高中数学公式定理定律大全
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学公式大全
(最全面,最详细)
高中数学公式大全
抛物线: y = ax *+ bx + c
就是 y 等于 ax 的平方加上 bx 再加上 c
a > 0 时开口向上
a < 0 时开口向下
c = 0 时抛物线经过原点
b = 0 时抛物线对称轴为 y 轴
还有顶点式 y = a ( x+h) * + k
就是 y 等于 a 乘以( x+h)的平方 +k
-h 是顶点坐标的 x
k 是顶点坐标的 y 一般用于求最大值与最小值抛物线标准方程 :y^2=2px 它表示抛物线的焦点在 x 的正半轴上 , 焦点坐标为 (p/2,0) 方程为 x=-p/2
由于抛物线的焦点可在任意半轴 , 故共有标准方程
准线y^2=2px y^2=-2px x^2=2py x^2=-2py
圆:体积 =4/3(pi )(r^3)
面积=(pi)(r^2)
周长=2(pi)r
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b )是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注: D2+E2-4F>0 (一)椭圆周长计算公式
椭圆周长公式: L=2πb+4(a -b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长
(2πb)加上四倍的该椭圆长半轴长( a)与短半轴长( b)的差。
(二)椭圆面积计算公式
椭圆面积公式: S=πab
椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长
( a)与短半轴长( b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率 T,但这两个
公式都是通过椭圆周率 T 推导演变而来。常数为体,公式为用。
椭圆形物体体积计算公式椭圆的长半径*短半径*PAI* 高
三角函数:
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-
B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式
tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
sin α+sin( α+2π /n)+sin( α+2π
*2/n)+sin( α+2π*3/n)+ in[ α+2π*(n -1)/n]=0 cos α+cos( α+2π/n)+cos( α+2π*2/n)+cos( α+2π*3/n)+ os[ α+2π*(n -1)/n]=0 以及
sin^2( α)+sin^2( α - 2π/3)+sin^2( α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
四倍角公式:
sin4A=-4*(cosA*sinA*(2*sinA^2-1))
cos4A=1+(-8*cosA^2+8*cosA^4) tan4A=(4*tanA-
4*tanA^3)/(1-6*tanA^2+tanA^4)
五倍角公式:
sin5A=16sinA^5-20sinA^3+5sinA
cos5A=16cosA^5-20cosA^3+5cosA
tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-
10*tanA^2+5*tanA^4) 六倍角公式:
sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-
3+4*sinA^2)) cos6A=((-1+2*cosA^2)*(16*cosA^4-
+s
+c
16*cosA^2+1))
tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-
15*tanA^4
+tanA^6)
七倍角公式:
sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))
cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))
tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-
1+21*tanA^2-3
5*tanA^4+7*tanA^6)
八倍角公式:
sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-
8*sinA^2+8*sinA^4+1))
cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)
tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-
28*tanA^2+7
0*tanA^4-28*tanA^6+tanA^8)
九倍角公式:
sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-
96*sinA^4+36*sinA^2-3