动态神经网络综述
BP神经网络研究综述【文献综述】
文献综述电气工程及自动化BP神经网络研究综述摘要:现代信息化技术的发展,神经网络的应用范围越来越广,尤其基于BP算法的神经网络在预测以及识别方面有很多优势。
本文对前人有关BP神经网络用于识别和预测方面的应用进行归纳和总结,并且提出几点思考方向以作为以后研究此类问题的思路。
关键词:神经网络;数字字母识别;神经网络的脑式智能信息处理特征与能力使其应用领域日益扩大,潜力日趋明显。
作为一种新型智能信息处理系统,其应用贯穿信息的获取、传输、接收与加工各个环节。
具有大家所熟悉的模式识别功能,静态识别例如有手写字的识别等,动态识别有语音识别等,现在市场上这些产品已经有很多。
本文查阅了中国期刊网几年来的相关文献包括相关英文文献,就是对前人在BP神经网络上的应用成果进行分析说明,综述如下:(一)B P神经网络的基本原理BP网络是一种按误差逆向传播算法训练的多层前馈网络它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阀值,使网络的误差平方最小。
BP网络能学习和存贮大量的输入- 输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程.BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer),如图上图。
其基本思想是通过调节网络的权值和阈值使网络输出层的误差平方和达到最小,也就是使输出值尽可能接近期望值。
(二)对BP网络算法的应用领域的优势和其它神经网络相比,BP神经网络具有模式顺向传播,误差逆向传播,记忆训练,学习收敛的特点,主要用于:(1)函数逼近:用输入向量和相应的输出向量训练一个网络以逼近一个函数;(2)模式识别:用一个待定的输出向量将它与输入向量联系起来;(3)数据压缩:减少输出向量维数以便于传输或存储;(4)分类:把输入向量所定义的合适方式进行分类;]9[BP网络实质上实现了一个从输入到输出的映射功能,,而数学理论已证明它具有实现任何复杂非线性映射的功能。
脉冲神经网络研究进展综述
脉冲神经网络研究进展综述一、本文概述随着和机器学习的飞速发展,神经网络作为其中的核心组件,已经得到了广泛的研究和应用。
然而,传统的神经网络模型在处理复杂、动态和实时的任务时,由于其计算复杂度高、能耗大等问题,面临着巨大的挑战。
脉冲神经网络(Spiking Neural Networks,SNNs)作为一种新型的神经网络模型,以其独特的脉冲编码和传输机制,为解决这些问题提供了新的思路。
本文旨在全面综述脉冲神经网络的研究进展,包括其基本原理、模型设计、训练方法以及应用领域等方面。
我们将详细介绍脉冲神经网络的基本概念和脉冲编码机制,阐述其与传统神经网络的主要区别和优势。
然后,我们将回顾脉冲神经网络模型的发展历程,分析各种模型的特点和应用场景。
接着,我们将探讨脉冲神经网络的训练方法和学习机制,包括监督学习、无监督学习和强化学习等。
我们将展示脉冲神经网络在各个领域的应用实例,如图像识别、语音识别、机器人控制等,并展望其未来的发展方向。
通过本文的综述,我们希望能够为研究者提供一个清晰、全面的脉络,以了解脉冲神经网络的研究现状和发展趋势,为未来的研究提供有益的参考和启示。
我们也期望能够激发更多研究者对脉冲神经网络的兴趣和热情,共同推动这一领域的发展。
二、脉冲神经网络的基本原理脉冲神经网络(Spiking Neural Networks,SNNs)是一种模拟生物神经网络中神经元脉冲发放行为的计算模型。
与传统的人工神经网络(Artificial Neural Networks,ANNs)不同,SNNs的神经元通过产生和传递脉冲(或称为动作电位)来进行信息的编码和传输。
这种模型更接近生物神经元的实际运作机制,因此具有更强的生物可解释性和更高的计算效率。
在SNNs中,神经元的状态通常由膜电位(Membrane Potential)来表示。
当膜电位达到某个阈值时,神经元会发放一个脉冲,并将膜电位重置为静息状态。
脉冲的发放时间和频率都可以作为信息的编码方式。
图神经网络综述
第47卷第4期Vol.47No.4计算机工程Computer Engineering2021年4月April 2021图神经网络综述王健宗,孔令炜,黄章成,肖京(平安科技(深圳)有限公司联邦学习技术部,广东深圳518063)摘要:随着互联网和计算机信息技术的不断发展,图神经网络已成为人工智能和大数据处理领域的重要研究方向。
图神经网络可对相邻节点间的信息进行有效传播和聚合,并将深度学习理念应用于非欧几里德空间的数据处理中。
简述图计算、图数据库、知识图谱、图神经网络等图结构的相关研究进展,从频域和空间域角度分析与比较基于不同信息聚合方式的图神经网络结构,重点讨论图神经网络与深度学习技术相结合的研究领域,总结归纳图神经网络在动作检测、图系统、文本和图像处理任务中的具体应用,并对图神经网络未来的发展方向进行展望。
关键词:图神经网络;图结构;图计算;深度学习;频域;空间域开放科学(资源服务)标志码(OSID ):中文引用格式:王健宗,孔令炜,黄章成,等.图神经网络综述[J ].计算机工程,2021,47(4):1-12.英文引用格式:WANG Jianzong ,KONG Lingwei ,HUANG Zhangcheng ,et al.Survey of graph neural network [J ].Computer Engineering ,2021,47(4):1-12.Survey of Graph Neural NetworkWANG Jianzong ,KONG Lingwei ,HUANG Zhangcheng ,XIAO Jing(Federated Learning Technology Department ,Ping An Technology (Shenzhen )Co.,Ltd.,Shenzhen ,Guangdong 518063,China )【Abstract 】With the continuous development of the computer and Internet technologies ,graph neural network has become an important research area in artificial intelligence and big data.Graph neural network can effectively transmit and aggregate information between neighboring nodes ,and applies the concept of deep learning to the data processing of non-Euclidean space.This paper briefly introduces the research progress of graph computing ,graph database ,knowledge graph ,graph neural network and other graph-based techniques.It also analyses and compares graph neural network structures based on different information aggregation modes in the spectral and spatial domain.Then the paper discusses research fields that combine graph neural network with deep learning ,and summarizes the specific applications of graph neural networks in action detection ,graph systems ,text and image processing tasks.Finally ,it prospects the future development research directions of graph neural networks.【Key words 】graph neural network ;graph structure ;graph computing ;deep learning ;spectral domain ;spatial domain DOI :10.19678/j.issn.1000-3428.00583820概述近年来,深度学习技术逐渐成为人工智能领域的研究热点和主流发展方向,主要应用于高维特征规则分布的非欧几里德数据处理中,并且在图像处理、语音识别和语义理解[1]等领域取得了显著成果。
(完整word版)神经网络历史发展及应用综述个人整理(word文档良心出品)
人工神经网络历史发展及应用综述1、引言人类为了生存在改造探索自然的过程中,学会利用机械拓展自身的体力,随着对自然认识的不断深入,创造语言,符号,算盘、计算工具等来强化自身脑力。
复杂的数字计算原本是靠人脑来完成的,为了摆脱这种脑力束缚发明了计算机。
其数字计算能力比人脑更强,更快、更准。
计算机的出现,人类开始真正有了一个可以模拟人类思维的工具,期盼可以实现人工智能,构造人脑替代人类完成相应工作。
要模拟人脑的活动,就要研究人脑是如何工作的,要怎样模拟人脑的神经元。
人脑的信息处理具有大规模并行处理、强容错性和自适应能力、善于联想、概括、类比和推广的特点,多少年以来,人们从生物学、医学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度企图获悉人脑的工作奥秘,寻求神经元的模拟方法。
在寻找上述问题答案的研究过程中,从20世纪40年代开始逐渐形成了一个新兴的边缘性交叉学科,称之为“神经网络”,是人工智能、认知科学、神经生理学、非线性动力学、信息科学、和数理科学的“热点”。
关于神经网络的研究包含众多学科领域,涉及数学、计算机、人工智能、微电子学、自动化、生物学、生理学、解剖学、认知科学等学科,这些领域彼此结合、渗透,相互推动神经网络研究和应用的发展。
2、定义思维学普遍认为,人类大脑的思维有三种基本方式,分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维。
逻辑性的思维是根据逻辑规则进行推理的过程,这一过程可以写成指令,让计算机执行,获得结果。
而直观性(形象)的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。
这种思维方式的有以下两个特点:一是信息通过神经元上的兴奋模式分布储在网络上;二是信息处理通过神经元之间同时相互作用的动态过程来完成的。
人工神经网络就是模拟第二种人类思维方式。
人工神经网络是由大量具备简单功能的人工神经元相互联接而成的自适应非线性动态系统。
虽然单个神经元的结构和功能比较简单,但大量神经元连接构成的网络系统行为却异常复杂。
神经网络发展综述
1 神经网络的发展及分类
十年来, 针对神经网络的学术研究大量涌现, 它们当中提出了数百种神 经 网 络 , 涉 及 联 想 记 忆 、自 学 习 与 自 组 织 、计 算 机 视 觉 等 众 多 的 方 面 , 取 得了引人瞩目的进展。
由于神经网络是高度非线性动力学系统, 又是自适应自组织系统, 可 用 来 描 述 认 知 、决 策 及 控 制 等 的 智 能 行 为 , 使 得 智 能 的 认 识 和 模 拟 成 为 神 经 网 络 理 论 研 究 的 一 个 重 要 方 面 。而 这 方 面 的 研 究 与 我 们 对 人 脑 结 构的认识和研究有着密切的关系, 同时, 神经网络理论又成为信息并行 处理的基础, PDP( 并行分布处理) 成 为 20 世 纪 80 年 代 中 后 期 的 一 个 研 究新热点, 它进一步拓展了计算概念的内涵, 使神经计算、进化计算成为 新的研究领域。事实上, 神经网络理论研究的前沿问题将渗透到 21 世纪 科学的挑战性问题中, 不过, 由于目前人类对真实神经系统了解非常有 限, 对于自身脑结构及其活动机理的认识还非常浮浅, 因此, 人工神经网 络 的 完 善 与 发 展 还 有 待 于 神 经 生 理 学 、神 经 解 剖 学 的 研 究 给 出 更 加 详 细 的研究和证据。
做好绿地的养护管理工作, 还必须加强专业技术的指导, 面向社会单位
BP神经网络及深度学习研究-综述(最新整理)
BP神经网络及深度学习研究摘要:人工神经网络是一门交叉性学科,已广泛于医学、生物学、生理学、哲学、信息学、计算机科学、认知学等多学科交叉技术领域,并取得了重要成果。
BP(Back Propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。
本文将主要介绍神经网络结构,重点研究BP神经网络原理、BP神经网络算法分析及改进和深度学习的研究。
关键词:BP神经网络、算法分析、应用1 引言人工神经网络(Artificial Neural Network,即ANN ),作为对人脑最简单的一种抽象和模拟,是人们模仿人的大脑神经系统信息处理功能的一个智能化系统,是20世纪80 年代以来人工智能领域兴起的研究热点。
人工神经网络以数学和物理方法以及信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,旨在模仿人脑结构及其功能的信息处理系统。
人工神经网络最有吸引力的特点就是它的学习能力。
因此从20世纪40年代人工神经网络萌芽开始,历经两个高潮期及一个反思期至1991年后进入再认识与应用研究期,涌现出无数的相关研究理论及成果,包括理论研究及应用研究。
最富有成果的研究工作是多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。
因为其应用价值,该研究呈愈演愈烈的趋势,学者们在多领域中应用[1]人工神经网络模型对问题进行研究优化解决。
人工神经网络是由多个神经元连接构成,因此欲建立人工神经网络模型必先建立人工神经元模型,再根据神经元的连接方式及控制方式不同建立不同类型的人工神经网络模型。
现在分别介绍人工神经元模型及人工神经网络模型。
1.1 人工神经元模型仿生学在科技发展中起着重要作用,人工神经元模型的建立来源于生物神经元结构的仿生模拟,用来模拟人工神经网络[2]。
人们提出的神经元模型有很多,其中最早提出并且影响较大的是1943年心理学家McCulloch和数学家W. Pitts在分析总结神经元基本特性的基础上首先提出的MP模型。
《神经网络与深度学习综述DeepLearning15May2014
Draft:Deep Learning in Neural Networks:An OverviewTechnical Report IDSIA-03-14/arXiv:1404.7828(v1.5)[cs.NE]J¨u rgen SchmidhuberThe Swiss AI Lab IDSIAIstituto Dalle Molle di Studi sull’Intelligenza ArtificialeUniversity of Lugano&SUPSIGalleria2,6928Manno-LuganoSwitzerland15May2014AbstractIn recent years,deep artificial neural networks(including recurrent ones)have won numerous con-tests in pattern recognition and machine learning.This historical survey compactly summarises relevantwork,much of it from the previous millennium.Shallow and deep learners are distinguished by thedepth of their credit assignment paths,which are chains of possibly learnable,causal links between ac-tions and effects.I review deep supervised learning(also recapitulating the history of backpropagation),unsupervised learning,reinforcement learning&evolutionary computation,and indirect search for shortprograms encoding deep and large networks.PDF of earlier draft(v1):http://www.idsia.ch/∼juergen/DeepLearning30April2014.pdfLATEX source:http://www.idsia.ch/∼juergen/DeepLearning30April2014.texComplete BIBTEXfile:http://www.idsia.ch/∼juergen/bib.bibPrefaceThis is the draft of an invited Deep Learning(DL)overview.One of its goals is to assign credit to those who contributed to the present state of the art.I acknowledge the limitations of attempting to achieve this goal.The DL research community itself may be viewed as a continually evolving,deep network of scientists who have influenced each other in complex ways.Starting from recent DL results,I tried to trace back the origins of relevant ideas through the past half century and beyond,sometimes using“local search”to follow citations of citations backwards in time.Since not all DL publications properly acknowledge earlier relevant work,additional global search strategies were employed,aided by consulting numerous neural network experts.As a result,the present draft mostly consists of references(about800entries so far).Nevertheless,through an expert selection bias I may have missed important work.A related bias was surely introduced by my special familiarity with the work of my own DL research group in the past quarter-century.For these reasons,the present draft should be viewed as merely a snapshot of an ongoing credit assignment process.To help improve it,please do not hesitate to send corrections and suggestions to juergen@idsia.ch.Contents1Introduction to Deep Learning(DL)in Neural Networks(NNs)3 2Event-Oriented Notation for Activation Spreading in FNNs/RNNs3 3Depth of Credit Assignment Paths(CAPs)and of Problems4 4Recurring Themes of Deep Learning54.1Dynamic Programming(DP)for DL (5)4.2Unsupervised Learning(UL)Facilitating Supervised Learning(SL)and RL (6)4.3Occam’s Razor:Compression and Minimum Description Length(MDL) (6)4.4Learning Hierarchical Representations Through Deep SL,UL,RL (6)4.5Fast Graphics Processing Units(GPUs)for DL in NNs (6)5Supervised NNs,Some Helped by Unsupervised NNs75.11940s and Earlier (7)5.2Around1960:More Neurobiological Inspiration for DL (7)5.31965:Deep Networks Based on the Group Method of Data Handling(GMDH) (8)5.41979:Convolution+Weight Replication+Winner-Take-All(WTA) (8)5.51960-1981and Beyond:Development of Backpropagation(BP)for NNs (8)5.5.1BP for Weight-Sharing Feedforward NNs(FNNs)and Recurrent NNs(RNNs)..95.6Late1980s-2000:Numerous Improvements of NNs (9)5.6.1Ideas for Dealing with Long Time Lags and Deep CAPs (10)5.6.2Better BP Through Advanced Gradient Descent (10)5.6.3Discovering Low-Complexity,Problem-Solving NNs (11)5.6.4Potential Benefits of UL for SL (11)5.71987:UL Through Autoencoder(AE)Hierarchies (12)5.81989:BP for Convolutional NNs(CNNs) (13)5.91991:Fundamental Deep Learning Problem of Gradient Descent (13)5.101991:UL-Based History Compression Through a Deep Hierarchy of RNNs (14)5.111992:Max-Pooling(MP):Towards MPCNNs (14)5.121994:Contest-Winning Not So Deep NNs (15)5.131995:Supervised Recurrent Very Deep Learner(LSTM RNN) (15)5.142003:More Contest-Winning/Record-Setting,Often Not So Deep NNs (16)5.152006/7:Deep Belief Networks(DBNs)&AE Stacks Fine-Tuned by BP (17)5.162006/7:Improved CNNs/GPU-CNNs/BP-Trained MPCNNs (17)5.172009:First Official Competitions Won by RNNs,and with MPCNNs (18)5.182010:Plain Backprop(+Distortions)on GPU Yields Excellent Results (18)5.192011:MPCNNs on GPU Achieve Superhuman Vision Performance (18)5.202011:Hessian-Free Optimization for RNNs (19)5.212012:First Contests Won on ImageNet&Object Detection&Segmentation (19)5.222013-:More Contests and Benchmark Records (20)5.22.1Currently Successful Supervised Techniques:LSTM RNNs/GPU-MPCNNs (21)5.23Recent Tricks for Improving SL Deep NNs(Compare Sec.5.6.2,5.6.3) (21)5.24Consequences for Neuroscience (22)5.25DL with Spiking Neurons? (22)6DL in FNNs and RNNs for Reinforcement Learning(RL)236.1RL Through NN World Models Yields RNNs With Deep CAPs (23)6.2Deep FNNs for Traditional RL and Markov Decision Processes(MDPs) (24)6.3Deep RL RNNs for Partially Observable MDPs(POMDPs) (24)6.4RL Facilitated by Deep UL in FNNs and RNNs (25)6.5Deep Hierarchical RL(HRL)and Subgoal Learning with FNNs and RNNs (25)6.6Deep RL by Direct NN Search/Policy Gradients/Evolution (25)6.7Deep RL by Indirect Policy Search/Compressed NN Search (26)6.8Universal RL (27)7Conclusion271Introduction to Deep Learning(DL)in Neural Networks(NNs) Which modifiable components of a learning system are responsible for its success or failure?What changes to them improve performance?This has been called the fundamental credit assignment problem(Minsky, 1963).There are general credit assignment methods for universal problem solvers that are time-optimal in various theoretical senses(Sec.6.8).The present survey,however,will focus on the narrower,but now commercially important,subfield of Deep Learning(DL)in Artificial Neural Networks(NNs).We are interested in accurate credit assignment across possibly many,often nonlinear,computational stages of NNs.Shallow NN-like models have been around for many decades if not centuries(Sec.5.1).Models with several successive nonlinear layers of neurons date back at least to the1960s(Sec.5.3)and1970s(Sec.5.5). An efficient gradient descent method for teacher-based Supervised Learning(SL)in discrete,differentiable networks of arbitrary depth called backpropagation(BP)was developed in the1960s and1970s,and ap-plied to NNs in1981(Sec.5.5).BP-based training of deep NNs with many layers,however,had been found to be difficult in practice by the late1980s(Sec.5.6),and had become an explicit research subject by the early1990s(Sec.5.9).DL became practically feasible to some extent through the help of Unsupervised Learning(UL)(e.g.,Sec.5.10,5.15).The1990s and2000s also saw many improvements of purely super-vised DL(Sec.5).In the new millennium,deep NNs havefinally attracted wide-spread attention,mainly by outperforming alternative machine learning methods such as kernel machines(Vapnik,1995;Sch¨o lkopf et al.,1998)in numerous important applications.In fact,supervised deep NNs have won numerous of-ficial international pattern recognition competitions(e.g.,Sec.5.17,5.19,5.21,5.22),achieving thefirst superhuman visual pattern recognition results in limited domains(Sec.5.19).Deep NNs also have become relevant for the more generalfield of Reinforcement Learning(RL)where there is no supervising teacher (Sec.6).Both feedforward(acyclic)NNs(FNNs)and recurrent(cyclic)NNs(RNNs)have won contests(Sec.5.12,5.14,5.17,5.19,5.21,5.22).In a sense,RNNs are the deepest of all NNs(Sec.3)—they are general computers more powerful than FNNs,and can in principle create and process memories of ar-bitrary sequences of input patterns(e.g.,Siegelmann and Sontag,1991;Schmidhuber,1990a).Unlike traditional methods for automatic sequential program synthesis(e.g.,Waldinger and Lee,1969;Balzer, 1985;Soloway,1986;Deville and Lau,1994),RNNs can learn programs that mix sequential and parallel information processing in a natural and efficient way,exploiting the massive parallelism viewed as crucial for sustaining the rapid decline of computation cost observed over the past75years.The rest of this paper is structured as follows.Sec.2introduces a compact,event-oriented notation that is simple yet general enough to accommodate both FNNs and RNNs.Sec.3introduces the concept of Credit Assignment Paths(CAPs)to measure whether learning in a given NN application is of the deep or shallow type.Sec.4lists recurring themes of DL in SL,UL,and RL.Sec.5focuses on SL and UL,and on how UL can facilitate SL,although pure SL has become dominant in recent competitions(Sec.5.17-5.22). Sec.5is arranged in a historical timeline format with subsections on important inspirations and technical contributions.Sec.6on deep RL discusses traditional Dynamic Programming(DP)-based RL combined with gradient-based search techniques for SL or UL in deep NNs,as well as general methods for direct and indirect search in the weight space of deep FNNs and RNNs,including successful policy gradient and evolutionary methods.2Event-Oriented Notation for Activation Spreading in FNNs/RNNs Throughout this paper,let i,j,k,t,p,q,r denote positive integer variables assuming ranges implicit in the given contexts.Let n,m,T denote positive integer constants.An NN’s topology may change over time(e.g.,Fahlman,1991;Ring,1991;Weng et al.,1992;Fritzke, 1994).At any given moment,it can be described as afinite subset of units(or nodes or neurons)N= {u1,u2,...,}and afinite set H⊆N×N of directed edges or connections between nodes.FNNs are acyclic graphs,RNNs cyclic.Thefirst(input)layer is the set of input units,a subset of N.In FNNs,the k-th layer(k>1)is the set of all nodes u∈N such that there is an edge path of length k−1(but no longer path)between some input unit and u.There may be shortcut connections between distant layers.The NN’s behavior or program is determined by a set of real-valued,possibly modifiable,parameters or weights w i(i=1,...,n).We now focus on a singlefinite episode or epoch of information processing and activation spreading,without learning through weight changes.The following slightly unconventional notation is designed to compactly describe what is happening during the runtime of the system.During an episode,there is a partially causal sequence x t(t=1,...,T)of real values that I call events.Each x t is either an input set by the environment,or the activation of a unit that may directly depend on other x k(k<t)through a current NN topology-dependent set in t of indices k representing incoming causal connections or links.Let the function v encode topology information and map such event index pairs(k,t)to weight indices.For example,in the non-input case we may have x t=f t(net t)with real-valued net t= k∈in t x k w v(k,t)(additive case)or net t= k∈in t x k w v(k,t)(multiplicative case), where f t is a typically nonlinear real-valued activation function such as tanh.In many recent competition-winning NNs(Sec.5.19,5.21,5.22)there also are events of the type x t=max k∈int (x k);some networktypes may also use complex polynomial activation functions(Sec.5.3).x t may directly affect certain x k(k>t)through outgoing connections or links represented through a current set out t of indices k with t∈in k.Some non-input events are called output events.Note that many of the x t may refer to different,time-varying activations of the same unit in sequence-processing RNNs(e.g.,Williams,1989,“unfolding in time”),or also in FNNs sequentially exposed to time-varying input patterns of a large training set encoded as input events.During an episode,the same weight may get reused over and over again in topology-dependent ways,e.g.,in RNNs,or in convolutional NNs(Sec.5.4,5.8).I call this weight sharing across space and/or time.Weight sharing may greatly reduce the NN’s descriptive complexity,which is the number of bits of information required to describe the NN (Sec.4.3).In Supervised Learning(SL),certain NN output events x t may be associated with teacher-given,real-valued labels or targets d t yielding errors e t,e.g.,e t=1/2(x t−d t)2.A typical goal of supervised NN training is tofind weights that yield episodes with small total error E,the sum of all such e t.The hope is that the NN will generalize well in later episodes,causing only small errors on previously unseen sequences of input events.Many alternative error functions for SL and UL are possible.SL assumes that input events are independent of earlier output events(which may affect the environ-ment through actions causing subsequent perceptions).This assumption does not hold in the broaderfields of Sequential Decision Making and Reinforcement Learning(RL)(Kaelbling et al.,1996;Sutton and Barto, 1998;Hutter,2005)(Sec.6).In RL,some of the input events may encode real-valued reward signals given by the environment,and a typical goal is tofind weights that yield episodes with a high sum of reward signals,through sequences of appropriate output actions.Sec.5.5will use the notation above to compactly describe a central algorithm of DL,namely,back-propagation(BP)for supervised weight-sharing FNNs and RNNs.(FNNs may be viewed as RNNs with certainfixed zero weights.)Sec.6will address the more general RL case.3Depth of Credit Assignment Paths(CAPs)and of ProblemsTo measure whether credit assignment in a given NN application is of the deep or shallow type,I introduce the concept of Credit Assignment Paths or CAPs,which are chains of possibly causal links between events.Let usfirst focus on SL.Consider two events x p and x q(1≤p<q≤T).Depending on the appli-cation,they may have a Potential Direct Causal Connection(PDCC)expressed by the Boolean predicate pdcc(p,q),which is true if and only if p∈in q.Then the2-element list(p,q)is defined to be a CAP from p to q(a minimal one).A learning algorithm may be allowed to change w v(p,q)to improve performance in future episodes.More general,possibly indirect,Potential Causal Connections(PCC)are expressed by the recursively defined Boolean predicate pcc(p,q),which in the SL case is true only if pdcc(p,q),or if pcc(p,k)for some k and pdcc(k,q).In the latter case,appending q to any CAP from p to k yields a CAP from p to q(this is a recursive definition,too).The set of such CAPs may be large but isfinite.Note that the same weight may affect many different PDCCs between successive events listed by a given CAP,e.g.,in the case of RNNs, or weight-sharing FNNs.Suppose a CAP has the form(...,k,t,...,q),where k and t(possibly t=q)are thefirst successive elements with modifiable w v(k,t).Then the length of the suffix list(t,...,q)is called the CAP’s depth (which is0if there are no modifiable links at all).This depth limits how far backwards credit assignment can move down the causal chain tofind a modifiable weight.1Suppose an episode and its event sequence x1,...,x T satisfy a computable criterion used to decide whether a given problem has been solved(e.g.,total error E below some threshold).Then the set of used weights is called a solution to the problem,and the depth of the deepest CAP within the sequence is called the solution’s depth.There may be other solutions(yielding different event sequences)with different depths.Given somefixed NN topology,the smallest depth of any solution is called the problem’s depth.Sometimes we also speak of the depth of an architecture:SL FNNs withfixed topology imply a problem-independent maximal problem depth bounded by the number of non-input layers.Certain SL RNNs withfixed weights for all connections except those to output units(Jaeger,2001;Maass et al.,2002; Jaeger,2004;Schrauwen et al.,2007)have a maximal problem depth of1,because only thefinal links in the corresponding CAPs are modifiable.In general,however,RNNs may learn to solve problems of potentially unlimited depth.Note that the definitions above are solely based on the depths of causal chains,and agnostic of the temporal distance between events.For example,shallow FNNs perceiving large“time windows”of in-put events may correctly classify long input sequences through appropriate output events,and thus solve shallow problems involving long time lags between relevant events.At which problem depth does Shallow Learning end,and Deep Learning begin?Discussions with DL experts have not yet yielded a conclusive response to this question.Instead of committing myself to a precise answer,let me just define for the purposes of this overview:problems of depth>10require Very Deep Learning.The difficulty of a problem may have little to do with its depth.Some NNs can quickly learn to solve certain deep problems,e.g.,through random weight guessing(Sec.5.9)or other types of direct search (Sec.6.6)or indirect search(Sec.6.7)in weight space,or through training an NNfirst on shallow problems whose solutions may then generalize to deep problems,or through collapsing sequences of(non)linear operations into a single(non)linear operation—but see an analysis of non-trivial aspects of deep linear networks(Baldi and Hornik,1994,Section B).In general,however,finding an NN that precisely models a given training set is an NP-complete problem(Judd,1990;Blum and Rivest,1992),also in the case of deep NNs(S´ıma,1994;de Souto et al.,1999;Windisch,2005);compare a survey of negative results(S´ıma, 2002,Section1).Above we have focused on SL.In the more general case of RL in unknown environments,pcc(p,q) is also true if x p is an output event and x q any later input event—any action may affect the environment and thus any later perception.(In the real world,the environment may even influence non-input events computed on a physical hardware entangled with the entire universe,but this is ignored here.)It is possible to model and replace such unmodifiable environmental PCCs through a part of the NN that has already learned to predict(through some of its units)input events(including reward signals)from former input events and actions(Sec.6.1).Its weights are frozen,but can help to assign credit to other,still modifiable weights used to compute actions(Sec.6.1).This approach may lead to very deep CAPs though.Some DL research is about automatically rephrasing problems such that their depth is reduced(Sec.4). In particular,sometimes UL is used to make SL problems less deep,e.g.,Sec.5.10.Often Dynamic Programming(Sec.4.1)is used to facilitate certain traditional RL problems,e.g.,Sec.6.2.Sec.5focuses on CAPs for SL,Sec.6on the more complex case of RL.4Recurring Themes of Deep Learning4.1Dynamic Programming(DP)for DLOne recurring theme of DL is Dynamic Programming(DP)(Bellman,1957),which can help to facili-tate credit assignment under certain assumptions.For example,in SL NNs,backpropagation itself can 1An alternative would be to count only modifiable links when measuring depth.In many typical NN applications this would not make a difference,but in some it would,e.g.,Sec.6.1.be viewed as a DP-derived method(Sec.5.5).In traditional RL based on strong Markovian assumptions, DP-derived methods can help to greatly reduce problem depth(Sec.6.2).DP algorithms are also essen-tial for systems that combine concepts of NNs and graphical models,such as Hidden Markov Models (HMMs)(Stratonovich,1960;Baum and Petrie,1966)and Expectation Maximization(EM)(Dempster et al.,1977),e.g.,(Bottou,1991;Bengio,1991;Bourlard and Morgan,1994;Baldi and Chauvin,1996; Jordan and Sejnowski,2001;Bishop,2006;Poon and Domingos,2011;Dahl et al.,2012;Hinton et al., 2012a).4.2Unsupervised Learning(UL)Facilitating Supervised Learning(SL)and RL Another recurring theme is how UL can facilitate both SL(Sec.5)and RL(Sec.6).UL(Sec.5.6.4) is normally used to encode raw incoming data such as video or speech streams in a form that is more convenient for subsequent goal-directed learning.In particular,codes that describe the original data in a less redundant or more compact way can be fed into SL(Sec.5.10,5.15)or RL machines(Sec.6.4),whose search spaces may thus become smaller(and whose CAPs shallower)than those necessary for dealing with the raw data.UL is closely connected to the topics of regularization and compression(Sec.4.3,5.6.3). 4.3Occam’s Razor:Compression and Minimum Description Length(MDL) Occam’s razor favors simple solutions over complex ones.Given some programming language,the prin-ciple of Minimum Description Length(MDL)can be used to measure the complexity of a solution candi-date by the length of the shortest program that computes it(e.g.,Solomonoff,1964;Kolmogorov,1965b; Chaitin,1966;Wallace and Boulton,1968;Levin,1973a;Rissanen,1986;Blumer et al.,1987;Li and Vit´a nyi,1997;Gr¨u nwald et al.,2005).Some methods explicitly take into account program runtime(Al-lender,1992;Watanabe,1992;Schmidhuber,2002,1995);many consider only programs with constant runtime,written in non-universal programming languages(e.g.,Rissanen,1986;Hinton and van Camp, 1993).In the NN case,the MDL principle suggests that low NN weight complexity corresponds to high NN probability in the Bayesian view(e.g.,MacKay,1992;Buntine and Weigend,1991;De Freitas,2003), and to high generalization performance(e.g.,Baum and Haussler,1989),without overfitting the training data.Many methods have been proposed for regularizing NNs,that is,searching for solution-computing, low-complexity SL NNs(Sec.5.6.3)and RL NNs(Sec.6.7).This is closely related to certain UL methods (Sec.4.2,5.6.4).4.4Learning Hierarchical Representations Through Deep SL,UL,RLMany methods of Good Old-Fashioned Artificial Intelligence(GOFAI)(Nilsson,1980)as well as more recent approaches to AI(Russell et al.,1995)and Machine Learning(Mitchell,1997)learn hierarchies of more and more abstract data representations.For example,certain methods of syntactic pattern recog-nition(Fu,1977)such as grammar induction discover hierarchies of formal rules to model observations. The partially(un)supervised Automated Mathematician/EURISKO(Lenat,1983;Lenat and Brown,1984) continually learns concepts by combining previously learnt concepts.Such hierarchical representation learning(Ring,1994;Bengio et al.,2013;Deng and Yu,2014)is also a recurring theme of DL NNs for SL (Sec.5),UL-aided SL(Sec.5.7,5.10,5.15),and hierarchical RL(Sec.6.5).Often,abstract hierarchical representations are natural by-products of data compression(Sec.4.3),e.g.,Sec.5.10.4.5Fast Graphics Processing Units(GPUs)for DL in NNsWhile the previous millennium saw several attempts at creating fast NN-specific hardware(e.g.,Jackel et al.,1990;Faggin,1992;Ramacher et al.,1993;Widrow et al.,1994;Heemskerk,1995;Korkin et al., 1997;Urlbe,1999),and at exploiting standard hardware(e.g.,Anguita et al.,1994;Muller et al.,1995; Anguita and Gomes,1996),the new millennium brought a DL breakthrough in form of cheap,multi-processor graphics cards or GPUs.GPUs are widely used for video games,a huge and competitive market that has driven down hardware prices.GPUs excel at fast matrix and vector multiplications required not only for convincing virtual realities but also for NN training,where they can speed up learning by a factorof50and more.Some of the GPU-based FNN implementations(Sec.5.16-5.19)have greatly contributed to recent successes in contests for pattern recognition(Sec.5.19-5.22),image segmentation(Sec.5.21), and object detection(Sec.5.21-5.22).5Supervised NNs,Some Helped by Unsupervised NNsThe main focus of current practical applications is on Supervised Learning(SL),which has dominated re-cent pattern recognition contests(Sec.5.17-5.22).Several methods,however,use additional Unsupervised Learning(UL)to facilitate SL(Sec.5.7,5.10,5.15).It does make sense to treat SL and UL in the same section:often gradient-based methods,such as BP(Sec.5.5.1),are used to optimize objective functions of both UL and SL,and the boundary between SL and UL may blur,for example,when it comes to time series prediction and sequence classification,e.g.,Sec.5.10,5.12.A historical timeline format will help to arrange subsections on important inspirations and techni-cal contributions(although such a subsection may span a time interval of many years).Sec.5.1briefly mentions early,shallow NN models since the1940s,Sec.5.2additional early neurobiological inspiration relevant for modern Deep Learning(DL).Sec.5.3is about GMDH networks(since1965),perhaps thefirst (feedforward)DL systems.Sec.5.4is about the relatively deep Neocognitron NN(1979)which is similar to certain modern deep FNN architectures,as it combines convolutional NNs(CNNs),weight pattern repli-cation,and winner-take-all(WTA)mechanisms.Sec.5.5uses the notation of Sec.2to compactly describe a central algorithm of DL,namely,backpropagation(BP)for supervised weight-sharing FNNs and RNNs. It also summarizes the history of BP1960-1981and beyond.Sec.5.6describes problems encountered in the late1980s with BP for deep NNs,and mentions several ideas from the previous millennium to overcome them.Sec.5.7discusses afirst hierarchical stack of coupled UL-based Autoencoders(AEs)—this concept resurfaced in the new millennium(Sec.5.15).Sec.5.8is about applying BP to CNNs,which is important for today’s DL applications.Sec.5.9explains BP’s Fundamental DL Problem(of vanishing/exploding gradients)discovered in1991.Sec.5.10explains how a deep RNN stack of1991(the History Compressor) pre-trained by UL helped to solve previously unlearnable DL benchmarks requiring Credit Assignment Paths(CAPs,Sec.3)of depth1000and more.Sec.5.11discusses a particular WTA method called Max-Pooling(MP)important in today’s DL FNNs.Sec.5.12mentions afirst important contest won by SL NNs in1994.Sec.5.13describes a purely supervised DL RNN(Long Short-Term Memory,LSTM)for problems of depth1000and more.Sec.5.14mentions an early contest of2003won by an ensemble of shallow NNs, as well as good pattern recognition results with CNNs and LSTM RNNs(2003).Sec.5.15is mostly about Deep Belief Networks(DBNs,2006)and related stacks of Autoencoders(AEs,Sec.5.7)pre-trained by UL to facilitate BP-based SL.Sec.5.16mentions thefirst BP-trained MPCNNs(2007)and GPU-CNNs(2006). Sec.5.17-5.22focus on official competitions with secret test sets won by(mostly purely supervised)DL NNs since2009,in sequence recognition,image classification,image segmentation,and object detection. Many RNN results depended on LSTM(Sec.5.13);many FNN results depended on GPU-based FNN code developed since2004(Sec.5.16,5.17,5.18,5.19),in particular,GPU-MPCNNs(Sec.5.19).5.11940s and EarlierNN research started in the1940s(e.g.,McCulloch and Pitts,1943;Hebb,1949);compare also later work on learning NNs(Rosenblatt,1958,1962;Widrow and Hoff,1962;Grossberg,1969;Kohonen,1972; von der Malsburg,1973;Narendra and Thathatchar,1974;Willshaw and von der Malsburg,1976;Palm, 1980;Hopfield,1982).In a sense NNs have been around even longer,since early supervised NNs were essentially variants of linear regression methods going back at least to the early1800s(e.g.,Legendre, 1805;Gauss,1809,1821).Early NNs had a maximal CAP depth of1(Sec.3).5.2Around1960:More Neurobiological Inspiration for DLSimple cells and complex cells were found in the cat’s visual cortex(e.g.,Hubel and Wiesel,1962;Wiesel and Hubel,1959).These cellsfire in response to certain properties of visual sensory inputs,such as theorientation of plex cells exhibit more spatial invariance than simple cells.This inspired later deep NN architectures(Sec.5.4)used in certain modern award-winning Deep Learners(Sec.5.19-5.22).5.31965:Deep Networks Based on the Group Method of Data Handling(GMDH) Networks trained by the Group Method of Data Handling(GMDH)(Ivakhnenko and Lapa,1965; Ivakhnenko et al.,1967;Ivakhnenko,1968,1971)were perhaps thefirst DL systems of the Feedforward Multilayer Perceptron type.The units of GMDH nets may have polynomial activation functions imple-menting Kolmogorov-Gabor polynomials(more general than traditional NN activation functions).Given a training set,layers are incrementally grown and trained by regression analysis,then pruned with the help of a separate validation set(using today’s terminology),where Decision Regularisation is used to weed out superfluous units.The numbers of layers and units per layer can be learned in problem-dependent fashion. This is a good example of hierarchical representation learning(Sec.4.4).There have been numerous ap-plications of GMDH-style networks,e.g.(Ikeda et al.,1976;Farlow,1984;Madala and Ivakhnenko,1994; Ivakhnenko,1995;Kondo,1998;Kord´ık et al.,2003;Witczak et al.,2006;Kondo and Ueno,2008).5.41979:Convolution+Weight Replication+Winner-Take-All(WTA)Apart from deep GMDH networks(Sec.5.3),the Neocognitron(Fukushima,1979,1980,2013a)was per-haps thefirst artificial NN that deserved the attribute deep,and thefirst to incorporate the neurophysiolog-ical insights of Sec.5.2.It introduced convolutional NNs(today often called CNNs or convnets),where the(typically rectangular)receptivefield of a convolutional unit with given weight vector is shifted step by step across a2-dimensional array of input values,such as the pixels of an image.The resulting2D array of subsequent activation events of this unit can then provide inputs to higher-level units,and so on.Due to massive weight replication(Sec.2),relatively few parameters may be necessary to describe the behavior of such a convolutional layer.Competition layers have WTA subsets whose maximally active units are the only ones to adopt non-zero activation values.They essentially“down-sample”the competition layer’s input.This helps to create units whose responses are insensitive to small image shifts(compare Sec.5.2).The Neocognitron is very similar to the architecture of modern,contest-winning,purely super-vised,feedforward,gradient-based Deep Learners with alternating convolutional and competition lay-ers(e.g.,Sec.5.19-5.22).Fukushima,however,did not set the weights by supervised backpropagation (Sec.5.5,5.8),but by local un supervised learning rules(e.g.,Fukushima,2013b),or by pre-wiring.In that sense he did not care for the DL problem(Sec.5.9),although his architecture was comparatively deep indeed.He also used Spatial Averaging(Fukushima,1980,2011)instead of Max-Pooling(MP,Sec.5.11), currently a particularly convenient and popular WTA mechanism.Today’s CNN-based DL machines profita lot from later CNN work(e.g.,LeCun et al.,1989;Ranzato et al.,2007)(Sec.5.8,5.16,5.19).5.51960-1981and Beyond:Development of Backpropagation(BP)for NNsThe minimisation of errors through gradient descent(Hadamard,1908)in the parameter space of com-plex,nonlinear,differentiable,multi-stage,NN-related systems has been discussed at least since the early 1960s(e.g.,Kelley,1960;Bryson,1961;Bryson and Denham,1961;Pontryagin et al.,1961;Dreyfus,1962; Wilkinson,1965;Amari,1967;Bryson and Ho,1969;Director and Rohrer,1969;Griewank,2012),ini-tially within the framework of Euler-LaGrange equations in the Calculus of Variations(e.g.,Euler,1744). Steepest descent in such systems can be performed(Bryson,1961;Kelley,1960;Bryson and Ho,1969)by iterating the ancient chain rule(Leibniz,1676;L’Hˆo pital,1696)in Dynamic Programming(DP)style(Bell-man,1957).A simplified derivation of the method uses the chain rule only(Dreyfus,1962).The methods of the1960s were already efficient in the DP sense.However,they backpropagated derivative information through standard Jacobian matrix calculations from one“layer”to the previous one, explicitly addressing neither direct links across several layers nor potential additional efficiency gains due to network sparsity(but perhaps such enhancements seemed obvious to the authors).。
神经网络最新发展综述
神经网络最新发展综述
深度神经网络(Deep Neural Network,DNN)是近十年来以快速发展
著称的人工智能领域的重要技术,它模仿了人脑神经元之间的信息传播机制,通过模拟人脑的活动实现智能。
深度神经网络在语音识别、自然语言
处理、图像处理、模式识别、机器人、认知计算等方面取得了重大成果,
得到越来越广泛的应用。
DNN的最新发展可分为三个方面:一是模型架构发展,包括Convolutional Neural Network(CNN)、Recurrent Neural Network (RNN)、Generative Adversarial Network(GAN)等。
二是针对计算机
视觉和自然语言处理应用的模型改进,包括普通应用网络架构,如ResNet、Inception、DenseNet等模型架构;RNN模型的改进,如LSTM、GRU等模型架构;以及GAN模型架构的研究,如DCGAN、WGAN等。
三是应
用DNN技术的新领域,涉及社交媒体安全、无人驾驶、医疗诊断、金融风
控等各个行业。
近几年来,深度神经网络技术发展迅速,应用越来越广泛,也见证了
它的发展势头。
对于完善深度神经网络模型,需要解决许多关键科学问题,研究者持续对深度神经网络模型进行精细化研究、优化、细节调整,以应
对新的应用场景,从而更好地利用深度神经网络的能力。
未来,深度神经网络技术的发展将继续加速。
随机神经网络发展现状综述
随机神经网络发展现状综述一、本文概述随着和机器学习技术的迅猛发展,神经网络已成为一种强大的工具,广泛应用于各种领域,如计算机视觉、语音识别、自然语言处理、游戏等。
其中,随机神经网络作为一种新兴的神经网络架构,近年来引起了广泛的关注和研究。
本文旨在综述随机神经网络的发展现状,包括其基本原理、应用领域、挑战与前景等,以期为读者提供一个全面而深入的了解。
随机神经网络,顾名思义,是一种在神经网络中引入随机性的网络架构。
与传统的深度学习模型相比,随机神经网络在权重初始化、激活函数选择、网络结构等方面具有更高的灵活性和随机性。
这种随机性不仅有助于提升模型的泛化能力,还能在一定程度上解决深度学习模型中的一些固有问题,如过拟合、梯度消失等。
本文首先简要介绍了随机神经网络的基本概念和发展历程,然后重点分析了其在各个应用领域中的表现。
在此基础上,本文还深入探讨了随机神经网络所面临的挑战,如如何平衡随机性与稳定性、如何设计有效的训练算法等。
本文展望了随机神经网络未来的发展趋势和研究方向,以期为推动该领域的发展提供有益的参考。
二、随机神经网络的理论基础随机神经网络(Random Neural Networks, RNNs)的理论基础主要建立在概率论、统计学习理论以及优化算法的基础之上。
其核心思想是通过引入随机性来增强网络的泛化能力和鲁棒性,同时减少过拟合的风险。
在概率论方面,随机神经网络利用随机权重和随机连接来模拟人脑神经元的随机性和不确定性。
这种随机性可以在训练过程中引入噪声,从而提高网络对噪声数据和未知数据的处理能力。
同时,随机性还有助于探索更多的解空间,增加网络的多样性,避免陷入局部最优解。
在统计学习理论方面,随机神经网络通过引入正则化项来控制模型的复杂度,防止过拟合现象的发生。
正则化项通常包括权重衰减、dropout等策略,这些策略可以在训练过程中随机关闭一部分神经元或连接,从而减少网络的复杂度,提高泛化能力。
人工神经网络系统辨识综述
人工神经网络系统辨识综述摘要:当今社会,系统辨识技术的发展逐渐成熟,人工神经网络的系统辨识方法的应用也越来越多,遍及各个领域。
首先对神经网络系统辨识方法与经典辨识法进行对比,显示出其优越性,然后再通过对改进后的算法具体加以说明,最后展望了神经网络系统辨识法的发展方向。
关键词:神经网络;系统辨识;系统建模0引言随着社会的进步,越来越多的实际系统变成了具有不确定性的复杂系统,经典的系统辨识方法在这些系统中应用,体现出以下的不足:(1)在某些动态系统中,系统的输入常常无法保证,但是最小二乘法的系统辨识法一般要求输入信号已知,且变化较丰富。
(2)在线性系统中,传统的系统辨识方法比在非线性系统辨识效果要好。
(3)不能同时确定系统的结构与参数和往往得不到全局最优解,是传统辨识方法普遍存在的两个缺点。
随着科技的继续发展,基于神经网络的辨识与传统的辨识方法相比较具有以下几个特点:第一,可以省去系统机构建模这一步,不需要建立实际系统的辨识格式;其次,辨识的收敛速度仅依赖于与神经网络本身及其所采用的学习算法,所以可以对本质非线性系统进行辨识;最后可以通过调节神经网络连接权值达到让网络输出逼近系统输出的目的;作为实际系统的辨识模型,神经网络还可用于在线控制。
1神经网络系统辨识法1.1神经网络人工神经网络迅速发展于20世纪末,并广泛地应用于各个领域,尤其是在模式识别、信号处理、工程、专家系统、优化组合、机器人控制等方面。
随着神经网络理论本身以及相关理论和相关技术的不断发展,神经网络的应用定将更加深入。
神经网络,包括前向网络和递归动态网络,将确定某一非线性映射的问题转化为求解优化问题,有一种改进的系统辨识方法就是通过调整网络的权值矩阵来实现这一优化过程。
1.2辨识原理选择一种适合的神经网络模型来逼近实际系统是神经网络用于系统辨识的实质。
其辨识有模型、数据和误差准则三大要素。
系统辨识实际上是一个最优化问题,由辨识的目的与辨识算法的复杂性等因素决定其优化准则。
神经网络综述
神经网络综述宁波工程学院Ningbo University of Technology摘要:神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络。
生物神经网络:一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。
人工神经网络:是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。
在工程与学术界也常直接简称为“神经网络”或类神经网络。
Neural network can point the two, the one is biological neural network,the other one is artificial neural network.Biological neural networkis a kind likes Structure of synaptic connection of brain that can do the mathematical model of information processing .Biological neural networkis is uesd to produce biological consciousness, help to think and act.Artificial neural network is an abstraction and simulation of the basic characteristics of the human brain; and also it is a kind of imitating the behavior characteristics of Animal neural networks for distributed parallel algorithm which is for mathematical model of information processing.人的大脑和计算机技术一直是科技前沿的研究方向,自从神经网络的出现,两个不相干的领域慢慢地结合在一起。
神经网络在信号处理中的应用
神经网络在信号处理中的应用第一章神经网络和信号处理的概述神经网络是一种模拟大脑结构和功能的计算模型,其能够模拟人脑神经元之间的相互作用,并能够从中学习和推理复杂的信息。
与此相伴随的是信号处理技术的不断发展,如数字信号处理技术、傅里叶分析、小波变换等,这些技术提供了丰富的信号分析和处理方法。
由于神经网络具有强大的学习和自适应特性,因此在信号处理应用中得到了广泛的应用。
本文将从神经网络的基本原理、信号处理的常用方法和神经网络在信号处理中的应用三个方面对神经网络在信号处理中的应用进行论述。
第二章神经网络的基本原理2.1 感知器模型感知器模型,又称为线性感知器,是神经网络的最基础形式。
感知器由输入层、输出层和一个或多个中间层组成,其中每个中间层与前一层和后一层之间的神经元以及它们之间的权值相连。
2.2 反向传播算法反向传播算法是一种用于训练神经网络的算法,其利用梯度下降法和链式规则来调整网络权值,使得网络求解的误差最小化。
反向传播算法是一种常用的监督学习算法,它要求输入数据的正确输出值必须是已知的。
第三章信号处理的常用方法3.1 傅里叶分析傅里叶分析是一种将时间或空间信号转换到频域的方法,它以正弦和余弦函数的和表示信号的频率成分。
通过傅里叶变换,我们可以将一个信号分解成一系列单一的频率成分,然后对这些成分进行分析和处理。
3.2 小波变换小波分析是一种多分辨率信号分析方法,它利用不同分辨率的波形基函数对信号进行分析,可以有效地揭示信号的细节信息。
小波变换广泛应用于信号分析、数据压缩、模式识别等领域。
3.3 过滤技术过滤技术是一种常用的信号处理方法,它利用一些特定的数字滤波器对信号进行处理,以提取信号的某些特征。
过滤技术在信号预处理、去噪、滤波等方面应用广泛。
第四章神经网络在信号处理中的应用4.1 信号分类神经网络在信号分类方面得到了广泛的应用。
例如,在医学图像识别中,神经网络可以根据不同的特征进行分类,并可以自适应地学习和调整,以获取更准确的医学诊断结果。
基于神经网络的图像生成技术综述
基于神经网络的图像生成技术综述在人工智能领域,图像生成技术是一个备受瞩目的研究方向。
神经网络作为一种基础性工具,被广泛应用于图像生成领域,并在不断的研究和改进中,取得了诸多优秀的成果。
本文将从神经网络的基本原理入手,综述基于神经网络的图像生成技术的研究现状,并探讨其未来发展的方向与前景。
一、神经网络的基本原理神经网络是一种通过模拟人类神经系统进行信息处理的算法模型。
它由多个神经元组成,每个神经元接收大量的输入信号,经过加权处理后输出结果。
神经网络的训练过程是调整权重的过程,通过不断地反复计算、调整权重,使网络的输出结果更加准确,最终达到预期目标。
二、基于神经网络的图像生成技术基于神经网络的图像生成技术主要包括图像风格转换、图像超分辨率、图像修复、图像生成和图像标注等方面。
下面分别进行介绍。
1、图像风格转换图像风格转换是指将一幅图像的风格转换为另一幅图像的风格。
该技术可以实现不同艺术风格的转换,也可以将一张彩色图像转换为黑白图像。
基于神经网络的图像风格转换技术主要依赖于卷积神经网络,通过降低网络中某些层的权重,来达到转换风格的目的。
目前,最为流行的图像风格转换技术是基于VGG网络架构的方法和CycleGAN方法。
2、图像超分辨率图像超分辨率是指将低分辨率的图像通过技术手段转换为高分辨率的图像。
神经网络主要通过对图像进行上采样和下采样的操作,实现图像的超分辨率。
该技术在提高图像质量的同时,也有效地提升了图像处理的速度。
3、图像修复图像修复是指修复被损坏或缺失的图像部分,使图像看起来完整。
基于神经网络的图像修复技术主要通过模型设计和训练来实现,其中最为常见的方法是使用生成对抗网络(GAN)来进行图像修复。
4、图像生成图像生成是指使用神经网络进行图像的生成。
通过训练神经网络模型,生成出与实际图像非常相似的图像。
这一技术在数字内容制作、电影特效、游戏制作等领域有着广泛的应用。
5、图像标注图像标注是指给一张图片贴上文字标注,这通常需要人工完成。
动态学习深度神经网络综述
网络天地175动态学习深度神经网络综述田晓艳摘要:深度神经网络是一种非常有效的机器学习方法,然而传统的算法均无法处理动态问题。
因此,介绍了一种最近提出的能够动态学习的深度神经网络永续学习机算法。
该算法能够实现对新增数据的动态学习,并且算法执行速度较快。
通过对文献的分析表明,该算法是一种拥有非常广泛应用价值的深度学习算法。
关键词:动态学习;深度;神经网络1、永续学习机模型的实现永续记忆的原理与实现方法永续记忆的最终目的是能够实现永续学习,也就是对于新的数据信息能够动态的学习出新的分类。
以MNIST 手写数字数据集为例,让模型学习识别出一组图像,在MNIST 手写数字数据集中取出前75个数字图像,并将它们分配给任意类别。
这样就存了75个唯一类,每一个类与一个唯一的特定数字相关联。
该模型的任务就是要识别图像并为其分配正确的类。
将75个数字中的前50传统的通过训练学习的样例,剩余的25个作为动态学习的样例。
前50个训练样本采用典型的SGD 训练并在训练后丢弃,也就是说这50个样例在后面的学习中不能被用来同化新类别样例。
后25个样例采用PSGD 训练并被阻止插入。
存储与召回DNN 模型为了实现存储与召回,设计两个相应的DNN 模型。
存储DNN 是大小为784×100×75的典型的分类器,Softmax 输出层对应于75个分类。
除了50个训练类别之外,75个可能的分类还提供25个冗余(未使用)分类,以供后续学习训练。
存储DNN 将图像作为输入,将生成的类作为输出。
召回DNN 的大小为75x100x784,以分类作为输入,并在输出处合成训练图像。
两个DNN 均使用带偏置项的Sigmoids 激活函数 ,在输出层使用零偏置(zero-bias)。
存储和召回DNN 均是独立训练的,仅使用前50个图像,采用非批处理随机梯度下降进行100次full-sweep 迭代[ , ]。
使用平行(100x )抖动w/ dropout 正则化策略进行训练。
网络数据建模、分析与应用研究综述
网络数据建模、分析与应用研究综述一、网络数据建模随着互联网的快速发展,网络数据已经成为了研究和应用的重要领域。
网络数据建模是指通过对网络结构和属性进行抽象描述,构建出能够反映网络特征的数据模型。
网络数据建模的目的是为了更好地理解网络的结构、功能和动态变化,为网络分析、管理和决策提供理论依据和技术支持。
图论建模:图论是研究图(Graph)结构及其性质的数学分支。
在网络数据建模中,图论建模主要关注如何用图的形式表示网络结构,以及如何利用图论方法对网络进行分析。
常用的图论建模方法有邻接矩阵法、邻接表法、边权法等。
社会网络建模:社会网络是一种特殊的网络结构,由具有关联关系的人或组织组成。
社会网络建模主要研究如何用图的形式表示社会网络结构,以及如何利用图论方法对社会网络进行分析。
常用的社会网络建模方法有无向图法、有向图法、贝叶斯网络法等。
复杂网络建模:复杂网络是由大量相互连接的节点和边组成的网络结构。
复杂网络建模主要研究如何用图的形式表示复杂网络结构,以及如何利用图论方法对复杂网络进行分析。
常用的复杂网络建模方法有随机游走模型、小世界模型、斑图模型等。
动态网络建模:动态网络是指网络结构和属性随时间发生变化的网络。
动态网络建模主要研究如何用图的形式表示动态网络结构,以及如何利用图论方法对动态网络进行分析。
常用的动态网络建模方法有马尔可夫链模型、随机过程模型等。
多模态网络建模:多模态网络是指具有多种不同类型的信息载体的网络。
多模态网络建模主要研究如何用图的形式表示多模态网络结构,以及如何利用图论方法对多模态网络进行分析。
常用的多模态网络建模方法有多模态图模型、多模态贝叶斯网络模型等。
网络数据建模是一个涉及多个领域的交叉学科,其研究内容和技术方法不断丰富和发展。
随着大数据时代的到来,网络数据建模将继续发挥重要作用,为网络分析、管理和决策提供更多有价值的理论和实践支持。
1. 网络数据的基本概念和特点随着互联网的普及和发展,网络数据已经成为了当今社会中不可或缺的一部分。
基于视觉皮层感知机制的神经网络及其应用研究
基于视觉皮层感知机制的神经网络及其应用研究基于视觉皮层感知机制的神经网络及其应用研究引言随着计算机技术和人工智能的迅猛发展,神经网络已经成为一种重要的模拟脑机制的工具。
神经网络的构建和应用领域也在不断拓展,其中基于视觉皮层感知机制的神经网络在图像识别、计算机视觉和模式识别等领域具有巨大潜力。
本文将对基于视觉皮层感知机制的神经网络展开综述,并从应用研究的角度探讨其潜力和挑战。
一、神经网络的概述神经网络(Neural Network)是一种基于生物大脑神经元工作原理模拟的计算模型。
它由节点(神经元)和节点之间的连接(突触)组成。
神经网络的基本结构包括输入层、隐藏层和输出层。
其中,输入层接收外部信息,隐藏层进行特征提取和组合,输出层输出最终结果。
神经网络的训练过程包括前向传播和反向传播,通过调整突触连接的权重实现对输入输出关系的学习和模拟。
二、视觉皮层感知机制的基本原理视觉皮层感知机制是指大脑对于外部视觉信息的处理方式。
它包括分层处理、多通道处理和概念分级等特点。
在神经网络中,可以通过多层神经元的组合和连接来模拟视觉皮层感知机制。
具体而言,输入层可以看作是视觉皮层的底层,负责接收原始图像信息;隐藏层则类似于视觉皮层中的中间层,负责对特征进行提取和组合;最后的输出层则类似于视觉皮层的高层,负责对特定物体或图像进行分类和识别。
三、基于视觉皮层感知机制的神经网络模型1. 卷积神经网络(CNN)卷积神经网络是一种经典的基于视觉皮层感知机制的神经网络模型。
它通过卷积层和池化层来实现图像的特征提取和降维。
卷积层可以模拟视觉皮层中的神经元,通过局部感知域和权重共享来提取图像的局部特征。
池化层则类似于对图像进行细节过滤,减少计算量并保留关键特征。
卷积神经网络在图像识别、目标检测和图像分割等领域取得了显著的成果。
2. 环形神经网络(RNN)环形神经网络是一种具有循环连接的神经网络模型。
它可以模拟视觉皮层中对于序列信息的处理能力。
神经网络综述
匿
巫 影 陈定 方
摘 要
关键词 神 经Βιβλιοθήκη 网络 权值. 亘 唐小兵 朱石 坚 黄映云 李 庆
4 06 海 军 工程 大 学 , 北 武 汉 303 湖 403) 30 3
输 入 输 出 信 息
( 汉理 工 大 学 ‘湖北 武 汉 武 ,
人 类 当 前 所 面 临 的 重 大 科 学 研 究 课 题 之 一 , 要 解 释 大 脑 活 动 的机 理 和 人类 智 能 是 的本 质 , 造 具 有 类 似 人 类 智 能 活 动 能 力 的 制 智 能 机 器 , 发 智 能 应 用 技 术 。 利 用 机 器 模 开 仿 人 类 的智 能 是 长 期 以来 人 们 认 识 自然 、 改 造 自然 和 认 识 自身 的理 想 。
迅 速 地 演 变 为平 衡状 态 。这 样 , 有 特 定 结 具
进 了 国 民 经 济 建 设 和 国 防科 技 现 代 化 建
设。
便形 成 了 神 经 网络 理 论 研 究 的 两 种 模 式 , 即 所 谓 的 学 习 神 经 网络 模 式 和 自组 织 模 式 。 学 习 神 经 网 络 模 式 的 主 要 特 点 是 把 慢 过 程 与 快 过 程 分 离 开 。该 模 式 把 快 过 程 看 作 是 一 个 自治 的 动 力 学 过 程 , 慢 过 程则 是 一 个 外 加 而 的 对 神 经 网 络 的 连 接 强 度 进 行 系 统 调 整 的 过 程 。 经 网 络 的 连 接 强 度 只是 一 个 动 力 学 神 习 系统 的 变 量 ,很 显 然 ,这 种 方 法 是 无 法 实
之 为 长 期 记 忆 。 过 程 的 目标 不 是 寻 求 某个 慢 平 衡 态 , 是 希 望 形 成 一 个 具 有 一 定 结 构 的 而 自组 织 系 统 , 个 自组 织 神 经 网 络 与 环 境 的 这 交 互 作 用 , 环 境 的统 计 规 律 反 映 到 自身结 把 构 上 来 。 即通 过 与外 界 环 境 的相 互 作 用 , 从 外 界 环 境 中获 取 知 识 。比 如 联 想 记 忆 的建 立 改 变 连 接 强 度 ,以把 要 学 习 的 模 式 长 期 保 存 下 来 ,这 个 刺 激 被 系 统 很 快 地 演 变 到 平 衡
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动态神经网络综述摘要动态神经网络(DNN)由于具有很强的学习能力和逼近任意非线性函数的特点而被广泛应用。
本文系统介绍了该网络的几种常见模型,并在此基础之上介绍它的基本学习算法、功能、应用领域、实际推广。
关键词:动态神经网络,模型,功能,算法,应用AbstractDynamic Neural Network (DNN) has been widely applied by means of the strong ability of learning and the characteristic of approximating any nonlinear function. The paper mainly introduces several models of common dynamic neural network, and dynamic neural network's function, basic algorithm, application and promotion.Keywords: DNN, Models , Function , Algorithm , Application1、绪论人工神经网络(Artificial Neural Networks,简写为ANNs)是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。
在工程与学术界也常直接简称为神经网络或类神经网络。
神经网络是一种运算模型,由大量的节点(或称神经元)和之间相互联接构成。
每个节点代表一种特定的输出函数,称为激励函数(activation function)。
每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。
网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。
而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达[1]。
神经网络按是否含有延迟或反馈环节,以及与时间是否相关分为静态神经网络和动态神经网络,其中含有延迟或反馈环节,与时间直接有关的神经网络称为动态神经网络[2]。
动态神经网络具有很强的学习能力和逼近任意非线性函数的特点,自20世纪80年代末以来,将动态神经网络作为一种新的方法引入复杂非线性系统建模中引起了工程控制领域许多学者的关注[3]。
动态神经网络现在已经广泛地用于模式识别、语音识别、图象处理、信号处理、系统控制、AUV自适应航向和机器人控制、故障检测、变形预报、最优化决策及求解非线性代数问题等方面。
本文第二章主要介绍了动态神经网络的分类,基本模型和算法;第三章主要介绍了动态神经网络的应用;第四章简要介绍了神经网络的改进方法。
2、DNN网络的基本模型和算法根据结构特点,可以将动态神经网络分为3类:全反馈网络结构,部分反馈网络结构以及无反馈的网络结构。
反馈网络(Recurrent Network),又称自联想记忆网络,如下图所示:图2-1 反馈网络模型反馈网络的目的是为了设计一个网络,储存一组平衡点,使得当给网络一组初始值时,网络通过自行运行而最终收敛到这个设计的平衡点上。
反馈网络能够表现出非线性动力学系统的动态特性。
它所具有的主要特性为以下两点:第一、网络系统具有若干个稳定状态。
当网络从某一初始状态开始运动,网络系统总可以收敛到某一个稳定的平衡状态;第二、系统稳定的平衡状态可以通过设计网络的权值而被存储到网络中。
反馈网络根据信号的时间域的性质的分类为如果激活函数f(·)是一个二值型的阶跃函数,则称此网络为离散型反馈网络,主要用于联想记忆;如果f(·)为一个连续单调上升的有界函数,这类网络被称为连续型反馈网络,主要用于优化计算。
2.1、Hopfield神经网络1982年,美国加州工学院J.Hopfield提出了可用作联想存储器和优化计算的反馈网络,这个网络称为Hopfield神经网络(HNN)模型,也称Hopfield模型.Hopfield网络是全反馈网络的突出代表,如图2-2所示,是一种单层对称全反馈的结构。
Hopfield神经网络的结构特点是:每一个神经元的输出信号通过其它神经元后,反馈到自己的输入端。
Hopfield网络具有从初始状态朝着能量减小的方向变化,最终收敛到稳定状态的能力,因此Hopfield网络可以实现优化计算,联想记忆等功能[4]。
图2-2 Hopfiled网络结构图Hopfield 神经网络是一种互连型神经网络,其演变过程是一个非线性动力学系统,可以用一组非线性差分议程描述(离散型)或微分方程(连续型)来描述。
系统的稳定性可用所谓的“能量函数”进行分析。
在满足条件的情况下,某种“能量函数”的能量在网络运行过程中不断地减少,最后趋于稳定的平衡状态。
对于一个非线性动力学系统,系统的状态从某一初值出发经过演变后可能有如下几种结果:渐进稳定点(吸引子)、极限环、混沌、状态发散[5]。
f⋅是一个二值型的硬函数,则称此网在Hopfield网络中,如果其传输函数()f⋅是一个连续单调上升的有界函数,络为离散型Hopfield网络;如果传输函数()则称此网络为连续型Hopfield网络。
2.1.1、离散Hopfield神经网络Hopfield最早提出的网络是神经元的输出为0-1二值的NN,所以,也称离散的HNN (简称为DHNN)。
在DHNN网络中,神经元所输出的离散值1和0分别表示神经元处于兴奋和抑制状态。
各神经元通过赋有权重的连接来互联。
2.1.1.1、 网络结构以三个神经元组成的DHNN 来说一下,其结构如下:132图2-2 三个神经元组成的HNN在图中,第0层仅仅是作为网络的输入,它不是实际神经元,所以无计算功能;而第一层是实际神经元,故而执行对输入信息和权系数乘积求累加和,并由非线性函数f 处理后产生输出信息。
f 是一个简单的阈值函数,如果神经元的输入信息的综合大于阈值θ,那么,神经元的输出就取值为1;小于阈值θ,则神经元的输出就取值为0。
对于二值神经元,它的计算公式如下j n1i i ji,j x y wu +=∑=其中x j 为外部输入,并且有 y j =1,当u j ≥θj 时 y j =0,当u j <θj 时对于DHNN,其网络状态是输出神经元信息的集合。
对于一个输出层是n 个神经元的网络,则其t 时刻的状态为一个n 维向量:y (t)=[y 1(t),y 2(t),...,y n (t)]τ因为y i (t)可以取值为1或0,故n 维向量y (t),即网络状态,有2n 种状态. 对于一个由n 个神经元组成的DHNN,则有n ⨯n 权系数矩阵w ={w ij |i=1,2,...,n; j=1,2,...,n},同时,有n 维阈值向量θ=[θ1,θ2,...,θn ]τ。
一般而言,w 和θ可以确定一个唯一的DHNN.当w i,j 在i=j 时等于0,则说明一个神经元的输出并不会反馈到它自己的输入。
这时,DHNN 称为无自反馈网络.当w i,j 在i=j 时不等于0,则说明—个神经元的输出会反馈到它自己的输入。
这时,DHNN 称为有自反馈的网络.2.1.1.2、 工作方式DHNN 有二种不同的工作方式:串行(异步)方式和并行(同步)方式. 1、串行(异步)方式在时刻t 时,只有某一个神经元j 的状态产生变化,而其它n-1个神经元的状态不变这时称串行工作方式。
并且有:⎪⎩⎪⎨⎧≠=+=⎥⎦⎤⎢⎣⎡-+=+∑=ij (t)y 1)(t y i j x (t)y w f 1)(t y j jj j n 1r r j r,j θ在不考虑外部输入时,则有⎥⎦⎤⎢⎣⎡-=+∑=j n 1r r j r,j (t)y w f 1)(t y θ2、并行(同步)方式在任一时刻t,所有的神经元的状态都产生了变化,则称并行工作方式。
并且有n 1,2,...,j x (t)y w f 1)(t y j j n 1i i j i,j =⎥⎦⎤⎢⎣⎡-+=+∑=θ在不考虑外部输入时,则有⎥⎦⎤⎢⎣⎡-=+∑=j n 1i i j i,j (t)y w f 1)(t y θ2.1.1.3、 学习算法Hopfield 网络按动力学方式运行,其工作过程为状态的演化过程,即从初始状态按“能量”减小的方向进行演化,直到达到稳定状态,稳定状态即为网络的输出状态。
下面以串行方式为例说明Hopfield 网络的运行步骤: 第一步 对网络进行初始化;第二步 从网络中随机选取一个神经元i ;第三步 求出神经元i 的输入()i u t :1()()ni ij j ij j i u t w v t b =≠=+∑第四步 求出神经元i 的输出(1)i v t +,此时网络中的其他神经元的输出保持不变;说明:(1)(())i i v t f u t +=,f为激励函数,可取阶跃函数或符号函数。
如取符号函数,则Hopfield 网络的神经元输出(1)i v t +取离散值1或-1,即:111,()0(1)1,()0nij j i j j ii nij j ij j i w v t b v t w v t b =≠=≠⎧+≥⎪⎪⎪+=⎨⎪-+<⎪⎪⎩∑∑ 第五步 判断网络是否达到稳定状态,若达到稳定状态或满足给定条件,则结束;否则转至第二步继续运行。
这里网络的稳定状态定义为:若网络从某一时刻以后,状态不再发生变化。
即:()(),0v t t v t t +∆=∆>。
2.1.2、连续Hopfield 神经网络连续Hopfield 网络(简称CHNN)的拓扑结构和DHNN 的结构相似. 这种拓扑结构和生物的神经系统中大量存在的神经反馈回路是相一致的。
在CHNN 中,和DHNN 一样,其稳定条件也要求W ij =W ji 。
CHNN 和DHNN 不同的地方在于其函数g 不是阶跃函数,而是S 形的连续函数.一般取g(u)=1/(1+e -u )CHNN 在时间上是连续的.所以,网络中各神经元是处于同步方式工作的。
2.1.2.1 网络结构考虑对于一个神经细胞,即神经元i,其内部膜电位状态用u j 表示,生物神经元的动态(微分系统)由运算放大器来模拟,其中微分电路中细胞膜输入电容为C i ,细胞膜的传递电阻为R i ,输出电压为V i ,外部输入电流用I i 表示,神经元的状态满足如下动力学方程.⎪⎩⎪⎨⎧==++-=∑=ni t U g t V I t V W R t U t t U C i i i i njj ji ii i i,...,2,1))(()()()(d )(d 1模仿生物神经元及其网络的主要特性,连续型Hopfield 网络利用模拟电路构造了反馈人工神经网络的电路模型,图2-4为其网络结构: 电路中微分系统的暂态过程的时间常数通过电容C i ,和电阻R i 并联实现, 跨导T ij 模拟神经元之间互连的突触特性 运算放大器模拟神经元的非线性特性Hopfield 用模拟电路设计了一个CHNN 的电路模型,如图2-3所示:图2-3图2-42.1.2.2基本算法取参数得: ()i i i u f v = N i ⋅⋅⋅⋅⋅⋅⋅⋅⋅=4321过程:先设定初态( i u ),运行至稳定,得到稳定状态。