自动控制原理(系统根轨迹分析)
自动控制原理第5章根轨迹分析法
04
CATALOGUE
根轨迹分析法的限制与挑战
参数变化对根轨迹的影响
参数变化可能导致根轨迹的形状和位置发生变化 ,从而影响系统的稳定性和性能。
对于具有多个参数的系统,根轨迹分析可能变得 复杂且难以预测。
需要对参数变化进行细致的监测和控制,以确保 系统的稳定性和性能。
复杂系统的根轨迹分析
对于复杂系统,根轨 迹分析可能变得复杂 且难以实现。
02
CATALOGUE
根轨迹的基本概念
极点与零点
极点
系统传递函数的极点是系统动态 特性的决定因素,决定了系统的 稳定性、响应速度和超调量等。
零点
系统传函数的零点对系统的动 态特性也有影响,主要影响系统 的幅值和相位特性。
根轨迹方程
根轨迹方程是描述系统极点随参数变 化的关系式,通过求解根轨迹方程可 以得到系统在不同参数下的极点分布 。
05
CATALOGUE
根轨迹分析法的改进与拓展
引入现代控制理论的方法
状态空间法
将根轨迹分析法与状态空间法相结合,利用状态空间法描述系统的动态行为,从而更全 面地分析系统的稳定性。
最优控制理论
将根轨迹分析法与最优控制理论相结合,通过优化系统的性能指标,提高系统的稳定性 和动态响应。
结合其他分析方法
根轨迹方程的求解方法包括解析法和 图解法,其中图解法是最常用的方法 。
根轨迹的绘制方法
手工绘制
通过选取不同的参数值,计算对应的极点,然后绘制极点分布图。这种方法比较繁琐,但可以直观地了解根轨迹 的形状和变化规律。
软件绘制
利用自动控制系统仿真软件,如MATLAB/Simulink等,可以方便地绘制根轨迹图,并分析系统的动态特性。
自动控制原理-第4章 根轨迹
又 ∵ 根轨迹方程
n
n
(spi) sn( pi)sn 1L
n
m
Kim 1
i 1 m
snm( pi zj)snm 1L
(szj) sm( zj)sm 1L
i 1
j 1
j 1
j 1
n
m
∴ sn-m-1项系数对应相等
(nm)(a) pi zj
n
m
i1
j1
(2k 1) ,
nm
pi zi
闭环零、极点与开环零、极点的关系
闭环传递函数 (s) G(s)
1G(s)H(s)
开环传递函数 Gk(s)G(s)H(s)
f
l
(s zi)
(s z j)
G (s) KG
i 1 q
H
(s)
K
H
j 1 h
(s pi)
(s p j)
i 1
j 1
f
l
(szi)(szj)
Gk(s)G(s)H(s)K
如何应用根轨迹方程在[s]平面上找到闭环极点。
解: G ( s ) K 0 .5 K K * s(2 s 1) s(s 0.5) s(s 0.5)
K * 0.5 K 开 环 极 点 p1 0, p2 0.5 无开环零点 根据相角方程
s2
p2 4 5 o -0.5 s1
135o
p1 0
m
(s z j)
K j1 n
1
(s pi)
i1
m
n
(szj) (spi)(2k1)
j1
i1
k0,1,2,L
(1)相角条件是决定闭环根轨迹的充要条件; 在测量相角时,规定以逆
自动控制原理第第四章 线性系统的根轨迹法
2
自动控制原理
§4.1 根轨迹的基本概念
例:开环传递函数
Gs
k1
ss
a
开环系统两个极点为:P1 0, P2 a R(s)
闭环传递函数为:
GB s
s2
k1 as
k1
-
k1
C(s)
ss a
闭环特征方程: s2 as k1 0
闭环特征根:s1,2
a 2
a 2
2
k1
(闭环极点)
3
自动控制原理
在p5附近取一实验点sd, 则∠sd-p5可以认为是p5点的出射角 Sd Z Sd P1 Sd P2 Sd P3 Sd P4 Sd P5 1800
近似为 P5 Z P5 P1 P5 P2 P5 P3 P5 P4 p 1800
p Sd P5 1800
法则4 实轴上存在根轨迹的条件——
这些段右边开环零极点个数之和为奇
数。
m
n
证明:根据相角条件 S Z j S Pi 18002q 1
j 1
i 1
p4
j s平面
例:sd为实验点
p3
z2 sd
p2 z1 p1
p5
① 实验点sd右侧实 轴上零极点提供 1800相角
③ 共轭复零点,复极点提供的相角和为 3600。
2
s1=-1.172,s2=-6.828
33
自动控制原理
法则6 开环复数极点处根轨迹出射角为
p 1800
开环复数零点处根轨迹入射角为:
Z 1800
其中 z p(不包括本点)
34
自动控制原理
j p5
p5
p3 p3
p2
自动控制原理根轨迹
D( s ) 1 G( s ) H ( s ) 0 G( s ) H ( s ) 1
根轨迹方程
G ( s)
C (s)
H (s)
(i 0,1, 2)
m
G( s) H ( s) e jG( s ) H ( s ) 1 e j ( 180 i360 )
1、幅值条件
1、根轨迹分支数等于4;
-2.73 0
2、根轨迹起点和终点;
3、根轨迹的渐近线:n=4,m=0,四条
n m
a
p z
i 1 i j 1
j
nm
0 1 j 1 j 2.73 1.18 4
渐近线与实轴正向夹角分别是
(2l 1) a ,( l 0,1, 2, 3), 45,135, 135, 45 nm
G( s ) H ( s ) 1
即 |G(s)H(s)|
k | s zi | | s pi |
i 1 i 1 n
1
2、相角条件
G( s ) H ( s ) 180 i 360
G(s)H(s) (s-zi )- (s-pi )
i 1 i 1 m n
同样s3点也不是根轨迹上的点。
结论
实轴上某段区域右边的开环实数零点和开环实数极点总 数为奇数时,这段区域必为根轨迹的一部分。
p3
j
0
p2
°
z2
p1
°
z1 p4
六.根轨迹与实轴的交点
分离点(或会合点):根轨迹在S平面某一点相遇后又立即分开。 分离点 会合点
K 0
d
K 0
K
自动控制原理第四章-根轨迹分析法
×
p4 z 2
×
p3
×
×
p 2 z1 p1
σ
规则4:根轨迹的分会点(分离点和会合点)d。 (1)定义:分会点是指根轨迹离开实轴进入复平面的点(分 离点)或由复平面进入实轴的点(汇合点),位于相邻两极点 或两零点之间。
(2)位置:大部分的分会点在实轴上,若出现在复平面内时,则 成对出现。
(3)特点:分会点对应于闭环特征方程有重根的点;根轨迹离开
(4)与虚轴的交点:
方法1:闭环特征方程为s3 + 6s2 + 8s + K*= 0 令s = jω得:-jω3 -6ω2 + j8ω + K* = 0
-6ω2 + K* = 0 即
-ω3 + 8ω= 0
K* = 48 ω= 2.8 s-1
方法2:闭环特征方程为 s3 + 6s2 + 8s + K*= 0 列劳斯表如下:
规则1:根轨迹的起点和终点。 根轨迹起始于开环极点,终止开环零点或无穷远。
m
i 1
s
zi
n
s
l 1
pl
1 K
K
K
0 s pl
s s
zi , m条 (, n
m)条
规则2: 根轨迹的条数和对称性。 n阶系统有n条根轨迹。根轨迹关于实轴对称。
规则3: 实轴上的根轨迹分布。
由实数开环零、极点将实轴分为若干段,如某段右边 开环零、极点(包括该段的端点)数之和为奇数,则该段就 是根轨迹,否则不是。如下图所示。
又因为开环传函的零极点表达式为:
m
GK (s)
G(s)H(s)
K
n
(s
自动控制原理根轨迹法
21
二、根轨迹绘制的基本法则(4)
法则2
根轨迹的分支数和对称性 根轨迹的分支数与开环极点数n相等(n>m),或与开
环有限零点数m相等(n<m)。 根轨迹连续:根轨迹增益是连续变化导致特征根也连
续变化。 实轴对称:特征方程的系数为实数,特征根必为实数
或共轭复数。
22
二、根轨迹绘制的基本法则(5)
法则3
s(s 2.5)( s 0.5 j1.5)( s 0.5 j1.5)
试绘制该系统概略根轨迹。
解:将开环零、极点画在后面图中。按如下典型步骤
1)确定实轴上的根轨迹。本例实轴上区域
和
为轨迹。
0,-1.5
2)确定-根2.轨5,迹-的渐 近线。本例n=4,m=3,故只有
一条 的渐近线。 180
36
K均* 有关。
15
一、 根轨迹法的基本概念(13)
4 -1- 4 根轨迹方程
1、系统闭环特征方程
由闭环传函可得系统闭环特征方程为:
(s)
G(s)
1 G(s)H(s)
1 G(s)H (s) 0
2 、根轨迹方程
当系统有m个开环零点和n个开环极点时,下式称为
根轨迹方程
m
(s z j )
K * j1 n
i 1
j 1
n
n
n
(s si ) sn ( si )sn1 ... (si ) 0
i 1
i 1
i 1
式中,s i 为闭环特征根。
31
二、根轨迹绘制的基本法则(14)
当n m 2 时,特征方程第二项系数与K * 无关,无
论 K * 取何值,开环n个极点之和总是等于闭环特征方程n
自动控制原理第四章根轨迹法
第四章 根轨迹法
第一节 根轨迹与根轨迹方程 根轨迹 系统的某个参数(如开环增益K)由0到∞变化时, 闭环特征根在S平面上运动的轨迹。
例: GK(S)= K/[S(0.5S+1)] = 2K/[S(S+2)] GB(S)= 2K/(S2+2S+2K) 特征方程:S2+2S+2K = 0
-P1)(S-P2)…(S-Pn)
单击此处可添加副标题
当n>m时,只有m条根轨迹趋向于开环零点,还有(n-m)条? m,S→∞,有: (S-Z1)(S-Z2)…(S-Zm) -1 -1 ———————-— = —— = —— P1)(S-P2)…(S-Pn) K* AK 可写成:左边 = 1/Sn-m = 0 当K=∞时,右边 = 0 K=∞(终点)对应于S→∞(趋向无穷远). 即:有(n-m)条根轨迹终止于无穷远。
分解为:
03
例:GK(S)= K/[S(0.05S+1)(0.05S2+0.2S+1)] 试绘制根轨迹。 解: 化成标准形式: GK(S)= 400K/[S(S+20)(S2+4S+20)] = K*/[S(S+20)(S+2+j4)(S+2-j4)] K*=400K——根迹增益 P1=0,P2=-20,P3=-2+j4,P4=-2-j4 n=4,m=0
一点σa。
σa= Zi= Pi
ΣPi-ΣZi = (n-m)σa
σa= (ΣPi-ΣZi)/(n-m)
绘制根轨迹的基本法则
K*(S-Z1)(S-Z2)…(S-Zm)
—————————— = -1 (S-P1)(S-P2)…(S-Pn)
自动控制原理第4章根轨迹法精
m
( zj )
K K*
J 1 n
( pi )
i 1
zj
1
j
(j
1,2,, m);
pi
1 Ti
(i
1,2,, n)
可写出幅值方程与相角方程,即
G(s)H (s) 1
G(s)H(s) 1
开环零点: z1 1.5; z2,3 2 j
(1)实轴(0~1.5)和( 2.5 ~ )有根轨迹。
(2)渐近线n=4 m=3,故只有一条根轨迹趋向无穷远。由实根
轨迹可知 180 。
(3)根轨迹出射角与入射角。
出射角
3
4
p2 ( 2K 1) ( p2 zi ) ( p2 pi )
d= -3.7
s2 4s 1 0
解法2 用公式有
1 1 1
d 1 j 2 d 1 j 2 d 2
解此方程 d1 3.7, d2 0.3
d1在根轨迹上,即为所求的分离点,d2不在根轨迹上舍去。 因为
z1 2, p1,2 1 j 2 n=2,m=1
系统有两条根轨迹,一条消失于零点,另一条趋于负无穷远 在实轴(-2,-∞)区段有根轨迹。 出射角
4.1根轨迹与根轨迹方程
什么是时域分析? 指控制系统在一定的输入下,根据输出量的时
域表达式,分析系统的稳定性、瞬态和稳态性能。
4.1.1 根轨迹 4.1.2 根轨迹方程
4.1.1 根轨迹
[根轨迹定义]:系统开环传递函数增益K(或某一参数)由零到 无穷大变化时,闭环系统特征根在S平面上移动的轨迹。
例:如图所示二阶系统,
自动控制原理--控制系统的根轨迹分析及特殊根轨迹
j1
s0
j1
jk
s sk
j1
jk
单位阶跃响应为
n
y(t) A0 Akeskt k 1
m
m
Ks zi Kzi
A0
i1 n
s sj
i1 n
GB(0)
sj
j1
s0
j1
m
m
K s zi
Ak
i1 n
s sj
1 s
K sk zi
i1 n
sk sk sj
jk
1
s2
100 8s 100
4 3
os1
1.5
1.7
可求得 0.4, ,n 10
s3
所以 % e 1 2 100% 25%,ts (s3.)5 n 3.5 4 0.9
j
0
利用根轨迹分析控制系统的性能
例11 分析K的变化对系统稳定性的影响
K (s 3) G(s)H (s) s(s 5)(s 6)(s2 2s 2)
增加开环极点的影响 增加极点对根轨迹形状的影响
增加开环零点的影响 增加零点对根轨迹形状的影响
例9 已知某系统闭环传递函数
GB (s) 0.67s 1
1 0.01s2
0.08s 1
试计算在单位阶跃输入时的系统输出超调量 % 和调节时间t。s
解:该闭环系统有三个极点,s1 1.5, s2,3 零4 、j9.2极点 分布如右图。
系统稳定的K的范围为: 0<K<35
例12 分析K的变化对系统的影响。设负反馈系统的开环传递函数为
K s z G(s)H(s) ss p
z p
求系统闭环根轨迹,并分析 p 2, 时z系 统4 的动态性能。
自动控制原理根轨迹法总结
自动控制原理根轨迹法总结
【根轨迹法概述】
-根轨迹法是分析线性时不变系统稳定性和动态性能的一个重要工具。
它通过在复平面上绘制闭环极点随系统参数变化的轨迹来实现。
【根轨迹法的基本原理】
1. 定义与目的:
-根轨迹是系统开环增益变化时,闭环极点在s平面上的轨迹。
-主要用于分析系统稳定性和设计控制器参数。
2. 绘制原则:
-根据系统开环传递函数,确定轨迹的起点和终点,分支点,穿越虚轴的点等。
-利用角度判据和幅值判据确定根轨迹。
【根轨迹法的应用】
1. 系统稳定性分析:
-根据闭环极点的位置判断系统的稳定性。
-极点在左半平面表示系统稳定,右半平面表示不稳定。
2. 控制器设计:
-调整控制器参数(如比例增益、积分时间常数、微分时间常数等),使根轨迹满足性能指标要求。
-确定合适的开环增益,使闭环系统具有期望的动态性能和稳定裕度。
【根轨迹法的优势与局限性】
-优势:直观、便于分析系统特性,特别是在控制器设计中。
-局限性:仅适用于线性时不变系统,对于非线性或时变系统不适用。
【实践中的注意事项】
-在绘制根轨迹时,应仔细考虑系统所有极点和零点的影响。
-必须结合其他方法(如奈奎斯特法、波特法等)进行综合分析。
【结语】
-根轨迹法是自动控制领域中一种非常有效的工具,对于理解和设计复杂控制系统具有重要意义。
-掌握根轨迹法,能够有效地指导实际的控制系统设计和分析。
编制人:_____________________
日期:_____________________。
根轨迹法(自动控制原理)
i1
l 1
nm
规则4:实轴上的根轨迹
➢ 实轴上的开环零点和开环极点将实轴分为若干段,对其中任一段,如果其右
边实轴上的开环零、极点总数是奇数,那么该段就一定是根轨迹的一部分。
❖ 该规则用相角条件可以证明,设实轴上有一试验点s0。 ➢ 任一对共轭开环零点或共轭极点(如p2,p3),与其对应的相角(如θ2,θ3)
第四章 根轨迹法
4.1 根轨迹的基本概念 4.2 绘制典型根轨迹 4.3 特殊根轨迹图 4.4 用MATLAB绘制根轨迹图 4.5 控制系统的根轨迹分析
内容提要
➢ 根轨迹法是一种图解法,它是根据系统的开环零 极点分布,用作图的方法简便地确定闭环系统的 特征根与系统参数的关系,进而对系统的特性进 行定性分析和定量计算。
规则3:渐近线
❖ 当n>m时,根轨迹一定有n-m支趋向无穷远;当n<m时,根轨迹一定有m-n支 来自无穷远。可以证明:
➢ 当n≠m时,根轨迹存在|n-m|支渐近线,且渐近线与实轴的夹角为:
所有渐近线交于k实轴上(2的k一n点1,)m1其8坐00标,为 k 0,1,2,,| n m | 1
n
m
pi zl
之和均为360°,也就是说任一对共轭开环零、极点不影响实轴上试验点s0的相 角条件。
➢ 对于在试验点s0左边实轴上的任一开环零、极点,与其对应的相角(如θ4,φ3) 均为0。
➢ 而试验点s0右边实轴上任一开环零、极点,与其对应的相角(如θ1,φ1,φ2) 均为180°。
所以要满足相角条件,s0右边实轴上的开环零、极点总数必须是奇数。
❖ 1948年伊凡思(W.R.Evans)提出了根轨迹法,它不 直接求解特征方程,而用图解法来确定系统的闭环 特征根。
(自动控制原理)4.4利用根轨迹分析系统性能
根轨迹的特点和规律
根轨迹具有以下特点和规律: • 根轨迹是一条连续的曲线,代表了特征方程根的轨迹 • 根轨迹始终位于系统开环增益与相位的交点上 • 根轨迹趋近于无限远点的方向,表示系统的稳定性 • 根轨迹与该点的对称位置具有相同的特性
利用根轨迹评价系统性能
根轨迹可以评估系统的稳定性和动态响应性能,通过观察根轨迹的形状和位置,可以得出以下结论:
根轨迹的概念
根轨迹是反映闭环控制系统特征方程根随参数变化而变化的图形。通过观察 根轨迹可以分析系统的稳定性、动态响应和频率响应特性。
如何绘制根轨迹
绘制根轨迹的步骤如下: 1. 得到系统的特征方程 2. 使用根轨迹的绘制规则和技巧,画出根轨迹的大致形状 3. 通过调整系统参数,绘制出完整的根轨迹图形
自动控制原理 4.4 利用根 轨迹分析系统性能
自动控制系统的性能对于系统的稳定性和响应速度至关重要。本章将介绍根 轨迹方法,用于绘制系统的根轨迹图,并利用根轨迹图评估系统的稳定性和 动态响应性能。
系统性能的定义
系统性能是指系统对于输入信号的响应质量和稳定性。主要包括以下几个方 面:时间响应特性、频率响应特性、稳定性和误差特性。
结论和要点
1 根轨迹是分析系统
性能的重要工具
根轨迹反映了系统的稳 定性和动态响应性能。
2 根轨迹的绘制方法
可以通过特征方程和绘 制规则来绘制根轨迹。
3 根轨迹的应用
根轨迹分析在实际控制 系统中具源自广泛的应用。稳定性如果根轨迹位于左半平面,则系统是稳定的。
动态响应
根轨迹的形状和位置可以反映系统的响应速 度和超调量。
频率响应
根轨迹的形状和位置可以反映系统的频率响 应特性。
稳定裕度
根轨迹与虚轴的交点距离表示系统的稳定裕 度。
自动控制原理根轨迹
自动控制原理根轨迹自动控制系统的根轨迹是描述系统稳定性和性能的重要工具之一。
根轨迹是以闭环传递函数的极点和零点的运动轨迹形状为基础绘制而成的。
在绘制根轨迹时,假设系统的闭环传递函数为G(s),其极点和零点分别为p1, p2, ..., pn和z1, z2, ..., zm。
根轨迹将从零点或者无穷远点开始,经过一系列的线段和曲线,最终到达极点或无穷远点。
根轨迹的演变与系统的开环传递函数有关,而开环传递函数可以表示为G(s) = K(s + z1)(s + z2)...(s + zm)/(s + p1)(s + p2)...(s + pn),其中K是系统的增益。
根轨迹的绘制规则如下:1. 根轨迹总是从系统的零点(实部为负的零点或倾角为奇数倍的复的零点)或者无穷远点开始。
2. 根轨迹图的总数等于系统的开环极点数和零点数之差。
3. 根轨迹的虚轴交点总数等于零点数和极点数之差的绝对值。
4. 根轨迹总是对称于实轴。
5. 根轨迹总是在实轴的左半平面。
通过绘制根轨迹,可以分析系统的稳定性和性能。
当根轨迹与虚轴相交时,系统就有可能发生震荡或振荡。
当根轨迹与实轴相交时,可以得到系统的过渡过程、稳态误差以及系统的稳定性等信息。
绘制根轨迹可以通过手绘或者使用计算机辅助工具进行。
一般来说,使用计算机辅助工具可以更加方便和准确地绘制根轨迹,并且可以对参数和增益进行调整来观察系统的性能变化。
常用的计算机辅助工具有MATLAB、Simulink等。
总之,根轨迹是描述自动控制系统稳定性和性能的重要工具,可以通过绘制闭环传递函数的极点和零点的运动轨迹来得到。
绘制根轨迹可以用于分析系统的震荡性质、过渡过程、稳定性和稳态误差等,并可以通过调整参数和增益来改善系统的性能。
自动控制原理--根轨迹法
1. 参数根轨迹
以非开环增益为可变参数绘制的根轨 迹为参数根轨迹,以区别以开环增益K*为 可变参数的常规根轨迹。
绘制参数根轨迹的法则与绘制常规根 轨迹的完全相同。只要在绘制参数根轨迹 之前,引入等效单位反馈系统和等效传递 函数概念,则常规根轨迹的所有绘制法则, 均适用于参数根轨迹的绘制。
4
为此,需要对闭环特征方程 1 G(s)H(s) 0 做如下等效变换,变成下面形式:
1 s(5s 1)
C(s)
1
C(s)
5
s(5s 1)
1 Td s
10
11
例:
设单位反馈系统的开环传递函数为
G(s)
K
s(s 1)(Ta s 1)
其中开环增益 K 可自行选定。分析时间常数 Ta 对 系统性能的影响。
解:闭环特征方程
s(s 1)(Ta s 1) K 0 1 Ta s 2 (s 1) 0
s(s 1) K
[s(s 1) K ] Ta s 2 (s 1) 0
G1 (s)
Ta s 2 (s 1) s(s 1) K
12
等效开环极点:
p1,2
1 2
1 K 4
注:若分母多项式为高次时,无法解析求解等效开环极 点,则运用根轨迹法求解。如本例,求解分母特征根的 根轨迹方程为:
G(s)H(s) 5(1 Ta s) 以 Ta 为 变 量 绘 制 s(5s 1) 参数根轨迹。
解: 1 G(s)H(s) 0
(5s 1)s 5(1 Ta s) 0 5s2 s 5 5Tas 0
7
5s2 s 5 5Tas 0
同除 5s2 s 5
《自动控制原理》第4章_根轨迹分析法
因此求分离点和会合点公式: 可以判断是分离点或
N(s)D '(s) N '(s)D(s) 0 会合点,只有满足条
Kg 0
件Kg≥0的是有用解。
例4-1.设系统结构如图, 试绘制其概略根轨迹。
R(s)
k(s 1) c(s)
s(s 2)(s 3)
解:画出 s 平面上的开环零点(-1),开环极点(0, -2,-3)。
逆时针为正。(- , )
m
n
pj (2k 1) ( z j pi ) pj pi
j 1
j 1
ji
m
n
zi (2k 1) ( z j zi ) p j zi
j 1
j 1
j i
k 0,1,
k 0, 1,
例3.设系统开环传递函数为: G(s) Kg(s 1.5)(s 2 j)(s 2 j) s(s 2.5)(s 0.5 j1.5)(s 0.5 j1.5)
K
s1
00
0.5 1
1 1 j1
s2
K
K 2.5
2
K 1
1 K 0
1 j1
2 1
2 1 j 3 1 j 3
1 j 1 j
j
2
1
0
K 0.5
1
2
一、根轨迹的一般概念
开环系统(传递函数)的某一个参数从零变化到 无穷大时,闭环系统特征方程根在 s 平面上的轨迹 称为根轨迹。
根轨迹法:图解法求根轨迹。 借助开环传递函数来求闭环系统根轨迹。
nm
独立的渐近线只有(n-m)条 u=0,1…,(n-m-1)
(2)渐近线与实轴的交点
分子除以分母
自动控制原理第四章根轨迹法
根轨迹法可用于仿真和实验研究,通过模拟和实验 验证系统的性能和稳定性,为实际系统的设计和优 化提供依据。
根轨迹法的历史与发展
历史
根轨迹法最早由美国科学家威纳于1940年提出,经过多年的 发展与完善,已经成为自动控制领域中一种重要的分析和设 计方法。
发展
随着计算机技术和数值分析方法的不断发展,根轨迹法的应 用范围和精度得到了进一步拓展和提高。未来,根轨迹法有 望与其他控制理论和方法相结合,形成更加完善和高效的控 制系统分析和设计体系。
根轨迹的性能分析
根轨迹的增益敏感性和鲁棒性
通过分析根轨迹在不同增益下的变化情况,可以评估系统的性能和鲁棒性。
根轨迹与性能指标的关系
通过比较根轨迹与某些性能指标(如超调量、调节时间等),可以评估系统的 性能。
04
根轨迹法与其他控制方法的比较
根轨迹法与PID制根轨迹图,直观地分析系统的稳定性、响应速度和超调量等性
特点
根轨迹法具有直观、简便、易于掌握等优点,特别适合用于分析 开环系统的稳定性和性能。
根轨迹法的应用场景
控制系统设计
根轨迹法可用于控制系统设计,通过调整系统参数 ,优化系统的性能指标,如稳定性、快速性和准确 性等。
故障诊断与排除
根轨迹法可用于故障诊断与排除,通过观察系统根 轨迹的变化,判断系统是否出现故障,以及故障的 类型和程度。
在绘制根轨迹时,需要遵循一定 的规则,如根轨迹与虚轴的交点 、根轨迹的分离点和汇合点等。
03
根轨迹分析方法
根轨迹的形状分析
根轨迹的起点和终点
根轨迹的起点是开环极点的位置,而 终点是闭环极点的位置。通过分析起 点和终点的位置,可以判断根轨迹的 形状。
根轨迹的分支数
自动控制原理根轨迹分析知识点总结
自动控制原理根轨迹分析知识点总结自动控制原理是研究自动控制系统的基本理论和方法的学科,而根轨迹分析是自动控制原理中的一项重要内容。
本文将对根轨迹分析的知识点进行总结,帮助读者更好地理解和运用这一分析方法。
一、根轨迹分析的基本概念根轨迹是描述控制系统传递函数的极点随参数变化而在复平面上运动的轨迹。
通过绘制根轨迹图,可以直观地了解系统的稳定性、动态响应和频率特性等重要信息。
二、根轨迹的性质1. 根轨迹图是在复平面上绘制的闭合曲线,其中包含了系统的所有极点。
2. 根轨迹出发点(即开环传递函数极点)的数量等于根轨迹终止点(即闭环传递函数极点)的数量。
3. 根轨迹关于实轴对称,即系统的实部极点只存在于实轴的左半平面或右半平面上。
4. 根轨迹通过传递函数零点的个数和位置来确定。
三、根轨迹的画法1. 确定系统的开环传递函数。
2. 根据传递函数的表达式,求得系统的特征方程。
3. 计算特征方程的根,即极点的位置。
4. 绘制根轨迹图,显示系统极点随参数变化的轨迹。
四、根轨迹的稳定性分析1. 若根轨迹通过左半平面(实部为负)的点的个数为奇数,则系统是不稳定的。
2. 若根轨迹通过左半平面的点的个数为偶数,则系统是稳定的。
五、根轨迹的频率特性分析1. 根轨迹的形状和分布可以判断系统的阻尼比、振荡频率和衰减时间等性能指标。
2. 根轨迹与系统的频率响应曲线之间存在一一对应的关系。
六、根轨迹的应用1. 根据根轨迹可以设计和优化控制系统的参数,使系统具有所需的动态性能。
2. 利用根轨迹可以直观地观察到系统的稳定性和动态响应,便于故障诊断和故障排除。
七、根轨迹分析的注意事项1. 在绘制根轨迹图时,应注意传递函数的极点和零点的位置,以及参数的范围。
2. 在分析根轨迹时,应考虑系统的稳定性、动态响应和频率特性等综合因素。
以上就是自动控制原理根轨迹分析的知识点总结。
根轨迹分析作为自动控制原理中的一项重要内容,对于理解和设计控制系统具有重要意义。
自动控制原理-第四章-根轨迹
snm 1 p1 1 pn
s
s
0
s z1 s zm
1 z1 1 zm
s
s
s pi i 1, 2, n
K*
s p1 s pn
snm 1 p1 1 pn
s
s
s z1 s zm
1 z1 1 zm
s(0.5s 1) s(s 2)
通过系统的根轨迹图,可以很方便地对系统的动态性能和稳态性能进行 分析。不足之处是用直接解闭环特征方程根的办法,来绘出系统的根轨 迹图,这对高阶系统将是很繁重的和不现实的。
为了解决这个问题,依据反馈系统中开环、闭环传递函数的确定关系,通过开环传递函 数直接寻找闭环根轨迹正是我们下面要研究的内容。
① (s1 p2 ) 、(s1 p3 ) 两向量对称于实轴,引起的相角大小 相等、方向相反; (s1 z2 ) 、(s1 z3 ) 两向量也对称于实轴,引起的相角大 小相等、方向相反;
∴ 判断 s1是否落在根轨迹上,共轭零、极点不考虑。
② 位于s1左边的实数零、极点:(s1 z1) 、(s1 p4) 向量引起的相
GK
(s)
kg s(s 1)
解:判断某点是否在根轨迹上,应使用相角条件。求某点对应的根轨迹增益值,应使用 幅值条件。
s1 : m (s zi ) n (s p j ) 0 (s1 p1) (s1 p2 )
i 1
j 1
s1 (s1 1) 135 90 225
s2: 0 (s2 p1) (s2 p2) (116.6 ) (63.4 ) 180
自动控制原理 第四章 根轨迹
第四章 根轨迹分析法
输入
偏差
+-
控制器
输出 被控对象
反馈元件
4.1.1 自动控制系统的根轨迹
什么是根轨迹? 根轨迹是系统开环传递函数某一参数或某几
个参数从零变化到无穷大时,闭环系统特征根
在s平面上变化的轨迹。
用时域分析法,每次系统的参数发生变化都 要重新计算闭环传递函数和闭环极点。计算量 大且难以看出系统性能指标的变化趋势。
1 Gk (s) 0
根轨 迹方
m
程
s zi
K i1 gn
1s pjj 1源自根轨迹方程可以分解成幅值条件和相角条 件两个方程,即
幅值条件
Gk s 1
相角条件
Gk (s) 180 (2k 1)
k 0,1, 2,
幅值条件方程为
m
s zi
K i1 gn
1
s pj
j 1
相角条件方程为
或无穷远处。
m
s zi
i 1
n
s pj
1 Kg
j 1
根轨迹分支的起点是指当Kg=0时的闭环极点。当 s=pj ,即开环极点。
根轨迹分支的终点是指当Kg→∞时的闭环极点。
•当s=zi,即开环零点。
m
•当s→∞,方程左边趋于0.
s zi
lim i1
sm lim 0
s n
s pj
s s n
b0 )
Kg
n
(s pj )
sn an1sn1 a0
snm (an1 bm1 )snm1
j 1
当s模值很大时,可以在分母中只保留前两项,即
G(s)H (s)
snm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武汉工程大学自动控制原理实验报告专业班级:指导老师:姓名:学号:实验名称:系统根轨迹分析实验日期:2011-12-01第三次试验一、实验目的1、掌握利用MATLAB精确绘制闭环系统根轨迹的方法;2、了解系统参数或零极点位置变化对系统根轨迹的影响;二、实验设备1、硬件:个人计算机2、软件:MATLAB仿真软件(版本6.5或以上)实验内容1.根轨迹的绘制1) 将系统特征方程改成为如下形式:1 + KG ( s ) = 1 + K )()(s q s p =0, 其中,K 为我们所关心的参数。
2) 调用函数 r locus 生成根轨迹。
关于函数 rlocus 的说明见图 3.1。
不使用左边的选项也能画出根轨迹,使用左边的选项时,能 返回分别以矩阵和向量形式表征的特征根的值及与之对应的增益值。
图3.1 函数rlocus 的调用例如,图 3.2 所示系统特征根的根轨迹及其绘制程序见图 3.3。
图3.2 闭环系统一图3.3 闭环系统一的根轨迹及其绘制程序注意:在这里,构成系统s ys 时,K 不包括在其中,且要使分子和分母中s最高次幂项的系数为1。
当系统开环传达函数为零、极点形式时,可调用函数 z pk 构成系统 s ys : sys = zpk([zero],[pole],1);当系统开环传达函数无零点时,[zero]写成空集[]。
对于图 3.2 所示系统,G(s)H(s)=)2()1(++s s s K *11+s =)3)(2()1(+++s s s s K . 可如下式调用函数 z pk 构成系统 s ys :sys=zpk([-1],[0 -2 -3],1)若想得到根轨迹上某个特征根及其对应的 K 的值,一种方法是在调用了函数 rlocus 并得到了根 轨迹后调用函数 r locfind 。
然后,将鼠标移至根轨迹图上会出现一个可移动的大十字。
将该十字的 中心移至根轨迹上某点,再点击鼠标左键,就可在命令窗口看到该点对应的根值和 K 值了。
另外一种 较为方便的做法是在调用了函数 rlocus 并得到了根轨迹后直接将鼠标移至根轨迹图中根轨迹上某点 并点击鼠标左键,这时图上会出现一个关于该点的信息框,其中包括该系统在此点的特征根的值及其 对应的 K 值、超调量和阻尼比等值。
图 3.4 给出了函数 r locfind 的用法。
2.实验内容图3.5 闭环系统二1) 对于图 3.5 所示系统,编写程序分别绘制当(1) G(s)=)2(+s s K,(2) G(s)=)4)(1(++s s s K,(3) G(s)=)6)(4)(2(+++s s s s K,(4) G(s)=)24)(24)(4)(2(j s j s s s s K-+++++,(5) G(s)=)2()4(++s s s K ,(6) G(s)=)4)(2()6(+++s s s s K ,(7) G(s)=)4)(2()24)(24(++-+++s s s j s j s K时系统的根轨迹,并就结果进行分析。
解析: (1)运行程序sys=zpk([ ],[0,-2],1);rlocus(sys); rlocfind(sys); 运行结果:-2-1.8-1.6-1.4-1.2-1-0.8-0.6-0.4-0.20Root LocusReal AxisI m a g i n a r y A x i s系统极点:p=0,-2 无零点 故有两条渐近线,且φ=090,-090 渐近线与实轴的交点:σ=2)2(0-+=-1 分离点:K=-s(s+2),dK/ds=-2s-2,令其=0,则s=-1,此时K=1当K=0时,系统根轨迹从极点0,-2处出发;当K=1时,在实轴的-1处会合,分别沿垂直于-1的直线以090,-090方向延伸,在根轨迹无穷远处,K=∞ 由分析可知,运行结果与理论结果一致。
(2)运行程序sys=zpk([ ],[0,-2,-4],1);rlocus(sys); rlocfind(sys); 运行结果:-12-10-8-6-4-2024-8-6-4-22468Root LocusReal AxisI m a g i n a r y A x i s系统极点:p=0,-2,-4 无零点 系统有三条渐近线,且φ=060,-060,0180 渐近线与实轴的交点:σ=3420--=-2 根轨迹与虚轴的交:点令s=jw,带入特征方程s(s+2)(s+4)+K=0,得:jw(8-2w )+(K-62w )=0,故w=2.83,-2.83 带入特征方程验证,K>0 实轴上的根轨迹:[-2,0],(-∞,-4)[-2,0]之间的根轨迹,K=0时,分别从-2,0出发;当K=3.08*2*4=24.64时会合,再分别沿渐近线趋于无穷远处,无穷远处,K −→−∞ (-∞,-4)之间的根轨迹,K=0时,从-4出发,沿负实轴趋于无穷,无穷远处,K −→−∞ 由分析可知,运行结果与理论结果一致。
(3)运行如下程序:sys=zpk([ ],[0 -2 -4 -6],1); rlocus(sys);rlocfind(sys); 运行结果如下:-15-10-50510-10-8-6-4-20246810Root LocusReal AxisI m a g i n a r y A x i s系统极点:p=0,-2,-4,-6 无零点系统有四条渐近线,且φ=045,-045,-0135,0135 渐近线与实轴的交点:σ=4642---=-3 分离点:,解得:,当2s 带入特征方程时,k<0,故舍去。
根轨迹与虚轴的交点:令s=jw,带入特征方程为0484412234=++++K s s s s ,令实部和虚部分别为0,得:w=2或-2,k=160 实轴上的根轨迹:[-2,0],[-6,-4][-2,0]之间的根轨迹:当K=0时,分别从-2,0出发,当K=16*2*486=768时,在实轴上会合,再分别沿0045,45-渐近线趋于无穷远处,无穷远处,K −→−∞ [-6,-4]之间的根轨迹:当K=0时,分别从-6,-4出发,当K=768时,在实轴上会合,再分别沿00135,135-渐近线趋于无穷远处,无穷远处,K −→−∞ 根据分析可知,运行结果与理论结果一致。
(4)运行如下程序:sys=zpk([ ],[0 -2 -4 -4-2j -4+2j],1); rlocus(sys); rlocfind(sys); 运行结果如下:-15-10-50510-15-10-551015Root LocusReal AxisI m a g i n a r y A x i s系统极点:p=0,-2,-4,-4-j2,-4+j2 无零点系统有五条渐近线,且φ=5180*)12(0+q (q=0,1,2,3,4),即φ=00000180,108,108,36,36--渐近线与实轴的交点:σ=5242442j j +-----=-514根轨迹与虚轴的交点:令s=jw,带入特征方程,016018476142345=+++++K s s s s s 解得w=2.15或73.85(舍去,不符合K>0)实轴上的根轨迹:[-2,0],(-∞,-4)[-2,0]之间的根轨迹:当K=0时,分别从-2,0出发,在s=-0.648[此时K=44.7*2*4*(4+j2)*(4-j2)]处会合,然后沿0036,36-的渐近线趋于无穷远处,无穷远处,K −→−∞ (-∞,-4)之间的根轨迹:当K=0时,从-4出发,沿0180渐近线趋于无穷远处,无穷远处,K −→−∞ 同时,当K=0时,系统根轨迹分别从-4-j2,-4+j2出发,沿00108,108-渐近线趋于无穷远处,无穷远处,K −→−∞ 运行结果与理论结果一致。
(5)运行如下程序: sys=zpk([-4],[0 -2],1); rlocus(sys); rlocfind(sys); 运行结果如下:系统极点:p=0,-2 零点:-4 系统有一条渐近线,φ=0180分离点:211++s s =41+s ,解得:s=-4+22或-4-22根轨迹是一个以-4为圆心,22为半径的圆根轨迹分别从-2,0出发,在s=-4+22处会合,然后分开,顺着圆的轨迹在s=-4-22处会合,一条终止于s=-4处,另一条终止于s −→−-∞处。
起点处,K=0,终点处,K −→−∞ 由分析可知,实验结果与理论结果一致。
(6)运行如下程序: sys=zpk([-6],[0 -2 -4],1); rlocus(sys); rlocfind(sys);运行结果如下:Root LocusReal AxisI m a g i n a r y A x i s-6-5-4-3-2-10系统极点:p=0,-2,-4 零点:-6 系统有两条渐近线,且φ= 090,-090 渐近线与实轴的交点:σ=4)6(42----=0令s=jw,代入s(s+2)(s+4)+K(s+6)=0,得:jw(2w +8+K)+6(2w -1)=0,故w=1,-1 而此时,K=-9<0,所以根轨迹与虚轴没有交点。
实轴上的根轨迹:[-2,0],[-6,-4][-2,0]之间的渐近线:当K=0时,根轨迹分别从-2,0出发;当K=0.603时,在实轴上s=0.936处会合,在分别沿着090,-090的渐近线趋于无穷远处,无穷远处,K −→−∞ [-6,-4]之间的根轨迹:当K=0时,从-4出发,当K −→−∞时,根轨迹终止于零点-6由以上分析可知,运行结果与理论结果一致。
(7)运行以下程序:sys=zpk([-4-2j -4+2j],[0 -2 -4],1); rlocus(sys); rlocfind(sys); 运行结果如下:Root LocusReal AxisI m a g i n a r y A x i s-8-7-6-5-4-3-2-10-4-3-2-11234系统的极点:p=0,-2,-4 零点:-4-j2,-4+j2 系统有一条渐近线,且φ= 0180 渐近线与实轴的交点:σ=4.05)24()24(420=+-------j j令s=jw,代入s(s+2)(s+4)+K(s+4+j2)(s+4-j2)=0,得jw(8+8K-2w )+(20K-62w -K w 2)=0.令实部和虚部分别为0,得w=-10+j 60或-10-j 60.而此时K<0,故根轨迹与虚轴无交点。
实轴上的根轨迹:[-2,0],(-4,-∞)[-2,0]之间的根轨迹:当K=0时,根轨迹分别从-2,0出发;当K=0.232*4*2)24)(24(j j -+=0.58时,在实轴的s=-1.06处会合;在K −→−∞时,终止于零点-4-j2,-4+j2(-4,-∞)之间的根轨迹:当K=0时,根轨迹从-4出发,在K −→−∞时,终止于负实轴的无穷远处由以上分析可知,运行结果与理论结果一致。