集:N (自然数集)、Z (整数集)、Q (有理数集)、R (实数集)、*N (正整数集)、+Z (正整数集)4. 元素与集合、集合与集合之间的关系: (1) 元素与集合是“∈”与“∉”的关系。
(2) 集合与集合是“⊆” “”“=”“⊆/”的关系。
注:(1)空集是任何集合的子集,任何非空集合的真子集。
(做题时多考虑φ是否满足题意) (2)一个集合含有n 个元素,则它的子集有n 2个,真子集有12-n 个,非空真子集有22-n 个。
5. 集合的基本运算(用描述法表示的集合的运算尽量用画数轴的方法) (1)}|{B x A x x B A ∈∈=且 :A 与B 的公共元素(相同元素)组成的集合(2)}|{B x A x x B A ∈∈=或 :A 与B 的所有元素组成的集合(相同元素只写一次)。
(3)A C U :U 中元素去掉A 中元素剩下的元素组成的集合。
注:B C A C B A C U U U =)( B C A C B A C U U U =)( 6. 逻辑联结词: 且(∧)、或(∨)非(⌝)如果……那么……(⇒) 量词:存在(∃) 任意(∀) 真值表:q p ∧:其中一个为假则为假,全部为真才为真; q p ∨:其中一个为真则为真,全部为假才为假; p ⌝:与p 的真假相反。
(同为真时“且”为真,同为假时“或”为假,真的“非”为假,假的“非”为真;真“推”假为假,假“推”真假均为真。
) 7. 命题的非 (1)是→不是都是→不都是(至少有一个不是)(2)∃……,使得p 成立→对于∀……,都有p ⌝成立。
对于∀……,都有p 成立→∃……,使得p ⌝成立 (3)q p q p ⌝∨⌝=∧⌝)( q p q p ⌝∧⌝=∨⌝)( 8. 充分必要条件∆p 是q 的……条件 p 是条件,q 是结论p q ==⇒<=≠=充分不必要→ 的充分不必要条件是q p (充分条件) p q =≠⇒<===不充分必要 → 的必要不充分条件是q p (必要条件) p q ==⇒⇐==充分必要→ 的充分必要条件是q p (充要条件) p q =≠⇒⇐≠=不充分不必要→ 件的既不充分也不必要条是q p 第二章 不等式1. 不等式的基本性质: 注:(1)比较两个实数的大小一般用比较差的方法;另外还可以用平方法、倒数法如:2008200920092010--与(倒数法)等。
(2)不等式两边同时乘以负数要变号!! (3)同向的不等式可以相加(不能相减),同正的同向不等式可以相乘。
2. 重要的不等式:(∆均值定理)(1)ab b a 222≥+,当且仅当b a =时,等号成立。
(2)),(2+∈≥+R b a ab b a ,当且仅当b a =时,等号成立。
(3)),,(3+∈≥++R c b a abc c b a ,当且仅当c b a ==时,等号成立。
注:2ba +(算术平均数)≥ab (几何平均数) 3. 一元一次不等式的解法 4. 一元二次不等式的解法 (1) 保证二次项系数为正(2) 分解因式(十字相乘法、提取公因式、求根公式法),目的是求根: (3) 定解:(口诀)大于两根之外,大于大的,小于小的; 小于两根之间注:若00<∆=∆或,用配方的方法确定不等式的解集。
5. 绝对值不等式的解法 若0>a ,则⎩⎨⎧-<>⇔><<-⇔<ax a x a x ax a a x 或||||6. 分式不等式的解法:与二次不等式的解法相同。
注:分母不能为0.第三章 函数1. 映射:一般地,设B A 、是两个集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有惟一的元素和它对应,这样的对应叫做从集合A 到集合B 的映射,记作:B A f →:。
注:理解原象与象及其应用。
(1)A 中每一个元素必有惟一的象;(2)对于A 中的不同的元素,在B 中可以有相同的象; (3)允许B 中元素没有原象。
2. 函数:(1) 定义:函数是由一个非空数集到时另一个非空数集的映射。
(2) 函数的表示方法:列表法、图像法、解析式法。
注:在解函数题时可以画出图像,运用数形结合的方法可以使大部分题目变得更简单。
3. 函数的三要素:定义域、值域、对应法则(1) ∆定义域的求法:使函数(的解析式)有意义的x 的取值范围 主要依据:① 分母不能为0② 偶次根式的被开方式≥0③ 特殊函数定义域0,0≠=x x yR x a a a y x ∈≠>=),10(,且 0),10(,log >≠>=x a a x y a 且)(,2,tan Z k k x x y ∈+≠=ππ(2) ∆值域的求法:y 的取值范围① 正比例函数:kx y = 和 一次函数:b kx y +=的值域为R② 二次函数:c bx ax y ++=2的值域求法:配方法。
如果x 的取值范围不是R 则还需画图像③ 反比例函数:xy 1=的值域为}0|{≠y y ④ d cx b ax y ++=的值域为}|{c ay y ≠⑤ cbx ax nmx y +++=2的值域求法:判别式法⑥ 另求值域的方法:换元法、反函数法、不等式法、数形结合法、函数的单调性等等。
(3) 解析式求法:在求函数解析式时可用换元法、构造法、待定系数法等。
4. 函数图像的变换 (1) 平移 )()(a x f y a x f y -=→=个单位向右平移 )()(a x f y a x f y +=→=个单位向左平移a x f y a x f y +=→=)()(个单位向上平移 a x f y a x f y -=→=)()(个单位向下平移(2) 翻折)()(x f y x x f y -=→=上、下对折轴沿 |)(|)(x f y x x f y =→=下方翻折到上方轴上方图像保留)||()(x f y y x f y =→=右边翻折到左边轴右边图像保留5. 函数的奇偶性:(1) 定义域关于原点对称(2) 若)()(x f x f -=-→奇 若)()(x f x f =-→偶 注:①若奇函数在0=x 处有意义,则0)0(=f ②常值函数a x f =)((0≠a )为偶函数 ③0)(=x f 既是奇函数又是偶函数 6. ∆函数的单调性:对于],[21b a x x ∈∀、且21x x <,若⎩⎨⎧><上为减函数在称上为增函数在称],[)(),()(],[)(),()(2121b a x f x f x f b a x f x f x f 增函数:x 值越大,函数值越大;x 值越小,函数值越小。
减函数:x 值越大,函数值反而越小;x 值越小,函数值反而越大。
复合函数的单调性:))(()(x g f x h =)(x f 与)(x g 同增或同减时复合函数)(x h 为增函数;)(x f 与)(x g 相异时(一增一减)复合函数)(x h 为减函数。
注:奇偶性和单调性同时出现时可用画图的方法判断。
7. 二次函数:(1)二次函数的三种解析式:①一般式:c bx ax x f ++=2)((0≠a )②∆顶点式:h k x a x f +-=2)()( (0≠a ),其中),(h k 为顶点③两根式:))(()(21x x x x a x f --= (0≠a ),其中21x x 、是0)(=x f 的两根 (2)图像与性质:∆ 二次函数的图像是一条抛物线,有如下特征与性质:① 开口 →>0a 开口向上 →<0a 开口向下② ∆对称轴:abx 2-=③ ∆顶点坐标:)44,2(2ab ac a b -- ④ ∆与x 轴的交点:⎪⎩⎪⎨⎧→<∆→=∆→>∆无交点交点有有两交点0100⑤ 一元二次方程根与系数的关系:(韦达定理)∆⎪⎩⎪⎨⎧=⋅-=+a cx x a b x x 2121⑥ c bx ax x f ++=2)(为偶函数的充要条件为0=b ⑦ 二次函数(二次函数恒大(小)于0)⇔>0)(x f ⎩⎨⎧⇔<∆>轴上方图像位于x a 00轴下方图像位于x a x f ⇔⎩⎨⎧<∆<⇔<00)(⑧ 若二次函数对任意x 都有)()(x t f x t f +=-,则其对称轴是t x =。
⑨ 若二次函数0)(=x f 的两根21x x 、ⅰ. 若两根21x x 、一正一负,则⎩⎨⎧<≥∆0021x xⅱ. 若两根21x x 、同正(同负)⎪⎩⎪⎨⎧>>+≥∆0002121x x x x 若同正,则 ⎪⎩⎪⎨⎧><+≥∆0002121x x x x 若同负,则ⅲ.若两根21x x 、位于),(b a 内,则利用画图像的办法。
则若,0>a ⎪⎩⎪⎨⎧>>≥∆0)(0)(0b f a f 则若,0<a ⎪⎩⎪⎨⎧<<≥∆0)(0)(0b f a f注:若二次函数0)(=x f 的两根21x x 、;1x 位于),(b a 内,2x 位于),(d c 内,同样利用画图像的办法。
8. 反函数:(1)函数)(x f y =有反函数的条件y x 与是一一对应的关系(2)求)(x f y =的反函数的一般步骤: ①确定原函数的值域,也就是反函数的定义域 ②由原函数的解析式,求出⋯=x③将y x ,对换得到反函数的解析式,并注明其定义域。