知识点二:直角三角形的中线性质(较难)

合集下载

数学中的平面几何与直角三角形性质

数学中的平面几何与直角三角形性质

数学中的平面几何与直角三角形性质一、平面几何基本概念1.点:在几何中,点是没有任何大小和形状的,只有位置的数学抽象。

2.线段:由两个端点和它们之间的所有点组成,具有长度。

3.射线:一个起点,向一个方向无限延伸的直线。

4.直线:无起点,无终点的无限延伸的线。

5.平面:无限大的,无限延伸的二维空间。

6.三角形:由三条线段组成的平面图形。

7.四边形:由四条线段组成的平面图形。

8.多边形:由多条线段组成的平面图形,边数大于等于3。

二、直角三角形性质1.直角三角形:有一个角是直角(90度)的三角形。

2.直角边:与直角相邻的两条边。

3.斜边:直角三角形中最长的一条边,与直角非相邻。

4.勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。

5.相似三角形:具有相同形状,但大小不同的三角形。

6.直角三角形的面积:直角边乘积的一半。

7.直角三角形的射影定理:直角三角形的三个内角的正切值相等。

8.直角三角形的对称性质:斜边中线等于斜边的一半,斜边上的高线垂直平分斜边。

三、平面几何与直角三角形的联系1.直角三角形是平面几何中的一个重要组成部分。

2.平面几何中的很多定理和性质在直角三角形中都有特殊的表现。

3.直角三角形的性质可以推广到其他类型的三角形,从而扩展平面几何的知识体系。

四、平面几何与直角三角形在实际应用中的例子1.测量土地面积:通过测量直角三角形的斜边和高,可以计算出土地的面积。

2.建筑设计:在建筑设计中,直角三角形的性质可以帮助计算建筑物的尺寸和结构稳定性。

3.物理学:在物理学中,直角三角形的性质可以帮助计算物体的速度、加速度和位移等。

总结:平面几何与直角三角形性质是数学中的基本知识点,掌握这些知识可以帮助我们更好地理解和解决实际问题。

习题及方法:1.习题:判断下列各组点是否共线。

A. (1, 2), (2, 3), (3, 4)B. (1, 1), (2, 2), (3, 3)C. (0, 0), (1, 1), (2, 2)A. 通过观察可以发现,点A中的三个点依次增加1,因此它们共线。

专题 直角三角形斜边上的中线的运用(解析版)

专题 直角三角形斜边上的中线的运用(解析版)

八年级下册数学《第十八章 平行四边形》专题 直角三角形斜边上的中线的运用【例题1】(2022春•镇江期末)如图,在Rt △ABC 中,∠ACB =90°,点D ,E ,F 分别为AB ,AC ,BC 的中点.若CD =5,则EF 的长为 .【分析】已知CD 是Rt △ABC 斜边AB 的中线,那么AB =2CD ;EF 是△ABC 的中位线,则EF应等于AB的一半.【解答】解:∵△ABC是直角三角形,CD是斜边的中线,∴CD=12 AB,又∵EF是△ABC的中位线,∴AB=2CD=2×5=10cm,∴EF=12×10=5cm.故答案为:5.【点评】此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半.【变式1-1】如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若DE=3,则AB的长为 .【分析】根据垂线的性质推知△ADC是直角三角形;然后在直角三角形ADC中,利用直角三角形斜边上的中线是斜边的一半,求得AC=6;最后由等腰三角形ABC的两腰AB=AC,求得AB=6.【解答】解:∵在△ABC中,AD⊥BC,垂足为D,∴△ADC是直角三角形;∵E是AC的中点.∴DE=12AC(直角三角形的斜边上的中线是斜边的一半),又∵DE=3,AB=AC,∴AB=6,故答案为:6.【点评】本题主要考查了直角三角形斜边上的中线、等腰三角形的性质,熟记直角三角形斜边上的中线等于斜边的一半是解题的关键.【变式1-2】(2022秋•海口期末)如图,在△ABC中,AD平分∠BAC,BD⊥AD于点D,过点D作DE∥AC,交AB于点E,若AB=6,则DE的长为( )A.2.5B.3C.3.5D.4【分析】求出∠CAD=∠BAD=∠EDA,推出AE=DE,求出∠ABD=∠EDB,推出BE=DE,求出AE=BE,根据直角三角形斜边上中线性质求出即可.【解答】解:∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE∥AC,∴∠CAD=∠ADE,∴∠BAD=∠ADE,∴AE=DE,∵AD⊥DB,∴∠ADB=90°,∴∠EAD+∠ABD=90°,∠ADE+∠BDE=∠ADB=90°.∴∠ABD=∠BDE.∴DE=BE.∵AB=6,∴DE=BE=AE=12AB=3,故选:B.【点评】该题主要考查了等腰三角形的判定与性质、直角三角形的性质、平行线的性质等几何知识点的应用问题;灵活运用有关定理来分析、判断是解题的关键.【变式1-3】如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=( )A.2B.3C.4D.【分析】根据直角三角形的性质得出AE=CE=5,进而得出DE=3,利用勾股定理解答即可.【解答】解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=5,∴AE=CE=5,∵AD=2,∴DE=3,∵CD为AB边上的高,∴在Rt△CDE中,CD=4,故选:C.【点评】此题考查直角三角形的性质,关键是根据直角三角形的性质得出AE=CE=5.【变式1-4】如图,在△ABC中,D是BC上一点,AB=AD,E、F分别是AC、BD的中点,EF=2,则AC的长是( )A.3B.4C.5D.6【分析】连接AF.由AB=AD,F是BD的中点,根据等腰三角形三线合一的性质得出AF⊥BD.再根据直角三角形斜边上的中线等于斜边的一半求得AC=2EF=4.【解答】解:如图,连接AF.∵AB=AD,F是BD的中点,∴AF⊥BD.∵在Rt△ACF中,∠AFC=90°,E是AC的中点,EF=2,∴AC=2EF=4.故选:B .【点评】本题考查了直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.利用等腰三角形三线合一的性质得出AF ⊥BD 是解题的关键.【变式1-5】(2022秋•工业园区校级期中)如图∠ADB =∠ACB =90°,E 、F 分别是AB 、CD 的中点,若AB =26,CD =24,则△DEF 的周长为( )A .12B .30C .27D .32【分析】先根据直角三角形的性质求出DF 与CF 的长,再由等腰三角形的性质求出DE 的长,根据勾股定理求出EF 的长,进而可得出结论.【解答】解:∵ADB =∠ACB =90°,F 是AB 的中点,AB =26,∴DF =CF =12AB =12×26=13,∴△CDF 是等腰三角形.∵点E 是CD 的中点,CD =24,∴EF ⊥CD ,DE =12CD =12.在Rt △DEF 中,DE =5,∴△DEF 的周长为:DF +DE +EF =13+12+5=30.故选:B .【点评】本题考查的是直角三角形斜边上的中线,熟知在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.【变式1-6】(2022春•南岗区校级期中)如图,△ABC 中,∠ACB =90°,D 是AB 的中点,过点D 作AB 的垂线,交BC 于E ,连接CD ,AE ,CD =4,AE =5,则AC =( )A .3B .245C .5D .247【分析】由直角三角形斜边上的中线可求AB =8,根据线段垂直平分线的性质可得BE =AE =5,再利用勾股定理求得CE 的长,进而可求解AC 的长.【解答】解:∵∠ACB =90°,D 是AB 的中点,CD =4,∴AB =2CD =8,∵ED ⊥AB ,∴DE 垂直平分AB ,∴BE =AE =5,∵AC 2=AE 2﹣CE 2=AB 2﹣BC 2,∴52﹣CE 2=82﹣(5+CE )2,解得CE =1.4,∴AC =245.故选:B .【点评】本题主要考查直角三角形斜边上的中线,线段垂直平分线的性质与判定,勾股定理,掌握勾股定理是解题的关键.【变式1-7】(2021•饶平县校级模拟)如图,在三角形ABC 中,AB =AC ,BC =6,三角形DEF 的周长是7,AF ⊥BC 于F ,BE ⊥AC 于E ,且点D 是AB 的中点,则AF =( )A B C D.7【分析】根据直角三角形斜边上的中线等于斜边的一半可得DE=DF=12AB,EF=12BC,然后代入数据计算即可得解.【解答】解:∵AF⊥BC,BE⊥AC,D是AB的中点,∴DE=DF=12 AB,∵AB=AC,AF⊥BC,∴点F是BC的中点,∴BF=FC=3,∵BE⊥AC,∴EF=12BC=3,∴△DEF的周长=DE+DF+EF=AB+3=7,∴AB=4,由勾股定理知AF故选:B.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记各性质是解题的关键.【变式1-8】如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,EF=7,BC=10,则△EFM的周长是( )A.17B.21C.24D.27【分析】根据CF⊥AB于F,BE⊥AC于E,M为BC的中点,利用直角三角形斜边上的中线等于斜边的一半,求出FM和ME的长,即可求解.【解答】解:∵CF⊥AB,M为BC的中点,∴MF是Rt△BFC斜边上的中线,∴FM=12BC=12×10=5,同理可得,ME=12BC=12×10=5,又∵EF=7,∴△EFM的周长=EF+ME+FM=7+5+5=17.故选:A.【点评】此题主要考查学生对直角三角形斜边上的中线这个知识点的理解和掌握,解答此题的关键是利用直角三角形斜边上的中线等于斜边的一半,求出FM和ME的长.【例题2】(2022秋•莲湖区期中)如图所示,在Rt△ABC中,∠ACB=90°,∠A=62°,CD⊥AB,垂足为D,点E是BC的中点,连接ED,则∠EDB的度数是 .【分析】先利用直角三角形的两个锐角互余可得∠B=28°,然后利用直角三角形斜边上的中线性质可得ED=EB,从而利用等腰三角形的性质即可解答.【解答】解:∵∠ACB=90°,∠A=62°,∴∠B=90°﹣∠A=28°,∵CD⊥AB,∴∠CDB=90°,∵点E是BC的中点,∴ED=EB=12 BC,∴∠EDB=∠B=28°,故答案为:28°.【点评】本题考查了直角三角形斜边上的中线,熟练掌握直角三角形斜边上的中线性质是解题的关键.【变式2-1】如图,在Rt△ABC中,∠BAC=90°,AD是BC边上的中线,ED⊥BC于D,交BA延长线于点E,若∠E=35°,则∠BDA的度数是.【分析】根据直角三角形的性质得到DA=DB,根据三角形内角和定理计算即可.【解答】解:∵∠E=35°,ED⊥BC,∴∠B=55°∵∠BAC=90°,AD是BC边上的中线,∴DA=DB,∴∠B=∠DAB=55°,∴∠BDA=180°﹣55°﹣55°=70°.故答案为:70°.【点评】本题考查的是直角三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.【变式2-2】(2022秋•仓山区校级期末)如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE,ED,BD,若∠BAD=52°,则∠EBD= °.【分析】根据已知条件可以判断EA=EB=EC=DE,根据三角形外角定理可得到:∠DEC=∠DAE+∠ADE=2∠DAE,同理∠BEC=2∠BAE,∠DEB=2∠DAE+2∠BAE=2∠DAB=104°,在等腰三角形BED中,已知顶角,即可求出底角∠EBD的度数.【解答】解:∵∠ABC=∠ADC=90°,∴EA=EB=EC=DE,∴∠DAE=∠EDA,∠BAE=∠EBA,在△AED中,∠DEC=∠DAE+∠ADE=2∠DAE,同理可得到:∠BEC=2∠BAE,∠DEB=∠DEC+∠BEC=2∠DAE+2∠BAE=2(∠DAE+∠BAE)=2×52°=104°,在等腰三角形BED中,∠EBD=12×(180°−104°)=38°;故答案是:38.【点评】本题考查了直角三角形斜边中线定理和三角形外角定理的运用,掌握基本定理是解题的关键.【变式2-3】(2022•碑林区校级模拟)如图,△ABC中,CD⊥AB,垂足为D,E为BC边的中点,AB=4,AC=2,DE=ACD=( )A.15°B.30°C.22.5°D.45°【分析】先根据直角三角形斜边上的中线等于斜边的一半得出BC=2DE=理得出∠ACB=90°,由AB=2AC可求解∠ABC=30°,然后根据同角的余角相等即可得出∠ACD=∠ABC即可求解.【解答】解:∵CD⊥AB,E为BC边的中点,DE=∴BC=2DE=∵AB=4,AC=2,∴AC2+BC2=4+12=16=AB2,∴△ABC是直角三角形,且∠ACB=90°,且∠ABC=30°,∴∠ACD+∠BCD=90°,∵∠ABC+∠BCD=90°,∴∠ACD=∠ABC=30°.故选:B.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的逆定理,余角的性质,证明△ABC是直角三角形是解题的关键.【变式2-4】(2021秋•潍坊期末)如图,四边形ABCD中,∠ADC=∠ABC=90°,E为对角线AC的中点,∠DAC=30°,∠CAB=40°,连结BE,DE,BD,则∠BDE= 度.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AE=BE=DE=12AC,根据等腰三角形的性质以及三角形外角的性质求得∠BEC=80°,∠CED=60°,那么∠BED=140°,然后在等腰△BDE中即可求出底角∠BDE的度数.【解答】解:∵∠ADC=∠ABC=90°,E为对角线AC的中点,∴AE=BE=DE=12 AC,∴∠ABE=∠CAB=40°,∠ADE=∠DAC=30°,∴∠BEC=∠ABE+∠CAB=80°,∠CED=∠ADE+∠DAC=60°,∴∠BED=∠BEC+∠CED=140°.∵BE=DE,∴∠BDE=∠DBE=180°−∠BED2=20°.故答案为:20.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形的性质,三角形外角的性质,三角形内角和定理,熟记各性质并准确识图是解题的关键.【变式2-5】如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠ACD=3∠BCD,E是斜边AB的中点,∠ECD是 度.【分析】先求出∠BCD和∠ACD,再根据直角三角形两锐角互余求出∠B,根据直角三角形斜边上的中线等于斜边的一半可得CE=BE,根据等边对等角可得∠BCE=∠B,再求出∠ECD=45°.【解答】解:∵∠ACB=90°,∠ACD=3∠BCD,∴∠BCD=90°×113=22.5°,∠ACD=90°×313=67.5°,∵CD⊥AB,∴∠B=90°﹣22.5°=67.5°,∵E是AB的中点,∠ACB=90°,∴CE=BE,∴∠BCE=∠B=67.5°,∴∠ECD=∠BCE﹣∠BCD=67.5°﹣22.5°=45°,故答案为:45.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形的性质,熟记性质并准确识图,理清图中各角度之间的关系是解题的关键.【变式2-6】(2021秋•温州期中)如图,在△ABC中,∠ACB=90°,∠CAB=30°.以AB长为一边作△ABD,且AD=BD,∠ADB=90°,取AB中点E,连DE、CE、CD.则∠EDC= °.【分析】根据在直角三角形中,斜边上的中线等于斜边的一半得到EC=EA=EB=12AB,根据三角形的外角的性质求出∠CEB=60°,根据直角三角形的性质得到ED=EC,根据三角形内角和定理计算即可.【解答】解:∵∠ACB=90°,点E是AB中点,∴EC=EA=EB=12 AB,∴∠ECA=∠CAB=30°,∴∠CEB=60°,∵AD=BD,点E是AB中点,∴DE⊥AB,即∠AED=90°,∴∠DEC=180°﹣90°﹣60°=30°,∵∠ADB=90°,点E是AB中点,∴DE=12 AB,∴ED=EC,∴∠EDC=75°,故答案为:75.【点评】本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半、等腰三角形的三线合一是解题的关键.【变式2-7】如图,在四边形ABCD中,∠BCD=∠BAD=90°,AC,BD相交于点E,点G,H分别是AC,BD的中点,若∠BEC=80°,那么∠GHE等于( )A.5°B.10°C.20°D.30°【分析】连接AH,CH,根据在四边形ABCD中,∠BCD=∠BAD=90°,H是BD的中点可知AH=CH=12BD,再由点G时AC的中点可知HG是线段AC的垂直平分线,故∠EGH=90°,再由对顶角相等可知∠GEH=∠BEC=80°,由直角三角形的性质即可得出结论.【解答】解:连接AH,CH,∵在四边形ABCD中,∠BCD=∠BAD=90°,H是BD的中点,∴AH=CH=12 BD.∵点G时AC的中点,∴HG是线段AC的垂直平分线,∴∠EGH=90°.∵∠BEC=80°,∴∠GEH=∠BEC=80°,∴∠GHE=90°﹣80°=10°.故选:B.【点评】本题考查的是直角三角形斜边上的中线,熟知在直角三角形中,斜边上的中线等于斜边的一半是解答此题的关键.【变式2-8】(2022秋•市中区校级月考)如图,已知△ABC中,∠ACB=90°,O为AB的中点,点E 在BC上,且CE=AC,∠BAE=15°,求∠COE的度数.【分析】根据等腰直角三角形的性质得到∠CAE=∠AEC=45°,求得∠CAB=60°,得到∠B=30°,根据直角三角形的性质得到CO=BO=AO=12AB,得到△AOC是等边三角形,∠OCB=∠B=30°,于是得到结论.【解答】解:∵∠ACB=90°,CE=AC,∴∠CAE=∠AEC=45°,∵∠BAE=15°,∴∠CAB=60°,∴∠B=30°,∵∠ACB=90°,O为AB的中点,∴CO =BO =AO =12AB ,∴△AOC 是等边三角形,∠OCB =∠B =30°,∴AC =OC =CE ,∴∠COE =∠CEO =12×(180°﹣30°)=75°.【点评】本题考查了直角三角形斜边上的中线,等腰三角形的性质,等边三角形的判定和性质,正确的识别图形是解题的关键.【例题3】如图,在四边形ABCD 中,∠ABC =∠ADC =90°,M 、N 分别是AC 、BD 的中点,试说明:(1)MD =MB ;(2)MN ⊥BD .【分析】(1)根据直角三角形斜边上的中线等于斜边的一半,以及等边对等角的性质即可证明;(2)根据等腰三角形的三线合一证明.【解答】证明:(1)∵∠ABC =∠ADC =90°,M 是AC 的中点,∴BM =12AC ,DM =12AC ,∴DM =BM ;(2)由(1)可知DM =BM ,∵N 是BD 的中点,∴MN ⊥BD.【点评】此题主要是运用了直角三角形的性质以及等腰三角形的性质,题目难度不大.【变式3-1】(2022春•零陵区校级期中)如图,△ABC中,BE平分∠ABC,BE⊥AF于F,D为AB中点,请说明DF∥BC的理由.【分析】根据在直角三角形中斜边上的中线是斜边的一半得,BD=DF,∠DFB=∠DBF,根据角的平分线的定义知∠FBC=∠FBD,∴∠DFB=∠FBC,再根据内错角相等两直线平行得DF∥BC.【解答】解:∵在直角△AFB中,点D是斜边上的中点,∴DF=BD=12 AB,∴∠DFB=∠DBF,∵BE平分∠ABC,∴∠FBC=∠FBD,∴∠DFB=∠FBC,∴DF∥BC.【点评】本题的关键是明白在直角三角形的性质中斜边上的中线是斜边的一半,角的平分线的定义,平行线的判定中内错角相等,两直线平行.注意等边对等角的运用.【变式3-2】(2021秋•虹口区校级期末)如图,已知△ABC的高BD、CE相交于点O,M、N分别是BC、AO的中点,求证:MN垂直平分DE.【分析】连接EN、DN、EM、DM,由BD与CE为三角形ABC的两条高,可得∠AEC=∠ADB=∠BEC =∠BDC=90°,根据M,N为BC,AO的中点,利用斜边上的中线等于斜边的一半可得EN=DN,EM =DM,根据线段垂直平分线的逆定理得到M、N在线段DE的垂直平分线上,得证.【解答】证明:连接EN、DN、EM、DM,∵BD⊥AC,CE⊥AB,∴∠AEC=∠ADB=∠BEC=∠BDC=90°,∵M、N是BC、AO的中点,∴EN=12AO,DN=12AO,EM=12BC,DM=12BC,∴EN=DN,EM=DM,∴M、N在线段DE的垂直平分线上,∴MN垂直平分DE.【点评】此题考查了直角三角形斜边上中线的性质,以及线段垂直平分线的逆定理,利用了转化的思想,其中连接出如图所示的辅助线是解本题的关键.【变式3-3】如图,△ABC中,AD是边BC上的高,CF是边AB上的中线,DC=BF,点E是CF的中点.(1)求证:DE⊥CF;(2)求证:∠B=2∠BCF.【分析】(1)连接DF,根据直角三角形的性质得到DF=12AB=BF,进而证明DC=DF,根据等腰三角形的三线合一证明结论;(2)根据三角形的外角性质得到∠FDB=2∠DFC,根据等腰三角形的性质证明结论.【解答】证明:(1)连接DF,∵AD是边BC上的高,∴∠ADB=90°,∵点F是AB的中点,∴DF=12AB=BF,∵DC=BF,∴DC=DF,∵点E是CF的中点.∴DE⊥CF;(2)∵DC=DF,∴∠DFC=∠DCF,∴∠FDB=∠DFC+∠DCF=2∠DFC,∵DF=BF,∴∠FDB=∠B,∴∠B=2∠BCF.【点评】本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.【变式3-4】如图,在△ABC中,∠BAC=90°,AD是中线,E是AD中点,过A作AF∥BC交BE的延长线于点F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.【分析】(1)由E是AD的中点,AF∥BC,易证得△AEF≌△DEB,即可得AF=BD,又由在△ABC 中,∠BAC=90°,AD是中线,根据直角三角形斜边的中线等于斜边的一半,即可证得AD=BD=CD=12BC,即可证得:AD=AF;(2)当AB=AC时,四边形ADCF是矩形.由AF=BD=DC,AF∥BC,可证得:四边形ADCF是平行四边形,又由AB=AC,根据三线合一的性质,可得AD⊥BC,AD=DC,继而可得四边形ADCF是正方形.【解答】(1)证明:∵AF∥BC,∴∠EAF=∠EDB,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,∠EAF=∠EDB AE=DE∠AEF=∠DEB,∴△AEF≌△DEB(ASA),∴AF=BD,∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC=12 BC,∴AD=AF;(2)当AB=AC时,四边形ADCF是正方形.∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AB=AC,AD是中线,∴AD⊥BC,∵AD=AF,∴四边形ADCF是正方形.【点评】此题考查了正方形的判定、平行四边形的判定与性质以及全等三角形的判定与性质.此题难度适中.【变式3-5】在Rt△ABC中,∠ABC=90°,BD为∠ABC的角平分线,F为AC的中点,AE∥BC交BD的延长线于点E,其中∠FBC=2∠FBD.(1)求∠EDC的度数.(2)求证:BF=AE.【分析】(1)由角平分线的性质可得∠ABD=∠DBC=45°,可求∠FBD=15°,∠FBC=30°,由直角三角形的性质可得∠C=∠FBC=30°,即可求解;(2)由直角三角形的性质可得BF=AB,由平行线的性质和等腰三角形的性质可得AB=AE,可证BF=AE.【解答】解:(1)∵∠ABC=90°,BD为∠ABC的角平分线,∴∠ABD=∠DBC=45°,∵∠FBC=2∠FBD.∴∠FBD=15°,∠FBC=30°,∵∠ABC=90°,点F是AC中点,∴AF=BF=CF,∴∠C=∠FBC=30°,∴∠EDC=∠C+∠DBC=75°;(2)∵∠C=30°,∠ABC=90°,∴AC=2AB,∴AB=AF=BF,∵AE∥BC,∴∠E=∠DBC=45°=∠ABD,∴AB=AE,∴AE=BF.【点评】本题考查了直角三角形的性质,角平分线的性质,平行线的性质,灵活运用这些性质是本题的关键.【变式3-6】已知,如图,在Rt△ABC中,∠C=90°,点E在AC上,AB=12DE,AD∥BC.求证:∠CBA=3∠CBE.【分析】取DE的中点F,连接AF,根据直角三角形的性质求出AF=DF=FE=12DE,推出DF=AF=AB,根据等腰三角形的性质求出∠D=∠DAF,∠AFB=∠ABF,求出∠ABF=2∠D,∠CBE=∠D,即可得出答案.【解答】证明:取DE的中点F,连接AF,∵AD∥BC,∠ACB=90°,∴∠DAE=∠ACB=90°,∴AF=DF=EF=12 DE,∵AB=12 DE,∴DF=AF=AB,∴∠D=∠DAF,∠AFB=∠ABF,∴∠AFB=∠D+∠DAF=2∠D,∴∠ABF=2∠D,∵AD∥BC,∴∠CBE=∠D,∴∠CBA=∠CBE+∠ABF=3∠CBE.【点评】本题考查了等腰三角形的性质,直角三角形的性质,平行线的性质,三角形的外角性质的应用,能正确作出辅助线是解此题的关键,难度适中.【变式3-7】如图,已知四边形ABCD中,∠ABC=∠ADC=90°,点E是AC中点,点F是BD中点.(1)求证:EF⊥BD;(2)过点D作DH⊥AC于H点,如果BD平分∠HDE,求证:BA=BC.【分析】(1)根据直角三角形和等腰三角形的性质即可得到结论;(2)设AC,BD交于点O,根据垂直的定义得到∠DHO=∠EFO=90°,根据等腰三角形的性质得到∠EDO=∠EBO,由角平分线的定义得到∠HDF=∠BDE,根据等腰三角形的判定定理即可得到结论.【解答】(1)证明:∵∠ABC=∠ADC=90°,点E是AC中点,∴DE=12AC,BE=12AC,∴DE=BE,∵点F是BD中点,∴EF⊥BD;(2)证明:设AC,BD交于点O,∵DH⊥AC,EF⊥BD,∴∠DHO=∠EFO=90°,∵∠DOH=∠BOE,∴∠HDF=∠OEF,∵DE=BE,∴∠EDO=∠EBO,∵BD平分∠HDE,∴∠HDF=∠BDE,∴∠OEF=∠OBE,∵∠OEF+∠EOF=90°,∴∠EOF+∠EBO=90°,∴∠BEO=90°,∴BE⊥AC,∴BA=BC.【点评】本题考查了直角三角形斜边上的中线,等腰三角形的判定和性质,正确的识别图形是解题的关键.【变式3-8】(2021•安顺模拟)如图,在△ABC中,点D在AB上,且CD=CB,E为BD的中点,F为AC的中点,连接EF交CD于点M,连接AM.(1)求证:EF=12 AC;(2)若EF⊥AC,求证:AM+DM=CB.【分析】(1)根据等腰三角形三线合一的性质可得CE⊥BD,再根据直角三角形斜边上的中线等于斜边的一半可得EF=12 AC;(2)根据“SAS”证明△AFM≌△CFM,可得AM=CM,进而可得结论.【解答】(1)证明:连接CE,如图,∵CD=CB,E为BD的中点,∴CE⊥BD,∵F为AC的中点,∴EF=12 AC;(2)证明:∵EF⊥AC,∴∠AFM=∠CFM,∵F为AC的中点,∴AF=CF,∵MF=MF,∴△AFM≌△CFM(SAS),∴AM=CM,∵CD=DM+MC,∴CD=DM+AM,∵BC=DC,∴AM+DM=CB.【点评】本题考查了等腰三角形的性质,直角三角形的性质,全等三角形的判定与性质,灵活应用定理是解决本题的关键.【变式3-9】(2022秋•宿城区期中)如图,在锐角三角形ABC中,CD,BE分别是AB,AC边上的高,M,N分别是线段BC,DE的中点.(1)求证:MN⊥DE.(2)连接DM,ME,猜想∠A与∠DME之间的关系,并证明你的猜想.(3)当∠BAC变为钝角时,如图②,上述(1)(2)中的结论是否都成立?若成立,直接回答,不需证明;若不成立,请说明理由.【分析】(1)连接DM,ME,根据直角三角形的性质得到DM=12BC,ME=12BC,得到DM=ME,根据等腰直角三角形的性质即可得到结论;(2)根据三角形内角和定理、等腰三角形的性质计算即可得到结论;(3)仿照(2)的计算过程解答即可得到结论.【解答】(1)证明:如图(1),连接DM,ME,∵CD、BE分别是AB、AC边上的高,M是BC的中点,∴DM=12BC,ME=12BC,∴DM=ME,又∵N为DE中点,∴MN⊥DE;(2)在△ABC中,∠ABC+∠ACB=180°﹣∠A,∵DM=ME=BM=MC,∴∠BMD+∠CME=(180°﹣2∠ABC)+(180°﹣2∠ACB)=360°﹣2(∠ABC+∠ACB)=360°﹣2(180°﹣∠A)=2∠A,∴∠DME=180°﹣2∠A;(3)结论(1)成立,结论(2)不成立,理由如下:连接DM,ME,在△ABC中,∠ABC+∠ACB=180°﹣∠BAC,∵DM=ME=BM=MC,∴∠BME+∠CMD=2∠ACB+2∠ABC=2(180°﹣∠BAC )=360°﹣2∠BAC ,∴∠DME =180°﹣(360°﹣2∠BAC )=2∠BAC ﹣180°.【点评】本题考查的是直角三角形的性质、三角形内角和定理,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.且AF ⊥CF ,若AC =3,BC =6,则DF 的长为( )A .1.5B .1C .0.5D .2【分析】根据三角形中位线定理求出DE ,根据直角三角形的性质求出FE ,计算即可.【解答】解:∵D 、E 分别为AB 、AC 的中点,BC =6,∴DE =12BC =3,∵AF ⊥CF ,∴∠AFC =90°,∵E 为AC 的中点,AC =3,∴FE =12AC =1.5,∴DF =DE ﹣FE =1.5,故选:A .【点评】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.【变式4-1】(2022春•南岗区校级期中)如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,连接ED ,F 是ED 延长线上一点,连接AF 、CF ,若∠AFC =90°,DF =1,AC =6,则BC 的长度为( )A .2B .3C .4D .5【分析】根据直角三角形斜边上的中线的性质求出EF ,进而求出DE ,根据三角形中位线定理计算,得到答案.【解答】解:在Rt △AFC 中,∠AFC =90°,E 是AC 的中点,AC =6,则EF =12AC =3,∵DF =1,∴DE =3﹣1=2,∵D ,E 分别是AB ,AC 的中点,∴DE 是△ABC 的中位线,∴BC =2DE =4,故选:C .【点评】本题考查的是三角形中位线定理、直角三角形斜边上的中线的性质,掌握三角形中位线等于第三边的一半是解题的关键.【变式4-2】(2022•金乡县三模)如图,在△ABC 中,∠BAC =90°,AD 是BC 边上的高,E 、F 分别是AB 、AC 边的中点,若AB =8,AC =6,则△DEF 的周长为 .【分析】根据勾股定理求出BC,根据直角三角形斜边上的中线性质求出DE和DF,根据三角形的中位线性质求出EF,再求出答案即可.【解答】解:在Rt△ABC中,由勾股定理得:BC==10,∵AD⊥BC,∴∠ADB=∠ADC=90°,∵E、F分别是AB、AC边的中点,AB=8,AC=6,BC=10,∴DE=12AB=4,DF=12AC=3,EF=12BC=5,∴△DEF的周长=EF+DE+DF=5+4+3=12,故答案为:12.【点评】本题考查了勾股定理,直角三角形斜边上的中线性质,三角形的中位线性质等知识点,能熟记直角三角形斜边上的中线等于斜边的一半是解此题的关键.【变式4-3】如图,△ABC的周长为16,G、H分别为AB、AC的中点,分别以AB、AC为斜边向外作Rt △ADB和Rt△AEC,连接DG、GH、EH,则DG+GH+EH的值为( )A.6B.7C.8D.9【分析】根据直角三角形斜边上的中线等于斜边的一半可得DG=12AB,EH=12AC,三角形的中位线平行于第三边并且等于第三边的一半可得GH=12BC,然后求出DG+GH+EH的值为△ABC的一半.【解答】解:∵G、H分别为AB、AC的中点,△ADB和△AEC为直角三角形,∴DG=12AB,EH=12AC,∴GH为△ABC的中位线,∴GH=12 BC,∴DG+GH+EH=12(AB+AC+BC)=12×16=8.故选:C.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质和定理是解题的关键.【变式4-4】(2022春•大足区期末)如图,在Rt△ABC中∠ACB=90°,∠A=30°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=12BC,若EF=2,则DE的长为( )A.2B.1C D+1【分析】连接CD,根据三角形中位线定理得到DE∥BC,DE=12BC,根据平行四边形的性质求出CD,根据直角三角形斜边上的中线的性质求出AB,根据含30°角的直角三角形的性质求出BC,进而求出DE.【解答】解:连接CD,∵点D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=12 BC,∵CF=12 BC,∴DE∥CF,∴四边形DEFC为平行四边形,∴CD=EF=2,在Rt △ACB 中,∠ACB =90°,点D 是边AB 的中点,则AB =2CD =4,在Rt △ACB 中,∠ACB =90°,∠A =30°,则BC =12AB =2,∴DE =12BC =1,故选:B .【点评】本题考查的是三角形中位线定理、平行四边形的判定和性质、直角三角形斜边上的中线的性质、含30°角的直角三角形的性质,灵活运用各个定理是解题的关键.【变式4-5】(2021春•赣榆区期中)如图,在△ABC 中,E 、F 分别是AB 、AC 的中点,延长EF 交△ABC 的外角∠ACD 的平分线于点G .AG 与CG 有怎样的位置关系?证明你的结论.【分析】利用三角形中位线定理推知EF ∥BC .所以利用平行线的性质、三角形角平分线的性质以及等腰三角形的判定证得FG =FC .又由AF =CF ,则FG 是△ACG 中AC 边上的中线,且FG =12AC ,则△AGC 是直角三角形.【解答】解:AG ⊥CG ,理由:∵E 、F 分别是AB 、AC 的中点,∴EF 是△ABC 的中位线,AF =CF ,∴EF ∥BC ,∴∠FGC =∠GCD .∵CG平分∠ACD,∴∠FCG=∠GCD,∴∠FCG=∠FGC,∴FG=FC.又∵AF=CF,∴FG是△ACG中AC边上的中线,且FG=12 AC,∴△AGC是直角三角形,∴AG⊥CG.【点评】本题考查了三角形中位线定理、直角三角形斜边上的中线定理.一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形.该定理可以用来判定直角三角形.【变式4-6】(2022春•海淀区校级期中)如图,在△ABC中,点D,点E分别是边AC,AB的中点,点F在线段DE上,AF=5,BF=12,AB=13,BC=19,求DF的长度.【分析】由三角形中位线定理求出DE,由勾股定理逆定理证得△ABF是直角三角形,根据直角三角形斜边中线定理求出EF,即可求出DF的长度.【解答】解:∵点D,点E分别是边AC,AB的中点,∴DE是△ABC的中位线,∴DE=12BC=12×19=192,在△ABF中,∵AF2+BF2=52+122=169=132,AB2=132,∴AF2+BF2=AB2,∴∠AFB=90°,∴EF=12AB=12×13=132,∴DF=DE﹣EF=192−132=3.【点评】本题主要考查了三角形中位线定理,直角三角形斜边中线定理,勾股定理逆定理,灵活运用这三个定理是解决问题的关键.【变式4-7】(2022春•徐州期中)已知:如图,在△ABC中,D、E、F分别是各边的中点,AH是高.(1)求证:DH=EF;(2)求证:∠DHF=∠DEF.【分析】(1)根据三角形中位线定理得到EF=12AB,根据直角三角形的性质得到DH=12AB,证明结论;(2)连接DF,证明△DHF≌△DEF,证明结论.【解答】证明:(1)∵E、F分别是边BC、AC的中点,∴EF=12 AB,∵AH⊥BC,D是AB的中点,∴DH=12 AB,∴DH=EF;(2)连接DF,由(1)得,DH=EF,同理DE=HF,在△DHF和△DEF中,DH=FEHF=EDDF=FD,∴△DHF≌△DEF,∴∠DHF=∠DEF.【点评】本题考查的是直角三角形的性质、全等三角形的判定和性质,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.【变式4-8】(2021春•罗湖区校级期末)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)若∠BAD=60°,AC平分∠BAD,AC=2,写出求BN长的思路.【分析】(1)根据直角三角形的性质得到BM=12AC,根据三角形中位线定理得到MN=12AD,根据题意证明;(2)证明△NMB是等腰直角三角形,根据勾股定理计算即可.【解答】(1)证明:∵∠ABC=90°,M为AC中点,∴BM=12 AC,∵M为AC中点,N为DC中点,∴MN=12 AD,∵AD=AC,∴BM=MN;(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠DAC=∠CAB=30°,∴BM=AM=12AC=1,∴∠MAB=∠MBA=30°,∴∠CMB=60°根据三角形中位线定理得,MN∥AD,MN=12AD=1,∴∠DAC=∠NMC=30°,∴△NMB是等腰直角三角形,由勾股定理得,BN=【点评】本题考查的是直角三角形的性质、三角形中位线定理以及等腰三角形的性质,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.。

华师大版数学九年级上册《直角三角形斜边中线性质》说课稿

华师大版数学九年级上册《直角三角形斜边中线性质》说课稿

华师大版数学九年级上册《直角三角形斜边中线性质》说课稿一. 教材分析华师大版数学九年级上册《直角三角形斜边中线性质》这一节的内容,是在学生已经掌握了直角三角形的性质,勾股定理等知识的基础上进行教授的。

本节课的主要内容是让学生了解并掌握直角三角形斜边中线的性质,即直角三角形斜边上的中线等于斜边的一半。

这一性质是学生进一步学习几何知识的重要基础。

教材中通过实例引入直角三角形斜边中线的性质,然后通过证明来说明这一性质的正确性。

在教材的设计中,既有理论的阐述,也有大量的练习题,让学生在实践中理解和掌握这一性质。

二. 学情分析九年级的学生已经具备了一定的数学基础,对直角三角形有一定的了解。

但是,对于直角三角形斜边中线的性质,他们可能还没有听说过,或者只是有所耳闻,没有深入的了解。

因此,学生在学习这一节内容时,可能会感到陌生和困难。

同时,九年级的学生正处于青春期,他们的思维方式和学习习惯正在发生变化。

他们对于新知识的学习,更倾向于通过实践和探究来理解。

因此,在教学过程中,教师需要根据学生的特点,采取适当的教学方法,引导学生主动学习,积极参与。

三. 说教学目标本节课的教学目标有三:1.让学生了解直角三角形斜边中线的性质,并能够熟练运用。

2.通过学习直角三角形斜边中线的性质,培养学生的逻辑思维能力和几何直观能力。

3.通过对直角三角形斜边中线性质的学习,激发学生对数学的兴趣,提高他们的数学素养。

四. 说教学重难点本节课的教学难点是直角三角形斜边中线性质的证明。

学生可能不容易理解为什么斜边的中线等于斜边的一半,需要教师通过生动的讲解和形象的图示,帮助学生理解和掌握。

五. 说教学方法与手段本节课的教学方法主要是讲解法和实践法。

讲解法用于向学生传授直角三角形斜边中线的性质和证明方法,实践法用于让学生在实践中理解和掌握这一性质。

教学手段主要是多媒体教学和黑板教学。

多媒体教学用于展示直角三角形斜边中线的性质和证明过程,黑板教学用于展示例题和学生的解题过程。

初中数学知识归纳三角形的中线和高线

初中数学知识归纳三角形的中线和高线

初中数学知识归纳三角形的中线和高线初中数学知识归纳:三角形的中线和高线三角形是初中数学中的重要内容之一,涵盖了许多基本概念和性质。

本文将围绕三角形的中线和高线展开讨论,帮助读者对这一知识点有更深入的理解。

一、中线的定义和性质中线是连接三角形两个顶点的边的中点的线段。

下面我们来研究中线的性质。

1. 三角形的每一条中线都有相同的长度,且与其他两条中线相等。

证明:以三角形的两个顶点为起点,分别连接三个顶点的中点,得到三条中线。

假设这三条中线长度分别为a、b和c。

我们可以发现,通过恰当的平移和旋转,可以使得这三条中线分别与三边重合。

由于平移和旋转都不会改变线段的长度,所以这三条中线的长度都相等。

2. 三角形各边与相应中线的长度呈1:2的比例。

证明:以三角形任意顶点为起点,连接该顶点与相应中线的交点,得到两个等腰三角形。

在等腰三角形中,底边与中线的长度比为1:2。

二、高线的定义和性质高线是从三角形一个顶点到对边所在的直线段,垂直于对边。

下面我们来研究高线的性质。

1. 三角形的三条高线交于一点,该点称为三角形的垂心。

证明:设三角形的三个顶点分别为A、B和C。

我们以AB边为底边,画一个垂直于底边的高线AD,交对边BC于点D。

同样地,我们可以在AC和BC两条边上分别画高线,即AE和BF。

根据垂直线相交于一点的性质,可知AD、AE和BF三条高线交于一点,即三角形的垂心。

2. 垂心到三角形各顶点的距离相等,且垂心到对边的距离等于对边上相应高线的长度。

证明:在垂心上分别作垂线,垂线与三角形的三边相交于D、E和F。

根据直角三角形的性质,可知AD、BE和CF分别是三角形的高线。

由于垂心是由三个垂线的交点确定的,所以垂心到三个顶点的距离相等。

另外,根据垂直线性质可知,垂心到对边的距离等于对边上相应高线的长度。

三、中线和高线的关联性中线和高线是三角形内部的重要线段,它们具有一定的关联性。

1. 三条中线的交点是三角形的重心,重心到各顶点的距离相等,且等于中线长度的2/3。

直角三角形知识点及复习

直角三角形知识点及复习

直角三角形知识点一、直角三角形的性质1、Rt △的两个锐角互余(∠A+∠B=90°)2、斜边上的中线等于斜边的一半(若D 为斜边AB 的中点,则CD =12AB ) 3、30°角所对直角边等于斜边的一半(若∠A =30°,∠C=90°,CB=12AB )4、勾股定理:两直角边的平方和等于斜边的平方(若∠C=90°,则222a b c +=) 二、直角三角形的判定1、有两个锐角互余的△是直角三角形。

2、如果一个三角形中,一条边上的中线等于这条边的一半,那么这条边所对的角为90°3、勾股定理的逆定理:如果三角形三边满足222a b c +=,则∠C =90°。

用法:(1)选出最大边;(2)计算较小两边的平方和;(3)比较最大边的平方与较小两边的平方和;(4)如果两者相等,则最大边所对的角为直角。

三、常用几个结论:(1)(2)直角三角形斜边上的高=两直角边乘积除以斜边。

公式为c ab h c=(3)常见的勾股数: (3k ,4k ,5k )(5k ,12k ,13k )(7k ,24k ,25k )(8k ,15k ,17k )(9k ,40k ,41k )(4)在求曲面上的最短距离时,先把曲面展开成平面图形,画出起点到终点的线段,就是最短距离,一般需要用到勾股定理。

(1)蚂蚁沿着圆柱表面爬行,最短距离例1 如图1有一个圆柱,它的高等于12cm ,底面周长为10cm ,在圆柱的下底面A 点上有一只蚂蚁,他想吃到上底面上与A 点相对的B 点处的食物,需要爬行的最短路程是多少?分析:可以把圆柱的侧面展开,其展开图为矩形,如图3所示。

连接AC ,则AC 即为小虫爬行的最短路线,可用勾股定理求得其长。

300x 2x3x 450x 2xx图1 图2 半周长解:①若沿着曲面走,则:AB=12×10=5,BC=12,所以AC=2251213+=②若走折线A=>D=>C ,则AC+DC=12+10π∵12+10π>13 ∴最短路程为13cm 。

八年级数学专题02 三角形的高、中线、角平分线 (知识点串讲)(原卷版)

八年级数学专题02 三角形的高、中线、角平分线 (知识点串讲)(原卷版)

专题02 三角形的高、中线、角平分线重点突破知识点一三角形的高概念:从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

知识点二三角形的中线概念:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

性质:三角形三条中线的交于一点,这一点叫做“三角形的重心”。

重心到顶点的距离是它到对边中点距离的2倍。

(选学)三角形的中线可以将三角形分为面积相等的两个小三角形。

知识点三三角形的角平分线概念:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

考查题型考查题型一画三角形的高典例1(2020·泉州市期中)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.变式1-1.(2018·梁平区期末)在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为( )A.1个B.2个C.3个D.4个变式1-2.(2020·海淀区期末)用直角三角板,作△ABC的高,下列作法正确的是()A.B.C.D.变式1-3.(2020·苏州市期中)如图,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为点D、点E、点F,△ABC中AC边上的高是()A.CF B.BE C.AD D.CD变式1-4.(2019·杭州市期中)如图AD⊥BC于点D,那么图中以AD为高的三角形的个数有()A.3 B.4 C.5 D.6考查题型二与三角形高有关的计算典例2.(2019·济南市期中)如图,在直角三角形ABC中,点B沿CB所在直线远离C点移动,下列说法错误的是( )A.三角形面积随之增大B.∠CAB的度数随之增大C .BC 边上的高随之增大D .边AB 的长度随之增大变式2-1.(2020·毕节市期末)如图,△ABC 中,D ,E 分别是BC 上两点,且BD=DE=EC ,则图中面积相等的三角形有( )A .4对B .5对C .6对D .7对变式2-2.(2020·龙岩市期中)如图,AD ,CE 是△ABC 的两条高,已知AD=10,CE=9,AB=12,则BC 的长是( )A .10B .10.8C .12D .15变式2-3.(2018·合肥市期中)如图所示,AD CE BF 、、是ABC ∆的三条高,654AB BC AD ===,,,则CE =( )A .245B .152C .103D .3变式2-4.(2018·烟台市期末)如图,在△ABC 中,CD 、BE 分别是AB 、AC 边上的高,并且CD 、BE 交于点P ,若∠A=50°,则∠BPC 等于( )A .90°B .130°C .270°D .315°变式2-5.(2019·荆门市期末)如图,三角形ABC ,∠BAC =90︒,AD 是三角形ABC 的高,图中相等的是( ).A .∠B =∠C B .∠BAD=∠B C .∠C =∠BAD D .∠DAC=∠C变式2-6.(2019·济南市期中)如图△ABC 中,分别延长边AB ,BC ,CA ,使得BD =AB ,CE =2BC ,AF =3CA ,若△ABC 的面积为1,则△DEF 的面积为( )A .12B .14C .16D .18考查题型三 三角形中线有关的长度计算典例3.(2018·秦皇岛市期中)如图,AE 是ABC 的中线,已知EC 4=,DE 2=,则BD 的长为( )A .2B .3C .4D . 6变式3-1.(2019·肇庆市期中)已知AD 是△ABC 的中线,且△ABD 比△ACD 的周长大3cm ,则AB 与AC 的差为( ) A .2cmB .3cmC .4cmD .6cm变式3-2.(2020·哈尔滨市期中)如图,三角形ABC 中,D 为BC 上的一点,且S △ABD =S △ADC ,则AD 为( )A .高B .角平分线C .中线D .不能确定变式3-3.(2019·临清市期末)如图,在△ABC 中,AD 是BC 边上的中线,△ADC 的周长比△ABD 的周长多5cm ,AB 与AC 的和为13cm ,那么AC 的长为( )A .8cmB .9cmC .10cmD .11cm考查题型四 三角形中线有关的面积计算典例4.(2020·渠县期中)如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点, 且△ABC 的面积为4cm 2,则△BEF 的面积等于( )A.2cm2B.1cm2C.0.5 cm2D.0.25 cm2变式4-1.(2018·鄂尔多斯市期中)如图,△ABC的面积为12cm2,点D在BC边上,E是AD的中点,则△BCE的面积是()A.4cm2B.6cm2C.8cm2D.6cm2变式4-2.(2019·沧州市期末)如图,D,E,F分别是边BC,AD,AC上的中点,若S阴影的面积为3,则△ABC 的面积是()A.5 B.6 C.7 D.8变式4-3.(2019·温州市期中)如图,在△ABC中,点D是BC边上的一点,E,F分别是AD,BE的中点,连结CE,CF,若S△CEF=5,则△ABC的面积为()A.15 B.20 C.25 D.30考查题型五三角形重心的有关性质典例5.(2019·北京市期中)如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的()A.三边高的交点B.三条角平分线的交点C.三边垂直平分线的交点D.三边中线的交点变式5-1.(2019·泉州市期中)如图,在△ABC中,D,E分别是BC,AC的中点,AD和BE相交于点G,若AD=6,则AG的长度为()A.2 B.3 C.4 D.5考查题型六三角形的角平分线典例6.(2019·滨州市期末)如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()A.59°B.60°C.56°D.22°变式6-1.(2019·宁德市期末)如图,已知AE是ΔABC的角平分线,AD是BC边上的高.若∠ABC=34°,∠ACB=64°,则∠DAE的大小是()A.5°B.13°C.15°D.20°变式6-2.(2019·信阳市期中)如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为7,AB=4,DE=2,则AC的长是()A.4 B.3 C.6 D.5变式6-3.(2019·合肥市期中)如图所示,AD、AE分别是△ABC的高和角平分线,且∠B=76°,∠C=36°,则∠DAE 等于()A.20°B.18°C.45°D.30°变式6-4.(2020·泰兴市期中)如图,BE、CF是△ABC的角平分线,∠A=50°,BE、CF相交于D,则∠BDC的度数是()A.115°B.110°C.100°D.90°变式6-5.(2019·西安市期末)如图,点O在ABC内,且到三边的距离相等,若∠A=60°,则∠BOC的大小为( )A.135°B.120°C.90°D.60°。

三角形中线定理和高中定理

三角形中线定理和高中定理

三角形中线定理和高中定理一、三角形中线定理1.1 定义:三角形的中线是连接一个顶点与对边中点的线段。

1.2 性质:(1)中线等于第三边的一半。

(2)中线平行于第三边,并且等于第三边的一半。

(3)中线将三角形分成两个面积相等的三角形。

(4)中线的长度是顶点到对边中点的距离。

二、高中定理2.1 三角形内角和定理:一个三角形的三个内角之和等于180度。

2.2 外角定理:一个三角形的外角等于它不相邻的两个内角的和。

2.3 平行线定理:如果两条直线被第三条直线所截,截得的内角互补,那么这两条直线平行。

2.4 同位角定理:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

2.5 同旁内角定理:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。

2.6 垂直定理:如果两条直线相交成直角,那么这两条直线互相垂直。

2.7 对角线互相平分的定理:在一个四边形中,对角线互相平分。

2.8 对角线相等的定理:在一个平行四边形中,对角线相等。

2.9 圆的性质定理:圆是到定点等距的点的集合,圆心是圆上所有点的中心,半径是圆心到圆上任意一点的距离。

2.10 圆周定理:圆的周长等于半径的两倍乘以π。

2.11 圆面积定理:圆的面积等于半径的平方乘以π。

以上是关于三角形中线定理和高中定理的知识点总结,希望对你有所帮助。

习题及方法:1.习题:在一个三角形ABC中,点D是边BC的中点,求证:AD是三角形ABC的中线。

答案:根据三角形中线定理,连接顶点A与对边BC的中点D,可得AD是三角形ABC的中线。

2.习题:已知三角形ABC,AB=AC,点D是边BC上的一个点,且AD=BD,求证:三角形ABC是等腰三角形。

答案:根据三角形中线定理,AD是三角形ABC的中线,且AD=BD,所以AB=AC,因此三角形ABC是等腰三角形。

3.习题:在平行四边形ABCD中,对角线AC和BD相交于点E,求证:AE=CE,BE=DE。

答案:根据平行四边形对角线互相平分的定理,可得AE=CE,BE=DE。

苏教版八年级下册数学[三角形中位线定理 知识点整理及重点题型梳理]

苏教版八年级下册数学[三角形中位线定理 知识点整理及重点题型梳理]

苏教版八年级下册数学重难点突破知识点梳理及重点题型巩固练习三角形中位线定理【学习目标】1. 理解三角形的中位线的概念,掌握三角形的中位线定理.2. 掌握中点四边形的形成规律.【要点梳理】要点一、三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于第三边,并且等于第三边的一半.要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个小三角形的周长为原三角形周长的12,每个小三角形的面积为原三角形面积的14.(3)三角形的中位线不同于三角形的中线.要点二、顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.要点诠释:新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形.(2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.【典型例题】类型一、三角形的中位线1、(2016•北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【思路点拨】(1)根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明.(2)首先证明∠BMN=90°,根据BN2=BM2+MN2即可解决问题.【答案与解析】(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,MN=AD,在RT△ABC中,∵M是AC中点,∴BM=AC,∵AC=AD,∴MN=BM.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM=AC=1,∴BN=【总结升华】本题考查三角形中位线定理、直角三角形斜边中线定理、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.举一反三:【变式】如图,矩形OABC的顶点A、C分别在x轴、y轴正半轴上,B点坐标为(3,2),OB与AC交于点P,D、E、F、G分别是线段OP、AP、BP、CP的中点,则四边形DEFG的周长为_____.【答案】5;解:∵四边形OABC是矩形,∴OA=BC,AB=OC;BA⊥OA,BC⊥OC.∵B点坐标为(3,2),∴OA=3,AB=2.∵D、E、F、G分别是线段OP、AP、BP、CP的中点,∴DE=GF=1.5; EF=DG=1.∴四边形DEFG的周长为(1.5+1)×2=5.2、如图,在△ABC中,已知点D、E、F分别是AB、BC、CA的中点,AH是高.(1)若BC=10,AH=8,则四边形ADEF的面积为.(2)求证:∠DHF=∠DEF.HF EDCBA【思路点拨】(1)由三角形面积公式可知:△BDE、△EFC的面积都等于△ABC面积的四分之一,进而可求出四边形ADEF的面积.(2)首先证明四边形ADEF是平行四边形,进而可得∠DEF=∠DAF,再利用直角三角形的中线性质得线段相等,从而得角等,最终可得到∠DAF=∠DEF,即可证出∠DHF=∠DEF.【答案解析】(1)解:∵BC=10,AH=8,∴S△ABC=×8×10=40,∵点D、E、F分别是AB、BC、CA的中点,∴△BDE、△EFC的面积都等于△ABC面积的,∴四边形ADEF的面积=40﹣20=20,故答案为:20;(2)证明:∵D 、E 、F 分别是△ABC 各边中点,∴DE ∥AC ,EF ∥AB ,∴四边形ADEF 是平行四边形,∴∠DEF=∠DAF ,∵AH 是△ABC 的高∴△ABH 、△ACH 是直角三角形,∵点D 、点F 是斜边AB 、AC 中点,∴DH=DA ,HF=AF ,∴∠DAH=∠DHA ,∠FAH=∠FHA ,∴∠DAH+∠FAH=∠FHA+∠DHA ,即∠DAF=∠DHF ,∴∠DEF=∠DHF .【总结升华】此题主要考查了平行四边形的性质与判定,三角形的中位线定理,直角三角形的性质,解决题目的关键是证明∠DHF=∠DAF 与∠DAF=∠DEF .3、如图所示,在△ABC 中,M 为BC 的中点,AD 为∠BAC 的平分线,BD ⊥AD 于D ,AB =12,AC =18,求MD 的长.【思路点拨】本题中所求线段MD 与已知线段AB 、AC 之间没有什么联系,但由M 为BC 的中点联想到中位线,另有AD 为角平分线和垂线,根据等腰三角形“三线合一”构造等腰三角形ABN ,D 为BN 的中点,DM 即为中位线,不难求出MD 的长度.【答案与解析】解:延长BD 交AC 于点N .∵ AD 为∠BAC 的角平分线,且AD ⊥BN ,∴ ∠BAD =∠NAD ,∠ADB =∠ADN =90°,在△ABD 和△AND 中,BAD NAD AD =ADADB ADN ∠∠⎧⎪⎨⎪∠∠⎩== ∴ △ABD ≌△AND(ASA)∴ AN =AB =12,BD =DN .∵ AC =18,∴ NC =AC -AN =18-12=6,∵ D 、M 分别为BN 、BC 的中点,∴ DM =12CN =162⨯=3. 【总结升华】当条件中含有中点的时候,可以将它与等腰三角形的“三线合一”、三角形的中线、中位线等联系起来,进行联想,必要时添加辅助线,构造中位线等图形.举一反三:【变式】如图所示,四边形ABCD中,Q是CD上的一定点,P是BC上的一动点,E、F分别是PA、PQ两边的中点;当点P在BC边上移动的过程中,线段EF的长度将( ).A.先变大,后变小 B.保持不变 C.先变小,后变大 D.无法确定【答案】B;解:连接AQ.∵ E、F分别是PA、PQ两边的中点,∴ EF是△PAQ的中位线,即AQ=2EF.∵ Q是CD上的一定点,则AQ的长度保持不变,∴线段EF的长度将保持不变.4、我们给出如下定义:有一组相邻内角相等的四边形叫做等邻角四边形.请解答下列问题:(1)如图1,在△ABC中,AB=AC,点D在BC上,且CD=CA,点E、F分别为BC、AD的中点,连接EF并延长交AB于点G.求证:四边形AGEC是等邻角四边形;(2)如图2,若点D在△ABC的内部,(2)中的其他条件不变,EF与CD交于点H,图中是否存在等邻角四边形,若存在,指出是哪个四边形,不必证明;若不存在,请说明理由.【思路点拨】(1)运用中位线的性质,找出对应相等的角;(2)根据题意易知满足条件的四边形即为第一题的四边形.【答案与解析】解:(1)取AC的中点H,连接HE、HF∵点E为BC中点∴EH为△ABC的中位线∴EH∥AB,且EH=12AB同理FH∥DC,且FH=12DC∵AB=AC,DC=AC∴AB=DC,EH=FH∴∠1=∠2∵EH∥AB,FH∥DC∴∠2=∠4,∠1=∠3∴∠4=∠3∵∠AGE+∠4=180°,∠GEC+∠3=180°∴∠AGE=∠GEC∴四边形AGEC是邻角四边形(2)存在等邻角四边形,为四边形AGHC.【总结升华】本题考查了三角形的中位线以及等腰三角形的性质的综合运用.本题较灵活,要求学生能够把题中的条件转化成角,从而找出相等的角来解题.举一反三:【变式】如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是()A.4 B.3 C.2 D.1【答案】D;解:连接DE并延长交AB于H,∵CD∥AB,∴∠C=∠A,∠CDE=∠AHE,∵E是AC中点,∴AE=CE,∴△DCE≌△HAE,∴DE=HE,DC=AH,∵F是BD中点,∴EF是△DHB的中位线,∴EF=12 BH,∴BH=AB-AH=AB-DC=2,∴EF=1.类型二、中点四边形5、如图,在梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)求证:四边形EFGH 是正方形;(2)若AD =2,BC =4,求四边形EFGH 的面积.【思路点拨】(1)先由三角形的中位线定理求出四边相等,然后由AC⊥BD 入手,进行正方形的判断.(2)连接EG ,利用梯形的中位线定理求出EG 的长,然后结合(1)的结论求出2EH =92,也即得出了正方形EHGF 的面积. 【答案与解析】证明:(1)在△ABC 中,E 、F 分别是AB 、BC 的中点,故可得:EF =12AC ,同理FG =12BD ,GH =12AC ,HE =12BD , 在梯形ABCD 中,AB =DC ,故AC =BD ,∴EF=FG =GH =HE ,∴四边形EFGH 是菱形.设AC 与EH 交于点M ,在△ABD 中,E 、H 分别是AB 、AD 的中点,则EH∥BD,同理GH∥AC,又∵AC⊥BD,∴EH⊥HG,∴四边形EFGH 是正方形.(2)连接EG .在梯形ABCD 中,∵E、G 分别是AB 、DC 的中点,∴EG=12(AD +BC )=3. 在Rt△EHG 中, ∵222EH GH EG +=,EH =GH ,∴2EH =92,即四边形EFGH 的面积为92. 【总结升华】此题考查了等腰梯形的性质及三角形、梯形的中位线定理,解答本题的关键是根据三角形的中位线定理得出EH =HG =GF =FE ,这是本题的突破口.举一反三:【变式】如图,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点.(1)判断四边形EFGH 的形状,并说明你的理由;(2)连接BD和AC,当BD、AC满足何条件时,四边形EFGH是正方形.【答案】解:(1)四边形EFGH是平行四边形.理由:连接AC,∵E、F分别是AB、BC的中点,∴EF∥AC,且EF=12 AC,同理,HG∥AC,且HG=12 AC,∴EF∥HG,且EF=HG,∴四边形EFGH是平行四边形;(2)当BD=AC,且BD⊥AC时,EFGH是正方形.理由:连接AC,BD,∵E、F、G、H分别是边AB、BC、CD、DA的中点,∴EF=GH=12AC,EH=FG=12BD,EH∥BD,GH∥AC,∵BD=AC,BD⊥AC,∴EH=EF=FG=GH,EH⊥GH,∴四边形ABCD是菱形,∠EHG=90°,∴四边形EFGH是正方形.。

(完整版)直角三角形的判定和性质

(完整版)直角三角形的判定和性质

直角三角形全等的判定【知识点总结】直角三角形全等的判定定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)【典型例题讲解】例1:已知:如图△ABC中,BD⊥AC,CE⊥AB,BD、CE交于O点,且BD=CE 求证:OB=OC.例2:已知:Rt△ABC中,∠ACB是直角,D是AB上一点,BD=BC,过D作AB的垂线交AC于E,求证:CD⊥BE:例3:已知△ABC中,CD⊥AB于D,过D作DE⊥AC,F为BC中点,过F作FG⊥DC求证:DG=EG。

【随堂练习】1.选择:(1)两个三角形的两条边及其中一条边的对角对应相等,则下列四个命题中,真命题的个数是()个①这两个三角形全等; ②相等的角为锐角时全等③相等的角为钝角对全等; ④相等的角为直角时全等A.0 B.1 C.2 D.3(2)在下列定理中假命题是()A.一个等腰三角形必能分成两个全等的直角三角形B.一个直角三角形必能分成两个等腰三角形C.两个全等的直角三角形必能拼成一个等腰三角形D.两个等腰三角形必能拼成一个直角三角形(3)如图,Rt△ABC中,∠B=90°,∠ACB=60°,延长BC到D,使CD=AC则AC:BD=()A.1:1 B.3:1 C.4:1 D.2:3(4)如图,在Rt△ABC中,∠ACB=90°,CD、CE,分别是斜边AB上的高与中线,CF 是∠ACB的平分线。

则∠1与∠2的关系是()A.∠1<∠2 B.∠1=∠2; C.∠1>∠2 D.不能确定(5)在直角三角形ABC中,若∠C=90°,D是BC边上的一点,且AD=2CD,则∠ADB 的度数是()A.30°B.60°C.120°D.150°2.解答:(1已知:如图AB⊥BD,CD⊥BD,AB=DC求证:AD//BC.(2)如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E、F 求证:CE=DF.B MC【课后习题】一、填空题:(每题5分,共20分)1.有________和一条________对应相等的两个直角三角形全等,简写成“斜边直角边”或用字母表示为“___________”. 2.如图,△ABC 中,∠C=90°,AM 平分∠CAB,CM= 20cm, 那么M 到AB 的距离是____cm.3.已知△ABC 和△A ′B ′C ′,∠C=∠C ′=90°,AC=A ′C ′,要判定△ABC ≌△A ′B ′C ′,必须添加条件为①________或②________或③________或④_________. 4.如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F,DE ⊥BC 于E,AB=DC,BE=CF, 若要说明AB ∥CD,理由如下:∵AF ⊥BC 于F,DE ⊥BC 于E(已知)∴△ABF,△DCE 是直角三角形∵BE=CF(已知)∴BE+_____=CF+_______(等式性质) 即_______=___________(已证)∴Rt △ABF ≌Rt △DCE( )二、选择题:(每题5分,共25分) 5.两个直角三角形全等的条件是( )A.一锐角对应相等;B.两锐角对应相等;C.一条边对应相等;D.两条边对应相等 6.要判定两个直角三角形全等,需要满足下列条件中的()①有两条直角边对应相等; ②有两个锐角对应相等; ③有斜边和一条直角边对应相等; ④有一条直角边和一个锐角相等; ⑤有斜边和一个锐角对应相等; ⑥有两条边相等. A.6个 B.5个 C.4个 D.3个7.如图,AB ∥EF ∥DC,∠ABC=90°,AB=DC,那么图中有全等三角形( ) A.5对; B.4对; C.3对; D.2对8.已知在△ABC 和△DEF 中,∠A=∠D=90°,则下列条件中不能判定△ABC 和△DEF 全等的是( )A.AB=DE,AC=DFB.AC=EF,BC=DFC.AB=DE,BC=EFD.∠C=∠F,BC=EF9.如果两个直角三角形的两条直角边对应相等,那么两个直角三角形全等的依据是( )A.AASB.SASC.HLD.SSS三、解答题:(共55分)10.如图,△ABC 中,∠C=90°,AB=2AC,M 是AB 的中点,点N 在BC 上,MN ⊥AB.求证:AN 平分∠BAC.(7分)BA21N MCB A E FC B AEF C D11已知:如图,AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:CF=DF.(8分)B AE F D12知如图,AB=AC,∠BAC=90°,AE是过A点的一条直线,且B、C在DE的异侧,BD⊥AE于D,CE ⊥AE于E,求证:BD=DE+CE.(8分)BAE CD13已知如图,在△ABC中,∠BAC=2∠B,AB=2AC,求证:△ABC是直角三角形?( 8分)C14已知如图,在△ABC中,以AB、AC为直角边, 分别向外作等腰直角三角形ABE、ACF,连结EF,过点A作AD⊥BC,垂足为D,反向延长DA交EF于点M.(1)用圆规比较EM与FM的大小.(2)你能说明由(1)中所得结论的道理吗?(8分)B AE MFC D直角三角形的性质【知识点精讲】直角三角形的性质定理及其推论:①直角三角形的性质,在直角三角形中,斜边上的中线等于斜边的一半; ②推论:(1)在直角三角形中,如果一个锐角等于30°,则它所对的直角边等于斜边的一半;(2)在直角三角形中,如果一条直角边等于斜边的一半,则这条直角边所对的角为30°.【典型例题讲解】例1:已知,Rt △ABC 中,∠ACB=90°,AB=8cm ,D 为AB 中点,DE ⊥AC 于E ,∠A=30°,求BC ,CD 和DE 的长例2:已知:△ABC 中,AB=AC=BC (△ABC 为等边三角形)D 为BC 边上的中点, DE ⊥AC 于E.求证:AC CE 41.例3:已知:如图AD ∥BC ,且BD ⊥CD ,BD=CD ,AC=BC. 求证:AB=BO.【随堂练习】1.△ABC 中,∠BAC=2∠B ,AB=2AC ,AE 平分∠CAB 。

三角形中线的性质

三角形中线的性质

三角形中线的性质在平面几何学中,三角形是最基本的图形之一,由三条线段连接而成。

其中,中线是指连接三角形的一个顶点与对立边中点的线段。

本文将探讨三角形中线的性质,深入理解它在几何学中的重要作用。

一、中线的定义中线是由三角形的一个顶点和对立边中点组成的线段。

对于任意三角形ABC,连接顶点A与对立边BC的中点M的线段AM称为该三角形的中线。

同样地,我们还可以定义三角形的其他两条中线,分别连接顶点B与对立边AC的中点N,以及顶点C与对立边AB的中点P。

二、中线的长度性质1. 三角形中线的长度相等对于任意三角形ABC,三条中线AM、BN和CP的长度相等。

这意味着∣AM∣=∣BN∣=∣CP∣。

证明:由于M是BC的中点,可以得到BM=MC。

同时,由于三角形ABC是一个几何图形,我们可以运用线段加法原理得到AM+MC=AC。

将BM替换为MC,上述等式可重写为AM+BM=AC。

同理,我们也可以推导出AN+NC=AB以及CP+PB=BC。

结合这三个等式,可以得到AM+BM+AN+NC+CP+PB=AC+AB+BC。

根据线段加法原理,左侧的表达式即为2(AM+BN+CP),右侧的表达式即为2(AC+AB+BC)。

因此,AM+BN+CP=AC+AB+BC,也就是中线的长度相等。

2. 三角形中线的长度与对应边的比例关系在任意三角形ABC中,三条中线AM、BN和CP的长度与对应边的比例为1:2。

即∣AM∣:∣AB∣=∣BN∣:∣BC∣=∣CP∣:∣CA∣=1:2。

证明:首先,假设三角形ABC的中线AM与边AB不重合,而是相交于点O。

由于M是BC的中点,我们可以运用例行公式得到OM=MC,同样地,也可以得到OA=OB。

根据线段加法原理,可以得到AM=OA-OM=OB-OM。

进一步,我们可以通过平行线切割定理,发现△ABM与△CBO全等。

基于全等三角形的性质,我们可以推导出角MAB=角BCO,以及角BAM=角OCB。

根据线段比例定义,可以得到∣AM∣:∣AB∣=∣OB∣:∣OC∣。

直角三角形斜边上的中线的性质及其应用

直角三角形斜边上的中线的性质及其应用

“直角三角形斜边上的中线”的性质及其应用而且斜边上的中线将“直角三角形斜边上的中线等于斜边的一半”是直角三角形的重要性质之一,恰当地构造并直角三角形分割成两个顶角互补、底角互余的两个等腰三角形,如能善于把握图形特征,下面举例说借助直角三角形斜边上的中线,往往能帮助我们迅速打开解题思路,从而顺利地解决问题,明.一、有直角、有中点,连线出中线,用性质 BC的中点,CE是△ABC的两条高,M是例1.如图1,BD、有什么关系?证明你的猜想.DE的中点.试问:MN与DEN是DE.垂直平分猜想:MN1图1,∴NDBC,又NE=、MD,在Rt△BEC中,∵点M是斜边BC的中点,∴ME=证明:如图:连接ME2DE.垂直平分的垂直平分线,∴NM⊥DE.即直线MN是线段DEMN,“直角三角形斜边上的中线等于斜边的一半”评析:题目中给出了三角形的两条高与两个中点,联想问题便迎刃而解.二、有直角、无中点,取中点,连线出中线,用性质1A DADBC,∠CBE=,∠ABE例2.如图2,在Rt△ABC中,∠C=902DE=2AB0∥,求证:FAB相等,分析:欲证DE=2AB,则可寻DE的一半,再让其与2图E 1B取DE的中点F,连AF,则AF=FD=DE,可证得△AFD, C2△ABF均为等腰三角形,由此结论得证.1DE,所以∠DAF=∠ADF,又因为AD∥BCAFF,连,则AF=FD=,所以∠CBE=∠ADF,证明:DE的中点21∠ABE,所以∠ABF=又因为∠CBE=∠AFB,所以AF=AB,即DE=2AB.2评析:本题是有直角、无中点的情况,这时要取直角三角形的斜边上的中点,再连结该点与直角顶点,然后用性质来解决问题.P 三、有中点、无直角,造直角,用性质CD CD的中点,N是AB、,梯形ABCD中,AB∥CD,M、.如图例33N K 0 BCD=270,∠ADC+∠1M A B.MN=(AB-CD)求证:3图20证明:延长AD、BC交于P,∵∠ADC+∠BCD=270,、MK重合,则P、N于APB=90,连结PN,连结PM交DCK,下证N和∴∠11CD,PM=BM=DM=AB,0三点共线,PM分别是直角三角形△PDC、△PAB斜边上的中线,∴PN=CN=DN= 、∵PN22∵∠PNC=2∠PDN=2∠A,∠PMB=∠PKC=2∠A,∴∠PNC=∠PKC,∴N、K重合,1(AB-CD).∴MN=PM-PN=2评析:本题只有中点,而没有直角,这时要想方设法构造直角,应用性质,而条件中正好有角的关系“∠0,这样问题就易以解决了”BCD=270∠ADC+DA 四、逆用性质解题E,使CE=CA,至例4.如图4,延长矩形ABCD的边CP的中点.是AEODP.求证:BPEBC4图,于点O,连结PO证明:如图3,连结BD交AC AO=OC=OB=OD∵四边形ABCD是矩形,∴,11,EC=AC∵PA=PE,∴PO=,∴PO=BDEC,∵22.BP⊥DPOP=OB=OD即,∴“直角三角形斜边上的中线等于斜边的一半”这个性质是众所周知的,而它的逆定理往往被评析:的一半.BD边的中线等于BD大家所忽视,本题就是利用这个性质构造△PBD,证请同学们试一试吧!于E,于D,DE交BCDE1.如图5,△ABC中,AB=AC,∠ABD=∠CBD,BD⊥A 1CD=BE.求证:2 BC的于BCD,M是2.如图6,△ABC中,∠B=2∠C,AD⊥D.中点,求证:AB=2DM ACE B5图M·C B D6 图1应想到“直角三角形斜边上的中线等于斜边的一BEBE是直角三角形的斜边,由1.提示:结论中的2DFC.,即证∠C=∠DF,故应取BE的中点F,连结,只需证明DC=DF半”即可.、,连结DNMN2.提示:取AB的中点N直角三角形斜边上中线性质的应用它为证明线同时也是常考的知识点.直角三角形斜边上中线的性质是直角三角形的一个重要性质,下面谈谈直角三角形斜边上中线的线段的倍分等问题提供了很好的思路和理论依据。

湘教版八年级数学下册_1.1 直角三角形的性质和判定(Ⅰ)

湘教版八年级数学下册_1.1 直角三角形的性质和判定(Ⅰ)

感悟新知
知1-练
解题秘方:利用直角三角形的性质与判定证明即可 .
证明: ∵∠ ACB=90°,∴∠ A+ ∠ B=90° . ∵∠ ACD= ∠ B,∴∠ A+ ∠ ACD=90° . ∴△ ACD 为直角三角形,且∠ CDA=90° . ∴ CD ⊥ AB.
感悟新知
拓展 满足下列条件的三角形也是直角三角形: (1)在三角形中,两个内 角之和等于第三个内角; (2)在三角形中,两个内角之差等于第三个内角.
知2-讲
感悟新知
特别提醒
知2-讲
◆直角三角形斜边上的中线把直角三角形分成两个
面积相等的等腰三角形.
◆应用这个性质时要注意“直角三角形” 这一前提,
切不可忽略这一前提而在其他任意三角形中生搬
硬套 .
感悟新知
知2-讲
2. 拓展:如果三角形一边上的中线等于这条边的一半,那么 这个三角形是直角三角形 . 数学语言: 如图 1.1-5,在△ ABC 中,
∵ CD=BD=AD=12 AB, ∴∠ ACB=90°,即△ ABC 是直角三角形 .
感悟新知
知2-练
例4 如图 1.1-6, BD, CE 是△ ABC 的两条高, M, N 分别是 BC, DE 的中点 . 求证: MN ⊥ DE.
感悟新知
知2-练
解题秘方:紧扣“N 为 DE 的中点”这一条件和 “MN ⊥ DE”这一结论,建立等腰三 角形“三线合一”模型, 结合直角三 角形斜边上中线的性质求解 .
在 Rt △ CDB 中,∵ M 为斜边 BC 的中点,

DM=
1 2
BC.

Rt

BEC
中,∵
M

第11讲直角三角形斜边上的中线(教案)

第11讲直角三角形斜边上的中线(教案)
第11讲直角三角形斜边上的中线(教案)
一、教学内容
第11讲直角三角形斜边上的中线
《数学》(七年级下册)第七章《三角形》第四节“直角三角形的性质”,本讲内容主要包括:
1.直角三角形斜边上的中线定义及性质;
2.中线长度计算,即斜边一半的求解方法;
3.应用直角三角形斜边上的中线性质解决实际问题;
4.探索直角三角形斜边上的中线与斜边的关系,理解其几何意义。
五、教学反思
在本次教学中,我发现学生们对于直角三角形斜边上的中线概念及其性质的理解存在一定的困难。在导入新课环节,通过提问的方式引发学生对日常生活中的实际问题的思考,这一点我觉得做得不错,能够激发学生的兴趣。但在接下来的理论介绍部分,我意识到需要更加生动、形象地讲解,以便学生更好地消化吸收。
在新课讲授过程中,我发现有些学生在案例分析环节跟不上节奏,可能是因为我对案例的讲解不够详细,或者案例选择不够贴近学生的生活实际。在今后的教学中,我会注意选择更具代表性的案例,以帮助学生更好地理解和应用所学知识。
举例:在讲解过程中,教师可通过绘制具体图形,如一个直角三角形,明确指出斜边上的中线,并给出具体的计算例子,如一个直角三角形,两直角边分别为3和4,求斜边上的中线长度。
2.教学难点
-理解斜边上的中线与斜边的关系,对于一些学生来说,理解中线是斜边一半的概念可能存在困难。
-在实际问题中识别和应用斜边上的中线性质,学生可能难以将理论知识与实际问题联系起来。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了直角三角形斜边上的中线的定义、性质和计算方法,以及在实际中的应用。通过实践活动和小组讨论,我们加深了对这一知识点的理解。希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

直角三角形

直角三角形

教学内容知识点讲解/梳理知识点一、直角三角形的性质1、直角三角形的性质定理2、定理:1、直角三角形的两个锐角互余。

2、直角三角形斜边上的中线等于斜边的一半。

例1. 在直角三角形中,有一个锐角为520,那么另一个锐角度数为____。

考点:直角三角形的性质,三角形内角和。

分析:利用直角三角形的性质:直角三角形的两个锐角互余,即可算出。

解答:解:根据直角三角形性质,两个锐角互余;题目已知条件已经给出其中一个锐角为52°,即:90°-52°=48°点评:熟悉掌握直角三角形的性质,是解题的关键。

例2、在△ABC中,∠ACB=90 °,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB= _________。

考点:直角三角形的性质,等腰三角形的性质。

分析:利用直角、等腰三角形性质,直角三角形斜边上的中线等于斜边上的一半和等腰三角形两底角相等,即可算出。

解答:解:因为△ABC为直角三角形,并且CE为斜边AB的中线,根据直角三角形性质可得,CE=AE=BE。

∴△ACE和△CBE是等腰三角形,即∠A=∠ACE;又∵∠A=35°,∠ECB=∠B,则∠AEC=110°,而∠AEC=∠ECB+∠B 即∠ECB=55°。

点评:熟悉掌握直角三角形和等腰三角形的性质,是解题的关键。

即时训练:1、已知,Rt△ABC中,∠C=90°,∠A=50°,则∠B=;2、在Rt△ABC中,∠C=90°,则∠A与∠B;3、在△ABC中,若∠B与∠C互余,则△ABC是三角形。

4.Rt△ABC中,∠C=90°,∠B=54°,则∠A=()A.66°B.36°C.56°D.46° 5.在Rt △ABC 中,∠ACB =90°,D 是AB 的中点,CD =4 cm ,则AB =________cm.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2 直角三角形之斜边中线性质
1、直角三角形两直角边长分别是3cm 和4cm ,则斜边上的中线长等于( ) A.2.5cm B.2.4cm C.5cm D.3cm
2、直角三角形斜边上的中线长是6.5,一条直角边是5,则另一直角边长等于( ) A.13 B.12 C.10 D.5
3、直角三角形中有两条边的长分别为4,8,则此直角三角形斜边上的中线长等于( ) A.4 B.54 C.4或54 D.4或52
4、(2004年江苏省苏州市中考)如图2,CD 是Rt △ABC 斜边AB 上的中线,若CD=4,则AB= .
5、(2004年上海市中考)如图4,在△ABC 中,∠BAC=90°,延长BA 到D 点,使AB AD 2
1
,点E 、F 分别为边BC 、AC 的中点。

(1)求证:DF=BE ;
(2)过点A 作AG ∥BC ,交DF 于G 。

求证:AG=DG 。

6、已知,如图5,在△ABC中,∠BAC>90°,BD、CE分别为AC、AB上的高,F为BC的中点,求证:∠FED=∠FDE。

7、(2003年上海市中考题)已知:如图6,在△ABC中,AD是高,CE是中线。

DC=BE,DG⊥CE,G为垂足。

求证:(1)G是CE的中点;(2)∠B=2∠BCE。

8、(2007年呼和浩特市中考)如图7,在△ABC中,∠C=2∠B,D是BC上的一点,且AD⊥AB,点E是BD 的中点,连AE。

求证:(1)∠AEC=∠C;(2)求证:BD=2AC。

9、如图9,在四边形ABCD中,AC⊥BC,BD⊥AD,且AC=BD,M、N分别是AB、DC边上的中点。

求证:MN ⊥DC 。

10、如图所示,BD 、CE 是三角形ABC 的两条高,M 、N 分别是BC 、DE 的中点 求证:MN ⊥DE
N
M
E D
C
B
A
11、已知梯形ABCD 中,∠B+∠C =90o
,EF 是两底中点的连线,试说明AB -AD =2EF
F
E
D
C
B
A。

相关文档
最新文档