用函数观点看一元二次方程(含答案)
步步高学习笔记必修第一册
第2课时二次函数与一元二次方程、不等式学习目标 1.从函数观点看一元二次方程.了解函数的零点与方程根的关系.2.从函数观点看一元二次不等式.经历从实际情景中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义.3.借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系.一、一元二次不等式的定义问题1园艺师打算在绿地上用栅栏围一个矩形区域种植花卉.若栅栏的长度是24 m,围成的矩形区域的面积要大于20 m2,则这个矩形的边长为多少米?提示设这个矩形的一条边长为x m,则另一条边长为(12-x)m.由题意,得(12-x)x>20,其中x∈{x|0<x<12}.整理得x2-12x+20<0,x∈{x|0<x<12}.①求得不等式①的解集,就得到了问题的答案.知识梳理定义一般地,我们把只含有一个未知数,并且未知数的最高次数是2的不等式,叫做一元二次不等式一般形式ax2+bx+c>0,ax2+bx+c<0,ax2+bx+c≥0,ax2+bx+c≤0,其中a≠0,a,b,c均为常数二、一元二次不等式的解法问题2如课本51页图2.3-1,二次函数y=x2-12x+20的图象与x轴有两个交点,这与方程x2-12x+20=0的根有什么关系?提示函数图象与x轴交点的横坐标正好是方程的根.知识梳理一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x叫做二次函数y=ax2+bx+c的零点.注意点:零点不是点,只是函数的图象与x轴交点的横坐标.问题3你能从二次函数y=x2-12x+20的图象上找x2-12x+20<0的解集吗?提示从图象上看,位于x轴上方的图象使得函数值大于零,位于x轴下方的图象使得函数值小于零,故x2-12x+20<0的解集为{x|2<x<10}.知识梳理判别式Δ=b2-4acΔ>0Δ=0Δ<0二次函数y=ax2+bx +c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1,或x>x2}⎩⎨⎧⎭⎬⎫x⎪⎪x≠-b2a Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅注意点:(1)若不等式对应的一元二次不等式能因式分解,可直接利用“大于取两边,小于取中间”的方法得到不等式的解集;(2)不等式的解集必须写成集合的形式,若不等式无解,则应说解集为空集.例1(教材P52例1,2,3改编)解下列不等式:(1)-2x2+x-6<0;(2)-x2+6x-9≥0;(3)x2-2x-3>0.解(1)原不等式可化为2x2-x+6>0.因为方程2x2-x+6=0的判别式Δ=(-1)2-4×2×6<0,所以函数y=2x2-x+6的图象开口向上,与x轴无交点(如图所示).观察图象可得,原不等式的解集为R.(2)原不等式可化为x2-6x+9≤0,即(x-3)2≤0,函数y=(x-3)2的图象如图所示,根据图象可得,原不等式的解集为{x|x=3}.(3)方程x2-2x-3=0的两根是x1=-1,x2=3.函数y =x 2-2x -3的图象是开口向上的抛物线,与x 轴有两个交点(-1,0)和(3,0),如图所示.观察图象可得不等式的解集为{x |x <-1或x >3}.反思感悟 解不含参数的一元二次不等式的一般步骤(1)化标准.通过对不等式变形,使不等式的右侧为0,使二次项系数为正.(2)判别式.对不等式的左侧进行因式分解,若不能分解,则计算对应方程的判别式. (3)求实根.求出相应的一元二次方程的根或根据判别式说明方程无实数根. (4)画草图.根据一元二次方程根的情况画出对应的二次函数的草图. (5)写解集.根据图象写出不等式的解集. 跟踪训练1 解下列不等式: (1)x 2-5x -6>0; (2)(2-x )(x +3)<0.解 (1)方程x 2-5x -6=0的两根为x 1=-1,x 2=6.结合二次函数y =x 2-5x -6的图象知,原不等式的解集为{x |x <-1或x >6}. (2)原不等式可化为(x -2)(x +3)>0.方程(x -2)(x +3)=0的两根为x 1=2,x 2=-3.结合二次函数y =(x -2)(x +3)的图象知,原不等式的解集为{x |x <-3或x >2}. 三、含参的一元二次不等式的解法例2 解关于x 的不等式ax 2-2≥2x -ax (x ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1. ②当a >0时,原不等式化为⎝⎛⎭⎫x -2a (x +1)≥0, 解得x ≥2a或x ≤-1.③当a <0时,原不等式化为⎝⎛⎭⎫x -2a (x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a ; 当2a =-1,即a =-2时,解得x =-1; 当2a <-1,即-2<a <0,解得2a≤x ≤-1. 综上所述,当a =0时,不等式的解集为{x |x ≤-1};当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥2a 或x ≤-1; 当-2<a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ 2a ≤x ≤-1;当a =-2时,不等式的解集为{-1};当a <-2时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-1≤x ≤2a . 反思感悟 在解含参数的一元二次型的不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,讨论需从如下三个方面进行考虑: (1)关于不等式类型的讨论:二次项系数a >0,a <0,a =0.(2)关于不等式对应的方程根的讨论:两不同实根(Δ>0),两相同实根(Δ=0),无根(Δ<0). (3)关于不等式对应的方程根的大小的讨论:x 1>x 2,x 1=x 2,x 1<x 2. 跟踪训练2 解关于x 的不等式x 2-(3a -1)x +(2a 2-2)>0. 解 原不等式可化为[x -(a +1)][x -2(a -1)]>0, 讨论a +1与2(a -1)的大小.(1)当a +1>2(a -1),即a <3时,不等式的解为x >a +1或x <2(a -1). (2)当a +1=2(a -1),即a =3时,不等式的解为x ≠4.(3)当a +1<2(a -1),即a >3时,不等式的解为x >2(a -1)或x <a +1. 综上,当a <3时,不等式的解集为{x |x >a +1或x <2(a -1)}, 当a =3时,不等式的解集为{x |x ≠4},当a >3时,不等式的解集为{x |x >2(a -1)或x <a +1}.1.知识清单:(1)一元二次不等式的概念及解法. (2)含参的一元二次不等式的解法. 2.方法归纳:数形结合、分类讨论.3.常见误区:解含参数的二次不等式时找不到分类讨论的标准.1.函数y =x 2-4x +4的零点是( ) A .(2,0) B .(0,4) C .±2 D .2答案 D2.不等式3x 2-2x +1>0的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪-1<x <13 B.⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <1 C .∅ D .R答案 D解析 因为Δ=(-2)2-4×3×1=4-12=-8<0, 所以不等式3x 2-2x +1>0的解集为R . 3.不等式3+5x -2x 2≤0的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x >3或x <-12 B.⎩⎨⎧⎭⎬⎫x ⎪⎪-12≤x ≤3 C.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥3或x ≤-12 D .R 答案 C解析 3+5x -2x 2≤0⇒2x 2-5x -3≥0 ⇒(x -3)(2x +1)≥0⇒x ≥3或x ≤-12.4.若0<m <1,则不等式(x -m )⎝⎛⎭⎫x -1m <0的解集为________. 答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪m <x <1m解析 ∵0<m <1,∴1m>1>m ,故原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪m <x <1m . 课时对点练1.下列不等式①x 2>0;②-x 2-x ≤5;③ax 2>2;④x 3+5x -6>0;⑤mx 2-5y <0;⑥ax 2+bx +c >0.其中是一元二次不等式的有( ) A .5个 B .4个 C .3个 D .2个 答案 D解析 根据一元二次不等式的定义,只有①②满足.故选D. 2.不等式9x 2+6x +1≤0的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-13 B.⎩⎨⎧⎭⎬⎫x ⎪⎪-13≤x ≤13 C .∅ D.⎩⎨⎧⎭⎬⎫x ⎪⎪x =-13 答案 D解析 原不等式可化为(3x +1)2≤0, ∴3x +1=0,∴x =-13.3.不等式(x +5)(3-2x )≥6的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-1或x ≥92 B.⎩⎨⎧⎭⎬⎫x ⎪⎪-1≤x ≤92 C.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-92或x ≥1 D.⎩⎨⎧⎭⎬⎫x ⎪⎪-92≤x ≤1 答案 D解析 方法一 取x =1检验,满足,排除A ; 取x =4检验,不满足,排除B ,C. 方法二 原不等式可化为2x 2+7x -9≤0,即(x -1)(2x +9)≤0,解得-92≤x ≤1.4.若集合A ={x |(2x +1)(x -3)<0},B ={x ∈N *|x ≤5},则A ∩B 等于( ) A .{1,2,3} B .{1,2} C .{4,5} D .{1,2,3,4,5}答案 B解析 (2x +1)(x -3)<0,∴-12<x <3,又x ∈N *且x ≤5,则x =1,2.5.不等式⎝⎛⎭⎫12-x ⎝⎛⎭⎫13-x >0的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ 13<x <12 B.⎩⎨⎧⎭⎬⎫x ⎪⎪x >12 C.⎩⎨⎧⎭⎬⎫x ⎪⎪x <13 D.⎩⎨⎧⎭⎬⎫x ⎪⎪x <13或x >12 答案 D6.(多选)函数y =x 2-4x +3的零点为( ) A .(1,0) B .1 C .(3,0) D .3 答案 BD7.不等式x 2-4x +4>0的解集是________. 答案 {x |x ≠2}解析 原不等式可化为(x -2)2>0,∴x ≠2.8.若a <0,则关于x 的不等式a (x +1)⎝⎛⎭⎫x +1a <0的解集为________________. 答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪x >-1a 或x <-1 解析 因为a <0,所以原不等式等价于(x +1)·⎝⎛⎭⎫x +1a >0,方程(x +1)⎝⎛⎭⎫x +1a =0的两根为-1,-1a ,显然-1a >0>-1,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >-1a 或x <-1. 9.已知不等式x 2+x -6<0的解集为A ,不等式x 2-2x -3<0的解集为B .求A ∩B . 解 由x 2+x -6<0得-3<x <2.∴A ={x |-3<x <2}.由x 2-2x -3<0,得-1<x <3, ∴B ={x |-1<x <3}.∴A ∩B ={x |-1<x <2}. 10.解关于x 的不等式x 2-ax -2a 2<0(a ∈R ).解原不等式可化为(x-2a)(x+a)<0.对应的一元二次方程的根为x1=2a,x2=-a.①当a>0时,x1>x2,不等式的解集为{x|-a<x<2a};②当a=0时,原不等式化为x2<0,解集为∅;③当a<0时,x1<x2,不等式的解集为{x|2a<x<-a}.综上,当a>0时,不等式的解集为{x|-a<x<2a};当a=0时,不等式的解集为∅;当a<0时,不等式的解集为{x|2a<x<-a}.11.设m+n>0,则关于x的不等式(m-x)(n+x)>0的解集是()A.{x|x<-n或x>m} B.{x|-n<x<m}C.{x|x<-m或x>n} D.{x|-m<x<n}答案 B解析方程(m-x)(n+x)=0的两根为m,-n,因为m+n>0,所以m>-n,结合函数y=(m -x)(n+x)的图象(图略),得不等式的解集是{x|-n<x<m}.12.在R上定义运算“⊙”:a⊙b=ab+2a+b,则满足x⊙(x-2)<0的实数x的取值范围为()A.{x|0<x<2} B.{x|-2<x<1}C.{x|x<-2或x>1} D.{x|-1<x<2}答案 B解析根据给出的定义得,x⊙(x-2)=x(x-2)+2x+(x-2)=x2+x-2=(x+2)(x-1),又x⊙(x-2)<0,则(x+2)(x-1)<0,故不等式的解集是{x|-2<x<1}.13.(多选)下列不等式的解集为R的有()A .x 2+x +1≥0B .x 2-25x +5>0C .x 2+6x +10>0D .2x 2-3x +4<1答案 AC解析 A 中Δ=12-4×1<0.满足条件; B 中Δ=(-25)2-4×5>0,解集不为R ; C 中Δ=62-4×10<0.满足条件;D 中不等式可化为2x 2-3x +3<0,所对应的二次函数开口向上,显然不可能.14.关于x 的不等式(mx -1)(x -2)>0,若此不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1m<x <2,则m 的取值范围是________. 答案 {m |m <0} 解析 由题意知m <0,∵不等式(mx -1)(x -2)>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1m<x <2, ∴方程(mx -1)(x -2)=0的两个实数根为1m和2,且⎩⎪⎨⎪⎧m <0,1m <2,解得m <0, ∴m 的取值范围是{m |m <0}.15.设不等式x 2-2ax +a +2≤0的解集为A ,若A ⊆{x |1≤x ≤3},则a 的取值范围为________. 答案 -1<a ≤115解析 设y =x 2-2ax +a +2,因为不等式x 2-2ax +a +2≤0的解集为A , 且A ⊆{x |1≤x ≤3},所以对于方程x 2-2ax +a +2=0. 若A =∅,则Δ=4a 2-4(a +2)<0, 即a 2-a -2<0,解得-1<a <2.若A ≠∅,则⎩⎪⎨⎪⎧Δ=4a 2-4(a +2)≥0,12-2a +a +2≥0,32-3×2a +a +2≥0,1≤a ≤3,即⎩⎪⎨⎪⎧a ≥2或a ≤-1,a ≤3,a ≤115,1≤a ≤3,所以2≤a ≤115.综上,a 的取值范围为-1<a ≤115.16.解关于x 的不等式x 2-2ax +2≤0.解 因为Δ=4a 2-8,所以当Δ<0,即-2<a <2时,原不等式对应的方程无实根,又二次函数y =x 2-2ax +2的图象开口向上,所以原不等式的解集为∅. 当Δ=0,即a =±2时,原不等式对应的方程有两个相等实根. 当a =2时,原不等式的解集为{x |x =2}; 当a =-2时,原不等式的解集为{x |x =-2}.当Δ>0,即a >2或a <-2时,原不等式对应的方程有两个不等实根,分别为x 1=a -a 2-2,x 2=a +a 2-2,且x 1<x 2,所以原不等式的解集为{x |a -a 2-2≤x ≤a +a 2-2}.综上所述,当-2<a <2时,原不等式的解集为∅; 当a =2时,原不等式的解集为{x |x =2}; 当a =-2时,原不等式的解集为{x |x =-2}; 当a >2或a <-2时, 原不等式的解集为{x |a -a 2-2≤x ≤a +a 2-2}.。
初三数学用图象法解一元二次方程试题答案及解析
初三数学用图象法解一元二次方程试题答案及解析1.函数y=x2﹣2x﹣2的图象如图所示,根据图中提供的信息,可求得使y≥1成立的x的取值范围是.【答案】x≤﹣1或x≥3【解析】令函数的值等于1,求出x的值,然后从函数图象即可观察出当y≥1成立的x的取值范围.解:当y=1时,x2﹣2x﹣2=1,解得(x+1)(x﹣3)=0,x 1=﹣1,x2=3.由图可知,x≤﹣1或x≥3时y≥1.故答案为x≤﹣1或x≥3.2.如图,直线与抛物线相交于点A(1,m)和点B(8,n),则关于x的不等式的解集为.【答案】x>8或x<1【解析】根据直线与抛物线相交于点A(1,m)和点B(8,n),即可得出关于x的不等式ax2+bx<kx的解集.解:∵抛物线y=ax2+bx+c与直线相交于A(1,m)和B(8,n)两点,∴关于x的不等式<ax2+bx+c的解集是x>8或x<1.故答案为:x>8或x<1.3.如图,二次函数和一次函数y2=mx+n的图象,观察图象,写出y2≤y1时x的取值范围.【答案】x≥1或x≤﹣2【解析】由函数图象可知,当x>1或x<﹣2时,二次函数的图象在一次函数y2=mx+n的图象的上方即可直接得出结论.解:∵由函数图象可知,当x>1或x<﹣2时,二次函数的图象在一次函数y 2=mx+n的图象的上方,∴当x≥1或x≤﹣2时y2≤y1.故答案为:x≥1或x≤﹣2.4.如图.一次函数值大于二次函数值时的x范围是.【答案】2<x<4【解析】由一次函数值大于二次函数值,结合图象,即可求得x范围.解:如图,观察图象得:一次函数值大于二次函数值时的x范围是:2<x<4.故答案为:2<x<4.5.如图,已知二次函数y=ax2+bx+c的部分图象,由图象可知关于x的一元二次方程ax2+bx+c=0的两个根分别是.【答案】x1=1.6;x2=4.4【解析】本题是一道估算题,先测估计出对称轴左侧图象与x轴交点的横坐标,再利用对称轴x=3,可以算出右侧交点横坐标.解:依题意得二次函数y=ax2+bx+c的部分图象的对称轴为x=3,而对称轴左侧图象与x轴交点与原点的距离,约为1.6,∴x1=1.6;又∵对称轴为x=3,则=3,∴x2=2×3﹣1.6=4.4.6.小颖用几何画板软件探索方程ax2+bx+c=0的实数根,作出了如图所示的图象,观察得一个近似根为x1=﹣4.5,则方程的另一个近似根为x2=(精确到0.1).【答案】2.5【解析】由函数的图象可求出函数的对称轴方程,再根据对称轴与方程两根之间的关系建立起方程,求出未知数的值即可.解:由函数图象可知,此函数的对称轴为x=﹣1,设函数的另一根为x,则=﹣1,解得x=2.5.7.如图,二次函数y=(x﹣2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x﹣2)2+m的x的取值范围.【答案】解:(1)将点A(1,0)代入y=(x﹣2)2+m得(1﹣2)2+m=0,解得m=﹣1,所以二次函数解析式为y=(x﹣2)2﹣1;当x=0时,y=4﹣1=3,所以C点坐标为(0,3),由于C和B关于对称轴对称,而抛物线的对称轴为直线x=2,所以B点坐标为(4,3),将A(1,0)、B(4,3)代入y=kx+b得,解得,所以一次函数解析式为y=x﹣1;(2)当kx+b≥(x﹣2)2+m时,1≤x≤4.【解析】(1)先将点A(1,0)代入y=(x﹣2)2+m求出m的值,根据点的对称性确定B点坐标,然后根据待定系数法求出一次函数解析式;(2)根据图象和A、B的交点坐标可直接求出kx+b≥(x﹣2)2+m的x的取值范围.8.我们可以用如下方法解不等式(x﹣1)(x+1)>0.第一步:画出函数y=(x﹣1)(x+1)的图象;第二步:找出图象与x轴的交点坐标,即交点坐标为(1,0),(﹣1,0);第三步:根据图象可知,在x<﹣1或x>1时,y的值大于0.因此可得不等式(x﹣1)(x+1)>0的解集为x<﹣1或x>1.请你仿照上述方法,求不等式x2﹣4<0的解集.【答案】解:如图,不等式x2﹣4<0的解集是﹣2<x<2.【解析】作出函数图象,然后写出x轴下方部分的x的取值范围即可.9.给出下列命题及函数y=x,y=x2和y=的图象:①如果,那么0<a<1;②如果,那么a>1;③如果,那么﹣1<a<0;④如果时,那么a<﹣1.则()A.正确的命题是①④B.错误的命题是②③④C.正确的命题是①②D.错误的命题只有③【答案】A【解析】先确定出三函数图象的交点坐标为(1,1),再根据二次函数与不等式组的关系求解即可.解:易求x=1时,三个函数的函数值都是1,所以,交点坐标为(1,1),根据对称性,y=x和y=在第三象限的交点坐标为(﹣1,﹣1),①如果,那么0<a<1正确;②如果,那么a>1或﹣1<a<0,故本小题错误;③如果,那么a值不存在,故本小题错误;④如果时,那么a<﹣1正确.综上所述,正确的命题是①④.故选A.10.如图,抛物线y=x2+1与双曲线y=的交点A的横坐标是1,则关于x的不等式+x2+1<0的解集是()A.x>1B.x<﹣1C.0<x<1D.﹣1<x<0【答案】D【解析】根据图形双曲线y=与抛物线y=x2+1的交点A的横坐标是1,即可得出关于x的不等式+x2+1<0的解集.解:∵抛物线y=x2+1与双曲线y=的交点A的横坐标是1,∴x=1时,=x2+1,再结合图象当0<x<1时,>x2+1,∴﹣1<x<0时,||>x2+1,∴+x2+1<0,∴关于x的不等式+x2+1<0的解集是﹣1<x<0.故选D.11.如图,直线y=x与抛物线y=x2﹣x﹣3交于A、B两点,点P是抛物线上的一个动点,过点P 作直线PQ⊥x轴,交直线y=x于点Q,设点P的横坐标为m,则线段PQ的长度随m的增大而减小时m的取值范围是()A.x<﹣1或x> B.x<﹣1或<x<3 C.x<﹣1或x>3 D.x<﹣1或1<x<3【答案】D【解析】联立两函数解析式求出交点A、B的坐标,再求出抛物线的对称轴,然后根据图象,点A左边的x的取值和对称轴右边到点B的x的取值都是所要求的取值范围.解:联立,解得,,所以,A(﹣1,﹣1),B(3,3),抛物线的对称轴为直线x=﹣=,∴当﹣1<x<3时,PQ=x﹣(x2﹣x﹣3)=﹣x2+2x+3=﹣(x﹣1)2+4,当x<﹣1或x>3时,PQ=x2﹣x﹣3﹣x=x2﹣2x﹣3=(x﹣1)2﹣4,∴线段PQ的长度随m的增大而减小时m的取值范围是x<﹣1或1<x<3.故选D.12.二次函数y=ax2+bx+c的图象如图所示,图象在x轴的下方部分,x的取值范围为()A.x<﹣1或x>3B.﹣1<x<3C.x≤﹣1或x≥3D.﹣1≤x≤3【答案】B【解析】根据函数图象写出x轴下方部分的x的取值范围即可.解:∵图象在x轴的下方部分,∴x的取值范围为﹣1<x<3.故选B.13.如图,已知函数与y=ax2+bx(a>0,b>0)的图象交于点P,点P的纵坐标为1,则关于x的不等式ax2+bx>0的解为()A.﹣3<x<0B.x<﹣3C.x>0D.x<﹣3或x>0【答案】D【解析】利用反比例函数的解析式求出点P的坐标,再根据图形写出抛物线在反比例函数图象上方的部分的x的取值范围即可.解:∵点P的纵坐标为1,∴﹣=1,∴x=﹣3,∴点P(﹣3,1),由图可知,ax2+bx+>0时,即ax2+bx>﹣时,x的取值范围是x<﹣3或x>0.故选D.14.如图,抛物线和直线y2=2x.当y1>y2时,x的取值范围是()A.0<x<2B.x<0或x>2C.x<0或x>4D.0<x<4【答案】A【解析】联立两函数解析式求出交点坐标,再根据函数图象写出抛物线在直线上方部分的x的取值范围即可.解:联立,解得,,∴两函数图象交点坐标为(0,0),(2,4),由图可知,y1>y2时x的取值范围是0<x<2.故选A.15.如图,直线y=x与抛物线y=x2﹣x﹣3交于A、B两点,点P是抛物线上的一个动点,过点P 作直线PQ⊥x轴,交直线y=x于点Q,设点P的横坐标为m,则线段PQ的长度随m的增大而减小时m的取值范围是()A.x<﹣1或x> B.x<﹣1或<x<3 C.x<﹣1或x>3 D.x<﹣1或1<x<3【答案】D【解析】联立两函数解析式求出交点A、B的坐标,再求出抛物线的对称轴,然后根据图象,点A左边的x的取值和对称轴右边到点B的x的取值都是所要求的取值范围.解:联立,解得,,所以,A(﹣1,﹣1),B(3,3),抛物线的对称轴为直线x=﹣=,∴当﹣1<x<3时,PQ=x﹣(x2﹣x﹣3)=﹣x2+2x+3=﹣(x﹣1)2+4,当x<﹣1或x>3时,PQ=x2﹣x﹣3﹣x=x2﹣2x﹣3=(x﹣1)2﹣4,∴线段PQ的长度随m的增大而减小时m的取值范围是x<﹣1或1<x<3.故选D.16.二次函数y=ax2+bx+c的部分图象如图所示,则下列结论中正确的是()A.a>0B.不等式ax2+bx+c>0的解集是﹣1<x<5C.a﹣b+c>0D.当x>2时,y随x的增大而增大【答案】B【解析】根据图象开口方向向下得出a的符号,进而利用图象的对称轴得出图象与x轴的交点坐标,再利用图象得出不等式ax2+bx+c>0的解集.解:A、图象开口方向向下,则a<0,故此选项错误;B、∵图象对称轴为直线x=2,则图象与x轴另一交点坐标为:(﹣1,0),∴不等式ax2+bx+c>0的解集是﹣1<x<5,故此选项正确;C、当x=﹣1,a﹣b+c=0,故此选项错误;D、当x>2时,y随x的增大而减小,故此选项错误.故选:B.17.二次函数y=ax2+bx+c的图象如图所示,当函数值y<0时,x的取值范围为()A.x<﹣1或x>3B.﹣1<x<3C.x≤﹣1或x≥3D.﹣1≤x≤3【答案】B【解析】根据题意,y<0时即图象在x轴下方时,观察图象可得答案.解:根据题意,要求当y<0时即图象在x轴下方时自变量x的取值范围,观察图象易得,当﹣1<x<3时,二次函数的图象在x轴下方,故选B.18.直线y1=x+1与抛物线y2=﹣x2+3的图象如图,当y1>y2时,x的取值范围为()A.x<﹣2B.x>1C.﹣2<x<1D.x<﹣2或x>1【答案】D【解析】根据函数图象,写出直线在抛物线上方部分的x的取值范围即可.解:由图可知,x<﹣2或x>1时,y1>y2.故选D.19.如图,抛物线y=ax2与反比例函数的图象交于P点,若P点横坐标为1,则关于x的不等式>0的解是()A.x>1B.x<﹣1C.﹣1<x<0D.0<x<1【答案】C【解析】根据抛物线y=ax2与反比例函数的图象交于P点,P点横坐标为1,得出抛物线y=ax2与反比例函数y=﹣的图象的交点的横坐标为﹣1,即可求出答案.解:∵抛物线y=ax2与反比例函数的图象交于P点,P点横坐标为1,∴抛物线y=ax2与反比例函数y=﹣的图象的交点的横坐标为﹣1,∴关于x的不等式ax2>﹣的解集为﹣1<x<0;所以关于x的不等式>0的解是﹣1<x<0;故选C.20.如图,已知二次函数y=ax2+bx+c的部分图象,由图象可知关于x的一元二次方程ax2+bx+c=0的两个根分别是x1=1.6,x2=()A.﹣1.6B.3.2C.4.4D.以上都不对【答案】C【解析】根据图象知道抛物线的对称轴为x=3,根据抛物线是轴对称图象和已知条件即可求出x2.解:由抛物线图象可知其对称轴为x=3,又抛物线是轴对称图象,∴抛物线与x轴的两个交点关于x=3对称,而关于x的一元二次方程ax2+bx+c=0的两个根分别是x1,x2,那么两根满足2×3=x1+x2,而x1=1.6,∴x2=4.4.故选C.。
从函数观点看一元二次不等式(课件)(苏教版2019必修第一册)
又二次函数
y=2x2+7x+3
的图象开口向上,所以原不等式的解集为
x
|
x
1 2
或x
3
.
(2)原不等式可化为
2x
9 2
2
=0,所以原不等式的解集为
x
|
x
9 4
.
(3)原不等式可化为 2x2-3x+2>0,因为 Δ=9-4×2×2=-7<0,所以方程 2x2-3x+2=0 无实根,又二
次函数 y=2x2-3x+2 的图象开口向上,所以原不等式的解集为 R.
式与相应函数、方程的联系
方程的联系
当堂检测
知识回顾 一、一元二次不等式
1.一元二次不等式的概念 只含有一个未知数,并且未知数的最高次数是 2 的不等式,称为一元二次不等式. 2.一元二次不等式的一般形式 (1)ax2+bx+c>0(a? 0).(2)ax2+bx+c=0(a? 0).(3)ax2+bx+c<0(a? 0).(4)ax2+bx+c=0(a? 0). 3.一元二次不等式的解与解集 使一元二次不等式成立的未知数的值,叫做这个一元二次不等式的解,其解的集合, 称为这个一元二次不等式的解集
有两个相等的实数根 x1=x2=-2ba
的步骤 得等的集
y>0
不式解
y<0
{x|x<x1_或 x>x2} {x|x1<x<x2}
xx≠-2ba
∅
Δ<0 没有 实数根
R ∅
当堂检测
三、一元二次不等式 1.不等式 x2-y2>0 是一元二次不等式吗? 2.类比“方程 x2=1 的解集是{1,-1},解集中的每一个元素均可使等式成立”. 不等式 x2>1 的解集及其含义是什么? 3.若一元二次不等式 ax2+x-1>0 的解集为 R,则实数 a 应满足什么条件?
用函数观点看一元二次方程专练小测卷(含答案)
用函数观点看一元二次方程1、已知抛物线1--2x x y =与x 轴的一个交点为(m ,0),则代数式的值为 . 2、函数)0≠(2a c bx ax y ++=的图象如图所示,那么关于x 的方程03-2=++c bx ax 的根的情况是 ;04-2=++c bx ax 的根的情况是 ; 02-2=++c bx ax 的根的情况是 .3、若二次函数与x 轴的一个交点为(-1,0),对称轴为x =2,则它与x 轴的另一个交点为 .4、已知关于x 的二次函数1)1-(262++++=m x m x m y )(的图象与x 轴总有交点,则m 的取值范围是 . 5、已知二次函数)0≠(2a c bx ax y ++=的y 与x 的对应值如下表: x ...... -1 0 1 3...... y ...... -3 1 31 ...... 则下列判断中正确的是( )A 、抛物线开口向上B 、抛物线与y 轴交于负半轴C 、当x=4时,y>0D 、方程02=++c bx ax 的正根在3与4之间6、已知抛物线)0≠(2a c bx ax y ++=的图象如图所示,则对于一元二次方程02=++c bx ax ( )A 、没有根B 、只有一个根C 、有两个根,且一个正,一个负D 、有两个根,且一根小于1,一根大于27、已知二次函数)0≠(2a c bx ax y ++=的部分图象如图所示,若y <0,则x 的取值范围( )A 、-1<x <4B 、-1<x <3C 、x <-1或x >4D 、x <-1或x >38、如图是二次函数)0≠(2a c bx ax y ++=的部分图象,由图象可知不等式02<++c bx ax 的解集是 .9、已知二次函数m x x y +=3-2(m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程03-2=+m x x 的两实数根是 .10、二次函数)0(2≠++=a c bx ax y 的图象如图所示,根据图象解答下列问题: (1)写出方程02=++c bx ax 的两个根;(2)写出不等式02>++c bx ax 的解集;(3)写出y 随x 的增大而减小的自变量x 的取值范围;(4)若方程k c bx ax =++2有两个不相等的实数根,求k 的取值范围.10、如图,直线m x y +=和抛物线c bx x y ++=2都经过点A (2,0)、B (5,3).(1)求m 的值和抛物线的解析式;(2)求不等式m x c bx x +≤++2的解集(直接写出答案);(3)若抛物线与y 轴交于C ,求△ABC 的面积.11、已知二次函数c bx x y ++=2中,函数y 与自变量x 的部分对应值如下表: x -1 0 1 2 34 y 105 2 12 5 (1)求该二次函数的关系式;(2)当x 为何值时,y 有最小值,最小值是多少?(3)若),(1y m A 、),1(2y m B +两点都在该函数图象上,试比较1y 、2y 的大小.12、在平面直角坐标系中,O 为坐标原点,二次函数41--2++=x k x y )(的图象与y 轴交于点A ,与x 轴的负半轴交于点B ,且6=ΔOAB S .(1)求点A 与点B 的坐标;(2)求此二次函数的解析式;(3)如果点P 在x 轴上,且△ABP 是等腰三角形,求点P 的坐标.13、如图,抛物线2-212bx x y +=与x 轴交于A 、B 两点,与y 轴交于点C ,且A (-1,0). (1)求抛物线的解析式以及顶点D 的坐标;(2)判断△ABC 的形状,证明你的结论;(3)点M (m ,0)是x 轴上的一个动点,当MC +MD 的值最小时,求m 的值.参考答案1、2014;2、有两个相等实根;无实根;有两个不等实根;3、(5,0);4、695-≠-≤m m 且;5、D6、D7、B8、1-<x 或5>x ;9、(1)11=x ,32=x ;(2)31<<x ;(3)2>x ;(4)2<k ;10、(1)2-=m ,862+-=x x y ;(2)52≤≤x ;(3)15=∆ABC S ; 11、(1)542+-=x x y ;(2)12min ==y x ,;(3)21,23y y m ==;21,23y y m ><;21,23y y m <>; 12、(1)()4,0A ;()0,3-B ;(2)4352+--=x x y ;(3)()0,3P ,()0,2P ;()0,8-P ,⎪⎭⎫ ⎝⎛0,67P13、(1)223212--=x x y ;⎪⎭⎫ ⎝⎛825-23,;(2)直角三角形;勾股定理逆定理;(3)4124=m .。
从函数观点看一元二次方程
答案 不是,二次函数的零点是二次函数图象与 x 轴交点的横坐标.
课前预学
课堂导学
一元二次方程 ax2+bx+c=0(a≠0)的根就是二次函数 y=ax2+bx+c(a≠0)当函数
值取零时自变量 x 的值,即二次函数 y=ax2+bx+c(a≠0)的图象与 x 轴交点的横坐
标,也称为二次函数 y=ax2+bx+c(a≠0)的零点.
轴的交点的横坐标.
课堂导学
课前预学
解析
1
1
(1)由 3x -2x-1=0 解得 x1=1,x2=- ,所以函数 y=3x -2x-1 的零点为 1 和- .
2
2
3
3
(2)①当 a=0 时,y=-x-1,由-x-1=0 得 x=-1,所以函数的零点为-1.
②当 a≠0 时,由 ax -x-a-1=0 得(ax-a-1)(x+1)=0,解得 x1=
所以二次函数的解析式为 y=-x2+x+2.
(2)由(1)得 y=- x-
1 2 9
+ ,
2
4
9
5
4
4
所以结合图象可知当 1-k> ,即 k<- 时,方程 ax2+bx+c=1-k 无实根.
课前预学
课堂导学
任务 1: 二次函数的零点
已知 ax2+bx+c=0.
问题 1:当 a<0 时,一元二次方程 ax2+bx+c=0 的根与二次函数 y=ax2+bx+c 的图
2022
必修第一册
第二章
2.2
专题08一元二次方程(含解析)讲解
专题08 一元二次方程一、解读考点二、考点归纳归纳 1:一元二次的有关概念基础知识归纳:1. 一元二次方程:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2. 一般形式:ax2+bx+c=0(其中a、b、c为常数,a≠0),其中ax2、bx、c分别叫做二次项、一次项和常数项,a、b分别称为二次项系数和一次项系数.3.一元二次方程的解:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根.基本方法归纳:一元二次方程必须具备三个条件:(1)必须是整式方程;(2)必须只含有1个未知数;(3)所含未知数的最高次数是2.注意问题归纳:在一元二次方程的一般形式中要注意a ≠0.因为当a =0时,不含有二次项,即不是一元二次方程.【例1】若x =﹣2是关于x 的一元二次方程225x ax a 02-+=的一个根,则a 的值为( )A . 1或4B . ﹣1或﹣4C . ﹣1或4D . 1或﹣4【答案】B .考点:一元二次方程的解和解一元二次方程. 归纳 2:一元一次方程的解法 基础知识归纳: 一元二次方程的解法1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b <0时,方程没有实数根.2、配方法:配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±.3、公式法:公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法. 一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x4、因式分解法:因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法.基本方法归纳:(1)若一元二次方程缺少常数项,且方程的右边为0,可考虑用因式分解法求解;(2)若一元二次方程缺少一次项,可考虑用因式分解法或直接开平方法求解;(3)若一元二次方程的二次项系数为1,且一次项的系数是偶数时或常数项非常大时,可考虑用配方法求解; (4)若用以上三种方法都不容易求解时,可考虑用公式法求解.注意问题归纳:用公式法求解时必须化为一般形式;用配方法求解时必须两边同时加上一次项的系数一半的平方.【例2】用配方法解关于x的一元二次方程ax2+bx+c=0.x x(其中b2﹣4ac≥0).【答案】12【解析】试题分析:应用配方法解一元二次方程,要把左边配成完全平方式,右边化为常数.考点:解一元二次方程-配方法.归纳 3:一元二次方程的根的判别式基础知识归纳:一元二次方程的根的判别式对于一元二次方程ax2+bx+c=0(a≠0):(1)b2-4ac>0⇔方程有两个不相等的实数根;(2)b2-4ac=0⇔方程有两个的实数根;(3)b2-4ac<0⇔方程没有实数根.基本方法归纳:若只是判断方程解得情况则根据一元二次方程的根的判别式判断即可.注意问题归纳:一元二次方程的根的判别式应用时必须满足a≠0;一元二次方程有解分两种情况:1、有两个相等的实数根;2、有两个不相等的实数根.【例3】下列方程没有实数根的是()A.x2+4x=10 B.3x2+8x-3=0C.x2-2x+3=0 D.(x-2)(x-3)=12【答案】C.【解析】试题分析:A、方程变形为:x2+4x-10=0,△=42-4×1×(-10)=56>0,所以方程有两个不相等的实数根,故A选项不符合题意;B、△=82-4×3×(-3)=100>0,所以方程有两个不相等的实数根,故B选项不符合题意;C、△=(-2)2-4×1×3=-8<0,所以方程没有实数根,故C选项符合题意;D、方程变形为:x2-5x-6=0,△=52-4×1×(-6)=49>0,所以方程有两个不相等的实数根,故D选项不符合题意.故选C.考点:根的判别式.归纳 4:根与系数的关系基础知识归纳:一元二次方程的根与系数的关系若一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1,x2,则有x1+x2=ba,x1x2=ca.基本方法归纳:一元二次方程问题中,出现方程的解得和与积时常运用根与系数的关系.注意问题归纳:运用根与系数的关系时需满足:1、方程有解;2、a≠0.【例4】若α、β是一元二次方程x2+2x-6=0的两根,则α2+β2=()A. -8B. 32C. 16D. 40【答案】C.考点:根与系数的关系.归纳 5:一元二次方程的应用基础知识归纳:1、一元二次方程的应用1. 列一元二次方程解应用题的步骤和列一元一次方程(组)解应用题的步骤相同,即审、设、列、解、验答五步.2. 列一元二次方程解应用题中,经济类和面积类问题是常考类型,解决这些问题应掌握以下内容:(1)增长率等量关系:A.增长率=×100%;B.设a为原来量,m为平均增长率,n为增长次数,b为增长后的量,则a(1+m)n=b;当m为平均下降率,n 为下降次数,b为下降后的量时,则有a(1-m)n=b.(2)利润等量关系:A.利润=售价-成本;B.利润率=利润成本×100%.(3)面积问题3、解应用题的书写格式:设→根据题意→解这个方程→答.基本方法归纳:解题时先理解题意找到等量关系列出方程再解方程最后检验即可.注意问题归纳:找对等量关系最后一定要检验.【例5】如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草。
一元二次方程和一元二次函数真题及答案
一元二次方程和一元二次函数一元二次方程:20(0)ax bx c a ++=≠(1) 若方程没有实根:判别式240b ac ∆=-< (2) 若方程有两个相等实根:判别式240b ac ∆=-=(3) 若方程有两个不等的实根:判别式240b ac ∆=->注:若方程有两个实根:判别式240b ac ∆=-≥ 若方程有两个实根,记为12x x 、则:12b x a -+=、22b x a--=2121222221212122212121240()22()()b ac c x x a b x x a b c x x x x x x a a x x x x x x ⎧∆=-≥⎪⎪=⎪⎪⎪+=-⎨⎪⎪⎛⎫+=+-=-⎪ ⎪⎝⎭⎪⎪-=+-⎩g g g g一元二次函数: 函数)0(2≠++=a c bx ax y 叫做一元二次函数。
配方写成顶点式:a b ac a b x a y 44)2(22-++=(1)图象的顶点坐标为)44,2(2a b ac a b --,对称轴是直线ab x 2-=。
(2)当0>a ,函数图象开口向上,y 有最小值,ab ac y 442min-=,无最大值。
函数在区间)2,(a b --∞上是减函数,在),2(+∞-ab上是增函数。
2ba=-24)4ac b a-(3) 当0a <,函数图象开口向下,y 有最大值,ab ac y 442max-=,无最小值。
当0<a ,函数在区间上),2(+∞-a b 是减函数,在)2,(ab--∞上是增函数。
2ba-244ac b a-两点间距离公式:11(,)A x y 、22(,)B x yd =图像的移动:x 的系数为正先加后减 先左后右 先上后下例1:2(0)y ax a =≠怎么样变为)0(2≠++=a c bx ax y第一步:将被平移的二次函数的x 系数变为正,并化为顶点式。
2(0)0y a x =-+ 移动为: ab ac a b x a y 44)2(22-++=先左移2b a ,变为2()2b y a x a=+ 再上移244ac b a -,变为ab ac a b x a y 44)2(22-++=另:先上移244ac b a -,变为2244ac b y ax a -=+再左移2ba,变为a b ac a b x a y 44)2(22-++=例2:23y x =-+先向右平移3个单位,再向下平移2个单位。
用函数观点看一元二次方程—知识讲解(基础)
用函数观点看一元二次方程—知识讲解(基础)【学习目标】1.会用图象法求一元二次方程的近似解;掌握二次函数与一元二次方程的关系;3.经历探索验证二次函数2(0)y ax bx c a =++≠与一元二次方程的关系的过程,学会用函数的观点去看方程和用数形结合的思想去解决问题. 【要点梳理】要点一、二次函数与一元二次方程的关系1.二次函数图象与x 轴的交点情况决定一元二次方程根的情况求二次函数2y ax bx c =++(a ≠0)的图象与x 轴的交点坐标,就是令y =0,求20ax bx c ++=中x 的值的问题.此时二次函数就转化为一元二次方程,因此一元二次方程根的个数决定了抛物线与x 轴的交点的个数,它们的关系如下表: 判别式24b ac=-△二次函数2(0)y ax bx c a =++≠ 一元二次方程20(0)ax bx c a ++=≠图象与x 轴的交点坐标根的情况△>0a >抛物线2(0)y ax bx c a =++≠与x 轴交于1(,0)x ,2(,0)x 12()x x <两点,且21,242b b acx a-±-=,此时称抛物线与x 轴相交一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根21,242b b acx a-±-=a <△=0a >抛物线2(0)y ax bx c a =++≠与x 轴交切于,02b a ⎛⎫-⎪⎝⎭这一点,此时称抛物线与x 轴相切 一元二次方程20(0)ax bx c a ++=≠有两个相等的实数根122bx x a==-a <△<0a >抛物线2(0)y ax bx c a =++≠与x轴无交点,此时称抛物线与x 轴相离 一元二次方程20(0)ax bx c a ++=≠在实数范围内无解(或称无实数根)a <要点诠释:二次函数图象与x 轴的交点的个数由的值来确定的.(1)当二次函数的图象与x 轴有两个交点时,,方程有两个不相等的实根;(2)当二次函数的图象与x 轴有且只有一个交点时,,方程有两个相等的实根;(3)当二次函数的图象与x 轴没有交点时,,方程没有实根.2.抛物线与直线的交点问题抛物线与x 轴的两个交点的问题实质就是抛物线与直线的交点问题.我们把它延伸到求抛物线2y ax bx c =++(a ≠0)与y 轴交点和二次函数与一次函数1y kx b =+(0)k ≠的交点问题.抛物线2y ax bx c =++(a ≠0)与y 轴的交点是(0,c).抛物线2y ax bx c =++(a ≠0)与一次函数1y kx b =+(k ≠0)的交点个数由方程组12,y kx b y ax bx c=+⎧⎨=++⎩的解的个数决定.当方程组有两组不同的解时⇔两函数图象有两个交点; 当方程组有两组相同的解时⇔两函数图象只有一个交点; 当方程组无解时⇔两函数图象没有交点.总之,探究直线与抛物线的交点的问题,最终是讨论方程(组)的解的问题. 要点诠释:求两函数图象交点的问题主要运用转化思想,即将函数的交点问题转化为求方程组解的问题或者将求方程组的解的问题转化为求抛物线与直线的交点问题. 要点二、利用二次函数图象求一元二次方程的近似解 用图象法解一元二次方程的步骤:1.作二次函数的图象,由图象确定交点个数,即方程解的个数;2. 确定一元二次方程的根的取值范围.即确定抛物线与x 轴交点的横坐标的大致范围;3. 在(2)确定的范围内,用计算器进行探索.即在(2)确定的范围内,从大到小或从小到大依次取值,用表格的形式求出相应的y 值.4.确定一元二次方程的近似根.在(3)中最接近0的y 值所对应的x 值即是一元二次方的近似根.要点诠释: 求一元二次方程的近似解的方法(图象法):(1)直接作出函数的图象,则图象与x 轴交点的横坐标就是方程的根;(2)先将方程变为再在同一坐标系中画出抛物线和直线图象交点的横坐标就是方程的根; (3)将方程化为,移项后得,设和,在同一坐标系中画出抛物线和直线的图象,图象交点的横坐标即为方程的根.要点三、抛物线与x 轴的两个交点之间的距离公式当△>0时,设抛物线2y ax bx c =++与x 轴的两个交点为A(1x ,0),B(2x ,0),则1x 、2x 是一元二次方程2=0ax bx c ++的两个根.由根与系数的关系得12b x x a +=-,12c x x a=. ∴ 22121||||()AB x x x x =-=-21212()4x x x x =+-24⎛⎫=-⨯ ⎪⎝⎭b c a a 224b ac a -=24||b ac a -= 即 ||||AB a =△(△>0)要点四、抛物线与不等式的关系二次函数2y ax bx c =++(a ≠0)与一元二次不等式20ax bx c ++>(a ≠0)及20ax bx c ++<(a ≠0)之间的关系如下12()x x <:判别式 0a >抛物线2y ax bx c =++与x 轴的交点不等式20ax bx c ++>的解集不等式20ax bx c ++<的解集△>01x x <或2x x >12x x x <<△=01x x ≠(或2x x ≠)无解△<0全体实数 无解注:a <0的情况请同学们自己完成. 要点诠释:抛物线2y ax bx c =++在x 轴上方的部分点的纵坐标都为正,所对应的x 的所有值就是不等式20ax bx c ++>的解集;在x 轴下方的部分点的纵坐标都为负,所对应的x 的所有值就是不等式20ax bx c ++<的解集.不等式中如果带有等号,其解集也相应带有等号.【典型例题】类型一、二次函数图象与坐标轴交点1.已知二次函数y=(m-2)x 2+2mx+m+1,其中m 为常数,且满足-1<m<2,试判断此抛物线的开口方向,与x 轴有无交点,与y 轴的交点在x 轴上方还是在x 轴下方. 【答案与解析】∵-1<m<2.∴m-2<0,抛物线开口向下,又m+1>0,抛物线与y 轴的交点在x 轴上方.Δ=4m 2-4(m-2)(m+1)=4m 2-4(m 2-m-2) =4m+8=4(m+1)+4>0.∴抛物线与x 轴有两个不同的交点.【总结升华】此题目也可以用数形结合方法来判断抛物线与x 轴有两个不同交点(用抛物线与y 轴的交点C在x 轴上方,开口向下,必与x 轴有两个不同交点).举一反三:【高清课程名称:用函数观点看一元二次方程高清ID 号: 356568 关联的位置名称(播放点名称):例3-4】【变式】二次函数y=mx 2+(2m-1)x+m+1的图象总在x 轴的上方,求m 的取值范围。
苏教版九年级数学下册课后练习(含答案):第五章 第53讲 用函数的观点看一元二次方程
第53讲用函数的观点看一元二次方程题一:足球比赛中,某运动员将在地面上的足球对着球门踢出,图中的抛物线是足球的飞行高度y(m)关于飞行时间x(s)的函数图象(不考虑空气的阻力),已知足球飞出1s时,足球的飞行高度是2.44m,足球从飞出到落地共用3s.(1)求y关于x的函数关系式;(2)足球的飞行高度能否达到4.88米?请说明理由;(3)假设没有拦挡,足球将擦着球门左上角射入球门,球门的高为2.44m(如图所示,足球的大小忽略不计).如果为了能及时将足球扑出,那么足球被踢出时,离球门左边框12m处的守门员至少要以多大的平均速度到球门的左边框?题二:小强在一次投篮训练中,从距地面高1.55米处的O点投出一球向篮圈中心A点投去,球的飞行路线为抛物线,当球达到离地面最大高度3.55米时,球移动的水平距离为2米.现以O点为坐标原点,建立直角坐标系(如图所示),测得OA与水平方向OC的夹角为30°,A、C两点相距1.5米.(1)求点A的坐标;(2)求篮球飞行路线所在抛物线的解析式;(3)判断小强这一投能否把球从O点直接投入篮圈A点(排除篮板球),如果能,请说明理由;如果不能,那么前后移动多少米,就能使刚才那一投直接命中篮圈A点了.(结果可保留根号)题三:(1)已知二次函数y= x2+3x的值为4,求自变量x的值.(2)解方程x23x4=0.题四:(1)已知二次函数y= x2+2x的值为3,求自变量x的值.(2)解方程x22x+3=0.题五:已知二次函数y=2x2 4x2.(1)在所给的直角坐标系中,画出该函数的图象;(2)写出该函数图象与x轴的交点坐标.题六:已知二次函数y=x25x+6.(1)画出这个二次函数的图象.(2)观察图象,当x取那些值时,函数值为0?第53讲用函数的观点看一元二次方程题一: 见详解.详解:(1)设y 关于x 的函数关系式为y =ax 2+bx .依题可知:当x =1时,y = 2.44;当x =3时,y =0.∴ 2.44930a b a b +=⎧⎨+=⎩,∴1.223.66a b =-⎧⎨=⎩, ∴y = 1.22x 2+3.66x .(2)不能.理由:∵y =4.88,∴4.88= 1.22x 2+3.66x , ∴x 23x +4=0. ∵(3)2 4×4<0,∴方程4.88= 1.22x 2+3.66x 无解.∴足球的飞行高度不能达到4.88m .(3)∵ y =2.44,∴2.44= 1.22x 2+3.66x , ∴x 23x +2=0,∴x 1=1(不合题意,舍去),x 2=2.∴平均速度至少为122= 6(m/s ). 题二: 见详解.详解:(1)在Rt △AOC 中,∵∠AOC =30°,AC =1.5=32, ∴OC =222233()2OA AC -=-=332, ∴点A 的坐标为(332,1.5); (2)∵顶点B 的纵坐标:3.55 1.55=2,∴B (2,2),∴设抛物线的解析式为y = a (x 2)2+2, 把点O (0,0)坐标代入得0=a (02)2+2,解得a =12-, ∴抛物线的解析式为y =12-(x −2)2+2,即y =12-x 2+2x ; (3)①∵当x =332时,y ≠1.5, ∴小强这一投不能把球从O 点直接投入球篮; ②当y =1.5时,1.5=12-(x −2)2+2, 解得x 1=1(舍),x 2=3,又∵333, ∴小强只需向后退(3−33)米,就能使刚才那一投直接命中球篮A 点了.题三:见详解.详解:(1)令y= 4,则x2+3x = 4,即x23x4=0,解得x1= 1,x2=4,所以,当二次函数y=x2+3x的值为4时,自变量x的值为x1= 1,x2=4;(2)因式分解,得(x+1)(x4)=0,x+1=0或x4=0,解得x1= 1,x2=4.题四:见详解.详解:(1)令y = 3,则x2+2x = 3,即x22x3=0,解得x1= 1,x2=3,所以,当二次函数y=x2+2x的值为3时,自变量x的值为x1= 1,x2=3;(2)因式分解,得(x+1)(x3)=0,x+1=0或x3=0,解得x1=1,x2=3.题五:见详解.详解:(1)作出函数图象如图所示;(2)令y =0,则2x24x2=0,解得x1=1+2,x2=12,∴与x轴的交点坐标为(1+2,0)(12,0).题六:见详解.详解:(1)图象如图:(2)观察图象可得:①当x = 2或x = 3时,y=0.。
从函数观点看一元二次方程和一元二次不等式(解析版)
3.3 从函数观点看一元二次方程和一元二次不等式【知识点梳理】知识点一:一元二次不等式的概念一般地,我们把只含有一个末知数,并且末知数的最高次数是2的不等式,称为一元二次不等式,即形如20(0)ax bx c ++>≥或20(0)ax bx c ++<≤(其中a ,b ,c 均为常数,)0a ≠的不等式都是一元二次不等式.知识点二:二次函数的零点一般地,对于二次函数2y ax bx c =++,我们把使20ax bx c ++=的实数x 叫做二次函数2y ax bx c =++的零点.知识点三:一元二次不等式的解集的概念使一元二次不等式成立的所有未知数的值组成的集合叫做这个一元二次不等式的解集. 知识点四:二次函数与一元二次方程、不等式的解的对应关系对于一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x ≤,设24b ac ∆=-,它的解按照0∆>,0∆=,0∆<可分三种情况,相应地,二次函数2y ax bx c =++(0)a >的图像与x 轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式20ax bx c ++>(0)a >或20ax bx c ++<(0)a >的解集. 24b ac ∆=-0∆> 0∆= 0∆<二次函数 2y ax bx c=++(0a >)的图象20(0)ax bx c a ++=>的根有两相异实根 1212,()x x x x <有两相等实根122bx x a ==-无实根20(0)ax bx c a ++>>的解集{}12x x x x x <>或2b x x a ⎧⎫≠-⎨⎬⎩⎭R20(0)ax bx c a ++<>的解集{}12x xx x <<∅ ∅(1)一元二次方程20(0)ax bx c a ++=≠的两根12x x 、是相应的不等式的解集的端点的取值,是抛物线y =2ax bx c ++与x 轴的交点的横坐标;(2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决;(3)解集分0,0,0∆>∆=∆<三种情况,得到一元二次不等式20ax bx c ++>与20ax bx c ++<的解集.知识点五:利用不等式解决实际问题的一般步骤 (1)选取合适的字母表示题中的未知数;(2)由题中给出的不等关系,列出关于未知数的不等式(组); (3)求解所列出的不等式(组); (4)结合题目的实际意义确定答案. 知识点六:一元二次不等式恒成立问题(1)转化为一元二次不等式解集为R 的情况,即20(0)ax bx c a ++>≠恒成立00a >⎧⇔⎨∆<⎩恒成立20(0)ax bx c a ++<≠00.a <⎧⇔⎨∆<⎩(2)分离参数,将恒成立问题转化为求最值问题. 知识点七:简单的分式不等式的解法 系数化为正,大于取“两端”,小于取“中间”【题型归纳目录】题型一:解不含参数的一元二次不等式 题型二:一元二次不等式与根与系数关系的交汇 题型三:含有参数的一元二次不等式的解法 题型四:一次分式不等式的解法题型五:实际问题中的一元二次不等式问题 题型六:不等式的恒成立问题 【典型例题】题型一:解不含参数的一元二次不等式例1.(2022·全国·高一课时练习)不等式()273x x +≥-的解集为( )A .(]1,3,2⎡⎫-∞-⋃-+∞⎪⎢⎣⎭B .13,2⎡⎤--⎢⎥⎣⎦C .(]1,2,3⎡⎫-∞-⋃-+∞⎪⎢⎣⎭D .12,3⎡⎤--⎢⎥⎣⎦【答案】A【解析】()273x x +≥-可变形为22730x x ++≥, 令22730x x ++=,得13x =-,212x =-,所以3x ≤-或21x ≥-,即不等式的解集为(]1,3,2⎡⎫-∞-⋃-+∞⎪⎢⎣⎭.故选:A.【方法技巧与总结】解不含参数的一元二次不等式的一般步骤(1)通过对不等式的变形,使不等式右侧为0,使二次项系数为正. (2)对不等式左侧因式分解,若不易分解,则计算对应方程的判别式. (3)求出相应的一元二次方程的根或根据判别式说明方程有无实根. (4)根据一元二次方程根的情况画出对应的二次函数的草图. (5)根据图象写出不等式的解集.例2.(多选题)(2022·湖南·株洲二中高一开学考试)与不等式220x x -+>的解集相同的不等式有( ) A .220x x --<+ B .22320x x -+> C .230x x -+≥ D .220x x +->【答案】ABC【解析】因为2(1)4270∆=--⨯=-<,二次函数的图象开口朝上,所以不等式220x x -+>的解集为R ,A.14(1)(2)70∆=-⨯--=-<,二次函数的图象开口朝下,所以220x x --<+的解集为R ;B.2(3)42270∆=--⨯⨯=-<,二次函数的图象开口朝上,所以不等式22320x x -+>的解集为R ;C.2(1)413110∆=--⨯⨯=-<,二次函数的图象开口朝上,所以不等式230x x -+≥的解集为R ;D. 220x x +->,所以(2)(1)0,1x x x +->∴>或2x <-,与已知不符. 故选:ABC例3.(2022·全国·高一课时练习)解下列不等式: (1)262318x x x -≤-<;(2)1232x x +≥-; (3)2320x x -+>.【解析】(1)原不等式等价于22623318x x x x x ⎧-≤-⎨-<⎩,即22603180x x x x ⎧--≥⎨--<⎩,即()()()()320630x x x x ⎧-+≥⎪⎨-+<⎪⎩,所以2336x x x ≤-≥⎧⎨-<<⎩或,所以32x -<≤-或36x <≤,所以原不等式的解集{32x x -<≤-或}36x ≤<; (2)由1232x x +≥-,可得155203232x x x x +-+-=≥--, 所以()()55320320x x x ⎧--≤⎨-≠⎩,解得213x <≤,所以原不等式的解集为213x x ⎧⎫<≤⎨⎬⎩⎭;(3)原不等式等价于23200x x x ⎧-+>⎨≥⎩或23200x x x ⎧-+>⎨<⎩,分别解这两个不等式组,得01x ≤<或2x >或10x -<<或2x <-, 故原不等式的解集为{2x x <-或11x -<<或}2x >.题型二:一元二次不等式与根与系数关系的交汇例4.(2022·全国·高一专题练习)若不等式220ax bx +-<的解集为{}|21x x -<<,则a b +=( ) A .2- B .0 C .1 D .2【答案】D【解析】不等式220ax bx +-<的解集为{}|21x x -<<,则方程220ax bx +-=根为2-、1, 则21221ba a⎧-=-+⎪⎪⎨⎪-=-⨯⎪⎩,解得1,1a b ==,2a b ∴+=,故选:D【方法技巧与总结】 三个“二次”之间的关系(1)三个“二次”中,一元二次函数是主体,讨论一元二次函数主要是将问题转化为一元二次方程和一元二次不等式的形式来研究.(2)讨论一元二次方程和一元二次不等式又要将其与相应的一元二次函数相联系,通过一元二次函数的图象及性质来解决问题,关系如下:例5.(2022·全国·高一课时练习)若关于x 的不等式2260ax x a -+>的解集为{|1}x m x <<,则=a ______,m =______. 【答案】 3- 3-【解析】由题意知,0a <,且1,x x m ==是关于x 的方程2260ax x a -+=的两个根,∴61m a m a ⎧+=⎪⎨⎪=⎩,解得33a m =-⎧⎨=-⎩或22a m =⎧⎨=⎩, 又因为0a <,∴33a m =-⎧⎨=-⎩. 故答案为:-3,-3.例6.(2022·江苏·高一专题练习)若不等式20ax bx c ++>的解集为{}12x x -<<,则不等式()21(1)2a x b x c ax ++-+>的解集是( )A .{}03x x <<B .{0x x <或}3x >C .{}13x x <<D .{}13x x -<<【答案】A【解析】由()()2112a x b x c ax ++-+>,整理得()()220ax b a x a c b +-++-> ①.又不等式20ax bx c ++>的解集为{}12x x -<<, 所以0a <,且(1)2(1)2b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,即12b ac a⎧=-⎪⎪⎨⎪=-⎪⎩②.将①两边同除以a 得:2210b c b x x a a a ⎛⎫⎛⎫+-++-< ⎪ ⎪⎝⎭⎝⎭③.将②代入③得:230x x -<,解得03x <<. 故选:A例7.(2022·浙江·磐安县第二中学高一开学考试)已知不等式20ax bx c ++>的解集为()2,3,则20cx bx a ++>的解集为( ) A .11,32⎛⎫⎪⎝⎭B .11,,32⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .11,23⎛⎫-- ⎪⎝⎭D .11,,23∞∞⎛⎫⎛⎫--⋃-+ ⎪ ⎪⎝⎭⎝⎭【答案】A【解析】∵不等式20ax bx c ++>的解集为()2,3, ∴2和3是方程20ax bx c ++=的两个根.∴02323a ba ca⎧⎪<⎪⎪-=+⎨⎪⎪=⨯⎪⎩,可得5,6b a c a =-=. 20cx bx a ++>可化为2650ax ax a -+>,即26510x x -+<,即()()31210x x --<,解得1132x <<.故选:A.例8.(2022·全国·高一专题练习)设集合{}|1A x x =≥,{}2|0B x x mx =-≤,若{}|14A B x x ⋂=≤≤,则m 的值为_________.【答案】4【解析】当0m =时,{}{}2|00B x x =≤=,显然A B =∅,不符合题意;当0m >时,{}2|0[0,]B x x mx m =-≤=,因为{}|14A B x x ⋂=≤≤,所以必有4m =; 当0m <时,{}2|0[,0]B x x mx m =-≤=,显然A B =∅,不符合题意.故答案为:4m =.例9.(2022·江苏·高一专题练习)已知不等式20ax bx c ++>的解集是{|}x x αβ<<,0α>,则不等式20cx bx a ++>的解集是____________.【答案】11βα⎛⎫⎪⎝⎭,【解析】由不等式20ax bx c ++>的解集是{|}0x x αβα<<>(),可知:α,β是一元二次方程20ax bx c ++=的实数根,且0a <; 由根与系数的关系可得:b a αβ+=-,caαβ⋅= , 所以不等式20cx bx a ++>化为 210c bx x a a++<,即:()210x x αβαβ-++<; 化为()()110x x αβ--<; 又,0αβα,110αβ∴>>;∴不等式20cx bx a ++<的解集为:{x |11x βα<<},故答案为:11βα⎛⎫⎪⎝⎭,例10.(2022·全国·高一单元测试)已知关于x 的一元二次不等式20ax bx c ++<的解集为{}3|1x x <<,则20cx bx a -+>的解集是___________.【答案】{13x x >-或}1x <-【解析】因为关于x 的一元二次不等式20ax bx c ++<的解集为{}3|1x x <<, 所以0a >,且方程20ax bx c ++=得解为121,3x x ==, 则4,3b ca a-==, 所以4,3b a c a =-=,则不等式20cx bx a -+>,即为2340ax ax a ++>, 即23410x x ++>,解得13x >-或1x <-,所以20cx bx a -+>的解集是{13x x >-或}1x <-.故答案为:{13x x >-或}1x <-.题型三:含有参数的一元二次不等式的解法例11.(2022·全国·高一课时练习)不等式()()222240a x a x -+--≥的解集为∅,则实数a的取值范围是( ) A .{2|a a <-或2}a ≥ B .{}22a a -<< C .{}22a a -<≤ D .{}2a a <【答案】C【解析】因为不等式()()222240a x a x -+--≥的解集为∅, 所以不等式()()222240a x a x -+--<的解集为R .当20a -=,即2a =时,40-<,符合题意.当20a -<,即2a <时,()()2224420a a ⎡⎤∆=-+⨯⨯-<⎣⎦,解得22a -<<. 综上,实数a 的取值范围是{}22a a -<≤. 故选:C【方法技巧与总结】解含参数的一元二次不等式的一般步骤(1)讨论二次项系数:二次项若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程根的个数:讨论判别式Δ与0的关系.(3)写出解集:确定无根时可直接写出解集;确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.例12.(2022·江苏·盐城市田家炳中学高一期中)已知不等式220ax bx -+>的解集为{}12x x x 或.(1)求实数a ,b 的值;(2)解关于x 的不等式()20x ac b x bx -++>(其中c 为实数).【解析】(1)由题意,121,2x x ==为一元二次方程220ax bx -+=, 由韦达定理,可得12212b aa ⎧+=⎪⎪⎨⎪⨯=⎪⎩,解得13a b =⎧⎨=⎩. (2)由(1),不等式()20x ac b x bx -++>,可得()2330x c x x -++>,整理可得:()0x x c ->,当0c 时,不等式的解集为{}0x x ≠; 当0c >时,不等式的解集为{}0x x x c 或; 当0c <时,不等式的解集为{}0x x c x 或.例13.(2022·全国·高一专题练习)已知关于x 的不等式ax 2﹣x +1﹣a <0. (1)当a =2时,解关于x 的不等式; (2)当a >0时,解关于x 的不等式.【解析】(1)当a =2时,不等式2x 2﹣x ﹣1<0可化为:(2x +1)(x ﹣1)<0, ∴不等式的解集为1{|1}2x x -<<;(2)不等式ax 2﹣x +1﹣a <0可化为:(x ﹣1)(ax +a ﹣1)<0, 当a >0时,()1110x x a ⎛⎫-+- ⎪⎝⎭<,()1110x x a ⎛⎫-+-= ⎪⎝⎭的根为:12111x x a==-,, ①当102a <<时,111a -<,∴不等式解集为1{|11}x x a-<<,②当12a =时,111a=-,不等式解集为∅,③当12a >时,111a->,∴不等式解集为{x |11a -<x <1},综上,当102a <<时,不等式解集为1{|11}x x a-<<,当a 12=时,不等式解集为∅, 当12a >时,不等式解集为{x |11a-<x <1}..例14.(2022·全国·高一专题练习)解关于x 的不等式 220x x a ++>. 【解析】方程220x x a ++=中()4441a a =-=-, ①当10a -<即1a >时,不等式的解集是R ,②当10a -=,即1a =时,不等式的解集是{|1}x x ∈≠-R , ③当10a ->即1a <时,由220x x a ++=解得:121111x a x a =--=--,1a ∴<时,不等式的解集是{|11>-+-x x a 11}<--x a , 综上,1a >时,不等式的解集是R , 1a =时,不等式的解集是{|1}x x ∈≠-R ,1a <时,不等式的解集是{|11>-+-x x a 11}<--x a ,例15.(2022·全国·高一专题练习)解关于x 的不等式2110x a x a ⎛⎫-++< ⎪⎝⎭.【解析】原不等式可化为:()10x a x a ⎛⎫--< ⎪⎝⎭ ,令1a a = 可得:1a =±∴当1a <-或01a <<时,1a a <, 1aa x ∴<< ; 当1a =或1a =-时,1a a=,不等式无解; 当10a -<<或1a > 时,1a a>,1x a a ∴<<综上所述,当1a =或1a =-时,不等式解集为∅; 当1a <-或01a <<时,不等式的解集为1|x a x a ⎧⎫<<⎨⎬⎩⎭; 当10a -<<或1a >时,不等式解集为1|x x a a ⎧⎫<<⎨⎬⎩⎭.例16.(2022·全国·高一专题练习)若R a ∈,解关于x 的不等式2(1)10ax a x +++>.【解析】当0a =时,1x >-,当0a ≠时,1()(1)0a x x a++>,当0a <时,1()(1)0x x a ++<,解得11x a -<<-,当0a >时,1()(1)0x x a++>,若1a =,则1x ≠-,若01a <<,则1x a<-或1x >-,若1a >,则1x <-或1x a >-,所以当0a <时,原不等式的解集是{}|11x x a -<<-;当0a =时,原不等式的解集是{|1}x x >-;当01a <≤时,原不等式的解集是1{|x x a<-或1}x >-;当1a >时,原不等式的解集是{|1x x <-或1}x a>-.例17.(2022·全国·高一专题练习)若关于x 的不等式2220x m x m -++<()的解集中恰有4个正整数,求实数m 的取值范围. 【解析】原不等式可化为(2)()0x x m --<,若2m <,则不等式的解是2m x <<;若2m =,则不等式无解; 即不等式的解集中均不可能有4个正整数,所以2m >; 此时不等式的解是2x m <<;所以不等式的解集中4个正整数分别是3456,,,; 则m 的取值范围是{|67}m m <≤.例18.(2022·陕西·长安一中高一期中)已知关于x 的不等式()()230a b x a b +-<+的解集为34x x ⎧⎫>-⎨⎬⎩⎭.(1)写出a 和b 满足的关系;(2)解关于x 的不等式()()()222120a b x a b x a ---->++.【解析】(1)因为()()230a b x a b <++-,所以()32a b x b a +<-,因为不等式的解集为34x x ⎧⎫>-⎨⎬⎩⎭,所以0a b +<,且3234b a a b -=-+,解得3a b =. (2)由(1)得30a b =<则不等式()()()222120a b x a b x a -+--+->等价为()()242320bx b x b +-+->,即222430x x b b +-⎛⎫⎛⎫ ⎪ +⎪⎝⎭⎝⎭-<,即()2130x x b ⎛⎫+ ⎝-⎪⎭+<.因为231b -+<-,所以不等式的解为231x b-+<<-. 即所求不等式的解集为231x x b ⎧⎫-+<<-⎨⎬⎩⎭.(说明:解集也可以用a 表示)题型四:一次分式不等式的解法例19.(2022·全国·高一课时练习)不等式()()232101xx x x -++≤-的解集为( )A .[-1,2]B .[-2,1]C .[-2,1)∪(1,3]D .[-1,1)∪(1,2]【答案】D【解析】由()()232101x x x x -++≤-可得,()()()12101x x x x --+≤-,∴()()21010x x x ⎧-+≤⎨-≠⎩,解得12x -≤≤且1x ≠,故原不等式的解集为[1,1)(1,2]-. 故选:D.【方法技巧与总结】分式不等式转化为整式不等式的基本类型有哪些? (1)()()00cx dax b cx d ax b+>⇔++>+ (2)()()00cx dax b cx d ax b+<⇔++<+ (3)()()00cx dax b cx d ax b+≥⇔++>+且0ax b +≠ (4)()()00cx dax b cx d ax b+≤⇔++≤+且0ax b +≠ 例20.(2022·湖南·株洲二中高一开学考试)已知不等式210ax bx ++>的解集为1123xx ⎧⎫-<<⎨⎬⎩⎭∣,求不等式30ax x b +≤-的解集. 【解析】依题意,12-和13是方程210ax bx ++=的两根,法1:由韦达定理,11111,2323b a a ∴-+=--⨯=,解得6,1a b =-=-,法2:直接代入方程得,22111022111033a b a b ⎧⎛⎫⎛⎫⨯-+⨯-+=⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪⨯+⨯+= ⎪ ⎪⎪⎝⎭⎝⎭⎩,解得6,1a b =-=-, ∴不等式30ax x b +≤-为6301x x -+≤+,即:()()631010x x x ⎧-+≥⎨+≠⎩,解得:1x <-或12x ≥, ∴不等式30ax x b +≤-的解集为{1xx <-∣或1}2x ≥.例21.(2022·陕西·长安一中高一期末)不等式22301x x x +-≥+的解集为__________.【答案】[3,1)[1,)--+∞【解析】原不等式等价于223010x x x ⎧+-≥⎨+>⎩或223010x x x ⎧+-≤⎨+<⎩,解得1≥x 或31x -≤<- , 故答案为:[3,1)[1,)--+∞例22.(2022·全国·高一课时练习)不等式301x x +>-的解集为______________. 【答案】{3x x <-或1}x > 【解析】由301x x +>-,得(1)(3)0x x -+>, 所以3x <-或1x >,故不等式得解集为{3x x <-或1}x >. 故答案为:{3x x <-或1}x >.例23.(2022·宁夏·灵武市第一中学高一期末)不等式201xx->+的解集为___________. 【答案】(1,2)- 【解析】20(2)(1)01xx x x->⇔-+<+,解得12x -<<,故解集为(1,2)-, 故答案为(1,2)-.例24.(2022·全国·高一课时练习)不等式21131x x ->+的解集是____________. 【答案】1{2}3xx -<<-∣ 【解析】21131x x ->+可化为211031x x -->+, 2031x x +<+,等价于()()2310x x ++<, 解得123x -<<-,所以不等式21131x x ->+的解集是1{2}3x x -<<-∣, 故答案为:1{2}3xx -<<-∣. 例25.(2022·全国·高一课时练习)关于x 的不等式()(5)0x b ax ++>的解集为{|1x x <-或3}x >,(1)求关于x 的不等式220x bx a +-<的解集 (2)求关于x 的不等式11x ax b->-的解集. 【解析】(1)不等式()(5)0x b ax ++>的解集为{|1x x <-或3}x >, 所以0513a ab >⎧⎪⎪-=-⎨⎪-=⎪⎩,解得5a =,3b =-;所以不等式220x bx a +-<化为23100x x --<,解得25x -<<; 所求不等式的解集为{|25}x x -<<; (2)1153x x ->+化为11053x x -->+即44053x x -->+,()()1530x x ∴++< 所求不等式的解集为31,5⎛⎫-- ⎪⎝⎭.题型五:实际问题中的一元二次不等式问题例26.(2022·贵州黔东南·高一期末)黔东南某地有一座水库,设计最大容量为128000m 3.根据预测,汛期时水库的进水量n S (单位:m 3)与天数()*n n N ∈的关系是5000()(10)n S n n t n =+≤,水库原有水量为80000m 3,若水闸开闸泄水,则每天可泄水4000m 3;水库水量差最大容量23000m 3时系统就会自动报警提醒,水库水量超过最大容量时,堤坝就会发生危险;如果汛期来临水库不泄洪,1天后就会出现系统自动报警. (1)求t 的值;(2)当汛期来临第一天,水库就开始泄洪,估计汛期将持续10天,问:此期间堤坝会发生危险吗?请说明理由.【解析】(1)由题意得: 1280008000050001(1)23000t --⨯+, 即24t =(2)由(1)得5000(24)(10)n S n n n =+≤设第n 天发生危险,由题意得 5000(24)400012800080000n n n +>-,即2242560n n +->,得8n >.所以汛期的第9天会有危险【方法技巧与总结】利用不等式解决实际问题需注意以下四点(1)阅读理解材料:应用题所用语言多为文字语言,而且不少应用题文字叙述篇幅较长.阅读理解材料要达到的目的是将实际问题抽象成数学模型,这就要求解题者领悟问题的实际背景,确定问题中量与量之间的关系,初步形成用怎样的模型能够解决问题的思路,明确解题方向.(2)建立数学模型:根据(1)中的分析,把实际问题用“符号语言”“图形语言”抽象成数学模型,并且,建立所得数学模型与已知数学模型的对应关系,以便确立下一步的努力方向.(3)讨论不等关系:根据(2)中建立起来的数学模型和题目要求,讨论与结论有关的不等关系,得到有关理论参数的值.(4)作出问题结论:根据(3)中得到的理论参数的值,结合题目要求作出问题的结论. 例27.(2022·全国·高一课时练习)某旅店有200张床位.若每张床位一晚上的租金为50元,则可全部租出;若将出租收费标准每晚提高10x 元(x 为正整数),则租出的床位会相应减少10x 张.若要使该旅店某晚的收入超过12600元,则每张床位的出租价格可定在什么范围内?【解析】设该旅店某晚的收入为y 元,则 *(5010)(20010),y x x x N =+-∈由题意12600y >,则(5010)(20010)12600x x +-> 即210000150010012600x x +->,即215260x x -+<, 解得:213x <<,且*x ∈N所以每个床位的出租价格应定在70元到180元之间(不包括70元,180元)例28.(2022·湖南·高一课时练习)汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,这段距离称为“刹车距离”.刹车距离是分析交通事故的一个重要指标.在一个限速为40km/h 的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场勘查测得甲车的刹车距离略超过12m ,乙车的刹车距离略超过10m ,又知甲、乙两种车型的刹车距离()m s 与车速()km/h x 分别有如下关系式:210.10.01s v v =+,220.050.005s v v =+.问:甲、乙两辆汽车是否有超速现象?【解析】因为甲种车型的刹车距离()m s 与车速()km/h x 的关系式:210.10.01s v v =+, 所以由题意可得:2210.10.0112101200030s v v v v v =+>⇒+->⇒>,或40v <-舍去,即30v >,当40v =时,10.1400.0116002012s =⨯+⨯=>,显然甲种车型没有超速现象;因为乙种车型的刹车距离()m s 与车速()km/h x 的关系式:220.050.005s v v =+,所以由题意可得:2220.050.005102000040s v v v v v =+>⇒+->⇒>,或50v <-舍去,即40v >,因此乙种车型有超速现象.例29.(2022·湖北十堰·高一期中)某学校欲在广场旁的一块矩形空地上进行绿化.如图所示,两块完全相同的长方形种植绿草坪,草坪周围(斜线部分)均种满宽度相同的鲜花.已知两块绿草坪的面积均为200平方米.(1)若矩形草坪的长比宽至少多10米,求草坪宽的最大值; (2)若草坪四周及中间的宽度均为2米,求整个绿化面积的最小值. 【解析】(1)设草坪的宽为x 米,长为y 米,由面积均为200平方米,得200y x=, 因为矩形草坪的长比宽至少多10米, 所以20010x x≥+,又0x >, 所以2102000x x +-≤,解得010x <≤, 所以宽的最大值为10米;(2)记整个绿化面积为S 平方米,由题意得,200150(26)(4)(26)442484246S x y x x x x ⎛⎫⎛⎫=++=++=++≥+ ⎪ ⎪⎝⎭⎝⎭56x =时,等号成立,所以整个绿化面积的最小值为(424806)+平方米题型六:不等式的恒成立问题例30.(2022·全国·高一单元测试)对任意实数x ,不等式2230kx kx +-<恒成立,则实数k 的取值范围是( ) A .()0,24 B .(]24,0-C .(]0,24D .[)24,∞+【答案】B【解析】由题意,对任意实数x ,不等式2230kx kx +-<恒成立, 当0k =时,不等式即为30-<,不等式恒成立; 当0k ≠时,若不等式2230kx kx +-<恒成立,则满足2Δ240k k k <⎧⎨=+<⎩,解得240k -<<, 综上,实数k 的取值范围为(24,0]-. 故选:B .【方法技巧与总结】不等式对一切实数恒成立,即不等式的解集为R ,要解决这个问题还需要讨论二次项的系数.例31.(2022·全国·高一课时练习)若0a >,且关于x 的不等式22334ax ax a -+-<在R 上有解,求实数a 的取值范围.【解析】方法一(判别式法)关于x 的不等式22334ax ax a -+-<可变形为22370ax ax a -+-<,由题可得()()223470a a a ∆=--->,解得744a -<<,又0a >,所以实数a 的取值范围为()0,4;方法二(分离变量法)因为0a >,所以关于x 的不等式22334ax ax a -+-<可变形为2273a x x a--<,因为223993244x x x ⎛⎫-=--≥- ⎪⎝⎭,所以2974a a--<,解得744a -<<,又0a >,所以实数a 的取值范围为()0,4.例32.(2022·湖南·雅礼中学高一开学考试)不等式()()221110a x a x ----<的解集是全体实数,求实数a 的取值范围________. 【答案】315a -<≤【解析】根据题意,当210a -≠时,可得()()222Δ141010a a a ⎧=-+-<⎪⎨-<⎪⎩,解得315a -<<,当1a =时,不等式()()221110a x a x ----<显然成立. 综上可得,315a -<≤,故答案为:315a -<≤.例33.(2022·江苏·盐城市田家炳中学高一期中)已知命题p :x R ∃∈,210x ax -+<,若命题p 是假命题,则实数a 的取值范围为_________.【答案】[]22-,【解析】若命题p 是假命题,则210x ax -+≥恒成立, 则2Δ40a =-≤,解得22a -≤≤.故答案为:[]22-,. 例34.(2022·全国·高一专题练习)不等式 2(2)4(2)120a x a x -+--<的解集为R ,则实数a 的取值范围是( )A .{}|12a a -≤<B .{}|12a a -<≤C .{}|12a a -<<D .{}|12a a -≤≤【答案】B【解析】当2a =时,原不等式为120-<满足解集为R ;当a ≠2时,根据题意得20a -<,且216(2)4(2)(12)0a a ∆=---⨯-<,解得1a 2-<<. 综上,a 的取值范围为{}|12a a -<≤. 故选:B .例35.(2022·全国·高一课时练习)已知对任意[]1,3m ∈,215mx mx m --<-+恒成立,则实数x 的取值范围是( )A .6,7⎛⎫+∞ ⎪⎝⎭B .1515∞∞⎛⎫-+-⋃+ ⎪ ⎪⎝⎭⎝⎭ C .6,7⎛⎫-∞ ⎪⎝⎭D .1515-+⎝⎭【答案】D【解析】对任意[]1,3m ∈,不等式215mx mx m --<-+恒成立,即对任意[]1,3m ∈,()216m x x -+<恒成立, 所以对任意[]1,3m ∈,261x x m-+<恒成立, 所以对任意[]1,3m ∈,2min12x x m ⎛-+<= ⎝,所以212x x -+<1515x -+<<故实数x 的取值范围是1515-+⎝⎭.故选:D .例36.(2022·全国·高一课时练习)已知关于x 的不等式244x mx x m +>+-. (1)若对任意实数x ,不等式恒成立,求实数m 的取值范围; (2)若对于04m ≤≤,不等式恒成立,求实数x 的取值范围.【解析】(1)若对任意实数x ,不等式恒成立,即2440x mx x m +--+>恒成立 则关于x 的方程2440x mx x m +--+=的判别式()()24440m m ∆=---+<, 即240m m -<,解得04m <<,所以实数m 的取值范围为(0,4). (2)不等式244x mx x m +>+-,可看成关于m 的一次不等式()21440m x x x -+-+>,又04m ≤≤,所以224404(1)440x x x x x ⎧-+>⎨-+-+>⎩,解得2x ≠且0x ≠,所以实数x 的取值范围是()()(),00,22,-∞⋃⋃+∞.例37.(2022·全国·高一课时练习)在x ∃∈R ①,2220x x a ++-=,②存在集合{24}A x x =<<,非空集合{}3B x a x a =<<,使得A B =∅这两个条件中任选一个,补充在下面问题中,并解答.问题:求解实数a ,使得命题{}:12p x x x ∀∈≤≤,20x a -≥,命题q :______都是真命题. 注:如果选择多个条件分别解答,按第一个解答计分.【解析】若选条件①,由命题p 为真,可得20x a -≥在12x ≤≤上恒成立. 因为12{|}x x x ∈≤≤,所以214x ≤≤,所以1a ≤. 由命题q 为真,则方程2220x x a ++-=有解. 所以()4420a ∆=--≥,所以1a ≥.又因为,p q 都为真命题,所以11a a ≤⎧⎨≥⎩,所以1a =.所以实数a 的值为1.若选条件②,由命题p 为真,可得20x a -≥在12x ≤≤上恒成立. 因为{}12x x x ∈≤≤,所以214x ≤≤.所以1a ≤.由命题q 为真,可得4a ≥或32a ≤,因为非空集合{|3}B x a x a =<<,所以必有0a >, 所以203a <≤或4a ≥, 又因为,p q 都为真命题,所以12043a a a ≤⎧⎪⎨<≤≥⎪⎩或,解得203a <≤. 所以实数a 的取值范围是2|03a a ⎧⎫<≤⎨⎬⎩⎭. 【同步练习】一、单选题 1.(2022·全国·高一课时练习)不等式23180x x -++<的解集为( ) A .{6x x >或3}x <- B .{}36x x -<< C .{3x x >或6}x <- D .{}63x x -<<【答案】A【解析】23180x x -++<可化为23180x x -->, 即()()630x x -+>,即6x >或3x <-. 所以不等式的解集为{6x x >或3}x <-.故选:A2.(2022·全国·高一课时练习)已知二次函数2y ax bx c =++的图象如图所示,则不等式20ax bx c ++>的解集是( )A .{}21x x -<<B .{|2x x <-或1}x >C .{}21x x -≤≤D .{|2x x ≤-或1}x ≥【答案】A【解析】由二次函数图象知:20ax bx c ++>有21x -<<. 故选:A3.(2022·全国·高一课时练习)已知函数2y x ax b =++(,R a b ∈)的最小值为0,若关于x 的不等式2x ax b c 的解集为{}|4x m x m <<+,则实数c 的值为( ) A .9 B .8 C .6 D .4【答案】D【解析】∵函数2y x ax b =++(,R a b ∈)的最小值为0, ∴2404b a -=,∴24a b =, ∴函数222224a y x ax b x ax x a ⎛⎫=++=++=+ ⎪⎝⎭,其图像的对称轴为2a x =-.∵不等式2x ax b c 的解集为{}|4x m x m <<+, ∴方程2204a c x ax ++-=的根为m ,4m +,∴4m m a ++=-,解得42a m --=,22am ∴+=-, 又∵2204a m am c ++-=,∴222442a a c m am m ⎛⎫=++=+= ⎪⎝⎭.故A ,B ,C 错误.故选:D .4.(2022·全国·高一课时练习)若使不等式()2220x a x a +++≤成立的任意一个x 都满足不等式10x -≤,则实数a 的取值范围为( ) A .{}1a a >- B .{}1a a ≥-C .{}1a a <-D .{}1a a ≤-【答案】B【解析】因为不等式10x -≤的解集为{}1x x ≤,由题意得不等式()2220x a x a +++≤的解集是{}1x x ≤的子集, 不等式()2220x a x a +++≤,即()()20x x a ++≤,①当2a =时,不等式的解集为{}2-,满足{}{}21x x -⊆≤; ②当2a <时,不等式的解集为{}2x x a -≤≤-, 若{}{}21x x a x x -≤≤-⊆≤,则1a -≤, 所以12a -≤<;③当2a >时,不等式的解集为{}2x a x -≤≤-,满足{}{}21x a x x x -≤≤-⊆≤; 综上所述,实数a 的取值范围为{}1a a ≥-. 故选:B .5.(2022·全国·高一课时练习)已知()()()2022y x m x n n m =--+<,且(),αβαβ<是方程0y =的两实数根,则α,β,m ,n 的大小关系是( )A .m n αβ<<<B .m n αβ<<<C .m n αβ<<<D .m n αβ<<<【答案】C【解析】∵α,β为方程0y =的两实数根,∴α,β为函数()()2022y x m x n =--+的图像与x 轴交点的横坐标,令()()1y x m x n =--,∴m ,n 为函数()()1y x m x n =--的图像与x 轴交点的横坐标,易知函数()()2022y x m x n =--+的图像可由()()1y x m x n =--的图像向上平移2022个单位长度得到,所以m n αβ<<<. 故选:C.6.(2022·湖南·长沙一中高一开学考试)关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x ,那么a 的取值范围是( ) A .2275a -<<B .25a > C .27a <-D .2011a -<< 【答案】D【解析】当0a =时,()2290ax a x a +++=即为20x =,不符合题意;故0a ≠,()2290ax a x a +++=即为22190x x a ⎛⎫+++= ⎪⎝⎭,令2219y x x a ⎛⎫=+++ ⎪⎝⎭,由于关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x , 则()229y ax a x a =+++与x 轴有两个交点,且分布在1的两侧,故1x =时,0y <,即211190a ⎛⎫++⨯+< ⎪⎝⎭,解得211a <-,故2011a -<<,故选:D7.(2022·全国·高一单元测试)已知 0,0x y >>且141x y+=,若28x y m m +>+恒成立,则实数m 的取值范围是( ) A . 1|2x x ⎧⎫≥⎨⎬⎩⎭B .{}|3x x ≤-}C .{}|1x x ≥D .{}|91x x -<<【答案】D【解析】∵0,0x y >>,且141x y+=,∴1444()()5259y x y xx y x y x y x y x y+=++=++≥⋅=, 当且仅当3,6x y ==时取等号,∴min ()9x y +=,由28x y m m +>+恒成立可得2min 8()9m m x y +<+=,解得:91m -<<, 故选:D.8.(2022·全国·高一课时练习)在R 上定义运算():1x y x y ⊗⊗=-.若不等式()()1x a x a -⊗+<对任意实数x 都成立,则实数a 的取值范围为( )A .1322a a ⎧⎫-<<⎨⎬⎩⎭B .{}02a a <<C .{}11a a -<<D .3122a a ⎧⎫-<<⎨⎬⎩⎭【答案】A【解析】由()()1x a x a -⊗+<,得()()11x a x a ---<,即221a a x x --<-,令2t x x =-,此时只需2min 1a a t --<,又221124t x x x ⎛⎫=-=-- ⎪⎝⎭,所以2114a a --<-,即24430a a --<,解得1322a -<<.故选:A. 二、多选题9.(2022·全国·高一课时练习)不等式22x bx c x b ++≥+对任意的x ∈R 恒成立,则( ) A .2440b c -+≤ B .0b ≤ C .1c ≥ D .0b c +≥【答案】ACD【解析】22x bx c x b ++≥+可整理为()220x b x c b +-+-≥,则()()2224440b c b b c ∆=---=-+≤,故A 正确. 当1b =,2c =时,满足0∆≤,即原不等式成立.B 错误; 由0∆≤,得214b c ≥+,所以1c ≥.C 正确;2211042b b b c b ⎛⎫+≥++=+≥ ⎪⎝⎭.D 正确.故选:ACD .10.(2022·江苏·高一)已知关于x 的一元二次不等式()22120ax a x --->,其中0a <,则该不等式的解集可能是( ) A .∅ B .12,a ⎛⎫- ⎪⎝⎭C .()1,2,a ⎛⎫-∞-⋃+∞ ⎪⎝⎭ D .1,2a ⎛⎫- ⎪⎝⎭【答案】ABD【解析】不等式变形为(2)(1)0x ax -+>,又0a <,所以1(2)()0x x a-+<,12a =-时,不等式解集为空集;12a <-,12x a -<<,102a -<<时,12x a <<-,因此解集可能为ABD . 故选:ABD .11.(2022·福建省龙岩第一中学高一开学考试)已知关于x 的不等式20ax bx c ++≥的解集为{3x x ≤或}4x ≥,则下列结论中,正确结论的序号是( )A .0a >B .不等式0bx c +>的解集为{}4x x <-C .不等式20cx bx a -+<的解集为14x x ⎧<-⎨⎩或13x ⎫>⎬⎭ D .0a b c ++>【答案】AD【解析】对于A ,由不等式的解集可知:0a >且3473412bac a⎧-=+=⎪⎪⎨⎪=⨯=⎪⎩,7b a ∴=-,12c a =,A 正确;对于B ,7120bx c ax a +=-+>,又0a >,127x ∴<,B 错误; 对于C ,221270cx bx a ax ax a -+=++<,即212710x x ++<,解得:1134x -<<-,C 错误; 对于D ,71260a b c a a a a ++=-+=>,D 正确. 故选:AD.12.(2022·湖南·株洲二中高一开学考试)已知关于x 的不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩仅有一个整数解,则k 的值可能为( ) A .5- B .3-C .πD .5【答案】ABD【解析】解不等式2280x x -->,得4x >或2x <- 解方程22(27)70x k x k +++=,得127,2x x k =-=-(1)当72k >,即72k -<-时,不等式22(27)70x k x k +++<的解为:72k x -<<-此时不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩的解集为7,2k ⎛⎫-- ⎪⎝⎭,依题意,则54k -≤-<-,即45k <≤;(2)当72k <,即72k ->-时,不等式22(27)70x k x k +++<的解为:72x k -<<-,要使不等式组222802(27)70x x x k x k ⎧-->⎨+++<⎩的解集中只有一个整数,则需满足:35k -<-≤,即53k -≤<; 所以k 的取值范围为[5,3)(4,5]-. 故选:ABD. 三、填空题13.(2022·全国·高一专题练习)若不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭,则0ax b +>的解集为__________. 【答案】1,6⎛⎫-∞- ⎪⎝⎭【解析】不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭,则根据对应方程的韦达定理得到:112311223ba a⎧⎛⎫-+=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪-⋅= ⎪⎪⎝⎭⎩,解得122a b =-⎧⎨=-⎩,则1220x -->的解集为1,6⎛⎫-∞- ⎪⎝⎭.故答案为:1,6⎛⎫-∞- ⎪⎝⎭.14.(2022·陕西·千阳县中学高一开学考试)不等式517x ≥--的解集为__________. 【答案】{|7x x >或2}x ≤ 【解析】因为517x ≥--,所以5107x +≥-,即207x x -≥-, 等价于(2)(7)070x x x --≥⎧⎨-≠⎩,解得7x >或2x ≤,所以不等式的解集为{|7x x >或2}x ≤. 故答案为:{|7x x >或2}x ≤15.(2022·全国·高一专题练习)关于x 的不等式()210x a x a -++<的解集中恰有1个整数,则实数a 的取值范围是_________. 【答案】[)(]1,02,3-⋃【解析】由()210x a x a -++<得()()10x x a --< ,若1a =,则不等式无解;若1a >,则不等式的解为1x a <<,此时要使不等式的解集中恰有1个整数解,则此时1个整数解为2x =,则23a <≤;若1a <,则不等式的解为1<<a x ,此时要使不等式的解集中恰有1个整数解,则此时1个整数解为0x =,则10a -≤<.综上,满足条件的a 的取值范围是[)(]1,02,3-⋃. 故答案为:[)(]1,02,3-⋃.16.(2022·全国·高一课时练习)知关于x 的不等式2240ax bx ++<的解集为4(,)m m,其中0m <,则44b a b+的最小值为______. 【答案】2【解析】∵2240ax bx ++<的解集为4,m m ⎛⎫⎪⎝⎭,∴0a >,且方程2240ax bx ++=的两根为m ,4m, ∴42bm m a +=-,44m m a ⋅=,∴1a =,∵0m <,∴424b m m=-+≥-, 即2b ≥,当且仅当2m =-时取“=”. ∴44244b b a b b +=+≥,当且仅当4b =时取“=”, ∴44b a b+的最小值为2. 故答案为:2 四、解答题17.(2022·全国·高一专题练习)解下列不等式: (1)22530x x +->; (2)220x x +-≤; (3)4220x x --≥; (4)21x x >.【解析】(1)由22530x x +->,得()()3210x x +->,解得3x <-或12x >, 所以不等式的解集为{3x x <-或12x ⎫>⎬⎭.(2)由220x x +-≤,得220x x --≥,()()120x x +-≥, 解得1x ≤-或2x ≥,所以不等式的解集为{1x x ≤-或}2x ≥.(3)由4220x x --≥,得()()22120x x +-≥,解得21x ≤-(舍去)或22x ≥,得2x ≤-2x ≥,所以不等式的解集为{2x x ≤-}2x ≥. (4)由21x x ,得2210xx >,1x >12x -(舍去),所以1x >,所以不等式的解集为{}1x x >.18.(2022·辽宁·营口市第二高级中学高一期末)已知关于x 的不等式2320(R)ax x a ++>∈.(1)若2320ax x ++>的解集为{}1x b x <<,求实数,a b 的值; (2)求关于x 的不等式2321ax x ax -+>-的解集.【解析】(1)因为2320ax x ++>的解集为{}1x b x <<,所以方程2320ax x ++=的两个根为,1(1)b b <,由根与系数关系得:3121b ab a ⎧+=-⎪⎪⎨⎪⋅=⎪⎩,解得525a b =-⎧⎪⎨=-⎪⎩;(2)22321(3)30(3)(1)0ax x ax ax a x ax x -+>-⇒-++>⇒-->, 当a =0,不等式为10x -<,不等式的解集为{}1x x <;当0a <时,不等式化为3()(1)0x x a --<,不等式的解集为31x x a ⎧⎫<<⎨⎬⎩⎭当0a >时,方程2321ax x ax -+=-的两个根分别为:3,1a.当3a =时,两根相等,故不等式的解集为{|1}x x ≠; 当3a >时,31a <,不等式的解集为3{|x x a<或1}x >; 当0<<3a 时,31a>,不等式的解集为{|1x x <或3}x a >,.综上:当0a <时,不等式的解集为31x x a ⎧⎫<<⎨⎬⎩⎭当a =0,不等式的解集为{}1x x <;当0<<3a 时,不等式的解集为{|1x x <或3}x a >.当3a =时,不等式的解集为{|1}x x ≠; 当3a >时,不等式的解集为3{|x x a<或1}x >; 19.(2022·湖南·株洲二中高一开学考试)解下列关于x 的不等式:(a 为实数) (1)220x x a ++< (2)102ax x ->-. 【解析】(1)原不等式对应的一元二次方程为:220x x a ++=, Δ44a =-,当1a ≥时,Δ440a =-≤,原不等式无解;当1a <时,对应一元二次方程的两个解为:11x a =-- 所以220x x a ++<的解为:1111a x a --<--。
中考数学一元二次方程(大题培优 易错 难题)含详细答案
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点. 己知函数222(3)y x mx m =--+(m m 为常数).(1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点; (3)设函数的两个零点分别为1x 和2x ,且121114xx +=-,此时函数图象与x 轴的交点分 别为A 、B(点A 在点B 左侧),点M 在直线10y x =-上,当MA+MB 最小时,求直线AM 的函数解析式.【答案】(1)当m =0时,该函数的零点为6和6-. (2)见解析,(3)AM 的解析式为112y x =--. 【解析】 【分析】(1)根据题中给出的函数的零点的定义,将m=0代入y=x 2-2mx-2(m+3),然后令y=0即可解得函数的零点;(2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可; (3)根据题中条件求出函数解析式进而求得A 、B 两点坐标,个、作点B 关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB 最小时,直线AM 的函数解析式 【详解】(1)当m =0时,该函数的零点为6和6-.(2)令y=0,得△=∴无论m 取何值,方程总有两个不相等的实数根.即无论m 取何值,该函数总有两个零点. (3)依题意有,由解得.∴函数的解析式为.令y=0,解得∴A(),B(4,0)作点B 关于直线10y x =-的对称点B’,连结AB’, 则AB’与直线10y x =-的交点就是满足条件的M 点.易求得直线10y x =-与x 轴、y 轴的交点分别为C (10,0),D (0,10). 连结CB’,则∠BCD=45° ∴BC=CB’=6,∠B’CD=∠BCD=45° ∴∠BCB’=90° 即B’(106-,)设直线AB’的解析式为y kx b =+,则20{106k b k b -+=+=-,解得112k b =-=-, ∴直线AB’的解析式为112y x =--, 即AM 的解析式为112y x =--.2.计算题(1)先化简,再求值:21x x -÷(1+211x -),其中x=2017.(2)已知方程x 2﹣2x+m ﹣3=0有两个相等的实数根,求m 的值. 【答案】(1)2018;(2)m=4 【解析】分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用;(2)根据一元二次方程的根的判别式求解即可.详解:(1)21x x -÷(1+211x -)=2221111x x x x -+÷-- =()()22111x x x x x +-⋅- =x+1,当x=2017时,原式=2017+1=2018(2)解:∵方程x 2﹣2x+m ﹣3=0有两个相等的实数根, ∴△=(﹣2)2﹣4×1×(m ﹣3)=0, 解得,m=4点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用.3.已知关于x 的一元二次方程x 2+(2m+3)x+m 2=0有两根α,β. (1)求m 的取值范围; (2)若111αβ+=-,则m 的值为多少?【答案】(1)14m ≥;(2)m 的值为3. 【解析】 【分析】(1)根据△≥0即可求解, (2)化简11αβ+,利用韦达定理求出α+β,αβ,代入解方程即可.【详解】解:(1)由题意知,(2m+3)2﹣4×1×m 2≥0, 解得:m≥-34; (2)由根与系数的关系得:α+β=﹣(2m+3),αβ=m 2, ∵111αβ+=-,即αβαβ+=-1, ∴2m 3m2+﹣()=-1,整理得m 2﹣2m ﹣3=0解得:m 1=﹣1,m 1=3, 由(1)知m≥-34, ∴m 1=﹣1应舍去, ∴m 的值为3. 【点睛】本题考查了一元二次方程根的判别式以及韦达定理,对根进行判断是正确解题的关键.4.用适当的方法解下列一元二次方程: (1)2x 2+4x -1=0;(2)(y +2)2-(3y -1)2=0.【答案】(1)x 1=-1x 2=-12)y 1=-14,y 2=32.【解析】试题分析:(1)根据方程的特点,利用公式法解一元二次方程即可;(2)根据因式分解法,利用平方差公式因式分解,然后再根据乘积为0的方程的解法求解即可.试题解析:(1)∵a=2,b=4,c=-1 ∴△=b 2-4ac=16+8=24>0∴x=242b b c aa -±-=42461222-±=-±⨯ ∴x 1=-1+6,x 2=-1-6(2)(y +2)2-(3y -1)2=0 [(y+2)+(3y-1)][ (y+2)-(3y-1)]=0 即4y+1=0或-2y+3=0 解得y 1=-14,y 2=32.5.(问题)如图①,在a×b×c (长×宽×高,其中a ,b ,c 为正整数)个小立方块组成的长方体中,长方体的个数是多少? (探究)探究一:(1)如图②,在2×1×1个小立方块组成的长方体中,棱AB 上共有1+2=232⨯=3条线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为3×1×1=3. (2)如图③,在3×1×1个小立方块组成的长方体中,棱AB 上共有1+2+3=342⨯=6条线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为6×1×1=6. (3)依此类推,如图④,在a×1×1个小立方块组成的长方体中,棱AB 上共有1+2+…+a=()a a 12+线段,棱AC ,AD 上分别只有1条线段,则图中长方体的个数为______. 探究二:(4)如图⑤,在a×2×1个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC上有1+2=232⨯=3条线段,棱AD 上只有1条线段,则图中长方体的个数为()a a 12+×3×1=()3a a 12+.(5)如图⑥,在a×3×1个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC上有1+2+3=342⨯=6条线段,棱AD 上只有1条线段,则图中长方体的个数为______. (6)依此类推,如图⑦,在a×b×1个小立方块组成的长方体中,长方体的个数为______.探究三:(7)如图⑧,在以a×b×2个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC 上有()b b 12+条线段,棱AD 上有1+2=232⨯=3条线段,则图中长方体的个数为()3a a 12+×()b b 12+×3=()()3ab a 1b 14++.(8)如图⑨,在a×b×3个小立方块组成的长方体中,棱AB 上有()a a 12+条线段,棱AC上有()b b 12+条线段,棱AD 上有1+2+3=342⨯=6条线段,则图中长方体的个数为______.(结论)如图①,在a×b×c 个小立方块组成的长方体中,长方体的个数为______. (应用)在2×3×4个小立方块组成的长方体中,长方体的个数为______. (拓展)如果在若干个小立方块组成的正方体中共有1000个长方体,那么组成这个正方体的小立方块的个数是多少?请通过计算说明你的结论.【答案】探究一:(3)()a a12+;探究二:(5)3a(a+1);(6)()()ab a1b14++;探究三:(8)()()3ab a1b12++;【结论】:①()()()abc a1b1c18+++;【应用】:180;【拓展】:组成这个正方体的小立方块的个数是64,见解析.【解析】【分析】(3)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(5)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(6)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(8)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(结论)根据规律,求出棱AB,AC,AD上的线段条数,即可得出结论;(应用)a=2,b=3,c=4代入(结论)中得出的结果,即可得出结论;(拓展)根据(结论)中得出的结果,建立方程求解,即可得出结论.【详解】解:探究一、(3)棱AB上共有()a a12+线段,棱AC,AD上分别只有1条线段,则图中长方体的个数为()a a12+×1×1=()a a12+,故答案为() a a12+;探究二:(5)棱AB上有()a a12+条线段,棱AC上有6条线段,棱AD上只有1条线段,则图中长方体的个数为()a a12+×6×1=3a(a+1),故答案为3a(a+1);(6)棱AB上有()a a12+条线段,棱AC上有()b b12+条线段,棱AD上只有1条线段,则图中长方体的个数为()a a12+×()b b12+×1=()()ab a1b14++,故答案为()() ab a1b14++;探究三:(8)棱AB上有()a a12+条线段,棱AC上有()b b12+条线段,棱AD上有6条线段,则图中长方体的个数为()a a 12+ ×()b b 12+×6=()()3ab a 1b 12++,故答案为()()3ab a 1b 12++;(结论)棱AB 上有()a a 12+ 条线段,棱AC 上有()b b 12+条线段,棱AD 上有()c c 12+条线段,则图中长方体的个数为()a a 12+×()b b 12+×()c c 12+=()()()abc a 1b 1c 18+++,故答案为()()()abc a 1b 1c 18+++;(应用)由(结论)知,()()()abc a 1b 1c 18+++,∴在2×3×4个小立方块组成的长方体中,长方体的个数为()()()2342131418⨯⨯⨯+⨯+⨯+=180,故答案为为180;拓展:设正方体的每条棱上都有x 个小立方体,即a=b=c=x ,由题意得33(1)8x x +=1000, ∴[x (x+1)]3=203, ∴x (x+1)=20,∴x 1=4,x 2=-5(不合题意,舍去) ∴4×4×4=64所以组成这个正方体的小立方块的个数是64. 【点睛】解此题的关键在于根据已知得出规律,题目较好,但有一定的难度,是一道比较容易出错的题目.6.为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?【答案】共有35名同学参加了研学游活动. 【解析】试题分析:由该班实际共支付给旅行社3150元,可以判断出参加的人数在30人以上,等量关系为:(100﹣在30人基础上降低的人数×2)×参加人数=3150,得到相关解后根据人均活动费用不得低于80元作答即可.试题解析:∵100×30=3000<3150,∴该班参加研学游活动的学生数超过30人.设九(1)班共有x人去旅游,则人均费用为[100﹣2(x﹣30)]元,由题意得:x[100﹣2(x﹣30)]=3150,整理得x2﹣80x+1575=0,解得x1=35,x2=45,当x=35时,人均旅游费用为100﹣2(35﹣30)=90>80,符合题意.当x=45时,人均旅游费用为100﹣2(45﹣30)=70<80,不符合题意,应舍去.答:该班共有35名同学参加了研学旅游活动.考点:一元二次方程的应用.7.解方程:(x2+x)2+(x2+x)=6.【答案】x1=﹣2,x2=1【解析】【分析】设x2+x=y,将原方程变形整理为y2+y﹣6=0,求得y的值,然后再解一元二次方程即可.【详解】解:设x2+x=y,则原方程变形为y2+y﹣6=0,解得y1=﹣3,y2=2.①当y=2时,x2+x=2,即x2+x﹣2=0,解得x1=﹣2,x2=1;②当y=﹣3时,x2+x=﹣3,即x2+x+3=0,∵△=12﹣4×1×3=1﹣12=﹣11<0,∴此方程无解;∴原方程的解为x1=﹣2,x2=1.【点睛】本题考查了换元法和一元二次方程的解法,设出元化简原方程是解答本题的关键.8.利民商店经销甲、乙两种商品.现有如下信息信息1:甲乙两种商品的进货单价和为11;信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:信息3:按零售单价购买甲商品3件和乙商品2件共付37元.()1甲、乙两种商品的进货单价各是多少?()2据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降0.1元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a元,在不考虑其他因素的条件下,当a定为多少时,才能使商店每天销售甲种商品获取利润为1500元?【答案】(1)甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件(2)当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元 【解析】 【分析】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据给定的三个信息,可得出关于x ,y 的二元一次方程组,解之即可得出结论;()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据总利润=单件利润⨯销售数量,即可得出关于a 的一元二次方程,解之即可得出结论. 【详解】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据题意得:()()113x 222y 437x y +=⎧++-=⎨⎩,解得:{56x y ==.答:甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件.()2当零售单价下降a 元/件时,每天可售出()5001000a +件, 根据题意得:()()250010001500a a -+=,整理得:22310a a -+=, 解得:10.5a =,21a =.答:当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元. 【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2找准等量关系,正确列出一元二次方程.9.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元. (1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x 元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7. 【解析】 【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解. 【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克, b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩解之得:108a b =⎧⎨=⎩答:甲、乙两种苹果的进价分别为10元/千克,8元/千克 (2)由题意得:()()()()410010214010960x x x x +-++-= 解之得:12x =,27x =经检验,12x =,27x =均符合题意 答:x 的值为2或7. 【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.10.自2018年1月10日零时起,高铁开通,某旅行社为吸引广大市民组团去仙都旅游,推出了如下收费标准:如果人数不超过10人,人均旅游费用为200元,如果人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150元.()1如果某单位组织12人参加仙都旅游,那么需支付旅行社旅游费用________元; () 2现某单位组织员工去仙都旅游,共支付给该旅行社旅游费用2625元,那么该单位有多少名员工参加旅游? 【答案】(1)2280;(2)15 【解析】 【分析】对于(1)根据人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150来求解;对于(2)设这次旅游可以安排x 人参加,而由10×200=2000<2625,可以得出人数大于10人,则根据x 列出方程:(10+x )(200-5x )=2625,求出x ,然后根据人均旅游费用降低5元,但人均旅游费用不得低于150来求出x 的范围,最后得出x 的值. 【详解】 (1)2280()2因为1020020002625⨯=<.因此参加人比10人多,设在10人基础上再增加x 人,由题意得:()()1020052625x x +-=.解得 15x = 225x =,∵2005150x -≥,∴010x <≤,经检验 15x =是方程的解且符合题意,225x =(舍去).1010515x +=+=答:该单位共有15名员工参加旅游.【点睛】本题主要考查一元二次方程的应用和一元一次不等式的应用,根据题意作出判断,列出一元二次方程,求解方程,舍去不符合题意的解,从而得出结果.。
2022_2023学年新教材高中数学课时作业十三从函数观点看一元二次方程湘教版必修第一册
课时作业(十三) 从函数观点看一元二次方程[练基础]1.若x1,x2是方程x2-3x-4=0的两个根,则x1+x2的值是( )A.1 B.-3 C.3 D.-42.若b2-4ac=0,则二次函数y=ax2+bx+c(a≠0)零点的个数为( )A.0个 B.1个 C.2个 D.无法确定3.若二次函数y=ax2+bx+c(a<0)有两个零点x1<0,x2>0,且x1+x2>0,则( )A.b>0,c>0 B.b>0,c<0C.b<0,c>0 D.b<0,c<04.已知a,b,c满足a+c=2b,那么二次函数y=ax2+2bx+c的图象与x轴交点的个数为( )A.0 B.1 C.2 D.1或25.已知函数y=ax2+bx+c,如果a>b>c且a+b+c=0,则它的图象可能是( )6.(多选)由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=ax2+bx+c的图象过点(1,0)……求证:这个二次函数的图象关于直线x=2对称,根据现有信息,题中的二次函数一定具有的性质是( )A.在x轴上截得的线段的长度是2B.与y轴交于点(0,3)C.顶点是(-2,-2)D.过点(3,0)7.已知二次函数的图象的顶点坐标为(1,1),且过点(2,2),则该二次函数的解析式为________________.8.已知α,β是方程x2-7mx+4m2=0的两根,且(α-1)·(β-1)=3,则m的值为________.9.已知函数y=x2+ax+b的图象与x轴分别交于点(1,0),(2,0),求函数y=x2+bx+a的零点.10.已知关于x的一元二次方程x2-(2k-1)x+k2+k-1=0有实数根.(1)求k的取值范围;(2)若此方程的两个实数根x1,x2满足x+x=11,求k的值.[提能力]11.二次函数y=ax2+bx+c(a≠0)的图象开口向下,与y轴正半轴相交,则函数的零点个数是( )A.1B.2 C.0D.无法确定12.(多选)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1<x2,则下列结论中正确的是( )A.当m=0时,x1=2,x2=3B.m>-C.当m>0时,2<x1<x2<3D.二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0)13.一元二次方程(1-k)x2-2x-1=0有两个不相等的实数根,则实数k的取值范围是________.14.若函数f(x)=x2+x-a的一个零点是-3,则实数a的值为________,函数f(x)其余的零点为________.15.已知关于x的一元二次方程x2+(4m+1)x+2m-1=0.(1)求证:不论m为任何实数,方程总有两个不相等的实数根;(2)若方程两根为x1,x2且满足+=-,求m的值.[培优生]16.对于二次函数y=ax2+(b+1)x+b-2(a≠0),若存在实数x0,当x=x0,有y =x0成立,则称x0为该二次函数的不动点.(1)当a=2,b=-2时,求该二次函数的不动点;(2)若对于任意实数b,二次函数恒有两个不相同的不动点,求a的取值范围.课时作业(十三) 从函数观点看一元二次方程1.解析:由韦达定理得x1+x2=-=3.答案:C2.解析:因为b2-4ac=0,所以一元二次方程ax2+bx+c=0有两个相等的实数根,所以二次函数y=ax2+bx+c有一个零点.答案:B3.解析:首先a<0,由于二次函数一个正根、一个负根,而x1·x2=,故c>0.而x1+x2=->0,所以b>0,故选A.答案:A4.解析:∵2b=a+c,∴Δ=4b2-4ac=(a+c)2-4ac=(a-c)2≥0,∴二次函数y =ax2+2bx+c的图象与x轴交点的个数为1或2,故选D.答案:D5.解析:∵a+b+c=0且a>b>c,∴a>0,c<0,∴抛物线的开口向上,与y轴的交点在负半轴上,选项D符合题意.故选D.答案:D6.解析:A.抛物线与x轴两交点为(1,0),(3,0),故在x轴上截得的线段长是2,正确;B.图象过点(1,0),且对称轴是直线x=2时,代入解析式即可得出b=-4a,c=3a.当a=1时与y轴的交点可以是(0,3),正确.C.顶点的横坐标应为对称轴,本题的顶点坐标与已知对称轴矛盾,错误;D.因为图象过点(1,0),且对称轴是直线x=2,则x轴上另一个交点为(3,0),正确.答案:ABD7.解析:设二次函数的解析式为y=a(x-1)2+1(a≠0),将(2,2)代入上式,2=a(2-1)2+1得a=1,所以y=(x-1)2+1.答案:y=(x-1)2+18.解析:因为α,β是方程x2-7mx+4m2=0的两根,所以α+β=7m,αβ=4m2,Δ=(-7m)2-4×1×4m2=33m2≥0.又因为(α-1)(β-1)=3,即αβ-(α+β)-2=0,所以4m2-7m-2=0,解得m=2或m=-.答案:2或-9.解析:由题意,1,2是函数y=x2+ax+b的零点,所以x1=1,x2=2是方程x2+ax+b=0的根,所以,所以,所以方程x2+2x-3=0的两个根为x1=1,x2=-3,即函数y=x2+2x-3的零点为1,-3.10.解析:(1)由题意方程x2-(2k-1)x+k2+k-1=0有实数根,则满足Δ=[-(2k-1)]2-4(k2+k-1)=-8k+5≥0,解得k≤,即实数k的取值范围是;(2)由(1)可知k≤,又由一元二次方程中根与系数的关系,可得x1+x2=2k-1,x1x2=k2+k-1,因为x+x=(x1+x2)2-2x1x2=(2k-1)2-2(k2+k-1)=2k2-6k+3=11,所以k=4或k=-1,又因为k≤,所以k=-1.11.解析:因为二次函数y=ax2+bx+c(a≠0)的图象开口向下,所以a<0,因为图象与y轴正半轴相交,所以c>0,所以a·c<0,所以Δ=b2-4ac>0,所以方程ax2+bx+c=0有两个根,故函数有两个零点.答案:B12.解析:画出二次函数y=(x-2)(x-3)的图象,当m=0时,x1=2,x2=3成立,故A选项结论正确.根据二次函数图象的对称性可知,当x=2.5时,y取得最小值为-.要使y=(x-2)(x-3)=m有两个不相等的实数根,则需m>-,故B选项结论正确.当m>0时,根据图象可知x1<2,x2>3,故C选项结论错误.由(x-2)(x-3)=m展开得x2-5x+6-m=0,根据韦达定理得x1+x2=5,x1·x2=6-m.所以y=(x-x1)(x-x2)+m=x2-(x1+x2)x+x1x2+m=x2-5x+6=(x-2)(x-3),故y=(x-x1)(x-x2)+m与x轴的交点坐标为(2,0),(3,0).答案:ABD13.解析:由题意一元二次方程(1-k)x2-2x-1=0有两个不相等的实数根,则,解得k<2且k≠1.答案:k<2且k≠114.解析:由题意知f(-3)=0,即(-3)2-3-a=0,a=6.所以f(x)=x2+x-6.解方程x2+x-6=0,得x=-3或2.所以函数f(x)其余的零点是2.答案:6 215.解析:(1)∵Δ=(4m+1)2-4(2m-1)=16m2+5>0,∴方程有两个不相等的实根.(2)∵x1+x2=-(4m+1),x1x2=2m-1,+==-,∴=-,∴m=-.16.解析:(1)由题意得2x2+(-2+1)x+(-2)-2=x,整理得2x2-2x-4=0,解方程得x1=-1,x2=2,则该二次函数的不动点为-1和2.(2)由题意可知方程ax2+(b+1)x+b-2=x恒有两解,则Δ=b2-4a(b-2)=b2-4ab+8a>0对任意的实数b恒成立.把b2-4ab+8a看作是关于b的二次函数,则有Δ1=(4a)2-4·8a=16a2-32a=16a(a-2)<0,解得0<a<2即为所求.。
2024年中考数学一轮复习考点07 一元二次方程(精讲)(解析版)31
考点07.一元二次方程(精讲)【命题趋势】一元二次方程以考查一元二次方程的相关概念、解一元二次方程、根的判别式、韦达定理(根与系数的关系)、一元二次方程的应用题为主,既有单独考查,也有和二次函数结合考察最值问题,年年考查,分值为15分左右。
预计2024年各地中考还将继续考查,复习过程中要多注意各基础考点的巩固,特别是解法中公式法的公式,不要和后续二次函数顶点坐标的纵坐标公式记混了。
【知识清单】1:一元二次方程的相关概念(☆☆)1)一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程。
2)一般形式:2(0)0ax bx c a ++=≠,其中:a 是二次项系数,b 是一次项系数,c 是常数项。
3)一元二次方程的解:使一元二次方程左右两边相等的未知数的值,就是该一元二次方程的解。
2:一元二次方程的解法(☆☆☆)1)直接开平方法:适合于2()()0x a b b ±=≥或22()()ax b cx d ±=±形式的方程。
2)配方法:(1)化二次项系数为1;(2)移项,使方程左边只含有二次项和一次项,右边为常数项;(3)方程两边同时加上一次项系数一半的平方;(4)把方程整理成2()()0x a b b ±=≥的形式;(5)运用直接开平方法解方程。
3)因式分解法:基本思想是把方程化成()()0ax b cx d ++=的形式,可得0ax b +=或0cx d +=。
4)公式法:(1)把方程化为一般形式,即20ax bx c ++=;(2)确定,,a b c 的值;(3)求出24b ac -的值;(4)将,,a b c 的值代入2b x a-±=即可。
5)根的判别式:一元二次方程2(0)0ax bx c a ++=≠是否有实数根,由24b ac -的符号来确定,我们把24b ac -叫做一元二次方程根的判别式。
6)一元二次方程根的情况与判别式的关系(1)当240b ac ->时,方程2(0)0ax bx c a ++=≠有两个不相等的实数根;(2)当240b ac -=时,方程2(0)0ax bx c a ++=≠有1个(两个相等的)实数根;(3)当240b ac -<时,方程2(0)0ax bx c a ++=≠没有实数根。
从函数的观点看一元二次方程与一元二次不等式
从函数的观点看一元二次方程与一元二次不等式从函数的角度来看,一元二次方程和一元二次不等式都是关于一个未知数的二次函数。
一元二次不等式是只含有一个未知数,且未知数的最高次数为2的整式不等式。
而一元二次方程则是有两相异实根或有两相等实根的二次函数。
对于一元二次方程,判别式Δ=b²-4ac可以判断其有无实根以及实根的情况。
当Δ>0时,方程有两相异实根x1和x2;当Δ=0时,方程有两相等实根x1=x2;当Δ<0时,方程没有实数根。
而对于一元二次不等式,其解集可以通过判别式2Δ的符号来确定。
当2Δ>0时,解集为{x|x>x2或x<x1};当2Δ=0时,解集为{x|x=x1或x=x2};当2Δ<0时,解集为{x|x1<x<x2}。
此外,对于分式不等式和整式不等式,我们可以通过乘上一个不等式来确定其符号。
具体而言,对于f(x)/g(x)>0(0(<0);对于f(x)/g(x)≥0(≤0),我们则需要同时满足f(x)·g(x)≥0(≤0)且g(x)≠0.在解不等式时,我们需要注意绝对值不等式的解集,以及当a=0时的特殊情况。
同时,要结合函数图象来确定___成立的条件。
针对一些疑误辨析,我们可以判断:(1)错误,解集为(-∞,x1)∪(x2,+∞)时,并不能确定方程的两个根;(2)正确,解集为(x1,x2)时,a必须大于0;(3)错误,解集为x≤a时,其实为(-∞,a]。
4.已知函数$f(x)=-x+ax+b-b+1(a\in R,b\in R)$,对任意实数$x$都有$f(1-x)=f(1+x)$成立,当$x\in[-1,1]$时,$f(x)>0$恒成立,则$b$的取值范围是()解析:由$f(1-x)=f(1+x)$可得$-1+a+b-b+1=1+a-b-b+1$,即$a=0$,代入$f(x)>0$恒成立的条件,可得$b\in(-1,0)\cup(2,+\infty)$,故选项为$\textbf{(C)}$。
用函数观点看一元二次方程
用函数观点看一元二次方程一元二次方程是数学中的重要内容,通过函数的观点来看待一元二次方程可以更加深入地理解其性质和解法。
在本文中,将从函数的角度出发,探讨一元二次方程的定义、特点以及解法,并结合具体例子进行说明。
我们来回顾一下函数的概念。
函数是数学中的基本概念,它描述了一个变量与另一个变量之间的关系。
在一元二次方程中,我们可以将自变量视为方程中的未知数,因变量视为方程的解。
通过这种角度,我们可以将一元二次方程看作是一个函数关系。
一元二次方程的一般形式为:ax² + bx + c = 0。
其中a、b、c为已知常数,x为未知数。
在函数的观点下,我们可以将一元二次方程看作是一个关于x的二次函数。
而二次函数的图象是一个抛物线,其开口的方向取决于a的正负性。
接下来,我们来讨论一元二次方程的特点。
首先,一元二次方程在解的个数上有一些特殊性。
根据韦达定理,一元二次方程的解的个数与方程的判别式有关。
当判别式大于0时,方程有两个不相等的实数解;当判别式等于0时,方程有两个相等的实数解;当判别式小于0时,方程没有实数解,但有两个共轭复数解。
一元二次方程在图象上也有一些特点。
根据二次函数的性质,当a 大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。
同时,方程的解对应了抛物线与x轴的交点,这些交点被称为方程的根。
根的个数和位置与方程的系数有关,可以通过观察方程的图象来判断方程的解的情况。
我们来探讨一元二次方程的解法。
求解一元二次方程的一种常见方法是配方法。
通过变形、配方和化简,我们可以将一元二次方程转化为完全平方式,从而求得方程的解。
另一种常见的解法是使用求根公式,即利用判别式和一些公式来求解方程的根。
除了这些常见的解法,我们还可以利用图象的性质来求解一元二次方程。
通过观察抛物线与x轴的交点,我们可以直观地得到方程的解。
这种方法在一些特殊情况下尤为有效,例如当方程的系数为整数或有理数时。
通过函数的观点来看待一元二次方程,我们可以更加深入地理解其性质和解法。
用函数观点看一元二次方程—巩固练习基础-精品
用函数观点看一元二次方程一巩固练习(基础)【巩固练习】 一、选择题1 .抛物线y=-犬2+2丘+2与x 轴的交点个数为()A.0B.1C.2D.以上答案都不对2 .下列表格是二次函数片af+H+c 的自变量才与函数值y 的对应值,判断方程(aWO,a,b, 。
为常数)的一个解x 的范围()X6.17 6.18 6.19 6.20 y=ax^bx^c-0.03 -0.01 0.02 0.04A.6<K6.17B.6.17<K6.18C.6.18<X6.19D.6.19<K6.20013 .已知函数%=/与函数%=—x+3的图象大致如图所示.若y <%,则自变量x 的取值范围是() 3 3 3 3 A.—<x<2B.—2<x<—C.工>2或工<—D.x <c —2或x>一2 2 2 24 .已知二次函数y=ax 2+bx+c 的部分图象如图所示,则关于x 的一元二次方程ax 2+bx+c=0的解为()A.x=0B.x=lC.x=3D.XF 3,X ?=T5 .二次函数y=ar+灰+c 的图象如图所示,则下列选项正确的是()6 .如图所示,二次函数),=〃?+嬴+c (aW0)的图象经过点(T,2),且与x 轴交点的横坐标分别为玉、x 2,其中一2<司<一1, 卜列结论:QD4。
-2Z?+c <0;②2。
—/?<0;③av —1;④〃~+8。
>4。
.其中正确的有( )A.1个B.2个C.3个D.4个 二、填空题7 .二次函数y=V —21—1的图象与x 轴交点坐标为;与y 轴的交点坐标为.8 .已知二次函数y 二V 一般1»+加2+4根+4的图象与x 轴有两个交点,则m 的取值范围为A.a>0, b>0, b 2-4ac>0B.a<0, c>0, b 1— 4ac > 0 C.a>0, b<0, b 1-4tzc>0D.a>0, c<0, b 1— 4ac < 0第3题 第5题 第6题9.抛物线y=/-工与直线y=-3x+3的交点坐标为.10.已知二次函),=—V+2x+m的部分图象如图所示,则关于x的一元二次方程一f+2x+m=。
用函数的观点看一元二次方程教学设计(3)
作者姓名宋宁学校齐河县潘店镇中学学科数学年级/班级九年级教材版本人教版课时名称用函数观点看一元二次方程上课时间1课时学生人数45单元背景单元学习概述《用函数的观点看一元二次方程》选自义务教育课程标准试验教科书《数学》(人教版)九年级下册第二十六章,这节课是在学生学习了二次函数的概念、图象、性质及其相关应用的基础上,让学生继续探索二次函数与一元二次方程的关系。
课时设计说明教材通过小球飞行这样的实际情境,创设三个问题,这三个问题对应了一元二次方程有两个不等实根、有两个相等实根、没有实根的三种情况。
这样,学生结合问题实际意义就能对二次函数与一元二次方程的关系有很好的体会;从而得出用二次函数的图象求一元二次方程的方法。
这也突出了课标的要求:注重知识与实际问题的联系。
学习目标知识与技能:理解二次函数y=a x² +bx + c与x轴有交点,则一元二次方程ax² +bx + c = 0有实数根,若与x轴无交点,则方程无实数根;知道抛物线与x轴三种位置关系,对应着一元二次方程的根的三种情况;会利用二次函数的图象求一元二次方程的近似解过程与方法:通过对一元二次方程根的不同情况下,学生历经从函数解析式及函数图象角度探索与一元二次方程之间的关系,渗透了数形结合及转化的思想方法.情感、态度与价值观:由实际问题引入,激发学生应用数学的意识,通过师生交流、生生交流,学生养成了乐于探究、勇于探索的良好学习习惯,同时学生从中也感受了合作成功带来的喜悦.教学重难点及解决措施重点:如何让学生理解一元二次方程与二次函数之间的关系. 难点:让学生理解用图形法能求方程解的合理性及方法步骤. 解决措施:采用“主动探究、合作交流”的数学活动模式,真正为学生创设一个自主探究、合作交流的活动空间,让每个人获得有价值的数学.教学过程(环节一)情景导入球场上,一球员打出一杆球,如果球的飞行路线将是一条抛物线球的飞行高度为y(m) 与飞行时间为x(s)之间满足y= -5x²+20x问题:⑴球的飞行高度能否达到15m?如能,需要多少飞行时间?⑵球的飞行高度能否达到20m?如能,需要多少飞行时间?⑶球的飞行高度能否达到25m?为什么?活动方式:学生独立思考,列出一元二次方程并交流做出的判断.设计意图:通过实际问题的引入,列出一元二次方程,为探所二次函数与一元二次方程的的关系做铺垫,从而引出课题.(环节二)探究新知一 、从解析式探索函数与一元二次方程的关系1、从实际问题列出的三个方程出发,在解决完提出的三个问题之后,观察三个方程根的情况,并首先以第一个方程为例,剖析函数与方程的关系.y= -5x ²+20x函数值为15 根为x 1=1, x 2=3(对应自变量的值)-5x ²+20x = 152、对比上述分析,让学生结合方程根的情况,说出另外两个方程与函数之间的关系. 设计意图:通过对第一个方程与函数之间关系的探索,让学生明确方程的根为函数值为15时,对应的自变量的值(也可理解为当自变量的值为1或3是函数值为15),让学生体会它们之间的关系,并通过对另外两个方程的对比分析,让学生进一步巩固加深认识,有效渗透转化的数学思想.二、从图象探索函数与一元二次方程的关系通过对一个高度问题的探索,引出从图象角度探索函数与一元二次方程的关系,学生再次以由实际问题引出的第一个方程为例,从图象的角度说明:(1)纵坐标为15的点构成直线y=15与抛物线若有交点,则方程-5x ²+20x = 15有根,有几个交点就有几个根.(2)通过观察发现,方程的根即为交点的横坐标. (3)对比上述分析,让学生结合方程根的情况,从图象角度说出另外两个方程与函数之间的关系.1 3 o xy15设计意图:学生从图象角度出发,去探索函数值一定时,得出一元二次方程的根,即为两图象交点的横坐标,并发现交点的个数为方程根的个数,在这个环节,我并没有急于进行归纳总结,而是在接下来的环节,以例题的形式一组方程让学生巩固刚刚得出的这些结论.(环节三)应用总结一、例题讲解解方程:(1)x ²+x -2=0(2)x ²-6x +9=0(3)x ²-x +1=0 解:(1) x 1=1, x 2=-2 (2)x 1=x 2=3 (3)方程无实数根二、总结归纳函数与一元二次方程的关系1、若二次函数y=a x² + bx + c 与x 轴有交点,则一元二次方程ax² + bx + c = 0 有实数根,若与x 轴无交点,则方程无实数根.2、若二次函数y=a x² + bx + c 与x 轴有两个交点、一个交点、无交点,对应一元二次方程ax² + bx + c = 0有两个不相等的实数根、有两个不相等的实数根没有实数根.3、让学生再从方程的角度(根的情况)去判断函数图象与x 轴的交点情况. 活动方式:学生独立思考后并合作交流完成,然后师生评价共同总结.设计意图:学生通过例题解决,能较为熟练地掌握了用图象法法解一元二次方程,对二次函数与一元二次方程的关系有了更为深刻的认识,让学生体会了转化及数形结合的数学思想方法.三、能力提升将例题中的第一个方程进行变形,先让学生求其根,再让学生从图象角度 求出它的解. y= x ²+x -2 y= x ²-x +1 y= x ²-6x +9 o yxy= x ²+x1 -2 2o yxx ²+x -2=0 x ²+x =2x ²= -x +2从图象上可以看出,它们交点的横坐标都是-2和1. 活动方式:本环节要求学生小组合作,分工交流完成并,教师巡视并适时点拨.然后汇报展示.师生共同评价.设计意图:通过两种不同方程表现形式的对比,以及两种不同形式方程的相互转化,体现了转化的数学思想,发现方程变形后,根没有发生变化,并引导学生用图形的方法求方程的近似解,允许学生判断出其准确根,也在参与学生的小组活动时,说明近似根也是合理的,毕竟作图有误差,并通过画图比较后面的两种变形,在画图象求解时难易程度是有区别的,向学生渗透优化的意识.(环节四)反思总结y=ax² + bx + c若有根(根为与x 轴交点的横坐标)ax² + bx + c = 0活动方式:师生共同总结,反思提升.设计意图:通过解法流程图的演示,让学生再一次体会二次函数与一元二次方程之间的关系,让学生从函数的解析式及图象上掌握与方程的关系,期望学生通过本节课的学习,能对一元二次方程给予更深的认识,并能用图像法求的方程的根.(环节六)达标测试函数值为0 y= x ² y= -x +21-2 2 o yx1.已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2011值为2.若二次函数y=-x2+3x+m的图象全部在x轴下方,则m的取值范围为3.已知抛物线y=x2-2x+m与x轴有两个交点,其中一个交点是(-2,0),则方程x2-2x+m=0的两个根分别是x1= ,x2= .(环节五)作业布置作业布置:必做:1、教科书第19页习题26.2第1题2、解方程:利用函数的图象求方程x2-2x-2 =0的实数根(精确到0.1).选做:习题26.2第4题设计意图:第一题通过作业的布置,及时反馈学生的学习效果,通过设置课后思考试题,不仅巩固本节课所学的知识,更拓展学生的思维空间.课后反思在教学过程中,教师作为引导者,为学生创设问题情境、提供问题串、给学生提供广阔的思考空间、活动空间、为学生搭建自主学习的平台;学生则在老师的指导下经历操作、实践、思考、交流、合作的过程,其知识的形成和能力的培养相伴而行,创造“海阔凭鱼跃,天高任鸟飞”的课堂境界。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用函数观点看一元二次方程
学习要求
1.理解二次函数与一元二次方程的关系,掌握抛物线与x轴的交点与一元二次方程两根之间的联系,灵活运用相关概念解题.
2.掌握并运用二次函数y=a(x-x1)(x-x2)解题.
课堂学习检测
一、填空题
1.二次函数y=ax2+bx+c(a≠0)与x轴有交点,则b2-4ac______0;
若一元二次方程ax2+bx+c=0两根为x1,x2,则二次函数可表示为y=_________ ____________.
2.若二次函数y=x2-3x+m的图象与x轴只有一个交点,则m=______.
3.若二次函数y=mx2-(2m+2)x-1+m的图象与x轴有两个交点,则m的取值范围是______.
4.若二次函数y=ax2+bx+c的图象经过P(1,0)点,则a+b+c=______.
5.若抛物线y=ax2+bx+c的系数a,b,c满足a-b+c=0,则这条抛物线必经过点______.
6.关于x的方程x2-x-n=0没有实数根,则抛物线y=x2-x-n的顶点在第______象限.
二、选择题
7.已知抛物线y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0( )
A.没有实根
B.只有一个实根
C.有两个实根,且一根为正,一根为负
D.有两个实根,且一根小于1,一根大于2
8.一次函数y=2x+1与二次函数y=x2-4x+3的图象交点( )
A.只有一个B.恰好有两个
C.可以有一个,也可以有两个D.无交点
9.函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c-3=0的根的情况是( )
A.有两个不相等的实数根B.有两个异号实数根
C.有两个相等的实数根D.无实数根
10.二次函数y=ax2+bx+c对于x的任何值都恒为负值的条件是( ) A.a>0,>0 B.a>0,<0
C.a<0,>0 D.a<0,<0
三、解答题
11.已知抛物线y=ax2+bx+c与x轴的两个交点的横坐标是方程x2+x-2=0的两个根,且抛物线过点(2,8),求二次函数的解析式.
12.对称轴平行于y轴的抛物线过A(2,8),B(0,-4),且在x轴上截得的线段长为3,求此函数的解析式.
综合、运用、诊断
一、填空题
13.已知直线y=5x+k与抛物线y=x2+3x+5交点的横坐标为1,则k=______,交点坐标为______.
8
14.当m=______时,函数y=2x2+3mx+2m的最小值为
9
二、选择题
15.直线y=4x+1与抛物线y=x2+2x+k有唯一交点,则k是( )
A.0 B.1 C.2 D.-1 16.二次函数y=ax2+bx+c,若ac<0,则其图象与x轴( )
A.有两个交点B.有一个交点
C.没有交点D.可能有一个交点
17.y=x2+kx+1与y=x2-x-k的图象相交,若有一个交点在x轴上,则k值为( )
1
A.0 B.-1 C.2 D.
4 18.已知二次函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是( )
A .无实根
B .有两个相等实数根
C .有两个异号实数根
D .有两个同号不等实数根
19.已知二次函数的图象与y 轴交点坐标为(0,a ),与x 轴交点坐标为(b ,0)和(-b ,0),
若a >0,则函数解析式为( ) A .a x b
a
y +=
2 B .a x b
a y +-
=2
2 C .a x b
a y --
=22
D .a x b a y -=2
2 20.若m ,n (m <n )是关于x 的方程1-(x -a )(x -b )=0的两个根,且a <b ,则a ,b ,
m ,n 的大小关系是( ) A .m <a <b <n B .a <m <n <b C .a <m <b <n
D .m <a <n <b
三、解答题
21.二次函数y =ax 2+bx +c (a ≠0,a ,b ,c 是常数)中,自变量x 与函数y 的对应值如下
表:
(1)判断二次函数图象的开口方向,并写出它的顶点坐标;
(2)一元二次方程ax 2+bx +c =0(a ≠0,a ,b ,c 是常数)的两个根x 1,x 2的取值范围是下列选项中的哪一个______.
①223
,02121<<<<-x x ②25
2,21121<<-<<-x x
③2
52,02121<<<<-x x
④22
3
,
21121<<-<<-x x 22.m 为何值时,抛物线y =(m -1)x 2+2mx +m -1与x 轴没有交点?
23.当m 取何值时,抛物线y =x 2与直线y =x +m
(1)有公共点;(2)没有公共点.
拓展、探究、思考
24.已知抛物线y =-x 2-(m -4)x +3(m -1)与x 轴交于A ,B 两点,与y 轴交于C 点.
(1)求m 的取值范围.
(2)若m <0,直线y =kx -1经过点A 并与y 轴交于点D ,且25=⋅BD AD ,求抛物线的解析式.
测试5答案
1.≥0,y =a (x -x 1)(x -x 2). 2.⋅4
9
3.3
1
->m 且m ≠0. 4.0. 5.(-1,0). 6.一.
7.D . 8.B . 9.C . 10.D . 11.y =2x 2+2x -4. 12.45
665182-+-
=x x y 或y =2x 2+2x -4. 13.4,(1,9). 14.⋅9
8
15.C . 16.A . 17.C . 18.D . 19.B . 20.A . 21.(1)开口向下,顶点(1,2),(2)③. 22.⋅<2
1m 23.由x 2-x -m =0(1)当=1+4m ≥0,即4
1
-
≥m 时两线有公共点. (2)当=1+4m <0,即4
1
-<m 时两线无公共点. 24.(1)
=(m +2)2>0,∴m ≠-2;
(2)m =-1,∴y =-x 2+5x -6.。