等比数列的概念及通项公式导学案

合集下载

高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案

一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的通项公式。

2. 培养学生运用等比数列知识解决实际问题的能力。

3. 提高学生对数列这一数学思想的认知,培养学生的逻辑思维能力。

二、教学内容1. 等比数列的概念2. 等比数列的通项公式3. 等比数列的性质三、教学重点与难点1. 教学重点:等比数列的概念,等比数列的通项公式。

2. 教学难点:等比数列通项公式的推导和应用。

四、教学方法1. 采用问题驱动法,引导学生主动探索等比数列的概念和性质。

2. 运用案例分析法,让学生通过具体例子理解等比数列的通项公式。

3. 采用小组讨论法,培养学生的合作意识和团队精神。

五、教学过程1. 导入新课:通过回顾数列的概念,引导学生思考等比数列的特点。

2. 讲解等比数列的概念:借助具体例子,讲解等比数列的定义和性质。

3. 推导等比数列的通项公式:引导学生运用已知知识,推导出等比数列的通项公式。

4. 应用等比数列通项公式:通过实例,展示等比数列通项公式的应用。

5. 课堂练习:布置相关练习题,巩固所学知识。

6. 总结与拓展:对本节课内容进行总结,提出拓展问题,激发学生课后思考。

7. 课后作业:布置适量作业,巩固所学知识。

六、教学评价1. 通过课堂表现、作业和练习,评价学生对等比数列概念和通项公式的掌握程度。

2. 结合课后作业和课堂讨论,评估学生运用等比数列知识解决实际问题的能力。

3. 通过小组讨论和课堂提问,了解学生对数列思想的认知和逻辑思维能力的提升。

七、教学资源1. PPT课件:制作包含等比数列概念、性质和通项公式的PPT课件,以便于学生理解和记忆。

2. 练习题库:准备一定数量的等比数列练习题,包括基础题、应用题和拓展题,以供课堂练习和课后作业使用。

3. 教学视频:搜集相关的教学视频,如等比数列的动画演示、讲解等,以辅助教学。

八、教学进度安排1. 第一课时:介绍等比数列的概念和性质。

2. 第二课时:推导等比数列的通项公式,讲解应用实例。

高中数学选择性必修二 4 3 1(第1课时)等比数列的概念及通项公式 教案

高中数学选择性必修二 4 3 1(第1课时)等比数列的概念及通项公式 教案

等比数列的概念及通项公式教学设计
将一张很大的薄纸对折,对折30次后有多厚?
不妨假设这张纸的厚度为0.01毫米。

1 看一看纸的厚度的变化
提示:
折1次折2次折3次折4次 (30)
厚度2 (21)4 (22)8 (23)16 (24) (230)
反之,任给指数函数
f(x)=ka x (k,a为常数,k≠0,
a>0且 a≠1)
则f(1)=ka ,f(2)=ka2,⋯,f(n)=ka n,⋯
构成一个等比数列{ka n},其首项为ka,公比为a.
等比数列的单调性
由等比数列的通项公式与指数型函数的关系可得等比数列的单调性如下:
(1)当a1>0,q>1或 a1<0,0<q<1时,等比数列{a n}为递增数列;
(2)当a1>0,0<q<1或 a1<0,q>1时,等比数列{a n}为递减数列;
(3)当q=1时,数列{a n}为常数列;
(4)当q<0时,数列{a n}为摆动数列.
下面,我们利用通项公式解决等比数列的一些问题.
例1 若等比数列{a n}的第4项和第6项分别为。

高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的性质。

2. 引导学生掌握等比数列的通项公式,并能运用通项公式解决实际问题。

3. 培养学生的逻辑思维能力,提高学生分析问题和解决问题的能力。

二、教学内容1. 等比数列的概念2. 等比数列的性质3. 等比数列的通项公式4. 等比数列的求和公式5. 运用通项公式解决实际问题三、教学重点与难点1. 教学重点:等比数列的概念、性质、通项公式及其应用。

2. 教学难点:等比数列通项公式的推导和运用。

四、教学方法1. 采用问题驱动法,引导学生主动探究等比数列的性质和通项公式。

2. 利用多媒体课件,生动展示等比数列的图形和性质,提高学生的直观认识。

3. 结合例题,讲解等比数列通项公式的应用,培养学生解决问题的能力。

4. 开展小组讨论,促进学生之间的交流与合作,提高学生的团队意识。

五、教学过程1. 引入新课:通过讲解现实生活中的例子,引出等比数列的概念。

2. 讲解等比数列的性质:引导学生发现等比数列的规律,总结等比数列的性质。

3. 推导等比数列的通项公式:引导学生利用已知的数列性质,推导出通项公式。

4. 讲解等比数列的求和公式:结合通项公式,讲解等比数列的求和公式。

5. 运用通项公式解决实际问题:选取典型例题,讲解等比数列通项公式的应用。

6. 课堂练习:布置适量习题,巩固所学知识。

7. 总结与反思:引导学生总结本节课所学内容,反思自己的学习过程。

8. 课后作业:布置课后作业,巩固所学知识,提高学生的应用能力。

9. 教学评价:对学生的学习情况进行评价,了解学生对等比数列知识的掌握程度。

10. 教学反思:总结本节课的教学效果,针对存在的问题,调整教学策略。

六、教学策略1. 案例分析:通过分析具体的等比数列案例,让学生深刻理解等比数列的概念和性质。

2. 互动教学:鼓励学生积极参与课堂讨论,提问引导学生思考,增强课堂的互动性。

高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的定义及其特点。

2. 引导学生推导等比数列的通项公式,并能运用通项公式解决实际问题。

3. 培养学生的逻辑思维能力、运算能力和解决问题的能力。

二、教学内容1. 等比数列的概念:介绍等比数列的定义、性质和判定方法。

2. 等比数列的通项公式:引导学生推导通项公式,并进行证明。

3. 等比数列的求和公式:介绍等比数列前n项和的公式。

三、教学重点与难点1. 教学重点:等比数列的概念、性质、通项公式和求和公式。

2. 教学难点:等比数列通项公式的推导和证明。

四、教学方法1. 采用问题驱动法,引导学生通过观察、分析和归纳等比数列的性质。

2. 运用类比法,让学生理解等比数列与等差数列的异同。

3. 利用多媒体辅助教学,展示等比数列的动态变化过程。

4. 开展小组讨论,培养学生的合作意识和解决问题的能力。

五、教学过程1. 导入新课:通过引入日常生活中的实例,如银行存款利息问题,引导学生思考等比数列的概念。

2. 讲解等比数列的定义和性质:让学生通过观察、分析和归纳等比数列的性质,得出等比数列的定义。

3. 推导等比数列的通项公式:引导学生利用已知条件,通过变换和代数运算,推导出等比数列的通项公式。

4. 证明等比数列的通项公式:让学生理解并证明等比数列通项公式的正确性。

5. 介绍等比数列的求和公式:引导学生运用通项公式,推导出等比数列前n项和的公式。

6. 课堂练习:布置一些有关等比数列的题目,让学生巩固所学知识。

7. 总结与反思:对本节课的内容进行总结,让学生反思自己的学习过程,提高学习效果。

8. 课后作业:布置一些有关等比数列的练习题,巩固所学知识。

六、教学策略1. 案例分析:通过分析具体的等比数列案例,让学生更好地理解等比数列的概念和性质。

2. 互动提问:在教学过程中,教师应引导学生积极参与课堂讨论,提问等方式来巩固学生对等比数列的理解。

等比数列导学案

等比数列导学案
【例3】已知数列 为等比数列
(1)若 则 ;
(2)若 则 ;
(3)若 则 与 等比中项是,
6、等比数列性质及应用
【例4】已知等比数列的公比为 ,第 项为 ,
求证:
【例5】已知数列 中, 求
思考:本例中 是否为等差数列?能由此推出一般性的结论吗?
【例6】在4和 之间插入3个数,使这5个数成等比数列,求插入的3个数。
【例1】判断下列数列是否为等比数列
(1)2,2,2,2,…;
(2)-1,1,2,4,8,…;
(3) ;
(4)已知数列 的通项公式为 。
3、等比数列的通项公式的推导
设等比数列 ,的公比为
方法1:(归纳法)
, , ,
……
方法2:(累乘法)
根据等比数列的定义,可以得到 , , ,…,
.以上共有个等式,把以上个等式左右两边分别相乘得 ,即 ,即得到等比数列的通项公式。
思考题
1、证明:已知数列 中,若 则 ,特别地,若 则
2、通过公比 的不同取值讨论,对等比数列进行分类
4、等比数列的通项公式
【例2】在等比数列 中
(1)已知 求 ;
(2)已知 ,求
(3)已知 求
5、等比中项
如果三个数 组成等比数列,则 叫做 和 的等比中项。
如果 是 和 的等比中项,那么 ,即
注意:两个正数(或两个负数)的等比中项由两个,它们互为相反数,一个正数和一个负数没有等比中项。
在一个等比数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项;反之,如果一个数列从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项,那么这个数列是等比数列。
二、探求新知

《等比数列》导学案

《等比数列》导学案

§2.4 《等比数列》导学案【学习目标】〖知识目标〗1.正确认识和理解等比数列的定义,明确等比数列中公比的概念,探索并掌握等比数列的通项公式.2.懂得将生活中的实例抽象为等比数列模型来解决生活中的实际问题.〖能力目标〗1.通过发现几个具体简单的数列的等比关系,类比于之前的等差数列概念的推导过程,归纳出等比数列的概念,探索出等比数列的通项公式.2.培养学生严密的思维习惯,通过对等比数列的研究,采用观察、思考、类比、归纳、探究、得出结论的方法进行教学,发挥学生的主体作用,并进一步培养学生善于思考、解决问题的能力.〖情感目标〗1.感受等比数列丰富的现实背景,培养学生勇于探索,实事求是的科学态度.2.进一步激发学生主动参与学习,感受数学文化,激发学生的学习欲望.〖教学重点〗等比数列的定义和通项公式.〖教学难点〗等比数列与指数函数的关系.【学习过程】一.探求新知〖探究一〗:阅读教材48、49页的具体实例①~④,并把各自对应的数列补充完整:①1, 2, 4,,…②1,,,,…③1,,,,…④10000×1.0198,,,,观察这几个数列:对于数列①,从第2项起,每一项与前一项的比都等于;对于数列②,从第2项起,每一项与前一项的比都等于;对于数列③,从第2项起,每一项与前一项的比都等于;对于数列④,从第2项起,每一项与前一项的比都等于。

共同特点:。

1、等比数列定义:一般地,如果一个数列 叫做等比数列,这个常数叫做等比数列的 ,通常用字母 表示.等价数学表达式为:思考讨论:1.等比数列中的项能否为零?2.等比数列的公比q 能否为零?3.常数列是否是等比数列?4.既是等差数列又是等比数列的数列存在吗?如果存在,你能举出例子吗?2、等比中项:如果在a 与b 中间插入一个数G ,使得a, G , b 成 ,那么G 叫做a 与b 的等比中项。

想一想: 1、G 与a 、b,之间的关系 2、a 、b 的符号有什么特点?3、等比数列通项公式:〖探究二〗:类比等差数列通项公式的推导过程,完成等比数列通项公式的推导: (法一)归纳法等差数列:21314123a a da a da a d =+=+=+L L,由此归纳等差数列的通项公式可得.1(1)n a a n d =+-(法二)累加法2132431n n a a d a a d a a d a a d-ì-=ïïïï-=ïïï-=íïïïïïï-=ïîL L 相加得1(1)n a a n d =+-等比数列:21a a q =〖探究三〗:等比数列与指数函数的关系分别在下面的直角坐标系中,画出通项公式为12-=n n a 的数列的图象和函数12y -=x 的图像.通过画图象并观察图象,我们可以发现:等比数列{}n a 的通项公式11-⋅=n n q a a 的图像是分布在)1q 0(1≠>=且q q qa y n 的图像上的一些 。

高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案一、教学目标:1. 让学生理解等比数列的概念,掌握等比数列的定义及其特点。

2. 引导学生掌握等比数列的通项公式,并能灵活运用通项公式解决相关问题。

3. 培养学生的数学思维能力,提高学生分析问题和解决问题的能力。

二、教学内容:1. 等比数列的概念:介绍等比数列的定义,通过实例让学生理解等比数列的特点。

2. 等比数列的通项公式:引导学生推导等比数列的通项公式,并解释其意义。

3. 等比数列的性质:探讨等比数列的性质,如相邻项之比、公比等。

4. 等比数列的求和公式:介绍等比数列的求和公式,并解释其推导过程。

5. 应用:通过例题展示等比数列通项公式的应用,让学生学会解决实际问题。

三、教学重点与难点:1. 教学重点:等比数列的概念、通项公式、求和公式及其应用。

2. 教学难点:等比数列通项公式的推导和求和公式的理解。

四、教学方法:1. 采用问题驱动的教学方法,引导学生主动探究等比数列的性质和公式。

2. 利用多媒体辅助教学,通过动画和图形展示等比数列的特点,增强学生的直观感受。

3. 通过例题和练习题,让学生在实践中掌握等比数列的运用。

五、教学过程:1. 引入:通过生活中的实例,如银行利息计算,引出等比数列的概念。

2. 讲解:详细讲解等比数列的定义、特点和通项公式,引导学生理解并掌握。

3. 互动:学生提问,教师解答,共同探讨等比数列的相关问题。

4. 练习:布置练习题,让学生运用通项公式解决问题,巩固所学知识。

6. 作业:布置作业,让学生进一步巩固等比数列的知识。

六、教学评估:1. 课堂问答:通过提问的方式检查学生对等比数列概念和通项公式的理解程度。

2. 练习题:布置课堂练习题,评估学生运用通项公式解决问题的能力。

3. 作业批改:对学生的作业进行批改,了解学生对所学知识的掌握情况。

七、教学反思:1. 针对学生的反馈,反思教学过程中的不足之处,如讲解不清、学生理解困难等问题。

2. 针对教学方法的适用性,调整教学策略,以提高教学效果。

等比数列的概念和通项公式课时教学设计-高中数学人教A版2019选择性必修第二册教案

等比数列的概念和通项公式课时教学设计-高中数学人教A版2019选择性必修第二册教案

第1课时等比数列的概念和通项公式(一)教学内容等比数列的概念、等比数列的通项公式(一)教学目标1.通过具体实例,能归纳出等比数列的概念,并形成符号化定义;能根据定义探索归纳出等比数列的通项公式,能解释公式的含义和限制条件;能根据等比中项的概念写出出对应等式,发展数学抽象素养.2.通过解析式、图象等,能说出等比数列的通项公式与指数函数之间的共性与差异;会用函数的观点解释等比数列,发展数学抽象、逻辑推理素养.3.通过解方程组求等比数列的基本量,能得出等比数列的一些性质,会利用通项公式解决一些简单问题,着重提升数学运算素养.(三)教学重点及难点1.重点:等比数列的定义及通项公式.2.难点:等比数列通项公式的推导.(四)教学过程设计问题1:在前面我们已经学习了等差数列,我们知道,等差数列的特征是“从第2项起,每一项与它的前一项的差都等于同一个常数”,类比等差数列的研究思路和方法,从运算的角度出发,你觉得还有怎样的数列是值得研究呢?师生活动:(1)独立思考后,让学生代表回答.类比等差数列的概念,从加、减、乘、除运算的角度,学生回答的可能有三种数列:等和、等积和等商(比)数列(仿照等差数列命名)。

(2)教师追问1:你能举岀相应的例子吗?(3)学生举例,如:1,4,1,4,1;0,1,0,3,0,5,…;1,2,4,8,…等数列.教师引学生了解:相对于等和与等积数列,等比数列的性质更为丰富,在生活中的应用更广泛,本节课我们将要研究等比数列.(4)教师追问2:类比差数列研究路径,你认为应该研究等比数列的哪些内容?按怎样的路径展开研究?主要的研究方法有哪些?(5)师生共研:提出本单元的研究路径:背景→概念一通项公式→性质→前n项和公式→应用.设计意图:学生利用常用的四则运算类型,可以类比等差数列得出等和、等积与等商(比)数列的名称,通过对比分析确定将要研究的对象.这样的设计可以避免先入为主,体现了研究逻辑的完整性,能提升学生发现和提出问题的能力.为了不冲淡主题,等和与等积数列可作为例1:若等比数列n 的第4项和第6项分别为48和12,求n 的第5项.例2:已知等比数列{}n a 的公比为q ,试用{}n a 的第m 项m a 表示n a .例3:数列{}n a 共有5项,前三项成等比数列,后三项成等差数列,第3项等于80,第2项与第4项的和等于136,第1项与第5项的和等于132.求这个数列.设计意图:让雪学生学会等比数列基本量的求解运算,体会等比数列的独特性,归纳出等比数列运算的方法以及策略.(五)目标检测设计当堂检测1.在等比数列{}n a 中,1336a a =,2460a a +=.求1a 和公比q .2.对数列{}n a ,若点(),*()n n a n N ∈都在函数x y cq =的图象上,其中c ,q 为常数,且0c ≠,0q ≠,1q ≠,试判断数列{}n a 是否是等比数列,并证明你的结论.课后作业1.判断下列数列是否是等比数列.如果是,写出它的公比.(1)3,9,15,21,27,33;(2)1,1.1,1.21,1.331,1.4641;(3)13,16,19,112,115,118;(4)4,8-,16,32-,64,128-.2.已知{}n a 是一个公比为q 的等比数列,在下表中填上适当的数.n 是等比数列.(1)3a ,5a ,7a 是否成等比数列?为什么?1a ,5a ,9a 呢?(2)当1n >时,1n a -,n a ,1n a +是否成等比数列?为什么?当0n k >>时,n k a -,n a ,n k a +是等比数列吗?设计意图:检测和巩固等比数列的概念和通项公式。

高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的定义及其性质。

2. 引导学生推导等比数列的通项公式,并能灵活运用通项公式解决相关问题。

3. 培养学生的逻辑思维能力、运算能力和解决实际问题的能力。

二、教学内容1. 等比数列的概念:介绍等比数列的定义,通过实例让学生理解等比数列的特点。

2. 等比数列的性质:探讨等比数列的性质,如相邻项的比值是常数,公比等。

3. 等比数列的通项公式:引导学生推导等比数列的通项公式,并解释其意义。

4. 运用通项公式解决实际问题:通过例题,让学生学会运用通项公式求等比数列的特定项、求和等。

5. 拓展与应用:引导学生思考等比数列在实际生活中的应用,如复利、生长速率等。

三、教学重点与难点1. 教学重点:等比数列的概念、性质和通项公式的推导及应用。

2. 教学难点:等比数列通项公式的理解和运用。

四、教学方法1. 采用问题驱动法,引导学生主动探究等比数列的性质和通项公式。

2. 用实例讲解等比数列的概念,让学生在实际问题中感受等比数列的应用。

3. 通过小组讨论、合作交流,培养学生的团队协作能力。

4. 利用多媒体课件,生动展示等比数列的性质和通项公式,提高学生的学习兴趣。

五、教学准备1. 多媒体课件:制作等比数列的概念、性质和通项公式的课件。

2. 教学素材:准备一些关于等比数列的实际问题,用于课堂练习。

3. 教学反思:对以往教学等比数列的经验进行总结,以便更好地指导学生学习。

六、教学过程1. 导入新课:通过一个实际问题,如复利计算,引出等比数列的概念。

2. 探究等比数列的性质:让学生通过观察、分析实例,发现等比数列的性质。

3. 推导等比数列的通项公式:引导学生运用已学的数学知识,如代数运算,推导出等比数列的通项公式。

4. 应用通项公式解决问题:通过例题,让学生学会运用通项公式求等比数列的特定项、求和等。

5. 总结与拓展:总结等比数列的概念、性质和通项公式的要点,提出一些拓展问题,激发学生的学习兴趣。

学案2:4.3.1 第1课时 等比数列的概念及通项公式

学案2:4.3.1 第1课时 等比数列的概念及通项公式

4.3.1 第1课时 等比数列的概念及通项公式【学习目标】1.通过实例,理解等比数列的概念并学会简单应用.2.掌握等比中项的概念并会应用.3.掌握等比数列的通项公式并了解其推导过程【自主学习】知识点1 等比数列的概念一般地,如果一个数列从 起,每一项与它的前一项的比等于 ,那么这个数列叫做等比数列,这个常数叫做等比数列的 ,公比通常用字母 表示. 知识点2 等比中项的概念(1)如果在a 与b 中间插入一个数G ,使a ,G ,b 成 ,那么G 叫做a 与b 的等比中项,这三个数满足关系式 .(2)等比中项与等比中项的异同,对比如下表:知识点3 等比数列的通项公式首项为1a ,公比为q 的等比数列的通项公式是111(,0)n n a a q a q -=≠.等比数列通项公式的变形:n mn m a a q -=.【合作探究】探究一 等比数列的判定与证明【例1】已知f (x )=log m x (m >0且m ≠1),设f (a 1),f (a 2),…,f (a n ),…是首项为4,公差为2的等差数列,求证:数列{a n }是等比数列.【练习1】已知数列{a n }的前n 项和为S n ,且S n =13(a n -1)(n ∈N *).(1)求a 1,a 2;(2)证明:数列{a n }是等比数列.探究二 等比中项【例2】若1,a,3成等差数列,1,b,4成等比数列,则ab 的值为( )A .±12B.12C .1D .±1【练习2】2+1与2-1的等比中项是( ) A .1B .-1C .±1D.12探究三等比数列通项公式的应用【例3】一个等比数列的第3项与第4项分别是12与18,求它的第1项与第2项.【练习3】在等比数列{a n}中.(1)已知a1=3,q=-2,求a6;(2)已知a3=20,a6=160,求a n.探究四等比数列的实际应用【例4】某种放射性物质不断变化为其他物质,每经过一年剩余的这种物质是原来的84%,这种物质的半衰期为多长(精确到1年,放射性物质衰变到原来的一半所需时间称为这种物质的半衰期)【练习4】某制糖厂2011年制糖5万吨,如果从2011年起,平均每年的产量比上一年增加20%,那么到哪一年,该糖厂的年制糖量开始超过30万吨?(保留到个位,lg 6≈0.778,lg 1.2≈0.079)【课堂达标】1.已知等比数列{a n}满足a1+a2=3,a2+a3=6,则a7等于()A.64 B.81C.128 D.2432.在等比数列{a n}中,a1=1,公比|q|≠1.若a m=a1a2a3a4a5,则m等于()A.9 B.10 C.11 D.123.已知6,a,b,48成等差数列,6,c,d,48成等比数列,则a+b+c+d=________. 4.数列{a n}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q=________. 5.已知数列{a n}满足a1=1,a n+1=2a n+1.(1)求证:数列{a n+1}是等比数列;(2)求{a n}的通项公式.【参考答案】【自主学习】知识点1 等比数列的概念 第2项同一常数公比q (q ≠0)知识点2 等比中项的概念 (1)等比数列ab =G 2(2)等比两相反数ab >0 【合作探究】探究一 等比数列的判定与证明 【例1】证明 由题意知f (a n )=4+2(n -1)=2n +2=log m a n , ∴a n =m2n +2,∴a n +1a n =m 2(n +1)+2m2n +2=m 2,∵m >0且m ≠1,∴m 2为非零常数, ∴数列{a n }是等比数列. 【练习1】(1)解 ∵a 1=S 1=13(a 1-1),∴a 1=-12.又a 1+a 2=S 2=13(a 2-1),∴a 2=14.(2)证明 ∵S n =13(a n -1),∴S n +1=13(a n +1-1),两式相减得a n +1=13a n +1-13a n ,即a n +1=-12a n ,∴数列{a n }是首项为-12,公比为-12的等比数列.探究二 等比中项 【例2】 【答案】D【解析】∵1,a,3成等差数列,∴a =1+32=2,∵1,b,4成等比数列,∴b 2=1×4,b =±2,∴a b =2±2=±1.【练习2】 【答案】C【解析】设x 为2+1与2-1的等比中项, 则x 2=(2+1)(2-1)=1,∴x =±1. 探究三 等比数列通项公式的应用 【例3】解 设这个等比数列的第1项是a 1,公比是q ,那么⎩⎪⎨⎪⎧a 1q 2=12,①a 1q 3=18,②②÷①,得q =32,将q =32代入①,得a 1=163.因此,a 2=a 1q =163×32=8.综上,这个数列的第1项与第2项分别是163与8.【练习3】解 (1)由等比数列的通项公式得,a 6=3×(-2)6-1=-96. (2)设等比数列的公比为q ,那么⎩⎪⎨⎪⎧ a 1q 2=20,a 1q 5=160,解得⎩⎪⎨⎪⎧q =2,a 1=5.所以a n =a 1q n -1=5×2n -1. 探究四 等比数列的实际应用 【例4】解 设这种物质最初的质量是1,经过n 年,剩余量是a n , 由条件可得,数列{a n }是一个等比数列. 其中a 1=0.84,q =0.84, 设a n =0.5,则0.84n =0.5.两边取对数,得n lg 0.84=lg 0.5,用计算器算得n ≈4. 答 这种物质的半衰期大约为4年. 【练习4】解 记该糖厂每年制糖产量依次为a 1,a 2,a 3,…,a n ,…. 则依题意可得a 1=5,a na n -1=1.2(n ≥2且n ∈N *), 从而a n =5×1.2n -1,这里a n =30,故1.2n -1=6, 即n -1=log 1.26=lg 6lg 1.2=0.7780.079≈9.85,故n =11.答 从2021年开始,该糖厂年制糖量开始超过30万吨.【课堂达标】1.【答案】A【解析】∵{a n }为等比数列,∴a 2+a 3a 1+a 2=q =2.又a 1+a 2=3,∴a 1=1,故a 7=1·26=64. 2.【答案】C【解析】在等比数列{a n }中,∵a 1=1,∴a m =a 1a 2a 3a 4a 5=a 51q 10=q 10.∵a m =a 1q m -1=q m -1,∴m -1=10,∴m =11. 3.【答案】90【解析】6,a ,b,48成等差数列,则a +b =6+48=54; 6,c ,d,48成等比数列,设其公比为q ,则q 3=486=8,q =2,故c =12,d =24,从而a +b +c +d =90.4.【答案】1【解析】设等差数列的公差为d ,则a 3=a 1+2d ,a 5=a 1+4d ,∴(a 1+2d +3)2=(a 1+1)(a 1+4d +5),解得d =-1,∴q =a 3+3a 1+1=a 1-2+3a 1+1=1.5.(1)证明 方法一 ∵a n +1=2a n +1,∴a n +1+1=2(a n +1),∴a n +1+1a n +1=2,且a 1+1=2.∴{a n +1}是以2为首项,2为公比的等比数列. 方法二 ∵a n +1+1a n +1=2a n +1+1a n +1=2(a n +1)a n +1=2(n ∈N *),∴数列{a n +1}是等比数列.(2)解 由(1)知{a n +1}是等比数列,公比为2,首项为2. ∴a n +1=2n ,∴a n =2n -1,n ∈N *.。

等比数列的通项公式教案

等比数列的通项公式教案

等比数列的通项公式教案一、教学目标知识与技能:1. 理解等比数列的概念;2. 掌握等比数列的通项公式;3. 能够运用通项公式解决实际问题。

过程与方法:1. 通过探究等比数列的性质,引导学生发现通项公式;2. 利用数学归纳法证明等比数列的通项公式;3. 运用通项公式进行等比数列的运算和问题解决。

情感态度价值观:1. 培养学生的逻辑思维能力;2. 培养学生的数学归纳法思想;3. 激发学生对数学的兴趣和好奇心。

二、教学重点与难点重点:1. 等比数列的概念;2. 等比数列的通项公式;3. 等比数列的性质与应用。

难点:1. 等比数列通项公式的发现与证明;2. 运用通项公式解决实际问题。

三、教学准备教师准备:1. 等比数列的相关知识资料;2. 等比数列的实例与问题;3. 教学多媒体设备。

学生准备:1. 掌握等差数列的相关知识;2. 熟练运用数学归纳法。

四、教学过程1. 导入:1.1 复习等差数列的概念和性质;1.2 引入等比数列的概念;1.3 引导学生思考等比数列的通项公式。

2. 探究等比数列的通项公式:2.1 给出等比数列的定义;2.2 引导学生发现等比数列的性质;2.3 引导学生归纳出通项公式。

3. 证明等比数列的通项公式:3.1 引导学生运用数学归纳法证明通项公式;3.2 引导学生理解并掌握数学归纳法的步骤。

4. 运用等比数列的通项公式:4.1 给出等比数列的实际问题;4.2 引导学生运用通项公式解决问题;4.3 引导学生总结等比数列的运算规律。

五、课后作业1. 等比数列的定义与性质;2. 等比数列的通项公式;3. 运用通项公式解决实际问题。

教学反思:本节课通过引导学生探究等比数列的性质,发现并证明通项公式,培养了学生的逻辑思维能力和数学归纳法思想。

在教学过程中,注意关注学生的学习情况,及时解答学生的疑问,提高学生的学习效果。

通过运用通项公式解决实际问题,激发学生对数学的兴趣和好奇心。

六、教学拓展1. 等比数列的求和公式:6.1 引导学生探究等比数列的求和公式;6.2 引导学生运用求和公式进行等比数列的求和运算。

等比数列的定义及性质 导学案

等比数列的定义及性质 导学案

比一比看谁表现最好!拼一拼力争人人过关!
启明中学高效课堂 高二 数学学科导学案
班级: 姓名: 日期: 课题: 等比数列的定义及性质 编号: 小组: 评价:
编制人: 李鹏 审核人: 代成学
学习目标:
1、掌握等比数列的定义;理解等比数列的通项公式及推导;
2、通过实例,理解等比数列的概念;探索并掌握等比数列的通项公式、性质,能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;体会等比数列与指数函数的关系。

使用说明:
1、认真研读教材2521P P -内容,完成下面学内容;
2、参照手头资料探讨等比数列的性质,能够灵活运用等比数列的性质。

定向导学*互动展示
12。

等比数列的概念和通项公式教案

等比数列的概念和通项公式教案

等比数列的概念和通项公式教案第一章:等比数列的概念1.1 引入:通过复习数列的基本概念,引导学生理解数列的定义和性质。

1.2 等比数列的定义:引导学生通过观察和分析一些具体的数列,总结等比数列的定义和特点。

1.3 等比数列的性质:引导学生探究等比数列的性质,如相邻两项的比值是常数,每一项可以表示为前一项与公比的乘积等。

1.4 等比数列的举例:给出一些等比数列的例子,让学生通过计算和分析加深对等比数列的理解。

第二章:等比数列的通项公式2.1 等比数列的通项公式的引入:通过一些具体的等比数列,引导学生观察和分析其通项公式。

2.2 等比数列的通项公式的推导:引导学生利用等比数列的性质和数学归纳法推导出通项公式。

2.3 等比数列的通项公式的应用:给出一些应用等比数列通项公式的例子,让学生通过计算和分析加深对通项公式的理解。

第三章:等比数列的前n项和3.1 等比数列的前n项和的定义:引导学生理解等比数列前n项和的含义和意义。

3.2 等比数列的前n项和的公式:引导学生利用等比数列的性质和数学归纳法推导出前n项和的公式。

3.3 等比数列的前n项和的应用:给出一些应用等比数列前n项和的例子,让学生通过计算和分析加深对前n项和的理解。

第四章:等比数列的性质和运算4.1 等比数列的性质:引导学生探究等比数列的性质,如公比的取值范围,等比数列的单调性等。

4.2 等比数列的运算:引导学生掌握等比数列的运算规则,如加减乘除等。

4.3 等比数列的性质和运算的应用:给出一些应用等比数列的性质和运算的例子,让学生通过计算和分析加深对等比数列的理解。

第五章:等比数列的综合应用5.1 等比数列的实际应用:引导学生将等比数列的概念和公式应用到实际问题中,如经济增长模型,放射性衰变等。

5.2 等比数列的解题策略:引导学生掌握解决等比数列问题的方法和技巧,如利用通项公式和前n项和公式等。

5.3 等比数列的综合练习:给出一些综合性的练习题,让学生通过计算和分析加深对等比数列的综合应用的理解。

等比数列的概念(教案)

等比数列的概念(教案)

§2.4 等比数列第1课时等比数列的概念与通项公式一、教学内容《等比数列》是普通高中课程标准试验教科书《数学》必修5第二章《数列》第四节,内容较多,设置了两个课时,第1课时为等比数列的概念及通项公式.等比数列在我们的学习和生活中有着广泛的实际应用,例如:物理、化学、生物等均有涉及,通过该内容的学习,能够培养学生的多种数学能力。

而且它在教材中起着承前启后的作用,一方面,等比数列是一种特殊的数列,与等差数列既有区别,也有联系,另一方面,它又对进一步学习数列及其应用等内容作准备,且等比数列又是高考的考点之一。

所以本节内容比较重要,地位较突出.二、教学目标1.知识与技能:①通过学习,能说出等比数列的概念,并会使用符号语言表示;②初步掌握等比数列的通项公式及其推导过程和方法;③运用等比数列的通项公式解决一些简单的有关问题.2.过程与方法:通过慨念、公式和例题的教学,渗透类比思想、方程思想、函数思想以及从特殊到—般等数学思想,培养学生观察、比较、概括、归纳等数学能力及思想方法,增强应用意识.3.情感、态度与价值观:通过对等比数列概念的归纳,培养学生科学严谨的思维习惯以及合作探究的精神,体会类比思想.三、教学重难点1.重点:等比数列、等比中项的概念的形成,通项公式的推导及运用.2.难点:等比数列通项公式推导方法的获取.四、学情分析高一学生已经初步形成了自己的学习习惯,好奇心强,有着自主的探究能力和思考辨别能力.但通过考试成绩的分析可以看出,学生基础薄弱,知识的引入及理解都应多加强调,在教学中,需要多设计问题,化难为易,循序渐进,以问题串为载体引导学生分析问题,解决问题.五、教法与学法教法:1.直观演示法:利用多媒体课件直观的展示数列,便于学生观察,发现数列特征.2.活动探究法:引导学生通过创设生活情境获取知识,以学生为主体,使学生的独立探索性得到充分的发挥,培养学生的自学能力、思维能力、活动组织能力.3.集体讨论法:针对学生提出的问题,组织学生进行集体和分组讨论,促使学生在学习中解决问题,培养学生的团结协作的精神.学法:等差数列的概念及通项公式启发我们,使用类比的方法,学习等比数列的概念,通项公式的两种推导方法.六、教学用具多媒体,三角板,彩色粉笔,电子笔七、授课类型新授课八、教学过程(一)课前复习1.等差数列的概念2.通项公式.(二)新授课1.课堂探究1课本48页4个实例.①细胞分裂个数构成的数列②“一尺之锤,日取其半,万世不竭”,将“一尺之锤”看成单位“1”,得到的数列③计算机每轮感染的数量构成的数列④银行存款中,每一年的本利和得到的数列思考:类比等差数列的定义,这4个数列项与项之间都有什么共同特征?试将共同特征用语言叙述出来,并用符号表示.【师生活动】教师引导学生从生活中的实例出发,借助等差数列的概念进行类比推理.【设计意图】以学生熟悉的等差数列的概念为背景,通过思考,引导学生进行分析,使学生形成“等比数列是后一项与前一项的比是同一常数的数列”的感知,从而流畅自然的引出等比数列的概念.2.等比数列的概念一般地,如果一个数列从第..2.项起..,每一项与它的前一项的比.等于同一常数....,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,用字母q )0(≠q 来表示.用数学符号表示为:}{n a 是等比数列⇔),2,0(1+-∈≥≠=N n n q q a a n n 且 【师生活动】在上一个环节的基础上,教师引导学生给出等比数列的概念.【设计意图】流畅的引出等比数列的概念,使学生理解等比数列.3.对概念的再认识(1)公比是否能等于0? 等比数列中有为0的项吗?(2)公比为1的数列是什么数列?(3)既是等差数列又是等比数列的数列存在吗?(4)公比q>0的等比数列有什么特征?公比q<0的等比数列有什么特征?【师生活动】教师引导学生,观察等比数列中的各项的要求.【设计意图】使学生很自然的对等差、等比数列的异同点进行初步认知. 例1.判断下列数列是否为等比数列?若是,找出公比;若不是,请说明理由.① 1, 4, 16, 32.② 0, 2, 4, 6, 8.③ 1,-10,100,-1000,10000.④ 81, 27, 9, 3, 1.⑤ a a a a a ,,,,【师生活动】学生根据等比数列的概念进行判断.【设计意图】1.让学生体会等比数列中公比可正可负,可以大于1,也可以小于1.2.让学生体会等比数列中不能出现0.3.体会非零常数列既是等差数列,又是等比数列.4.课堂探究2 等比数列的通项公式)(11+-∈=N n q a a n n方法:累乘法【师生活动】教师引导学生回顾等差数列的通项公式推导过程,引导学生类比推导等比数列的通项公式.【设计意图】培养学生小组合作,类比推理的学习能力.5.对通项公式的再认识① 等比数列通项公式11-=n n q a a 中,是公比的...1-n 次方... ② 写出通项公式需已知的量是首项..与公比..,它们均不为...0.【师生活动】教师引导学生从等比数列的定义,通项公式的形式,推导过程,对通项公式进行再认识.【设计意图】熟练掌握等比数列的通项公式以及常用变形式.(三)练习导学案上的练习题九、课堂小结1.等比数列的概念2.等比数列的通项公式及推导方法 11-=n n q a a3.本节课所运用的数学思想方法十、课后作业练习册2.4.1等比数列的概念和通项公式十一、板书设计十二、教学反思(附页)。

《等比数列的概念》 导学案

《等比数列的概念》 导学案

《等比数列的概念》导学案一、学习目标1、理解等比数列的定义,能根据定义判断一个数列是否为等比数列。

2、掌握等比数列的通项公式,并能运用公式解决相关问题。

3、了解等比中项的概念,会求两个数的等比中项。

二、学习重难点1、重点(1)等比数列的定义及通项公式。

(2)等比中项的概念及应用。

2、难点(1)等比数列通项公式的推导及应用。

(2)等比数列性质的综合应用。

三、知识链接1、数列的定义:按照一定顺序排列的一列数称为数列。

2、数列的通项公式:如果数列\(\{a_n\}\)的第\(n\)项\(a_n\)与\(n\)之间的关系可以用一个公式来表示,那么这个公式叫做数列的通项公式。

四、自主学习(一)等比数列的定义观察以下几个数列:(1)\(1\),\(2\),\(4\),\(8\),\(16\),\(\cdots\)(2)\(1\),\(\dfrac{1}{2}\),\(\dfrac{1}{4}\),\(\dfrac{1}{8}\),\(\dfrac{1}{16}\),\(\cdots\)(3)\(5\),\(25\),\(125\),\(625\),\(\cdots\)思考:这些数列有什么共同特点?定义:如果一个数列从第\(2\)项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列。

这个常数叫做等比数列的公比,通常用字母\(q\)表示(\(q\neq 0\))。

数学表达式:\(\dfrac{a_{n+1}}{a_n} = q\)(\(n\in N^\),\(q\)为常数)注意:1、公比\(q\)不能为\(0\)。

2、等比数列中任意一项都不能为\(0\)。

(二)等比数列的通项公式若等比数列\(\{a_n\}\)的首项为\(a_1\),公比为\(q\),则其通项公式为:\(a_n = a_1q^{n-1}\)推导:\(a_2 = a_1q\)\(a_3 = a_2q = a_1q^2\)\(\cdots\)\(a_n = a_{n-1}q = a_1q^{n-1}\)(三)等比中项如果在\(a\)与\(b\)中间插入一个数\(G\),使\(a\),\(G\),\(b\)成等比数列,那么\(G\)叫做\(a\)与\(b\)的等比中项。

等比数列的概念和通项公式教案

等比数列的概念和通项公式教案

等比数列的概念和通项公式教案一、教学目标:1. 理解等比数列的概念。

2. 掌握等比数列的通项公式。

3. 能够运用等比数列的概念和通项公式解决实际问题。

二、教学内容:1. 等比数列的概念。

2. 等比数列的通项公式。

三、教学重点:1. 等比数列的概念。

2. 等比数列的通项公式。

四、教学难点:1. 等比数列的概念的理解。

2. 等比数列的通项公式的应用。

五、教学方法:1. 采用讲授法,讲解等比数列的概念和通项公式。

2. 采用例题解析法,通过具体例题讲解等比数列的通项公式的应用。

3. 采用小组讨论法,让学生分组讨论等比数列的概念和通项公式的应用。

一、等比数列的概念:1. 引导学生回顾数列的概念,即一组按照一定顺序排列的数。

2. 引入等比数列的概念,即从第二项起,每一项都是前一项与一个常数(比)的乘积的数列。

3. 举例说明等比数列的特点,如每一项都可以表示为前一项乘以一个常数。

二、等比数列的通项公式:1. 引导学生回顾等差数列的通项公式,即第n项等于首项加上(n-1)乘以公差。

2. 引导学生发现等比数列的通项公式与等差数列的通项公式的相似之处,都是第n项等于首项加上(n-1)乘以一个常数。

3. 引入等比数列的通项公式,即第n项等于首项乘以比乘以(n-1)次方。

四、等比数列的通项公式的应用:1. 让学生运用等比数列的通项公式计算具体等比数列的第n项。

2. 让学生运用等比数列的通项公式解决实际问题,如计算等比数列的前n项和、求等比数列的平均数等。

六、课堂练习:1. 让学生完成一些有关等比数列的概念和通项公式的练习题。

2. 让学生解决一些实际问题,如计算等比数列的前n项和、求等比数列的平均数等。

1. 回顾等比数列的概念和通项公式。

2. 强调等比数列的通项公式的应用。

八、作业:1. 让学生完成一些有关等比数列的概念和通项公式的练习题。

2. 让学生解决一些实际问题,如计算等比数列的前n项和、求等比数列的平均数等。

九、板书设计:1. 等比数列的概念。

等比数列(经典导学案及练习答案详解)

等比数列(经典导学案及练习答案详解)

§6.3 等比数列 学习目标1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.了解等比数列与指数函数的关系. 知识梳理1.等比数列的有关概念(1)定义:一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数(不为零),那么这个数列叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (n ∈N *,q 为非零常数). (2)等比中项:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,此时,G 2=ab .2.等比数列的有关公式(1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧ na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1. 3.等比数列的性质(1)通项公式的推广:a n =a m ·q n -m (m ,n ∈N *).(2)对任意的正整数m ,n ,p ,q ,若m +n =p +q =2k ,则a m ·a n =a p ·a q =a 2k .(3)若等比数列前n 项和为S n ,则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列(m 为偶数且q =-1除外).(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .(5)若⎩⎪⎨⎪⎧ a 1>0,q >1或⎩⎪⎨⎪⎧ a 1<0,0<q <1,则等比数列{a n }递增. 若⎩⎪⎨⎪⎧ a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1,则等比数列{a n }递减. 常用结论1.若数列{a n },{b n }(项数相同)是等比数列,则数列{c ·a n }(c ≠0),{|a n |},{a 2n },⎩⎨⎧⎭⎬⎫1a n ,{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 也是等比数列. 2.等比数列{a n }的通项公式可以写成a n =cq n ,这里c ≠0,q ≠0.3.等比数列{a n }的前n 项和S n 可以写成S n =Aq n -A (A ≠0,q ≠1,0).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)等比数列的公比q 是一个常数,它可以是任意实数.( × )(2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( × )(3)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a .( × ) (4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( × )教材改编题1.已知{a n }是等比数列,a 2=2,a 4=12,则公比q 等于( ) A .-12 B .-2 C .2 D .±12答案 D解析 设等比数列的公比为q ,∵{a n }是等比数列,a 2=2,a 4=12, ∴a 4=a 2q 2,∴q 2=a 4a 2=14, ∴q =±12. 2.在各项均为正数的等比数列{a n }中,a 1a 11+2a 6a 8+a 3a 13=25,则a 6+a 8=______. 答案 5解析 ∵{a n }是等比数列,且a 1a 11+2a 6a 8+a 3a 13=25,∴a 26+2a 6a 8+a 28=(a 6+a 8)2=25.又∵a n >0,∴a 6+a 8=5.3.已知三个数成等比数列,若它们的和等于13,积等于27,则这三个数为________. 答案 1,3,9或9,3,1解析 设这三个数为a q,a ,aq ,则⎩⎨⎧ a +a q +aq =13,a ·a q ·aq =27,解得⎩⎪⎨⎪⎧ a =3,q =13或⎩⎪⎨⎪⎧a =3,q =3, ∴这三个数为1,3,9或9,3,1.题型一 等比数列基本量的运算例1 (1)(2020·全国Ⅱ)记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则S n a n等于( )A .2n -1B .2-21-nC .2-2n -1D .21-n -1 答案 B解析 方法一 设等比数列{a n }的公比为q ,则q =a 6-a 4a 5-a 3=2412=2. 由a 5-a 3=a 1q 4-a 1q 2=12a 1=12,得a 1=1.所以a n =a 1q n -1=2n -1,S n =a 1(1-q n )1-q=2n -1, 所以S n a n =2n -12n -1=2-21-n . 方法二 设等比数列{a n }的公比为q ,则⎩⎪⎨⎪⎧a 3q 2-a 3=12,①a 4q 2-a 4=24, ② ②①得a 4a 3=q =2. 将q =2代入①,解得a 3=4.所以a 1=a 3q2=1,下同方法一. (2)(2019·全国Ⅰ)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5=________. 答案 1213解析 设等比数列{a n }的公比为q ,因为a 24=a 6,所以(a 1q 3)2=a 1q 5,所以a 1q =1,又a 1=13,所以q =3, 所以S 5=a 1(1-q 5)1-q =13×(1-35)1-3=1213. 教师备选1.已知数列{a n }为等比数列,a 2=6,6a 1+a 3=30,则a 4=________.答案 54或24解析 由⎩⎪⎨⎪⎧ a 1·q =6,6a 1+a 1·q 2=30, 解得⎩⎪⎨⎪⎧ q =3,a 1=2或⎩⎪⎨⎪⎧q =2,a 1=3, a 4=a 1·q 3=2×33=54或a 4=3×23=3×8=24.2.已知数列{a n }为等比数列,其前n 项和为S n ,若a 2a 6=-2a 7,S 3=-6,则a 6等于( )A .-2或32B .-2或64C .2或-32D .2或-64答案 B解析 ∵数列{a n }为等比数列,a 2a 6=-2a 7=a 1a 7,解得a 1=-2,设数列的公比为q ,S 3=-6=-2-2q -2q 2,解得q =-2或q =1,当q =-2时,则a 6=(-2)6=64,当q =1时,则a 6=-2.思维升华 (1)等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.(2)等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q 1-q. 跟踪训练1 (1)(2020·全国Ⅱ)数列{a n }中,a 1=2,a m +n =a m a n ,若a k +1+a k +2+…+a k +10=215-25,则k 等于( )A .2B .3C .4D .5答案 C解析 a 1=2,a m +n =a m a n ,令m =1,则a n +1=a 1a n =2a n ,∴{a n }是以a 1=2为首项,q =2为公比的等比数列,∴a n =2×2n -1=2n .又∵a k +1+a k +2+…+a k +10=215-25,∴2k +1(1-210)1-2=215-25, 即2k +1(210-1)=25(210-1),∴2k +1=25,∴k +1=5,∴k =4.(2)(2020·新高考全国Ⅱ)已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8.①求{a n }的通项公式;②求a 1a 2-a 2a 3+…+(-1)n -1a n a n +1.解 ①设{a n }的公比为q (q >1).由题设得⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2=8, 解得⎩⎪⎨⎪⎧q =2,a 1=2或⎩⎪⎨⎪⎧q =12,a 1=32(舍去). 所以{a n }的通项公式为a n =2n ,n ∈N *. ②由于(-1)n -1a n a n +1=(-1)n -1×2n ×2n +1 =(-1)n -122n +1, 故a 1a 2-a 2a 3+…+(-1)n -1a n a n +1=23-25+27-29+…+(-1)n -1·22n +1=23[1-(-22)n ]1-(-22)=85-(-1)n 22n +35. 题型二 等比数列的判定与证明例2 已知数列{a n }满足a 1=1,na n +1=2(n +1)a n ,设b n =a n n. (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由;(3)求{a n }的通项公式.解 (1)由条件可得a n +1=2(n +1)na n . 将n =1代入得,a 2=4a 1,而a 1=1,所以a 2=4.将n =2代入得,a 3=3a 2,所以a 3=12.从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列, 由条件可得a n +1n +1=2a n n,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列.(3)由(2)可得a n n=2n -1,所以a n =n ·2n -1. 教师备选已知各项都为正数的数列{a n }满足a n +2=2a n +1+3a n .(1)证明:数列{a n +a n +1}为等比数列;(2)若a 1=12,a 2=32,求{a n }的通项公式. (1)证明 a n +2=2a n +1+3a n ,所以a n +2+a n +1=3(a n +1+a n ),因为{a n }中各项均为正数,所以a n +1+a n >0,所以a n +2+a n +1a n +1+a n=3, 所以数列{a n +a n +1}是公比为3的等比数列.(2)解 由题意知a n +a n +1=(a 1+a 2)3n -1=2×3n -1,因为a n +2=2a n +1+3a n ,所以a n +2-3a n +1=-(a n +1-3a n ),a 2=3a 1,所以a 2-3a 1=0,所以a n +1-3a n =0, 故a n +1=3a n ,所以4a n =2×3n -1,a n =12×3n -1. 思维升华 等比数列的三种常用判定方法(1)定义法:若a n +1a n =q (q 为非零常数,n ∈N *)或a n a n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)等比中项法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则{a n }是等比数列. (3)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n -k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列.跟踪训练2 S n 为等比数列{a n }的前n 项和,已知a 4=9a 2,S 3=13,且公比q >0.(1)求a n 及S n ;(2)是否存在常数λ,使得数列{S n +λ}是等比数列?若存在,求λ的值;若不存在,请说明理由.解 (1)易知q ≠1,由题意可得⎩⎪⎨⎪⎧ a 1q 3=9a 1q ,a 1(1-q 3)1-q =13,q >0,解得a 1=1,q =3,∴a n =3n -1,S n =1-3n 1-3=3n -12. (2)假设存在常数λ,使得数列{S n +λ}是等比数列,∵S 1+λ=λ+1,S 2+λ=λ+4,S 3+λ=λ+13,∴(λ+4)2=(λ+1)(λ+13),解得λ=12, 此时S n +12=12×3n , 则S n +1+12S n +12=12×3n +112×3n =3, 故存在常数λ=12,使得数列⎩⎨⎧⎭⎬⎫S n +12是以32为首项,3为公比的等比数列. 题型三 等比数列的性质例3 (1)若等比数列{a n }中的a 5,a 2 019是方程x 2-4x +3=0的两个根,则log 3a 1+log 3a 2+log 3a 3+…+log 3a 2 023等于( )A.2 0243B .1 011 C.2 0232D .1 012答案 C解析 由题意得a 5a 2 019=3,根据等比数列性质知,a 1a 2 023=a 2a 2 022=…=a 1 011a 1 013=a 1 012a 1 012=3,于是a 1 012=123,则log 3a 1+log 3a 2+log 3a 3+…+log 3a 2 023=log 3(a 1a 2a 3…a 2 023) 11011232023=l 3·og 3.2⎛⎫= ⎪⎝⎭(2)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12等于( )A .40B .60C .32D .50答案 B解析 数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即4,8,S 9-S 6,S 12-S 9是等比数列,∴S 12=4+8+16+32=60. 教师备选1.设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=__________. 答案 73解析 设等比数列{a n }的公比为q ,易知q ≠-1,由等比数列前n 项和的性质可知S 3,S 6-S 3,S 9-S 6仍成等比数列,∴S 6-S 3S 3=S 9-S 6S 6-S 3, 又由已知得S 6=3S 3,∴S 9-S 6=4S 3,∴S 9=7S 3,∴S 9S 6=73. 2.已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.答案 2解析 由题意,得⎩⎪⎨⎪⎧ S 奇+S 偶=-240,S 奇-S 偶=80, 解得⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160, 所以q =S 偶S 奇=-160-80=2. 思维升华 (1)等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项的变形,三是前n 项和公式的变形,根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(2)巧用性质,减少运算量,在解题中非常重要.跟踪训练3 (1)(2022·安康模拟)等比数列{a n }的前n 项和为S n ,若S 10=1,S 30=7,则S 40等于( )A .5B .10C .15D .-20答案 C解析 易知等比数列{a n }的前n 项和S n 满足S 10,S 20-S 10,S 30-S 20,S 40-S 30,…成等比数列.设{a n }的公比为q ,则S 20-S 10S 10=q 10>0,故S 10,S 20-S 10,S 30-S 20,S 40-S 30,…均大于0. 故(S 20-S 10)2=S 10·(S 30-S 20),即(S 20-1)2=1·(7-S 20)⇒S 220-S 20-6=0.因为S 20>0,所以S 20=3.又(S 30-S 20)2=(S 20-S 10)(S 40-S 30),所以(7-3)2=(3-1)(S 40-7),故S 40=15.(2)在等比数列{a n }中,a n >0,a 1+a 2+a 3+…+a 8=4,a 1a 2·…·a 8=16,则1a 1+1a 2+…+1a 8的值为( )A .2B .4C .8D .16答案 A解析 ∵a 1a 2…a 8=16,∴a 1a 8=a 2a 7=a 3a 6=a 4a 5=2,∴1a 1+1a 2+…+1a 8=⎝⎛⎭⎫1a 1+1a 8+⎝⎛⎭⎫1a 2+1a 7+⎝⎛⎭⎫1a 3+1a 6+⎝⎛⎭⎫1a 4+1a 5 =12(a 1+a 8)+12(a 2+a 7)+12(a 3+a 6)+12(a 4+a 5) =12(a 1+a 2+…+a 8)=2. 课时精练1.(2022·合肥市第六中学模拟)若等比数列{a n }满足a 1+a 2=1,a 4+a 5=8,则a 7等于( ) A.643B .-643 C.323D .-323答案 A解析 设等比数列{a n }的公比为q ,则a 4+a 5a 1+a 2=q 3=8,所以q =2,又a 1+a 2=a 1(1+q )=1,所以a 1=13, 所以a 7=a 1×q 6=13×26=643. 2.已知等比数列{a n }满足a 1=1,a 3·a 5=4(a 4-1),则a 7的值为( )A .2B .4 C.92D .6 答案 B解析 根据等比数列的性质得a 3a 5=a 24, ∴a 24=4(a 4-1),即(a 4-2)2=0,解得a 4=2.又∵a 1=1,a 1a 7=a 24=4,∴a 7=4.3.(2022·开封模拟)等比数列{a n }的前n 项和为S n =32n -1+r ,则r 的值为( )A.13 B .-13 C.19 D .-19答案 B解析 由等比数列前n 项和的性质知,S n =32n -1+r =13×9n +r , ∴r =-13. 4.(2022·天津北辰区模拟)我国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地.”则该人第四天走的路程为( )A .6里B .12里C .24里D .48里 答案 C解析 由题意可知,该人所走路程形成等比数列{a n },其中q =12, 因为S 6=a 1⎝⎛⎭⎫1-1261-12=378, 解得a 1=192,所以a 4=a 1·q 3=192×18=24. 5.(多选)设等比数列{a n }的公比为q ,则下列结论正确的是( )A .数列{a n a n +1}是公比为q 2的等比数列B .数列{a n +a n +1}是公比为q 的等比数列C .数列{a n -a n +1}是公比为q 的等比数列D .数列⎩⎨⎧⎭⎬⎫1a n 是公比为1q 的等比数列 答案 AD解析 对于A ,由a n a n +1a n -1a n=q 2(n ≥2)知数列{a n a n +1}是公比为q 2的等比数列; 对于B ,当q =-1时,数列{a n +a n +1}的项中有0,不是等比数列;对于C ,当q =1时,数列{a n -a n +1}的项中有0,不是等比数列;对于D ,1a n +11a n=a n a n +1=1q, 所以数列⎩⎨⎧⎭⎬⎫1a n 是公比为1q 的等比数列. 6.(多选)数列{a n }的前n 项和为S n ,若a 1=1,a n +1=2S n (n ∈N *),则有( )A .S n =3n -1B .{S n }为等比数列C .a n =2·3n -1D .a n =⎩⎪⎨⎪⎧1,n =1,2·3n -2,n ≥2 答案 ABD解析 由题意,数列{a n }的前n 项和满足a n +1=2S n (n ∈N *),当n ≥2时,a n =2S n -1,两式相减,可得a n +1-a n =2(S n -S n -1)=2a n ,可得a n +1=3a n ,即a n +1a n=3(n ≥2), 又a 1=1,则a 2=2S 1=2a 1=2,所以a 2a 1=2, 所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,2·3n -2,n ≥2. 当n ≥2时,S n =a n +12=2·3n -12=3n -1, 又S 1=a 1=1,适合上式,所以数列{a n }的前n 项和为S n =3n -1,又S n +1S n =3n3n -1=3, 所以数列{S n }为首项为1,公比为3的等比数列,综上可得选项ABD 是正确的.7.(2022·嘉兴联考)已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则a 1=________.答案 1解析 由于S 3=7,S 6=63知公比q ≠1,又S 6=S 3+q 3S 3,得63=7+7q 3.∴q 3=8,q =2.由S 3=a 1(1-q 3)1-q =a 1(1-8)1-2=7, 得a 1=1.8.已知{a n }是等比数列,且a 3a 5a 7a 9a 11=243,则a 7=________;若公比q =13,则a 4=________. 答案 3 81解析 由{a n }是等比数列,得a 3a 5a 7a 9a 11=a 57=243,故a 7=3,a 4=a 7q 3=81. 9.(2022·徐州模拟)已知等差数列{a n }的公差为2,其前n 项和S n =pn 2+2n ,n ∈N *.(1)求实数p 的值及数列{a n }的通项公式;(2)在等比数列{b n }中,b 3=a 1,b 4=a 2+4,若{b n }的前n 项和为T n ,求证:数列⎩⎨⎧⎭⎬⎫T n +16为等比数列.(1)解 S n =na 1+n (n -1)2d =na 1+n (n -1) =n 2+(a 1-1)n ,又S n =pn 2+2n ,n ∈N *,所以p =1,a 1-1=2,即a 1=3,所以a n =3+2(n -1)=2n +1.(2)证明 因为b 3=a 1=3,b 4=a 2+4=9,所以q =3,所以b n =b 3·q n -3=3n -2,所以b 1=13, 所以T n =13(1-3n )1-3=3n -16, 所以T n +16=3n 6, 又T 1+16=12,所以T n +16T n -1+16=3n63n -16=3(n ≥2), 所以数列⎩⎨⎧⎭⎬⎫T n +16是以12为首项,3为公比的等比数列. 10.(2022·威海模拟)记数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +1.设b n =a n +1-2a n .(1)求证:数列{b n }为等比数列;(2)设c n =|b n -100|,T n 为数列{c n }的前n 项和.求T 10.(1)证明 由S n +1=4a n +1,得S n =4a n -1+1(n ≥2,n ∈N *),两式相减得a n +1=4a n -4a n -1(n ≥2),所以a n +1-2a n =2(a n -2a n -1),所以b n b n -1=a n +1-2a n a n -2a n -1=2(a n -2a n -1)a n -2a n -1=2(n ≥2),又a 1=1,S 2=4a 1+1,故a 2=4,a 2-2a 1=2=b 1≠0,所以数列{b n }为首项与公比均为2的等比数列.(2)解 由(1)可得b n =2·2n -1=2n ,所以c n =|2n -100|=⎩⎪⎨⎪⎧100-2n ,n ≤6,2n -100,n >6, 所以T 10=600-(21+22+…+26)+27+28+29+210-400=200-2(1-26)1-2+27+28+29+210 =200+2+28+29+210=1 994.11.(多选)(2022·滨州模拟)已知S n 是数列{a n }的前n 项和,且a 1=a 2=1,a n =a n -1+2a n -2(n ≥3),则下列结论正确的是( )A .数列{a n +1+a n }为等比数列B .数列{a n +1-2a n }为等比数列C .a n =2n +1+(-1)n3D .S 20=23(410-1) 答案 ABD解析 因为a n =a n -1+2a n -2(n ≥3),所以a n +a n -1=2a n -1+2a n -2=2(a n -1+a n -2),又a 1+a 2=2≠0,所以{a n +a n +1}是等比数列,A 正确;同理a n -2a n -1=a n -1+2a n -2-2a n -1=-a n -1+2a n -2=-(a n -1-2a n -2),而a 2-2a 1=-1, 所以{a n +1-2a n }是等比数列,B 正确;若a n =2n +1+(-1)n 3,则a 2=23+(-1)23=3, 但a 2=1≠3,C 错误;由A 知{a n +a n -1}是等比数列,且公比为2,因此数列a 1+a 2,a 3+a 4,a 5+a 6,…仍然是等比数列,公比为4,所以S 20=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)=2(1-410)1-4=23(410-1),D 正确. 12.(多选)(2022·黄冈模拟)设等比数列{a n }的公比为q ,其前n 项和为S n ,前n 项积为T n ,并且满足条件a 1>1,a 7·a 8>1,a 7-1a 8-1<0.则下列结论正确的是( ) A .0<q <1B .a 7·a 9>1C .S n 的最大值为S 9D .T n 的最大值为T 7 答案 AD解析 ∵a 1>1,a 7·a 8>1,a 7-1a 8-1<0, ∴a 7>1,0<a 8<1,∴0<q <1,故A 正确;a 7a 9=a 28<1,故B 错误;∵a 1>1,0<q <1,∴数列为各项为正的递减数列,∴S n 无最大值,故C 错误;又a 7>1,0<a 8<1,∴T 7是数列{T n }中的最大项,故D 正确.13.(2022·衡阳八中模拟)设T n 为正项等比数列{a n }(公比q ≠1)前n 项的积,若T 2 015=T 2 021,则log 3a 2 019log 3a 2 021=________. 答案 15解析 由题意得,T 2 015=T 2 021=T 2 015·a 2 016a 2 017a 2 018a 2 019a 2 020a 2 021,所以a 2 016a 2 017a 2 018a 2 019a 2 020a 2 021=1,根据等比数列的性质,可得a 2 016a 2 021=a 2 017a 2 020=a 2 018a 2 019=1,设等比数列的公比为q ,所以a 2 016a 2 021=(a 2 021)2q 5=1⇒a 2 021=52,q a 2 018a 2 019=(a 2 019)2q =1⇒a 2 019=12,q 所以log 3a 2 019log 3a 2 021=123523log 1.5log q q= 14.如图所示,正方形上连接着等腰直角三角形,等腰直角三角形腰上再连接正方形,……,如此继续下去得到一个树状图形,称为“勾股树”.若某勾股树含有1 023个正方形,且其最大的正方形的边长为22,则其最小正方形的边长为________.答案 132解析 由题意,得正方形的边长构成以22为首项,22为公比的等比数列,现已知共含有1 023个正方形,则有1+2+…+2n -1=1 023,所以n =10,所以最小正方形的边长为⎝⎛⎭⎫2210=132.15.(多选)在数列{a n }中,n ∈N *,若a n +2-a n +1a n +1-a n=k (k 为常数),则称{a n }为“等差比数列”,下列关于“等差比数列”的判断正确的是( )A .k 不可能为0B .等差数列一定是“等差比数列”C .等比数列一定是“等差比数列”D .“等差比数列”中可以有无数项为0答案 AD解析 对于A ,k 不可能为0,正确;对于B ,当a n =1时,{a n }为等差数列,但不是“等差比数列”,错误; 对于C ,当等比数列的公比q =1时,a n +1-a n =0,分式无意义,所以{a n }不是“等差比数列”,错误;对于D ,数列0,1,0,1,0,1,…,0,1是“等差比数列”,且有无数项为0,正确.16.已知等比数列{a n }的公比q >1,a 1=2,且a 1,a 2,a 3-8成等差数列,数列{a n b n }的前n项和为(2n -1)·3n +12. (1)分别求出数列{a n }和{b n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,∀n ∈N *,S n ≤m 恒成立,求实数m 的最小值. 解 (1)因为a 1=2,且a 1,a 2,a 3-8成等差数列,所以2a 2=a 1+a 3-8,即2a 1q =a 1+a 1q 2-8,所以q 2-2q -3=0,所以q =3或q =-1,又q >1,所以q =3,所以a n =2·3n -1(n ∈N *).因为a 1b 1+a 2b 2+…+a n b n =(2n -1)·3n +12, 所以a 1b 1+a 2b 2+…+a n -1b n -1=(2n -3)·3n -1+12(n ≥2), 两式相减,得a n b n =2n ·3n -1(n ≥2),因为a n =2·3n -1,所以b n =n (n ≥2),当n =1时,由a 1b 1=2及a 1=2,得b 1=1(符合上式),所以b n =n (n ∈N *).(2)因为数列{a n }是首项为2,公比为3的等比数列,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为12,公比为13的等比数列,所以S n =12⎣⎡⎦⎤1-⎝⎛⎭⎫13n 1-13=34⎣⎡⎦⎤1-⎝⎛⎭⎫13n <34. 因为∀n ∈N *,S n ≤m 恒成立,所以m ≥34,即实数m 的最小值为34.。

等比数列的概念和通项公式教案

等比数列的概念和通项公式教案

等比数列的概念和通项公式教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的定义及其性质。

2. 引导学生推导等比数列的通项公式,并能灵活运用通项公式解决相关问题。

3. 培养学生的逻辑思维能力、运算能力及解决实际问题的能力。

二、教学内容1. 等比数列的概念:介绍等比数列的定义、性质及判定方法。

2. 等比数列的通项公式:引导学生推导等比数列的通项公式,并解释其意义。

3. 等比数列的求和公式:介绍等比数列前n项和的公式,并解释其推导过程。

三、教学重点与难点1. 教学重点:等比数列的概念、性质、通项公式及求和公式。

2. 教学难点:等比数列通项公式的推导和应用。

四、教学方法1. 采用讲授法,讲解等比数列的概念、性质、通项公式及求和公式。

2. 利用案例分析,让学生通过实际问题理解等比数列的应用。

3. 开展小组讨论,引导学生探讨等比数列的性质和通项公式的推导过程。

五、教学安排1. 第一课时:介绍等比数列的概念和性质。

2. 第二课时:推导等比数列的通项公式,解释其意义。

3. 第三课时:讲解等比数列的求和公式,并进行案例分析。

4. 第四课时:开展练习,巩固等比数列的相关知识。

5. 第五课时:总结等比数列的概念、性质、通项公式及求和公式,进行拓展讲解。

六、教学策略与方法1. 案例分析:通过分析实际问题,让学生了解等比数列在生活中的应用,提高学生的兴趣和积极性。

2. 小组讨论:组织学生进行小组讨论,培养学生的团队合作意识和解决问题的能力。

3. 练习巩固:布置相关的练习题,让学生在实践中巩固等比数列的概念、性质和公式。

七、教学评价1. 课堂问答:通过提问,了解学生对等比数列概念、性质和公式的掌握情况。

2. 练习解答:检查学生练习题的完成情况,评估学生对等比数列知识的应用能力。

3. 小组讨论:评价学生在团队合作中的表现,包括分析问题、解决问题的能力。

八、教学拓展1. 探索等比数列的其他性质:引导学生深入研究等比数列的其他性质,如等比数列的项的符号规律、等比数列的项的绝对值规律等。

等比数列的通项公式教案

等比数列的通项公式教案

等比数列的通项公式教案一、教学目标:1. 理解等比数列的概念。

2. 掌握等比数列的通项公式。

3. 能够运用通项公式解决实际问题。

二、教学内容:1. 等比数列的概念介绍。

2. 等比数列的通项公式推导。

3. 等比数列通项公式的应用实例。

三、教学重点与难点:1. 等比数列的概念理解。

2. 等比数列通项公式的记忆与运用。

四、教学方法:1. 讲授法:讲解等比数列的概念和通项公式。

2. 案例分析法:分析等比数列的实际应用实例。

3. 练习法:让学生通过练习来巩固知识点。

五、教学过程:1. 引入:通过生活中的实例引入等比数列的概念。

2. 等比数列的概念介绍:讲解等比数列的定义和性质。

3. 等比数列的通项公式推导:引导学生通过观察和推理来推导通项公式。

4. 等比数列通项公式的应用实例:分析实际问题,引导学生运用通项公式解决问题。

【教学目标】1. 理解等比数列的概念。

2. 掌握等比数列的通项公式。

3. 能够运用通项公式解决实际问题。

【教学内容】1. 等比数列的概念介绍。

2. 等比数列的通项公式推导。

3. 等比数列通项公式的应用实例。

【教学重点与难点】1. 等比数列的概念理解。

2. 等比数列通项公式的记忆与运用。

【教学方法】1. 讲授法:讲解等比数列的概念和通项公式。

2. 案例分析法:分析等比数列的实际应用实例。

3. 练习法:让学生通过练习来巩固知识点。

【教学过程】1. 引入:通过生活中的实例引入等比数列的概念。

2. 等比数列的概念介绍:讲解等比数列的定义和性质。

3. 等比数列的通项公式推导:引导学生通过观察和推理来推导通项公式。

4. 等比数列通项公式的应用实例:分析实际问题,引导学生运用通项公式解决问题。

六、教学评价:1. 通过课堂问答、作业和练习题检查学生对等比数列概念和通项公式的理解程度。

2. 评估学生运用通项公式解决实际问题的能力。

3. 综合评价学生的学习效果和教学目标的达成情况。

七、教学拓展:1. 等比数列在实际生活中的应用:介绍等比数列在金融、经济学等领域的应用。

等比数列通项公式教案

等比数列通项公式教案

等比数列通项公式教案教案标题:等比数列通项公式教案一、教学目标:1. 理解等比数列的概念和性质;2. 掌握等比数列通项公式的推导和运用;3. 能够解决相关的实际问题。

二、教学重点和难点:1. 理解等比数列通项公式的推导过程;2. 运用等比数列通项公式解决实际问题。

三、教学准备:1. 教材:包括等比数列的概念、性质和相关例题;2. 教具:黑板、彩色粉笔、教学PPT等。

四、教学过程:第一步:导入通过举例引入等比数列的概念,让学生了解等比数列的特点和规律。

第二步:概念讲解1. 介绍等比数列的定义和性质;2. 讲解等比数列通项公式的概念和意义;3. 引导学生理解等比数列通项公式的推导过程。

第三步:示例演练1. 通过具体的例题,让学生掌握等比数列通项公式的运用方法;2. 引导学生分析不同类型的等比数列问题,培养其解决问题的能力。

第四步:拓展应用引导学生通过实际问题,运用等比数列通项公式解决相关的数学问题,培养学生的数学建模能力。

第五步:课堂小结对本节课的重点内容进行总结和归纳,梳理等比数列通项公式的相关知识点。

五、课堂作业布置相关的练习题,巩固学生对等比数列通项公式的理解和运用能力。

六、教学反思对本节课的教学效果进行总结和反思,为下一节课的教学提供参考。

七、拓展延伸引导学生了解等比数列在实际生活中的应用,拓展学生的数学思维和知识面。

八、教学资源提供相关的教学资源和参考资料,让学生进行自主学习和拓展。

以上是一份针对等比数列通项公式的教案,希望能够对您有所帮助。

如果需要更多的教学资源和指导,欢迎随时与我联系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
等比数列的概念及通项公式
基本概念
新知:
1. 等比数列定义:一般地,如果一个数列从第 项起, 一项与它的 一项的 等于 常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的 ,通常用字母 表示(q ≠0),即:1
n n a a -= (q ≠0)
2. 等比数列的通项公式:
21a a = ; 3211()a a q a q q a === ;24311()a a q a q q a === ; … … ∴ 11n n a a q a -==⋅ 等式成立的条件
3. 等比数列中任意两项n a 与m a 的关系是:
3、等比数列的性质:对于等比数列}{n a ,若.,n m q p a a a a n m q p =+=+则
4、等比数列的}{n a 的单调性————————与首项和公比都有关 11-=n n q a a
例题
例一:判断数列是否为等比数列,若是请指出公比
(1)1,-1,1,-1,1,…(2)0,1,2,4,8,…(3)13
181-4121-1,,,
例二、指出下列等比数列中的未知项
(1)2,a ,8 (2)-4,b ,c ,2
1
问题1:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则2G b
G ab G a G
=⇒=⇒= 新知1:等比中项定义
如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么称这个数G 称为a 与b 的等比中项. 即G = (a ,
b 同号).
试试:数4和6的等比中项是 .
例三、(1)在等比数列}{n a 中,是否有)2(112
≥=+-n a a a n n n ?
(2)如果数列}{n a 中,对于任意的正整数),2(,2112
≥=≥+-n a a a n n n n n 都有)
(那么}{n a 一定是等比数列
吗?
2
例四、在等比数列}{n a 中, (1) 已知61,2,3a q a 求-==
(2) 已知n a a a 求,160,2063==
(3) 已知n a a a a a n 求,125,6,243224
==+=-
(4) 已知的等比中项与求7552321,42,168a a a a a a a =-=++
练习
1、在等比数列}{n a 中,852,54,2a a a 求=-=
2、在等比数列}{n a 中,=+=++53645342,3620a a a a a a a a a n 则,>
3、在等比数列}{n a 中,===604515,90,10a a a 则
4、在等比数列}{n a 中,=+=+=+654321,120,30a a a a a a 则
5、三个数成等比数列,它们的和等于14,它们的积等于64,求这三个数.
6、在等比数列}{n a 中,===11109876543,24,3a a a a a a a a a 则
7、(1)在等比数列}{n a 中,已知181091,100,5a a a a 求== (2)在等比数列}{n a 中,已知34=a ,求该数列前7项之积
3
8、等比数列}{n a 的各项均为正数,
且的值求10231374653log log log ,18a a a a a a a ∙∙∙++=+
9、在等比数列}{n a 中,的值求2019181784,4,1a a a a S S +++==
公比为q 的等比数列{}n a 具有如下基本性质:
1. 数列{||}n a ,2{}n a ,{}(0)n ca c ≠,*{}()nm a m N ∈,{}k n a 等,也为等比数列,公比分别为2||,,,,m k q q q q q . 若
数列{}n b 为等比数列,则}{n n b a ⋅,{}n n a
b 也等比.
2. 若*m N ∈,则m n m n q a a -=. 当m =1时,便得到等比数列的通项公式.
3. 若m n k l +=+,*,,,m n k l N ∈,则l k n m a a a a =.
4. 若{}n a 各项为正,c >0,则{log }c n a 是一个以1log c a 为首项,log c q 为公差的等差数列. 若{}n b 是以d 为公差的等差数列,则{}n b c 是以1b c 为首项,d c 为公比的等比数列.
例2 已知数列{n a }中,lg 35n a n =+ ,试用定义证明数列{n a }是等比数列.。

相关文档
最新文档