12.1全等三角形的判定(sss)课
全等三角形的判定(sss)
A
A’
B
C B’
C’
图一
图二
AB=A’B’
∠A=∠A’ ΔABC ≌ ∆A’ B’ C’ (SAS) AC=A’C’
A
A’
B
C
B’
C’
∠A=∠A’
AB=A’B’
ΔABC ≌ ∆A’ B’ C’
∠B=∠B’
(ASA)
A
A’
B
C
B’
C’
∠A=∠A’
∠B=∠B’ ΔABC ≌ ∆A’ B’ C’(AAS)
AD=AD(公共边)
∴ △ABD≌ACD(SAS)
总结 上题中应用了哪些性质及定理
性质一:等腰三角形的两底角相等 性质二:等腰三角形的中线、角平分线、高线互相重合。 定理三:在两个三角形中,如果有三条边相等,那么这两个三角形全等。 定理四:在两个三角形中,如果有两个角相等及一条边相等,那么这两个三角形 全等。 定理五:在两个三角形中,如果有两个角相等及所夹的边相等,那么这两个三角 形全等。 定理六:在两个三角形中,如果有两条边相等及所夹的角相等,那么这两个三角 形全等。
作业:课后习题
AC=A’C’
定理的引入 A
C
E
F
B
D
思考
已知:AC=DE AB=DF BC=FE 求证:△ABC≌ △DFE
定理的引入 A
C
D
已知:AC=DC AB=DB 求证:△ABC≌ △DBC
B
证明:连接AD, ∵AC=DC
∴∠CAD= ∠CDA
同理, ∠BAD= ∠BDA
∴ ∠BAC= ∠BDC
∵ AC=DC
答:图中有△ABE≌ACE,△BDE≌CDE △ABD≌ACD。
全等三角形的判定(SSS)说课稿
全等三角形的判定(SSS)第一课时一、教材分析:(一)本节内容在全书和章节的地位本节内容选自人教版初中数学八年级上册第十一章,本课是探索三角形全等条件的第一课时,是在学习了全等三角形的概念,全等三角形的性质后展开的。
对于全等三角形的研究,实际是平面几何对封闭的两个图形关系研究的第一步,它是两个三角形间最简单、最常见的关系,它不仅是下节课探索三角形全等其它条件的基础,还是证明线段相等、角相等的重要依据,同时也为今后探索直角三角形全等的条件以及三角形相似的条件提供很好的模式和方法。
因此,本节课的知识具有承前启后的作用,占有相当重要的地位。
(二)三维教案目标1.知识与能力目标因为是第一课时,本节课主要给学生讲解全等三角形的“SSS”判定公理,同时理解三角形的稳定性,能用三角形全等解决一些现实问题,熟悉掌握“SSS”|的判定方法,能够自主探索,动手操作,在过程中体会到自主学习索取知识的乐趣,从而启发学生学习数学的方式,为下节课打下基础。
2.过程与方法目标通过分解三角形的各个边和角,两个三角形做对比,用问题分解法求解,探索全等三角形的全等条件,经历认知探知过程,体会挖掘知识的过程。
通过两个三角形边与角的对比发现全等三角形的判定条件“SSS”,锻炼学生分析问题,解决问题的能力。
3.情感态度与价值观培养学生勇于探索、团结协作的精神,积累数学活动的经验。
(三)重点与难点1.教案难点认识三角形全等的发现过程以及边边边的辨析。
能够对运用三角形判定公理“SSS”解决三角形全等问题,对三角形其他定理的拓展与思考,了解三角形的稳定性。
2.教案重点利用性质和判定,关键是学会准确地找出两个全等三角形中的对应边与对应角。
准确理解“SSS”三角形判定的公理,规范书写全等三角形的证明;二、教法与学情分析1.教法分析数学是一门培养人的思维,发展人的思维的重要学科,因此在教案中,不仅要使学生知其然,而且还要使学生知其所以然。
针对初二年纪学生的认知结构和心理特征,和本节课的特色。
《三角形全等的判定(SSS)》优质课教学设计
《三角形全等的判定(SSS)》优质课教学设计其实是采用相对对称的结构来维持风筝的稳定, 也就是保证风筝的左右一样。
那么我们要怎么证明一个十字风筝和三角风筝左右都一样呢?那就一起来学习今天的课程三角形全等的判定(SSS)。
一起探究一下风筝是不是左右相等的吧。
复习回顾: 全等三角形的性质。
提问1: 还记得什么是全等三角形吗?提问2: 全等三角形具有什么样的性质呢?提问3:若已知△ABC≌△DEF, 会有什么结论?提示1: 能够重合的两个三角形叫全等三角形.提示2:全等三角形的对应边相等, 对应角相等。
提示3:∵△ABC≌△DEF∴ AB=DE ∠A=∠DAC=DF ∠B=∠EBC=EF ∠C=∠F探究新知:因此, 判定两个三角形全等, 除了定义外, 还可以利用这六组条件, 但这两种方法都较为复杂, 我们能否减少条件, 用尽量少的条件进行判定呢?如果只满足这些条件中的一部分, 那么能保证两个三角形全等吗?我们先从最少的条件开始探究。
探究一: (同桌讨论)①只给1条边。
所以, 只确定一条边, 可以画出无数个三角形, 它的形状不定, 所以只满足一条边对应相等, 是不足以证明两个三角形全等的。
这种方式叫做举反例, 即满足条件, 但却发现结论不成立。
②只给1个角类比一个边的方法, 让学生用画图举反例证明。
综上所述, 只满足一个条件, 不足以证明两个三角形全等。
探究二: (分成小组探究)●如果给出两个条件, 有哪几种情况?●有2条边对应相等的两个三角形●有1个角和1条边对应相等的两个三角形●有2个角对应相等的两个三角形分成三个小组, 每个小组探究一个情况。
教师引导学生利用提前准备好的道具——纸棒、尺子、量角器, 用纸棒围成三角形, 此条件下的三角形是否只有一个。
①2条边结论: 有两条边相等不能保证两个三角形全等.②2个角结论: 有两个角相等不能保证两个三角形全等.③1个角1条边结论: 有一个角和一条边相等不能保证两个三角形全等.●思考: 如果只给三个条件能保证两个三角形全等吗?●有3条边对应相等的两个三角形●有1条边和2个角对应相等的两个三角形●有2条边和1个角对应相等的两个三角形●有3个角对应相等的两个三角形猜想: 三条边分别相等的三角形全等.动手实践: 拿出两组分别长4cm, 6cm, 8cm的纸棒。
12.2.1三角形全等的判定(SSS)
C
• 例4.如图,AB=AD,BC=CD,求证: • (1)△ABC≌△ADC; (2)∠B=∠D.
课 本 P8 工人师傅常用角尺平分一个任意角. 做法如下:如图, AOB是一个任意角,在边OA,OB上分别取OM=ON,移动 角尺,使角尺两边相同的刻度分别与M,N重合. 过角尺顶点 C的射线OC便是AOB的平分线.为什么?
画法:1.画线段B'C'=BC;
2. 分别以B'、C'为圆心, 线段AB、AC为半径画弧, 两弧交于点A ';
3.连接线段A'B'、A'C' .
' ' 则ΔA'BC 为所求作的三角形.
你能得出什 么结论?
三边对应相等的两个三角形全等,简 写为“边边边”或“SSS”。 用上面的结论可以判定两个三角形全等. 判断两个三角形全等的推理过程,叫做证明 三角形全等.
O
C
A
应用所学,例题解析
用尺规作一个角等于已知角. 已知:∠AOB.求作: ∠A′O′B′=∠AOB. 作法: (2)画一条射线O′A′,以点O′为圆心,OC 长为半 径画弧,交O′A′于点C′; B D
O
C
A
O′
C′
A′
应用所学,例题解析
用尺规作一个角等于已知角. 已知:∠AOB.求作: ∠A′O′B′=∠AOB. 作法: (3)以点C′为圆心,CD 长为半径画弧,与第2 步中 所画的弧交于点D′; B D′ D
探究活动
你如 能果 说给 出出 有三 哪个 几条 种件 可画 能三 的角 情形 况, ?
三个条件呢?
1. 三个角;
2. 三条边; 3. 两边一角;
4. 两角一边。
《全等三角形的判定(SSS)》教学设计
《全等三角形的判定(SSS)》教学设计
一、教学目标
1.理解“边边边”(SSS)判定全等三角形的方法。
2.掌握运用SSS判定方法进行三角形全等的证明。
3.培养学生的逻辑推理能力和观察分析能力。
二、教学重难点
1.重点:SSS判定方法的理解和应用。
2.难点:三角形全等证明过程的书写规范。
三、教学方法
讲授法、演示法、讨论法。
四、教学过程
1.导入
展示两个形状相同但大小不同的三角形和两个形状大小完全相同的三角形,引导学生观察并思考如何判断两个三角形全等。
2.讲解SSS判定方法
(1)通过具体实例,让学生观察当两个三角形的三条边分别相等时,这两个三角形能够完全重合,从而引出SSS判定方法。
(2)用图形和符号语言表述SSS判定方法。
3.例题讲解
(1)已知三角形的三条边的长度,证明两个三角形全等。
(2)在实际问题中,运用SSS判定方法解决问题。
4.课堂练习
让学生进行三角形全等的证明练习,巩固SSS判定方法。
5.小组讨论
讨论在证明过程中遇到的问题和解决方法。
6.总结归纳
总结SSS判定方法的要点和证明过程的注意事项。
7.作业布置
布置课后作业,要求学生运用SSS判定方法证明三角形全等。
第1课时 全等三角形的判定(SSS)
(简写成 边边边 ”或” SSS ”).
广东省怀集县城南初级中学
陈妙兰
三、研学教材
知识点二 全等三角形的判定
“SSS”的应用
例1 如图△ABC是一个钢架,AB=AC,AD是连
接点A 与BC中点D的支架.求证△ABD≌△ACD.
证明:∵D是BC的中点,
2、会用直尺和圆规画一个角等于已知角.
广东省怀集县城南初级中学
陈妙兰
五、布置作业P43 复习巩固 第1题.
广东省怀集县城南初级中学
陈妙兰
回答问题:
(1)如果△ABC与△A′B′C′有一个角或
一条边相等,那么这两个三角形一定全等
吗?答: 不一定全等
.
(2)如果△ABC与△A′B′C′满足全等
的六个条件中两个,能保证这两个三角形
一定全等吗?
答:
不一定全等
.
广东省怀集县城南初级中学
陈妙兰
三、研学教材
知识点一 三角形全等的判定“SSS”
探究2 画任意一个△ABC,再画一个
如果只满足这六个条件中的一部分,那么
能否保证△ABC与△A′B′C′全等呢?
广东省怀集县城南初级中学 陈妙兰
三、研学教材
认真阅读课本第35至37页的内容, 完成练习并体验知识点的形成过程.
广东省怀集县城南初级中学
陈妙兰
三、研学教材
知识点一 三角形全等的判定“SSS”
探究1 画出满足以下条件的两个三角形并
D
相等的角有_∠___A__=__∠___D__,_∠___B__=__∠___E__,_∠____A_E_C_B__=__∠____D_C__E__.
第十二章全等三角形12.1全等三角形教案
在实践活动和小组讨论环节,我发现学生们在讨论全等三角形在实际生活中的应用时,思路不够开阔。为此,我计划在下一节课提前准备一些与全等三角形相关的实际问题,引导学生从不同角度去思考和探讨。
二、核心素养目标
1.培养学生的逻辑推理能力:通过全等三角形的定义、性质及判定方法的探讨,使学生掌握严密的逻辑推理过程,提高几何证明能力。
2.培养学生的空间想象能力:运用全等三角形的知识解决实际问题,激发学生对几何图形的空间想象,增强几何直观感知。
3.提升学生的数据分析能力:在解决实际问题时,指导学生分析数据,运用全等三角形的判定方法,培养学生从几何角度分析问题的能力。
3.全等三角形的证明:指导学生运用已知条件和全等三角形的判定方法,进行严密的逻辑推理,证明两个三角形全等。
4.实际应用:结合生活实际,让学生运用全等三角形的性质和判定方法解决一些几何问题,提高学生解决问题的能力。
5.练习题:设计具有代表性的练习题,巩固学生对全等三角形知识的掌握,提高学生的几何解题技巧。
3.重点难点解析:在讲授过程中,我会特别强调全等三角形的判定方法和性质这两个重点。对于难点部分,如判定方法的选择,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠、剪裁等操作,演示全等三角形的基本原理。
五、教学反思
今天在讲授全等三角形这一章节时,我发现学生们对全等三角形的定义和判定方法掌握得还不错,但在实际应用上,他们似乎还有一些困难。我意识到,可能需要在以下几个方面进行改进:
12.2.1三角形全等的判定sss及教学反思
12.2.1三角形全等的判定sss及教学反思•相关推荐12.2.1三角形全等的判定(sss)及教学反思12.2.1三角形全等的判定(SSS)西河九年制学校郭欢教学目标1.了解三角形的稳定性,会应用“边边边”判定两个三角形全等.2.经历探索“边边边”判定全等三角形的过程,解决简单的问题.3.培养有条理的思考和表达能力,形成良好的合作意识.重、难点与关键1.重点:掌握“边边边”判定两个三角形全等的方法.2.难点:理解证明的基本过程,学会综合分析法.3.关键:掌握图形特征,寻找适合条件的两个三角形.教具准备一块形状如图1所示的硬纸片,直尺,圆规.(1) (2)教学方法采用“操作──实验”的教学方法,让学生亲自动手,形成直观形象.教学过程一、设疑求解,操作感知【教师活动】(出示教具)问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,•你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.【学生活动】观察,思考,回答教师的问题.方法如下:可以将图1•的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,•剪下模板就可去割玻璃了.【理论认知】如果ABCA′B′C′,那么它们的对应边相等,对应角相等.•反之,•如果ABC与A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′.这六个条件,就能保证ABCA′B′C′,从刚才的实践我们可以发现:•只要两个三角形三条对应边相等,就可以保证这两块三角形全等.信不信?【作图验证】(用直尺和圆规)先任意画出一个ABC,再画一个A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画出的A′B′C′剪下来,放在ABC上,它们能完全重合吗?(即全等吗)【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如课本图11.2-2所示)画一个A′B′C′,使A′B′=AB′,A′C′=AC,B′C′=BC:1.画线段取B′C′=BC;2.分别以B′、C′为圆心,线段AB、AC为半径画弧,两弧交于点A′;3.连接线段A′B′、A′C′.【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?”【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理.(1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS”).(2)判断两个三角形全等的推理过程,叫做证明三角形全等.【评析】通过学生全过程的画图、观察、比较、交流等,逐步探索出最后的结论──边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验.二、范例点击,应用所学【例1】如课本图11.2─3所示,ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的.支架,求证ABDACD.(教师板书)【教师活动】分析例1,分析:要证明ABDACD,可看这两个三角形的三条边是否对应相等.证明:D是BC的中点,∴BD=CD在ABD和ACD中∴ABDACD(SSS).【评析】符号“”表示“因为”,“∴”表示“所以”;从例1可以看出,•证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.书写中注意对应顶点要写在同一个位置上,哪个三角形先写,哪个三角形的边就先写.三、实践应用,合作学习【问题思考】已知AC=FE,BC=DE,点A、D、B、F在直线上,AD=FB(如图所示),要用“边边边”证明ABCFDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?【教师活动】提出问题,巡视、引导学生,并请学生说说自己的想法.【学生活动】先独立思考后,再发言:“还应该有AB=FD,只要AD=FB两边都加上DB即可得到AB=FD.”【教学形式】先独立思考,再合作交流,师生互动.四、随堂练习,巩固深化课本练习.【探研时空】如图所示,AB=DF,AC=DE,BE=CF,BC与EF相等吗?•你能找到一对全等三角形吗?说明你的理由.(BC=EF,ABCDFE)五、课堂总结,发展潜能1.全等三角形性质是什么?2.正确地判断出全等三角形的对应边、对应角,•利用全等三角形处理问题的基础,你是怎样掌握判断对应边、对应角的方法?3.“边边边”判定法告诉我们什么呢?•(答:只要一个三角形三边长度确定了,则这个三角形的形状大小就完全确定了,这就是三角形的稳定性)六、布置作业,专题突破1.习题11.2第1,2题.2.选做课时作业设计.教学反思:首先,本节课重点关注:“一个条件”、“两个条件”包括的情形,以及不能形成的原因,先让学生自行探索,关键时刻老师再加以引导并利用多媒体演示。
全等三角形的判定(SSS)说课稿
全等三角形的判定(SSS)第一课时各位评委老师:大家好!今天我说课的内容是人教版八年级数学第十二章第二节《全等三角形的判定1》,下面我从教材分析、教学目的的确定、教法学法的选择、教学过程的设计等几个方面对本节课进行分析说明。
一、教材分析:本节内容选自人教版初中数学八年级上册第十二章第二节,是在学习了全等三角形的概念,全等三角形的性质后展开的。
主要让学生学会的是如何利用“边边边”的条件证明两个三角形全等。
是证明两个三角形全等的重要方法之一。
全等三角形是两个三角形间最简单、最常见的关系,它不仅是学习后面知识的基础,而且还是证明线段相等、角相等的重要依据。
也为今后探索直角三角形全等的条件以及三角形相似的条件提供很好的模式和方法。
因此,本节课的知识具有承前启后的作用,占有相当重要的地位。
二、学情分析:学生在此之前已经学习了全等三角形的概念及性质,对全等三角形已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于全等三角形判定的理解,学生可能会产生一定的困难,所以教学时深入浅出的分析。
初中学生的逻辑思维从经验型逐步向理论型过渡。
观察力、记忆力也迅速发展,但这一阶段的学生好动、注意力易分散;但爱发表意见,希望得到老师的肯定与表扬。
在学习中应抓住这一点,运用直观生动形象的例子,引导学生学习的兴趣,创造条件和机会让学生主动参与 .三、教学目标根据教材地位和学生实际,依据教学大纲,本着向学生传授知识,发展思维能力,同时向学生进行思想教育为目的,我将本节课的教学目标划分为三个层次:①知识目标②能力目标③情感目标。
⒈知识目标:掌握“边边边”条件的内容,并能初步应用“边边边”条件判定两个三角形全等。
⒉能力目标:经历探索三角形全等条件的过程,体会如何探索研究问题,让学生初步体会分类思想,提高分析问题和解决问题的能力。
⒊情感目标:通过画图比较、验证,培养学生注重观察、善于思考、不断总结的良好思维习惯。
四、教学重难点教学重点:用“边边边”证明两个三角形全等。
12.2.1全等三角形的判定(SSS)ppt课件
5
2.给出两个条件: ①一边一内角:
30°
②两内角:
30°50°
③两边:
2cm 4cm
30°
30°
结论:满足两 个条件相等的 30° 50° 两个三角形不 一定全等。
2cm
ppt精选
4cm
6
如果给出三个条件画三角形,你能说出有哪几 种可能的情况?
①三边; ②两边一角;
③两角一边; ④三角。
ppt精选
证明:∵BD=CE ∴ BD-ED=CE-ED, B E D C
即BE=CD。
在AEB和ADC中,
AB=AC
AE=AD
BE=CD
∴ △AEB ≌ △ppAt精D选 C (sss)
13
已知: 如图,AB = CD ,AD = CB . 求证: ∠ A =∠ C
证明: 连结 BD
A
D
在△BAD 和△DCB中
ppt精选
8
结论:三边对应相等的两个三角形全等.
可简写为边边边或SSS
如何用数学符
A
D 号来表达呢?
B
CE
F
在△ABC与△DEF中
AB=DE
AC=DF
BC=EF ∴△ABC≌△DEF(SSS)
判断两个三角形全等的推理过p程pt精,选 叫做证明三角形全等。 9
例题1 如图,△ABC是一个钢架,AB=AC,AD是连接 点A与BC中点D的支架。求证△ABD≅△ACD
ppt精选
1
1、 什么叫全等三角形?
能够重合的两个三角形叫 全等三角形。
2、 全等三角形有什么性质?
A
D
B
C
E
F
全等三角形的对应边相等;对应角相等
12.2.1全等三角形的判定(SSS,SAS,ASA,AAS)20160724
E C
A 练习:如图,点 D 在 AB 上,点 E 在 AC 上,BA =AC, ∠B =∠C,BE、CD 相交于点 O.求证:OB=OC D B 练习:如图,CD⊥AB 于 D,BE⊥AC 与 E, BE、CD 交于 O,且 AO 平分∠BAC,求证:OB=OC D O B 六、全等三角形的判定方法 简称 边边边 边角边 角边角 角角边 缩写 SSS SAS ASA AAS 具体条件 三边对应相等 两边和它们的夹角对应相等 两角和它们的夹边对应相等 两角和其中一角的对边对应相等 A O E C
A 练习:如图:己知 AD∥BC,AE=CF,AD=BC,E、F都在直线AC来自,试说明DE∥ D A BF。
B
E
F
C B 五、全等三角形的判定方法(ASA,AAS) 1. 两角和它们的夹边对应相等的两个三角形全等。简写为“角边角”或“ASA” 。 2. 两角和其中一角的对边对应相等的两个三角形全等。简写为“角角边”或“AAS”。
E A D
B
C
H
B
四、全等三角形的判定方法(SAS) 1. 用尺规作图,两边和它们的夹角对应相等的两个三角形,发现它们是能够完全重合(全 等)的。 2. 两边和它们的夹角对应相等的两个三角形全等。简写为“边角边”或“SAS” 练习:如图,AC=BD,∠CAB=∠DBA,你能判断 BC=AD 吗?说明理由。 C D
12.2 三角形全等的判定 复习 1. 全等三角形的定义:能够完全重合的两个三角形是全等三角形。 2. 全等三角形的性质:全等三角形对应边相等,对应角相等。 3. 因为△ABC≌△A’B’C’, 所以 AB=A’B’, BC=B’ C’, AC=A’ C’ ∠A=∠A’, ∠B=∠B’, ∠C=∠C’ 一、全等三角形的判定方法 1. 首先可以肯定的是,三条边对应相等,三个角对应相等的两个三角形全等。 2. 然后至少需要几个条件才能判定两三角形全等。 二、全等三角形的判定方法(SSS) 1. 用尺规作图,画两个三边相等的三角形,发现它们是能够完全重合(全等)的。 2. 三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。 三、证明三角形全等的书写格式 例题:如图已知 AB=CD,AC=DB,求证△ABC≌△DCB 证明:∵在△ABC 和△DCB 中 A AB=CD 已知 AC=DB 已知 BC=BC 公共边 B
12.2.1三角形全等的判定SSS
结论:三条边对应相等的两个三角形全等。
出示探究2,先任意画出一个△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA,把画好的△A'B'C'剪下,放到△ABC上,它们全等吗? 上述结论反映了什么规律?
结论:三边对应相等的两个三角形全等(可以简写成“边边边”或“sss”)。
【设计意图】:通过对问题的讨论、分析及交流加深学生对三角形全等的判定(sss)的理解。
(三)、学以致用,强化新知
例1 如图△ABC是一个钢架,AB=AC,AD是连接
点A与BC中点D的支架,求证△ABD≌△ACD。
作图:已知∠AOB
求作:∠A′O′B′,
使∠A′O′B′=∠AOB
【设计意图】:检测学生对知识的掌握情况及应用能力,让学生初步体验成功的喜悦,同时也明确一下书写过程。
以及对作图工具的使用。
(四)巩固练习,深化拓展
1、已知:如图,AB=AD,BC=CD,求证:△ABC≌△ADC
D
C
B
A。
12.2.1 三角形全等的判定SSS
三角形全等的判定
课件制作:管斌
1.什么叫全等三角形?
能够完全重合的两个三角形叫全等三角形.
2.全等三角形有什么性质?
A
D
B
C
E
F ③ CA=FD ⑥∠C= ∠F
①AB=DE ④∠A= ∠D
② BC=EF ⑤∠B=∠E
情境问题:
小明家的衣橱上镶有两块全等
的三角形玻璃装饰物,其中一块被
打碎了,妈妈让小明到玻璃店配一
④两角一边。
给出三个条件
①三个角: 如30°,70°,80°,它们一定全等吗?
800 800 300 700 300
700
结论:三个角对应相等的两个三角形不一 定全等.
②三条边:画出一个三角形,使它的三边长 分别为3cm、4cm、5cm ,把你画的三角形与小组 内画的进行比较,它们一定全等吗?
画法: 1.画线段AB=3㎝;
30◦ 4cm
30◦ 4cm
结论:一条边一个角对应相等的两个三角形不 一定全等. 两个条件 一个条件 ①两角; ①一角; ②两边; ②一边; ③一边一角。 结论:只给出一个或两个条件时,都不能保证 所画的三角形一定全等。
如果给出三个条件画三角形,你 能说出有哪几种可能的情况?
①三角; ②三边;
③两边一角;
①写出在哪两个三角形中
②摆出三个条件用大括号括起来 ③写出全等结论
这节课你学了什么?
A
D E F
三角形全等的判定一(SSS)
B C 在△ABC与△DEF中
AB=DE
AC=DF
BC=EF
∴△ABC≌△DEF(SSS)
作业:课本37页,练习题1.一号本
块回来,请你说说小明该怎么办?
三角形全等的判定(SSS)课件(共22张PPT) 人教版初中数学八年级上册
证明: ∵BB ′=CC ′ ∴BC=B ′C ′ 在△ABC和△A ′B ′C ′中
AB=A ′B ′ AC=A ′C ′
BC=B ′C ′ ∴ △ABC≌△ A ′B ′C ′ (SSS) ∴ ∠A=∠A ′
3. A O
D
C B
E
如图,已知线段AB,CD相交于点O, AD,CB的延长线交于点E,OA=OC, EA=EC,请说明∠A=∠C
分析:根据条件OA=OC,EA=EC。OA,EA和
OC,EC恰好分别是△AOE和△COE的两条
边,故可以构成两个三角形,利用全等
三角形解决
A
O
C
证明:
D
B
E
连接OE,在△AOE和△COE中
AO=CO
OE=OE
EA=EC ∴ △ AOE ≌△ COE (SSS) ∴ ∠A=∠C
第四部分 课程小结
☺ 三边分别相等的两个三角形 全等
探究1 答:不一定全等 • 当满足一个条件时
一条边相等
一个角相等
探究1 • 当满足两个条件时
一个角和一条边相等
3cm 4cm
3cm 4cm
两条边相等
30°
60°
30°
60°
两个角相等
探究2
☺ 先任意画出一个△ABC.再画一个 △A′B′C′,使A′B′=AB, B′C′=BC, C′A′=CA,把画好的 △A′B′C′减下来,放在△ABC 上,它们全等吗?
A
A′
B
B′
C
C′
答: △ABC≌△A′B′C′
思考
探究1
上述六个条件中,有些条件是相关的. 能否在上述六个条件中选择一部分条件, 简捷地判定两个三角形全等呢?
12.2.1全等三角形的判定(sss)
三边
两边一角
两角一边
300
500
300
500
满足下列条件的两个三角形是一定否全等:
(1)一个条件
× 一边
只有一个条件对应相等的
× 一角
两个三角形不一定全等。
(2)两个条件
一边一角 × 两角 ×
两边
三角
(3)三个条件
三边 两边一角
两角一边
8cm
8cm
满足下列条件的两个三角形是一定否全等:
(1)一个条件 (2)两个条件 (3)三个条件
(2)两个条件 (3)三个条件
一边一角 × 两角 × 两边 × 三角 ×
三边
只有两个条件对应相 等的两个三角形不一 定全等。
两边一角
两角一边
8cm
8cm
满足下列条件的两个三角形是否一定全等:一个条件× 一边
只有一个条件对应相等的
× 一角
两个三角形不一定全等。
两个条件 三个条件
一边一角 × 两角 × 两边 × 三角 × 三边 √
A
B D
C
E
F
判断两个三角形全等的推理过程,叫做证明三角 形全等。
例1. 如下图,△ABC是一个钢架,
AB=AC,AD是连接A与BC中点D的 支架。求证:△ABD≌ △ACD
A
B
D
C
例2.已知AC=FE,BC=DE,点A, D,B,F在一条直线上,AD=FB,证 明△ABC ≌△ FDE
A
C
DB
E
F
A
C
B
D
E
F
证明三角形全等的步骤:
(1)准备条件:证全等时要用的间接条 件 要先证好; (2)证明三角形全等书写三步骤:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2 如图,△ABC是一个钢架, AB=AC, AD 是连接点 A与BC中点 D的支架 .
求证:(1)△ABD≌△ ACD. (2)∠BAD = ∠CAD.
证明:Q D是BC的中点, ? BD=CD.
(2)由(1)得△ABD≌△ACD ,
解:在? CMO和? CNO中,
? OM=ON,
? ?
CM=CN,
O
?? CO=CO,
? ? CMO≌? CNO(SSS).
? ? COM=? CON.
? OC是? AOB的平分线.
MA C
NB
如图,AB=AC,AE=AD,BD=CE, A 求证:△AEB ≌ △ ADC。
证明:∵ BD=CE ∴ BD-ED=CE-ED , B E D C
1. 什么叫全等三角形? 能够重合的两个三角形叫 全等三角形 。 2.全等三角形有什么 性质? 全等三角形的对应边相等,对应角相等
3.已知 ? ABC ≌ ? A'B' C' ,试找出其中相等的边与角
A
A'
B
C
B'
C'
(1)AB=A'B' (2)BC=B'C' (3)CA=C'A' (4)? A=? A' (5)? B=? B' (6)? 只给一个条件: ①只给一条边相等时:
②只给一个角相等时:
30o
300
结论:有一个条件相等不能保证两个三角形全等 .
探究2
两个条件可以吗?
1. 有两个角对应相等的两个三角形
不一定全等
2. 有两条边对应相等的两个三角形
不一定全等
3. 有一个角和一条边 对应相等的两个三角形 不一定全等
300 300
AD=CB (已知)
A
B
BD=DB (公共边)
∴△ABD≌△ACD(SSS)
∴ ∠ A=∠C (全等三角形的对应角相等)
补充练习:
如图,已知 AB=CD,AD=CB,E、F分别是AB,CD 的中点,且 DE=BF,说出下列判断成立的理由 .
解:要证明△ ABC ≌△ FDE,
还应该有 AB=DF这个条件
A
C
∵ DB是AB与DF的公共部分, 且AD=BF
∴ AD+DB=BF+DB
D B
即 AB=DF
E
F
练习1
(1)如图, AB=CD,AC=BD,△ABC和△DCB是否全等?
试说明理由。
A
D
解: △ABC≌△DCB 理由如下: AB = CD
AC = BD
B
C
△ABD≌ △DCB( SSS )
BC = BC
A
E
(2)如图,D、F是线段BC上的两点,
AB=CE,AF=DE,要使△ABF≌△ECD ,
还需要条件 BF=DC 或 BD=FC .
B D FC
? 已知: 如图, 四边形ABCD中,AD=CB,AB=CD ? 求证: ∠A= ∠C。
三边对应相等的两个三角形全等,简 写为“边边边”或“SSS ”。
用上面的结论可以判定两个三角形全等. 判断两个三角形全等的推理过程,叫做证明
三角形全等.
结 论
三边对应相等的两个三角形全等. (简写成“边边边”或“SSS”)
A
A'
B
C
B'
C'
如何用符号语言来表达呢 ?
在? ABC和? A'B'C'中
D
42 C
13
A
B
分析:要证两角或两线段相等,常先证这两角或两线段 所在的两三角形全等,从而需构造全等三角形。
构造公共边是常添的辅助线
练习3、如图,在四边形 ABCD中, AB=CD, AD=CB, 求证:∠ A= ∠ C.
你能说明AB∥CD,AD∥BC吗?
? 证明:在△ABD和△CDB中 D
C
AB=CD (已知)
在? ABC和? A'B'C'中,有
(1)AB=A'B' (2)BC=B'C' (3)CA=C'A'
(4)? A=? A
A
(5)? B=? B A(' 6)? C=? C
B
C
B'
C'
思考:
1. 满足这六个条件就能保证△ABC≌ △ A`B`C` 吗?
2. 如果只满足这些条件中的一部分,那么能满足 △ABC≌ △ A`B`C` 吗?
分析:要证明△ ABC≌ △ ADC,首先看这两个三角 形的三条边 是否对应相等。
证明:在△ABC和△ADC中
A
AB=AD ( 已知 ) BC=DC ( 已知)
B
D
AC= AC (公共边 )
∴ △ABC ≌ △ADC(SSS)
C
证明的书写步骤:
①准备条件: 证全等时要用的间接条件要先证好; ②三角形全等书写三步骤:
? AB ? A'B'
? ? BC
?
B'C'
? ?
CA
?
C'A'
? ? ABC ≌ ? A'B'C' (SSS)
判断两个三角形全等的推理过程,叫做证明三角形全等。
结论:从这题的证明中可以看出,证明是由题 例设1(已已知知):出如发图,,经AB过=一AD步,步B的C推=C理D,,最后推 出结论求正证确:的△过AB程C。≌ △ADC
使A'B'=AB,B'C'=BC,C'A= ' CA. 把画好的
? A'B'C'剪下,放到? ABC上,它们全等吗?
画法:1. 画线段 B'C=' BC;
2. 分别以B'、C'为圆心,
线段AB、AC为半径画弧, 你能得出什
两弧交于点A';
么结论?
3. 连接线段 A 'B'、A'C'.
则ΔA'BC' '为所求作的三角形 .
即BE=CD 。 在AEB和ADC中,
AB=AC
AE=AD
BE=CD
∴ △AEB ≌ △ ADC (sss)
思考
已知AC=FE,BC=DE,点A、D、 B、 F在一条直线上, AD=FB. 要用“边边边”证明 △ABC ≌△ FDE,除了已知中的 AC=FE,BC=DE以 外,还应该有什么条件?怎样才能得到这个条件?
AA ∴ ∠BAD= ∠CAD.
在? ABD和? ACD中,
? ? ?
AB=AC, B
BD=CD,
D
C
?? AD=AD,
C
B? ? ABD≌ ? ACD(SSDS).
工人师傅常用角尺平分一个任意角. 做法如下:如图, AOB是一个任意角,在边OA,OB上分别取OM=ON,移动 角尺,使角尺两边相同的刻度分别与M,N重合. 过角尺顶点 C的射线OC便是AOB的平分线.为什么?
60o
60o
4cm
300 6cm
30o
结论:有两个条件对6c应m 相等不能保证三角形全等 .
探究3
三个条件呢?
1. 有三个角对应相等的两个三角形
300 300
60o
60o
结论: 三个内角对应相等的三角形 不一定全等。
探究活动 三边相等的两个三角形会全等吗?
先任意画出一个? ABC,再画一个? A'B'C',