新人教版八年级数学上学期期末复习

合集下载

人教版八年级上册数学期末复习6专题六 作图专题

人教版八年级上册数学期末复习6专题六 作图专题

则H即为工厂位置.
四、网格作图
13.如图,在平面直角坐标系中,△ABC的顶点A(0,1), B(3,2),C(1,4)均在正方形网格的格点上.
(1)画出△ABC关于x轴的对称图形△A1B1C1; (2)将△A1B1C1沿x轴方向向左平移3个单位长度后得到
△A2B2C2,写出顶点 A2,B2,C2的坐标.
解:如图,作出AB和BC的中垂线,相交于点P, 则点P是所求的到三村距离相等的点
11.如图,在△ABC中,AB=AC,∠BAC=120°. (1)用尺规作出AB的垂直平分线交AB于点E,交BC于点F. (2)若BF=3,求CF的长度.
解:(1)如图所示:
(2)连接AF.
∵AB=AC,∠BAC=120°
∴∠B=∠C=
1 2
(180°-120°)=30°
又由(1)知BF=AF
∴∠FAB=∠B=30°
∴∠FAC=120°-30°=90°
∴CF=2AF=2BF=2×3=6
12. 如图,已知甲村和乙村靠近公路a,b,为了发展经济, 甲、乙两村准备合建一个工厂,经协商,工厂必须满足 以下要求:
(1)到两村的距离相等; (2)到两条公路的距离相等.你能帮忙确定工厂的位置吗?
解:如图
15.如图,在平面直角坐标系中,△ABC的三个顶点分别为 A(2,3),B(3,1),C(-2,-2).
(1)请在图中作出△ABC关于y轴的轴对称图形△A′B′C′(A,B,C 的对称点分别是A′,B′,C′),并直接写出A′,B′,C′的坐标.
(2)求△A′B′C′的面积.
解:(1)如图所示,点A′(-2,3), B′(-3,1),C′(2,-2);
解:设a、b相交于点O.甲村为点E,乙村为点D.

人教版 八年级数学 上册 期末总复习—第十一章 三角形

人教版 八年级数学 上册 期末总复习—第十一章 三角形

课堂练习 A 组 复习与三角形有关的线段:
1.若三角形的两边分别为 3 和 5 ,则第三边长m 的取值范围是__2__<_m__<__8_.
A 组 复习与三角形有关的线段:
2.如图:
A
(1)若AD ⊥BC,垂足
为D,则:
∠_A_D__B_
F
=∠_A__D_C_
= 90°;
B
DE
C
A 组 复习与三角形有关的线段:
c.三角形的高:从三角形的一个顶点向它的对边 作垂线,所得线段叫做三角形的高.
④三角形三边间的关系: 三角形两边的和大于第三边.
⑤三角形的稳定性及应用: 三角形具有稳定性.
⑥多边形的对角线、内角和、外角和: n 边形的对角线条数等于 n(n 3,) 内角和等于
2 (n-2)·180°,外角和等于360°.
如图,在△ABC 中,∠BAC =80°,
∠ABC =60°.
A
(1)∠C = 40° ;
F
(2)若AE 是△ABC 的
O
角平分线,则:
∠AEC = 100° ;
(3)若BF 是△ABC 的 B 高,与角平分线
E
C
AE 相交于点O,则∠EOF = 130° .
典型例题
例1 已知等腰三角形的两边长分别为10 和6 , 则三角形的周长是 22或26 .
②∠A:∠B:∠C =1:2:3,③∠A = 90°-∠B,④
∠A =∠B =∠C中,能确定△ABC是直角三角形的条件
有( )C
A.1个
B.2个 C.3个 D.4个
练习1(3)已知一个多边形的内角和是外角 和的2倍,则这个多边形的边数为___6___.

人教版八年级数学上册11.1 ---11.3期末复习题(含答案)

人教版八年级数学上册11.1 ---11.3期末复习题(含答案)

11.1 与三角形有关的线段考点1 三角形的认识及分类1.三角形是指()A.由三条线段所组成的封闭图形B.由不在同一直线上的三条直线首|尾顺次相接组成的图形C.由不在同一直线上的三条线段首|尾顺次相接组成的图形D.由三条线段首|尾顺次相接组成的图形2.如图中三角形的个数是()A.6B.7C.8D.93.在△ABC中,∠B =2∠C,∠A =30° ,那么这个三角形是( ) A.锐角三角形B.直角三角形C.钝角三角形D.无法判断4.三角形按角分类可以分为 ( )A.锐角三角形、直角三角形、钝角三角形B.等腰三角形、等边三角形、不等边三角形C.直角三角形、等边直角三角形D.以上答案都不正确考点2 三角形的稳定性5.以下图形中具有稳定性的是 ( )A .直角三角形B .正方形C .长方形D .平行四边形6.以下图形中 ,不是运用三角形的稳定性的是 ( )A .房屋顶支撑架B .自行车三脚架C .拉闸门D .木门上钉一根木条7.如图 ,工人师傅做了一个长方形窗框ABCD ,E ,F ,G ,H 分别是四条边上的中点 ,为了稳固 ,需要在窗框上钉一根木条 ,这根木条不应钉在( )A .G ,H 两点处B .A ,C 两点处C .E ,G 两点处D .B ,F 两点处考点3 三角形的三边关系8.以下每组数分别表示三根木棒的长度,将它们首|尾连接后,能摆成三角形的一组是( ) A .3 ,3 ,6B .1 ,5 ,5C .1 ,2 ,3D .8 ,3 ,49.如图 ,在△ABC 中 ,AC =5 ,中线AD =7 ,那么AB 边的取值范围是( )A .1AB 29<<B .4AB 24<<C .5AB 19<<D .9AB 19<<10.一个三角形的两边长为4和7 ,第三边长为奇数 ,那么第三边长可能为 ( ) A .5或7B .5、7或9C .7D .1111.三角形的两边长分别为3和5 ,那么周长C 的范围是 ( )A .615C <<B .616C <<C .1113C <<D .1016C <<12.等腰△ABC 的两边长分别为2和3 ,那么等腰△ABC 的周长为()A .7B .8C .6或8D .7或813.a b c 、、是ABC ∆的三边长 ,化简a b c b a c +----的值是 ( )A .2c -B .22b c -C .22a c -D .22a b -考点4 三角形的高线14.下面四个图形中 ,线段BE 是⊿ABC 的高的图是 ( )A .B .C .D .15.如图 ,△ABC 的面积计算方法是 ( )A .AC •BDB .12BC •EC C .12AC •BD D .12AD •BD 16.以下各图中 ,AC 边上的高画正确的选项是 ( )A .B .C .D .考点5 三角形的中线17.如图AD 是△ABC 的中线 ,那么BD = ( )A .ADB .AC C .BCD .CD18.如图 ,AD 是ABC ∆的中线 ,5AB = ,3AC = ,ABD ∆的周长和ACD ∆的周长差为( )A .6B .3C .2D .不确定19.如图 ,在ABC 中 ,点D 、E 分别为BC 、AD 的中点 ,且26ABC S cm =△ ,那么ABE S △的值为 ( )A .20.5cmB .21.5cmC .22cmD .23cm20.如图 ,, , A B C 分别是线段1A B 、1BC 、1C A 的中点 ,假设111A B C △的面积是20 ,那么ABC 的面积是 ( )A .4B .103C .207D .5 考点6 三角形的角平分线21.如图 ,△ABC 中 ,AD 为△ABC 的角平分线 ,BE 为△ABC 的高 ,∠C =70° ,∠ABC =48° ,那么∠3是 ( )A .59°B .60°C .56°D .22°22.如图 ,在ABC 中 ,∠A =60° ,∠ABD 和∠ACE 是ABC 的外角 ,∠ACE =110° ,BF 平分∠ABD ,那么∠FBE = ( )A.105°B.110°C.115°D.120°23.如下图 ,在△ABC中,∠A=36° ,∠C=72° ,∠ABC的平分线交AC于D ,那么图中共有等腰三角形 ( )A.0个B.1个C.2个D.3个答案1.C2.C3.C4.A5.A6.C7.C8.B9.D10.B11.D12.D13.B14.A15.C16.D17.D18.C19.B20.C21.A22.C23.D11.2 与三角形有关的角一、选择题(本大题共10道小题)1. 在一个直角三角形中,有一个锐角等于35° ,那么另一个锐角的度数是() A.75° B.65° C.55° D.45°2. 如图,在⊿ABC中,∠ACB=90° ,CD∥AB ,∠ACD=40° ,那么⊿B的度数为()A. 40°B. 50°C. 60°D. 70°3. 如图,在⊿ABC中,⊿C=90° ,⊿A=30° ,BD平分⊿ABC,那么⊿BDC的度数为()A.30° B.40° C.50° D.60°4. 如图,CE是⊿ABC的外角⊿ACD的平分线,假设⊿B=35° ,∠ACE=60° ,那么∠A=()A. 35°B. 95°C. 85°D. 75°5. 在⊿ABC中,假设⊿C=40° ,⊿B=4⊿A ,那么⊿A的度数是()A.30° B.28° C.26° D.40°6. 在Rt⊿ABC中,⊿C=90° ,⊿A-⊿B=50° ,那么⊿A的度数为()A.80° B.70° C.60° D.50°7. 如图,在⊿ABC中,D是⊿ABC和⊿ACB的平分线的交点,⊿A=80° ,⊿ABD=30° ,那么⊿BDC的度数为()A.100° B.110° C.120° D.130°8. 如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC =42°,∠A =60°,那么∠BFC的度数为()A.118°B.119°C.120°D.121°9. 如图,在⊿CEF中,⊿E=80° ,⊿F=50° ,AB⊿CF ,AD⊿CE ,连接BC ,CD ,那么⊿A的度数是()A.45° B.50° C.55° D.80°10. 如图,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大.假设∠A减小x°,∠B增加y°,∠C增加z°,那么x,y,z之间的关系是()A.x =y +zB.x =y -zC.x =z -yD.x +y +z =180二、填空题(本大题共6道小题)11. 如图,∠CAE是⊿ABC的外角,AD∥BC ,且AD是⊿EAC的平分线.假设⊿B =71° ,那么⊿BAC=________.12. 如图,在⊿ABC中,⊿ABC ,⊿ACB的平分线相交于点O ,OD⊿OC交BC于点D.假设⊿A=80° ,那么⊿BOD=________°.13. 如图,⊿AOB=50° ,P是OB上的一个动点(不与点O重合) ,当⊿A的度数为________时,⊿AOP为直角三角形.14. 如图,在四边形ABCD中,AB⊿CD ,将四边形ABCD沿对角线AC折叠,使点B落在点B′处.假设⊿1=⊿2=44° ,那么⊿B=________°.15. 如图,在⊿ABC中,BO平分⊿ABC,CO平分⊿ACB.假设⊿A=70° ,那么⊿BOC=________°.16. 定义:当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为"特征三角形〞,其中α称为"特征角〞.如果一个"特征三角形〞的一个内角为48° ,那么"特征角〞α的度数为____________.三、解答题(本大题共4道小题)17. 如图,AD是⊿ABC的角平分线,⊿B=35° ,⊿BAD=30° ,求⊿C的度数.18. 如图,A处在B处的北偏西45°方向,C处在B处的北偏东15°方向,C处在A 处的南偏东80°方向,求⊿ACB的度数.19. 如图,在△ABC中,点E在AC上,∠AEB =∠ABC.(1)如图①,作∠BAC的平分线AD ,与CB ,BE分别交于点D ,F.求证:∠EFD =∠ADC;(2)如图②,作△ABC的外角∠BAG的平分线AD ,交CB的延长线于点D ,反向延长AD交BE 的延长线于点F ,那么(1)中的结论是否仍然成立?为什么?20. 如图,AD ,AE分别是⊿ABC的角平分线和高.(1)假设⊿B=50° ,⊿C=60° ,求⊿DAE的度数;(2)假设⊿C>⊿B ,猜测⊿DAE与⊿C-⊿B之间的数量关系,并加以证明.人教版八年级|数学11.2 与三角形有关的角培优训练-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】B【解析】∵AB∥CD,∴∠A=∠ACD=40° ,∵∠ACB=90° ,∴∠B =90°-∠A=90°-40°=50°.3. 【答案】D4. 【答案】C【解析】∵CE是△ABC的外角∠ACD的平分线,∠ACE=60° ,∴∠ACD=2∠ACE=120° ,∵∠A+∠B=∠ACD,∠B=35° ,∴∠A=∠ACD-∠B =120°-35°=85°.5. 【答案】B[解析] ⊿⊿A+⊿B+⊿C=180° ,⊿C=40° ,⊿B=4⊿A ,⊿5⊿A+40°=180°.⊿⊿A=28°.6. 【答案】B[解析] ⊿⊿C=90° ,⊿⊿A+⊿B=90°.又⊿⊿A-⊿B=50° ,⊿2⊿A=140°.⊿⊿A=70°.7. 【答案】D[解析] ⊿BD是⊿ABC的平分线,⊿⊿DBC=⊿ABD=30° ,⊿ABC=2⊿ABD=2×30°=60°.⊿⊿ACB=180°-⊿A-⊿ABC=40°.⊿CD平分⊿ACB ,⊿⊿DCB=12⊿ACB=12×40°=20°.⊿⊿BDC=180°-⊿DCB-⊿DBC=130°.8. 【答案】C[解析] ∵∠A =60°,∠ABC =42°,∴∠ACB =180°-∠A -∠ABC =78°.∵∠ABC,∠ACB的平分线分别为BE,CD,∴∠FBC =∠ABC =21°,∠FCB =∠ACB =39°,∴∠BFC =180°-∠FBC -∠FCB =120°.应选C.9. 【答案】B[解析] 如图,连接AC并延长交EF于点M.⊿AB⊿CF ,⊿⊿3=⊿1.⊿AD⊿CE ,⊿⊿2=⊿4.⊿⊿BAD=⊿3+⊿4=⊿1+⊿2=⊿FCE.⊿⊿FCE=180°-⊿E-⊿F=180°-80°-50°=50° ,⊿⊿BAD=⊿FCE=50°.10. 【答案】A[解析] 根据题意,得∠A +∠ABC +∠ACB =180°①,变化后的三角形的三个角的度数分别是∠A -x°,∠ABC +y°,∠ACB +z°,∴∠A -x° +∠ABC +y° +∠ACB +z° =180°②,①②联立整理可得x =y +z.二、填空题(本大题共6道小题)11. 【答案】38°【解析】∵AD∥BC ,∠B=71° ,∴∠EAD=∠B=71°.∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=142° ,∴∠BAC=180°-∠EAC=180°-142°=38°.12. 【答案】4013. 【答案】90°或40°[解析] 假设⊿AOP为直角三角形,那么分两种情况:⊿当⊿A=90°时,⊿AOP为直角三角形;⊿当⊿APO=90°时,⊿AOP为直角三角形,此时⊿A=40°.14. 【答案】114[解析] 因为AB⊿CD ,所以⊿BAB′=⊿1=44°.由折叠的性质知⊿BAC=12⊿BAB′=22°.在⊿ABC中,⊿B=180°-(⊿BAC+⊿2)=114°.15. 【答案】125[解析] ⊿BO平分⊿ABC ,CO平分⊿ACB ,⊿⊿ABO=⊿CBO ,⊿BCO=⊿ACO.⊿⊿CBO+⊿BCO=12(⊿ABC+⊿ACB)=12(180°-⊿A)=12(180°-70°)=55°.⊿在⊿BOC中,⊿BOC=180°-55°=125°.16. 【答案】48°或96°或88°[解析] 当"特征角〞为48°时,即α=48°;当β=48°时,那么"特征角〞α=2×48°=96°;当第三个角为48°时,α+12α+48°=180° ,解得α=88°.综上所述, "特征角〞α的度数为48°或96°或88°.三、解答题(本大题共4道小题)17. 【答案】解:⊿AD是⊿ABC的角平分线,⊿⊿BAC=2⊿BAD=2×30°=60°.⊿⊿C=180°-⊿B-⊿BAC=180°-35°-60°=85°.18. 【答案】解:由题意知⊿ABN=45° ,⊿CBN=15° ,⊿MAC=80° ,所以⊿ABC=60°.因为AM⊿BN ,所以⊿MAB=⊿ABN=45° ,所以⊿BAC=80°-45°=35°.所以⊿ACB=180°-60°-35°=85°.19. 【答案】解:(1)证明:∵AD平分∠BAC ,∴∠BAD =∠DAC.∵∠EFD =∠DAC +∠AEB ,∠ADC =∠ABC +∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.(2)∠EFD =∠ADC仍然成立.理由:∵AD平分∠BAG ,∴∠BAD =∠GAD.∵∠F AE =∠GAD ,∴∠F AE =∠BAD.∵∠EFD =∠AEB -∠F AE ,∠ADC =∠ABC -∠BAD ,且∠AEB =∠ABC ,∴∠EFD =∠ADC.20. 【答案】解:(1)在⊿ABC中,⊿⊿B=50° ,⊿C=60° ,⊿⊿BAC=70°.⊿AD是⊿ABC的角平分线,⊿⊿BAD=⊿DAC=12⊿BAC=35°.⊿AE是BC上的高,⊿⊿AEB=90°.⊿⊿BAE=90°-⊿B=40°.⊿⊿DAE=⊿BAE-⊿BAD=5°.(2)⊿DAE=12(⊿C-⊿B).证明:⊿AE是⊿ABC的高,⊿⊿AEC=90°.⊿⊿EAC=90°-⊿C.⊿AD是⊿ABC的角平分线,⊿⊿DAC=12⊿BAC.⊿⊿BAC=180°-⊿B-⊿C ,⊿⊿DAC=12(180°-⊿B-⊿C).⊿⊿DAE =⊿DAC -⊿EAC=12(180°-⊿B -⊿C)-(90°-⊿C)=12(⊿C -⊿B).11.3 多边形及其内角和一、选择题 (本大题共10道小题 )1. 假设正多边形的内角和是540° ,那么该正多边形的一个外角为A .45°B .60°C .72°D .90°2. 八边形的内角和等于( )A .360°B .1080°C .1440°D .2160°3. 从九边形的一个顶点出发可以引出的对角线的条数为( )A .3B .4C .6D .94. 如图 ,足球图片正中的黑色正五边形的内角和是A .180°B .360°C .540°D .720°5. 假设一个正多边形的每一个外角都等于40° ,那么它是( )A .正九边形B .正十边形C .正十一边形D .正十二边形6. 假设一个多边形的一个顶点处的所有对角线把多边形分成4个三角形 ,那么这个多边形的边数为( )A .3B .4C .5D .67. 以下哪一个度数可以作为某一个多边形的内角和 ( )A.240° B.600°C.540° D.2180°8. 一个正多边形的每个外角不可能等于()A.30° B.50° C.40° D.60°9. 一个多边形切去一个角后,形成的另一个多边形的内角和为1080° ,那么原多边形的边数为()A.7 B.7或8C.8或9 D.7或8或910. 如图,长方形ABCD,一条直线将长方形ABCD分割成两个多边形.假设这两个多边形的内角和分别为M和N ,那么M +N不可能是()A.360°B.540°C.720°D.630°二、填空题(本大题共7道小题)11. 一个正多边形的一个外角为45° ,那么这个正多边形的边数是________.12. 如图,假设A表示四边形,B表示正多边形,那么阴影局部表示________.13. 一个多边形的内角和是外角和的,那么这个多边形的边数是.14. 如图,小明从点A出发,沿直线前进12米后向左转36° ,再沿直线前进12米,又向左转36°……照这样走下去,他第|一次回到出发地点A时,一共走了________米.15. 有一程序,如果机器人在平地上按如下图的步骤行走,那么机器人回到A处行走的路程是.16. 模拟某人为机器人编制了一段程序(如图) ,如果机器人以2 cm/s的速度在平地上按照程序中的步骤行走,那么该机器人从开始到停止所需的时间为________s.17. 如图,假设该图案是由8个形状和大小相同的梯形拼成的,那么⊿1=________°.三、解答题(本大题共4道小题)18. 如图,⊿ABC是正三角形,剪去三个边长均不相等的小正三角形(即⊿ADN ,⊿BEF ,⊿CGM)后,得到一个六边形DEFGMN.(1)六边形DEFGMN的每个内角是多少度?为什么?(2)六边形DEFGMN是正六边形吗?为什么?19. 某单位修建正多边形花台,正多边形花台的一个外角的度数比一个内角度数的多12°.(1)求出这个正多边形的一个内角的度数;(2)求这个正多边形的边数.20. 小华与小明在讨论一个凸多边形的问题,他们的对话如下:小华说:"这个凸多边形的内角和是2021°.〞小明说:"不可能吧!你错把一个外角当作内角了!〞请根据俩人的对话,答复以下问题:(1)凸多边形的内角和为2021° ,小明为什么说不可能?(2)小华求的是几边形的内角和?21. 如图,在五边形ABCDE中,⊿A+⊿B+⊿E=310° ,CF平分⊿DCB ,CF的反向延长线与⊿EDC处的外角的平分线相交于点P ,求⊿P的度数.人教版八年级|数学11.3 多边形及其内角和同步训练-答案一、选择题(本大题共10道小题)1. 【答案】C【解析】∵正多边形的内角和是540°,∴多边形的边数为540°÷180°+2 =5 , ∵多边形的外角和都是360°, ∴多边形的每个外角 =360÷5 =72°.应选C .2. 【答案】B3. 【答案】C [解析] 从九边形的一个顶点出发 ,可以向与这个顶点不相邻的6个顶点引对角线 ,即能引出6条对角线.4. 【答案】C【解析】黑色正五边形的内角和为:(5–2)×180° =540° , 应选C .5. 【答案】A [解析] 由于正多边形的外角和为360° ,且每一个外角都相等 ,因此边数=360°40°=9. 6. 【答案】D[解析] 设这个多边形的边数为n ,那么n -2=4 ,解得n =6. 7. 【答案】C [解析] ⊿多边形内角和公式为(n -2)×180° ,⊿多边形内角和一定是180°的倍数.⊿540°=3×180° ,⊿540°可以作为某一个多边形的内角和.8. 【答案】B [解析] 设正多边形的边数为n ,那么当30°n =360°时 ,n =12 ,故A可能;当50°n =360°时 ,n =365 ,不是整数 ,故B 不可能;当40°n =360°时 ,n =9 ,故C 可能;当60°n =360°时 ,n =6 ,故D 可能.9. 【答案】D [解析] 设内角和为1080°的多边形的边数为n ,那么(n -2)×180°=1080° ,解得n =8.那么原多边形的边数为7或8或9.应选D.10. 【答案】D[解析] 一条直线将长方形ABCD分割成两个多边形的情况有以下三种: (1)直线不经过原长方形的顶点,如图①②,此时长方形被分割为一个五边形和一个三角形或两个四边形,∴M +N =540° +180° =720°或M +N =360° +360° =720°;(2)直线经过原长方形的一个顶点,如图③,此时长方形被分割为一个四边形和一个三角形,∴M +N =360° +180° =540°;(3)直线经过原长方形的两个顶点,如图④,此时长方形被分割为两个三角形,∴M +N =180° +180° =360°.二、填空题(本大题共7道小题)11. 【答案】8【解析】由正多边形的每一个外角都是45° ,其外角和为360° ,可得这个正多边形的边数是360°45°=8.【一题多解】因为正多边形的每一个外角都是45° ,所以这个正多边形的每一个内角都是180°-45°=135° ,设正多边形的边数为n ,那么(n-2)×180°=135°×n ,解得n=8.方法指导设正多边形的边数为n ,正多边形的外角和为360° ,内角和为(n-2)×180° ,每个内角的度数为180°× (n-2 )n.12. 【答案】正方形13. 【答案】514. 【答案】120[解析] 由题意得360°÷36°=10 ,那么他第|一次回到出发地点A时,一共走了12×10=120(米).故答案为120. 15. 【答案】30米[解析] 360°÷24° =15 ,利用多边形的外角和等于360° ,可知机器人回到A处时,恰好沿着正十五边形的边走了一圈,即可求得路程为15×2 =30(米).16. 【答案】16[解析] 由题意得,该机器人所经过的路径是一个正多边形,多边形的边数为36045=8 ,那么所走的路程是4×8=32(cm) ,故所用的时间是32÷2=16(s).17. 【答案】67.5三、解答题 (本大题共4道小题 )18. 【答案】解:(1)六边形DEFGMN 的各个内角都是120°.理由:⊿⊿ADN ,⊿BEF ,⊿CGM 都是正三角形 ,⊿它们的每个内角都是60° ,即六边形DEFGMN 的每个外角都是60°. ⊿六边形DEFGMN 的每个内角都是120°.(2)六边形DEFGMN 不是正六边形.理由:⊿三个小正三角形(即⊿ADN ,⊿BEF ,⊿CGM)的边长均不相等 , ⊿DN ,EF ,GM 均不相等.⊿六边形DEFGMN 不是正六边形.19. 【答案】解:(1)设这个多边形的一个内角的度数是x ° ,那么与其相邻的外角度数是x ° +12°. 由题意 ,得x +x +12 =180 ,解得x =140.即这个正多边形的一个内角的度数是140°.(2)这个正多边形的每一个外角的度数为180° -140° =40° ,所以这个正多边形的边数是=9.20. 【答案】解:(1)⊿n 边形的内角和是(n -2)×180° ,⊿多边形的内角和一定是180°的整倍数.⊿2021÷180=11……40 ,⊿多边形的内角和不可能为2021°.(2)设小华求的是n 边形的内角和 ,这个内角为x° ,那么0<x <180.根据题意 ,得(n -2)×180°-x +(180°-x)=2021° ,解得n =12+2x +40180.⊿n 为正整数 ,⊿2x +40必为180的整倍数.又⊿0<x <180 ,⊿40180<2x +40180<400180.⊿n =13或14.⊿小华求的是十三边形或十四边形的内角和.21. 【答案】解:延长ED ,BC 相交于点G.在四边形ABGE 中 ,⊿G =360°-(⊿A +⊿B +⊿E)=50° ,⊿P =⊿FCD -⊿CDP =12(⊿DCB -⊿CDG)=12⊿G =12×50°=25°.。

人教版八年级数学第一学期期末综合复习测试题(含答案)

人教版八年级数学第一学期期末综合复习测试题(含答案)

人教版八年级数学第一学期期末综合复习测试题(含答案)一.选择题(共12小题,满分36分)1.以下是清华大学、北京大学、上海交通大学、浙江大学的校徽,其中是轴对称图形的是()A.B.C.D.2.目前发现的新冠病毒其直径约为0.00012毫米,则这个数字用科学记数法表示正确的是()A.1.2×104B.1.2×10﹣4C.0.12×105D.0.12×10﹣5 3.已知点A(m﹣1,3)与点B(2,n+1)关于x轴对称,则m+n的值为()A.﹣1B.﹣7C.1D.74.若3和9是一个三角形的两边长,且第三边长为偶数,则该三角形的周长为()A.20B.21C.21或22D.20或225.如果一个正多边形的每一个内角是144°,则这个多边形是()A.正十边形B.正九边形C.正八边形D.正七边形6.已知等腰三角形一腰上的高线与另一腰的夹角为40°,那么这个等腰三角形的顶角等于()A.50°或130°B.130°C.80°D.50°或80°7.下列各式正确的是()A.B.C.D.8.下列计算正确的是()A.a m a n=a mn B.(﹣a2)3=a6C.(a﹣1)2=D.a3÷2a=2a29.现有甲、乙、丙三种不同的长方形纸片若干张(边长如图).小明要用这三种纸片紧密拼接成一个没有缝隙的大正方形,他选取甲纸片1张,再取乙纸片4张,还需要取丙纸片的张数为()A.1B.2C.3D.410.甲乙两个码头相距s千米,某船在静水中的速度为a千米/时,水流速度为b千米/时,则船一次往返两个码头所需的时间为()小时.A.B.C.D.+11.如图所示,在直角三角形ABC中,已知∠ACB=90°,点E是AB的中点,且DE⊥AB,DE交AC的延长线于点D、交BC于点F,若∠D=30°,EF=2,则DF的长是()A.5B.4C.3D.212.已知△ABC是边长为10的等边三角形,D为AC的中点,∠EDF=120°,DE交线段AB于E,DF交BC的延长线于F.若AE=4BE,则CF的长为()A.1B.2C.3D.4二.填空题(共6小题,满分18分)13.当x=时,分式无意义.14.如图,自行车是人们日常代步的工具.你发现了没有,生活中都把自行车的几根梁做成三角形的支架,这是利用三角形的.15.分解因式:2x2﹣8x+8=.16.已知:a﹣b=1,a2+b2=25,则(a+b)2的值为.17.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了赶在雨季前竣工,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设原计划工作时每天绿化的面积为x万平方米,根据题意列方程得.18.已知一张三角形纸片ABC(如图甲),其中AB=AC=10,BC=6.将纸片沿DE折叠,使点A与点B重合(如图乙)时,CE=a;再将纸片沿EF折叠,使得点C恰好与BE边上的G点重合,折痕为EF(如图丙),则△BFG的周长为(用含a的式子表示).三.解答题(共8小题,满分66分)19.计算:(1)(﹣a3)2•(ab)2.(2)(﹣0.25)2020×42021.20.先化简再求值,选择一个你喜欢的x的值代入其中并求值.21.如图,在△ABC中,AB=AC.(1)用尺规完成以下基本作图:作△ABC的边AB的垂直平分线DE,交AB于点D,交AC于点E,连接BE;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,若∠A=40°,求∠CBE的度数.22.如图,CE⊥AB,BD⊥AC,垂足分别为E、D,CE,BD相交于O.(1)若∠1=∠2,求证:OB=OC;(2)若OB=OC,求证:∠1=∠2.23.受疫情影响,洗手液需求量猛增,某商场用4000元购进一批洗手液后,供不应求,商场用8800元购进第二批这种洗手液,所购数量是第一批数量的2倍,但单价贵了1元.(1)求该商场购进的第一批洗手液的单价;(2)商场销售这种洗手液时,每瓶定价为13元,最后200瓶按9折销售,很快售完,在这两笔生意中商场共获利多少元?24.等面积法是一种常用的、重要的数学解题方法.(1)如图1,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB=5,CD⊥AB,则CD长为;(2)如图2,在△ABC中,AB=4,BC=2,则△ABC的高CD与AE的比是;(3)如图3,在△ABC中,∠C=90°(∠A<∠ABC),点D,P分别在边AB,AC上,且BP=AP,DE⊥BP,DF⊥AP,垂足分别为点E,F.若BC=5,求DE+DF的值.25.阅读材料:若满足(8﹣x)(x﹣6)=﹣3,求(8﹣x)2+(x﹣6)2的值.解:设8﹣x=a,x﹣6=b,则(8﹣x)(x﹣6)=ab=﹣3,a+b=8﹣x+x﹣6=2.所以(8﹣x)2+(x﹣6)2=a2+b2=(a+b)2﹣2ab=22﹣2×(﹣3)=10.请仿照上例解决下面的问题:(1)问题发现:若x满足(3﹣x)(x﹣2)=﹣10,求(3﹣x)2+(x﹣2)2的值;(2)类比探究:若x满足(2022﹣x)2+(2021﹣x)2=2020.求(2022﹣x)(2021﹣x)的值;(3)拓展延伸:如图,正方形ABCD和正方形和MFNP重叠,其重叠部分是一个长方形,分别延长AD、CD,交NP和MP于H、Q两点,构成的四边形NGDH和MEDQ都是正方形,四边形PQDH是长方形.若正方形ABCD的边长为x,AE=10,CG=20,长方形EFGD的面积为200.求正方形MFNP的面积(结果必须是一个具体数值).26.已知△ABC和△DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E在AB 上,点F在射线AC上.(1)如图1,若∠BAC=60°,点F与点C重合,①求证:AF=AE+AD;②求证:AD∥BC.(2)如图2,若AD=AB,那么线段AF,AE,BC之间存在怎样的数量关系.参考答案一.选择题(共12小题,满分36分)1.B.2.B.3.A.4.D.5.A.6.A.7.D.8.C.9.D.10.D.11.B.12.C.二.填空题(共6小题,满分18分)13.﹣3.14.稳定性.15.2(x﹣2)2.16.49.17.﹣=30.18.16﹣2a.三.解答题(共8小题,满分66分)19.解:(1)(﹣a3)2•(ab)2=a6•a2b2=a8b2.(2)(﹣0.25)2020×42021=(﹣)2020×42020×4=(﹣×4)2020×4=1×4=4.20.解:原式=[﹣]÷=()•=•=,由题意得:x≠±1,当x=2时,原式==1.21.解:(1)如图所示.(2)∵AB=AC,∴∠ABC=∠ACB,∵∠A=40°,∴∠ABC=∠ACB=70°,∵DE为线段AB的垂直平分线,∴∠A=∠ABE=40°,∴∠CBE=∠ABC﹣∠ABE=70°﹣40°=30°.22.证明:如图所示:(1)∵CE⊥AB,BD⊥AC,∴∠BEO=∠CDO=90°,又∵∠EOB=∠DOC,∠BEO+∠EOB+∠B=180°,∠CDO+∠DOC+∠C=180°,∴∠B=∠C.在△ABO和△ACO中,,∴△ABO≌△ACO(AAS),∴OB=OC.(2)∵CE⊥AB,BD⊥AC,∴∠OEB=∠ODC=90°,在△BOE和△COD中,,∴△BOE≌△COD(AAS),∴OE=OD,∴AO是∠BAC的角平分线,∴∠1=∠2.23.解:(1)设该商场购进的第一批洗手液的单价为x元/瓶,依题意得:2×=,解得:x=10,经检验,x=10是原方程的解,且符合题意,答:该商场购进的第一批洗手液的单价为10元;(2)共获利:(+﹣200)×13+200×13×0.9﹣(4000+8800)=2540(元).答:在这两笔生意中商场共获得2540元.24.解:(1)如图1中,∵CD⊥AB,∴S△ABC=•AC•BC=•AB•CD,∴CD==;故答案为:;(2)如图2中,∵S△ABC=AB•CD=BC•AE∴,∴2CD=AE,∴CD:AE=1:2;故答案为:1:2;(3)∵S△ABP=,,,∵S△ABP=S△ADP+S△BDP,∴,又∵BP=AP,∴,即DE+DF=BC=5.25.解:(1)设3﹣x=a,x﹣2=b,则a+b=(3﹣x)+(x﹣2)=1,由完全平方公式可得a2+b2=(a+b)2﹣2ab=12﹣2×(﹣10)=21,即:(3﹣x)2+(x﹣2)2的值为21;(2)设2022﹣x=a,2021﹣x=b,则a﹣b=1,a2+b2=2020,由完全平方公式可得ab==,即:(2022﹣x)(2021﹣x)的值为;(3)设DE=a,DG=b,则a=x﹣10,b=x﹣20,a﹣b=10,又由ab=200,∴正方形MFNP的面积为:(a+b)2=(a﹣b)2+4ab=102+4×200=900.26.证明:(1)①∵∠BAC=∠EDF=60°,AB=AC,DE=DF,∴△ABC,△DEF为等边三角形,∴BC=AC,CE=CD,∠BCE+∠ACE=∠DCA+∠ECA=60°,∴∠BCE=∠ACD,在△BCE和△ACD中,∴△BCE≌△ACD(SAS),∴AD=BE,∴AE+AD=AE+BE=AB=AF,即AF=AE+AD;②∵△BCE≌△ACD,∴∠DAC=∠EBC,∵△ABC为等边三角形,∴∠EBC=∠EAC=∠DAC=60°,∴∠EBC+∠EAC+∠DAC=180°,∴AD∥BC;(2)如图2,在F A上截取FM=AE,连接DM,∵∠BAC=∠EDF,∠ANE=∠DNF,∴∠AED=∠MFD,在△AED和△MFD中,∴△AED≌△MFD(SAS),∴DA=DM=AB=AC,∠ADE=∠MDF,∴∠ADE+∠EDM=∠MDF+∠EDM,即∠ADM=∠EDF,∴∠ADM=∠BAC,在△ABC和△DAM中,∴△ABC≌△DAM(SAS),∴AM=BC,∴AE+BC=FM+AM=AF.即AF=AE+BC。

新人教版八年级上册数学 期末复习知识点

新人教版八年级上册数学 期末复习知识点

新人教版八年级上册数学期末复习知识点一、整数和有理数1. 整数的概念和表示方法2. 整数的加法、减法、乘法和除法运算规则3. 整数的大小比较和绝对值的计算4. 有理数的概念和表示方法5. 有理数的加法、减法、乘法和除法运算规则6. 有理数的大小比较和绝对值的计算二、代数式和代数方程1. 代数式的概念和基本运算法则2. 代数式的合并同类项和提取公因式3. 代数方程的解法和方程根的性质三、一次函数和一次方程1. 一次函数的概念和性质2. 一次函数的图象和函数表达式3. 一次函数的特殊情况:直线的斜率4. 一次方程的概念和解法5. 一次方程的实际应用四、平面图形的认识1. 直线、线段、射线和角的概念2. 三角形、四边形和多边形的概念与性质3. 平行线与垂直线的判定4. 平行四边形和各种特殊四边形的性质五、相似与全等1. 相似的概念和判定条件2. 相似三角形的性质和应用3. 全等的概念和判定条件4. 全等三角形的性质和应用六、数的性质和运算1. 平方根和立方根2. 科学计数法和统计与概率3. 实数的概念和分类七、数据的收集和处理1. 统计调查的方法和步骤2. 数据的整理和图表的制作3. 平均数与中位数4. 两个数据之间的比较八、直角三角形和勾股定理1. 直角三角形的定义和性质2. 勾股定理的概念和证明3. 利用勾股定理解决实际问题九、正比例与反比例函数1. 正比例函数和反比例函数的概念2. 正比例函数和反比例函数的性质和图象3. 正比例函数和反比例函数的应用十、平面直角坐标系1. 平面直角坐标系的建立2. 点的坐标和坐标的表示3. 点的对称和平面镜像十一、图形的位置和方位1. 平行四边形的判定和性质2. 图形的位移和旋转3. 线、面、体的位置关系十二、盈亏计算与商业应用1. 盈亏的计算2. 利润的计算3. 商业应用中的实际问题。

人教版八年级数学上册期末考试综合复习练习题(含答案)

人教版八年级数学上册期末考试综合复习练习题(含答案)

人教版八年级数学上册期末考试综合复习练习题(含答案)一、选择题(本题共10个小题,每小题3分,共 30分。

下列各题,每小题只有一个选项符合题意。

)1. 下面四个图形中,是轴对称图形的是( ) A. B. C. D.2. 熔喷布,俗称口罩的“心脏”,是口罩中间的过滤层,能过滤细菌,阻止病菌传播.经测量,医用外科口罩的熔喷布厚度约为0.000156米,将0.000156用科学记数法表示应为( )A. 30.15610-⨯B. 31.5610-⨯C. 41.5610-⨯D. 415.610-⨯3. 下列计算正确的是( )A. x •x 3=x 4B. x 4+x 4=x 8C. (x 2)3=x 5D. x ﹣1=﹣x 4. 若分式224x x +-有意义,则x 的取值范围是( ) A. x ≠2 B. x ≠±2 C. x ≠﹣2 D. x ≥﹣25. 已知正多边形的一个内角是135°,则这个正多边形的边数是( )A. 3B. 4C. 6D. 86. 若点A (﹣3,a )与B (b ,2)关于x 轴对称,则点M (a ,b )所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 如图,已知∠ABD =∠BAC ,添加下列条件还不能判定△ABC ≌△BAD 的依据是( )A. AC =BDB. ∠DAB =∠CBAC. ∠C =∠DD. BC =AD8. 计算a ﹣2b 2•(a 2b ﹣2)﹣2正确的结果是( ) A. 66a b B. 66b a C. a 6b 6 D. 661a b9. 如图,等边ABC ∆的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若2AE =,当EF CF +取得最小值时,则ECF ∠的度数为( )A. 15︒B. 22.5︒C. 30D. 45︒10. 瓜达尔港是我国实施“一带一路”战略构想的重要一步,为了增进中巴友谊,促进全球经济一体化发展,我国施工队预计把距离港口420km 的普通公路升级成同等长度的高速公路,升级后汽车行驶的平均速度比原来提高50%,行驶时间缩短2h ,那么汽车原来的平均速度为( )A. 80km/hB. 75km/hC. 70km/hD. 65km/h二.填空题(共5题,总计 15分)11. 分解因式:5x 4﹣5x 2=________________.12. 若4,8x y a b ==,则232x y -可表示为________(用含a 、b 的代数式表示).13. 若△ABC ≌△DEF ,△ABC 的周长为100,AB =30,DF =25,则BC 为 ________.14. 如图,DE AB ⊥于E ,AD 平分BAC ∠,BD DC =,10AC =cm ,6AB =cm ,则AE =______.15. 如图,△ABC 中,∠BAC =60°,∠BAC 的平分线AD 与边BC 的垂直平分线MD 相交于D ,DE ⊥AB 交AB 的延长线于E ,DF ⊥AC 于F ,现有下列结论:①DE =DF ;②DE +DF =AD ;③DM 平分∠EDF ;④AB +AC =2AE ;其中正确的有________.(填写序号)三.解答题(共8题,总计75分)16. (1)计算:()32(2)32x x x x ---; (2)分解因式:229()()6()x x y y y x xy y x ---+-;17. 先化简,再求值:221x 4x 41x 1x 1-+⎛⎫-÷ ⎪--⎝⎭,其中x=3.18. 如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出关于y 轴对称的111A B C △.(2)写出点111,,A B C 的坐标(直接写答案).(3)111A B C △的面积为___________19. 如图,已知BF ⊥AC 于F ,CE ⊥AB 于E ,BF 交CE 于D ,且BD =CD ,求证:点D 在∠BAC 的平分线上.20. 如图,直线m 是中BC 边的垂直平分线,点P 是直线m 上的一动点,若6AB =,4AC =,7BC =.(1)求PA PB +的最小值,并说明理由.(2)求APC △周长的最小值.21. [阅读理解]我们常将一些公式变形,以简化运算过程.如:可以把公式“()2222a b a ab b +=++”变形成()2222a b a b ab +=+-或()()2222ab a b a b =+-+等形式,问题:若x 满足()()203010x x --=,求()()222030x x -+-的值. 我们可以作如下解答;设20a x =-,30b x =-,则()()203010x x ab --==, 即:()()2030203010a b x x +=-+-=-=-.所以()()()()222222203021021080x x a b a b ab -+-=+=+-=--⨯=. 请根据你对上述内容的理解,解答下列问题:(1)若x 满足()()807010x x --=-,求()()228070x x -+-的值. (2)若x 满足()()22202020174051x x -+-=,求()()20202017x x --的值.22. 一水果店主分两批购进某一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%.(1)该水果店主购进第一批这种水果的单价是多少元?(2)该水果店主计两批水果的售价均定为每箱40元,实际销售时按计划无损耗售完第一批后,发现第二批水果品质不如第一批,于是该店主将售价下降a %销售,结果还是出现了20%的损耗,但这两批水果销售完后仍赚了不低于1716元,求a 的最大值.23. 如图,已知和均为等腰三角形,AB AC =,AD AE =,将这两个三角形放置在一起,使点B ,D ,E 在同一直线上,连接CE .(1)如图1,若50ABC ACB ADE AED ∠=∠=∠=∠=︒,求证:BAD CAE ≌;(2)在(1)的条件下,求BEC ∠的度数;拓广探索:(3)如图2,若120CAB EAD ∠=∠=︒,4BD =,CF 为BAD 中BE 边上的高,请直接写出BEC ∠的度数和EF 的长度。

人教版八年级上册数学期末常考题型复习训练 含答案

人教版八年级上册数学期末常考题型复习训练   含答案

人教版八年级上册数学期末常考题型复习训练一.选择题1.在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中.轴对称图形是()A.B.C.D.2.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.16B.11C.3D.63.分式有意义,则x的取值范围是()A.x≠1B.x=1C.x≠﹣1)D.x=﹣14.点M(1,2)关于y轴对称点的坐标为(A.(﹣1,2)5.下列运算正确的是(A.a3•a4=a12B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1))B.(a3)2=a5D.a6÷a3=a2C.(3a2)3=27a66.如图,已知∠A CB=∠DB C,添加以下条件,不能判定△AB C≌△D CB的是()A.∠AB C=∠D C B B.∠AB D=∠D C A C.AC=D B 7.若x2+mxy+4y2是一个完全平方式,那么m的值是(A.±4B.﹣2C.±2D.AB=D C D.4)8.如图,△AB C为等边三角形,AE=C D,A D、BE相交于点P,B Q⊥A D于Q,P Q=3,PE=1.A D的长是()A .5 9.从边长为a 的正方形内去掉一个边长为 b 的小正方形(如图1),然后将剩余部分剪拼成 一个矩形(如图 2),上述操作所能验证的等式是(B .6C .7D .8)A .(a ﹣b )2=a 2﹣2ab+b 2 C .(a+b )2=a 2+2ab+b 2B .a 2﹣b 2=(a+b )(a ﹣b ) D .a 2+ab =a (a+b )10.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( )A .60°B .120°C .60°或 150°D .60°或 120°二.填空题11.计算:(6x 4﹣8x 3)÷(﹣2x 2)= 12.若分式的值为零,则 x 的值为..13.禽流感病毒的形状一般为球形,直径大约为 0.000000102m ,将 0.000000102 用科学记数 法表示为14.如果一个多边形的每个外角都等于 60°,则这个多边形的边数是15.如图,已知△ABC 是等边三角形,点 B 、C 、D 、E 在同一直线上,且 C G =C D ,DF = D E ,则∠E =度...16.已知 2 =a ,32 =b ,y 为正整数,则 23 +10 =.x y x y 17.若 a ﹣b =1,ab =2,那么 a+b 的值为 .18.繁昌到南京大约150 千米,由于开通了高铁,动车的的平均速度是汽车的2.5 倍,这样 乘动车到南京比坐汽车就要节省 1.2 小时,设汽车的平均速度为 x 千米/时,根据题意列 出方程19.如图,在△AB C 中,AB =3,A C =4,BC =5,EF 垂直平分 BC ,点 P 为直线 EF 上一 动点,则△ABP 周长的最小值是..20.如图所示,第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第1个图案经过平移而得,那么设第n个图案中有白色地面砖m块,则m与n的函数关系式是.三.解答题32﹣121.计算:20200﹣()+2÷(﹣2)22.解方程:.23.如图,点E、F在BC上,BE=FC,AB=D C,∠B=∠C.求证:∠A=∠D.24.先化简,再求值:÷(x﹣2﹣),其中x=3.25.如图,在Rt△ABC中,∠ACB=90°,C D是AB边上的高,(1)尺规作图:作△ABC的角平分线AE,交C D于点F(不写作法,保留作图痕迹);(2)求证:△CEF为等腰三角形.26.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.这项工程的规定时间是多少天?27.两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形B,C,E在同一条直线上,连结D C.(1)请找出图②中的全等三角形,并给予说明(注意:结论中不得含有未标识的字母);(2)请判断D C与BE的位置关系,并证明;(3)若CE=2,B C=4,求△D C E的面积.28.如图(1)AC⊥AB,B D⊥AB,AB=12cm,AC=B D=8cm,点P在线段AB上以2cm/s 的速度由点A向点B运动,同时,点Q在线段B D上由点B向点D运动,它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=2时,△ACP与△BP Q是否全等,请说明理由;(2)在(1)的条件下,判断此时线段PC和线段P Q的位置关系,并证明;(3)如图(2),将图(1)中的“AC⊥AB,B D⊥AB”改为“∠C AB=∠DBA=50°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BP Q全等?若存在,求出相应的x、t的值;若不存在,请说明理由.参考答案一.选择题1.解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不合题意.故选:C.2.解:设第三边的长度为x,由题意得:7﹣3<x<7+3,即:4<x<10,故选:D.3.解:根据题意可得x﹣1≠0;解得x≠1;故选:A.4.解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.5.解:A.a3•a4=a7,故本选项不合题意;B.(a3)2=a6,故本选项不合题意;C.(3a2)3=27a6,正确,故选项C符合题意;D.a6÷a3=a3,故本选项不合题意.故选:C.6.解:A、∵在△ABC和△D C B中∴△ABC≌△D C B(ASA),故本选项不符合题意;B、∵∠AB D=∠D C A,∠DB C=∠ACB,∴∠AB D+∠DB C=∠AC D+∠A CB,即∠ABC=∠D C B,∵在△ABC和△D C B中∴△ABC≌△D C B(ASA),故本选项不符合题意;C、∵在△AB C和△D C B中∴△ABC≌△D C B(SAS),故本选项不符合题意;D、根据∠ACB=∠DB C,B C=B C,AB=D C不能推出△ABC≌△D C B,故本选项符合题意;故选:D.7.解:∵x2+mxy+4y2=x2+mxy+(2y)2,∴mxy=±2x•2y,解得:m=±4.故选:A.8.解:∵△AB C为等边三角形,∴AB=CA,∠BAE=∠AC D=60°;又∵AE=C D,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS);∴BE=A D,∠CA D=∠ABE;∴∠BP Q=∠ABE+∠BA D=∠BA D+∠CA D=∠BAE=60°;∵B Q⊥A D,∴∠A QB=90°,则∠PB Q=90°﹣60°=30°;∵P Q=3,∴在Rt△BP Q中,BP=2P Q=6;又∵PE=1,∴A D=BE=BP+PE=7.故选:C.9.解:∵从边长为a的正方形内去掉一个边长为b的小正方形,剩余部分的面积是:a2﹣b2,拼成的矩形的面积是:(a+b)(a﹣b),2∴根据剩余部分的面积相等得:a﹣b=(a+b)(a﹣b),2故选:B.10.解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故选:D.二.填空题11.解;原式=6x4÷(﹣2x2)﹣8x3÷(﹣2x2)=﹣3x+4x,2故答案为:﹣3x+4x.212.解:,则|x|﹣1=0,即x=±1,且x+1≠0,即x≠﹣1.故x=1.故若分式的值为零,则x的值为1.13.解:0.000000102=1.02×10﹣7.故答案为:1.02×10.﹣714.解:360°÷60°=6.故这个多边形是六边形.故答案为:6.15.解:∵△ABC是等边三角形,∴∠ACB=60°,∠AC D=120°,∵C G=C D,∴∠C D G=30°,∠F DE=150°,∵DF=DE,∴∠E=15°.故答案为:15.16.解:∵32y=b,∴(2)=2=b5y5y∴23x+10y=2•2=(2)•(2)=a b.3x10y x35y232故答案为:a b.3217.解:把a﹣b=1,两边平方得:(a﹣b)2=a2+b2﹣2ab=1,把ab=2代入得:a+b=5,22∴(a+b)=a+b+2ab=9,222则a+b=±3,故答案为:±318.解:设原来火车的平均速度为x千米/时,则动车运行后的平均速度为1.8x,由题意得,故答案为:==+1.2.+1.2.19.解:∵EF垂直平分BC,∴B、C关于EF对称,连接AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,∴△ABP周长的最小值是4+3=7.故答案为:7.20.解:首先发现:第一个图案中,有白色的是6个,后边是依次多4个.所以第n个图案中,是6+4(n﹣1)=4n+2.∴m与n的函数关系式是m=4n+2.故答案为:4n+2.三.解答题21.解:原式=1﹣3+8÷4=1﹣3+2=0.22.解:去分母得:2=x2+2x﹣x2+4,解得:x=﹣1,经检验x=﹣1是分式方程的解.23.证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=D C,∠B=∠C,∴△ABF≌△D C E(SAS),∴∠A=∠D.===÷•.当x=3时,原式=1.25.(1)解:如图线段AE即为所求;(2)证明:∵CD⊥AB,∴∠B D C=∠ACB=90°,∴∠AC D+∠D C B=90°,∠D CB+∠B=90°,∴∠AC D=∠B,∵∠CFE=∠ACF+∠CAF,∠CEF=∠B+∠EAB,∠CAF=∠EAB,∴∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.26.解:设这项工程的规定时间是x天,根据题意得解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.27.解:(1)△ABE≌△AC D,∵△ABC和△A D E是等腰直角三角形,∴AB=AC,AE=A D,∠BA C=∠EA D=90°,∴∠BAC+∠EA C=∠DAE+∠EA C,∴∠BAE=∠CAD,在△ABE和△ACD中,∴△ABE≌△ACD(SAS).(2)∵△ABE≌△AC D,∴∠AEB=∠A D C.∵∠A D C+∠AF D=90°,∴∠AEB+∠AF D=90°.∵∠AF D=∠CFE,∴∠AEB+∠CFE=90°,∴∠FCE=90°,∴D C⊥BE;(3)∵CE=2,B C=4,∴BE=6,∵△ABE≌△ACD,∴C D=BE=6,∴△D CE的面积=CE•C D=×2×6=6.28.解:(1)△AC P与△BP Q全等,理由如下:当t=2时,AP=B Q=4cm,则BP=12﹣4=8cm,∴BP=AC=8cm,又∵∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).(2)PC⊥P Q,证明:∵△ACP≌△BP Q,∴∠ACP=∠BPQ,∴∠APC+∠BP Q=∠APC+∠ACP=90°.∴∠CP Q=90°,即线段PC与线段P Q垂直.(3)①若△ACP≌△BP Q,则AC=BP,AP=B Q,∴12﹣2t=8,解得,t=2(s),则x=2(cm/s).②若△ACP≌△BQ P,则AC=B Q,AP=BP,则2t=×12,解得,t=3(s),则x=8÷3=(cm/s),故当t=2s,x=2cm/s或t=3s,x=cm/s时,△AC P与△BP Q全等.∴CE=CF,∴△CEF是等腰三角形.26.解:设这项工程的规定时间是x天,根据题意得=1.解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.27.解:(1)△ABE≌△AC D,∵△ABC和△A D E是等腰直角三角形,∴AB=AC,AE=A D,∠BA C=∠EA D=90°,∴∠BAC+∠EA C=∠DAE+∠EA C,∴∠BAE=∠CAD,在△ABE和△ACD中,∴△ABE≌△ACD(SAS).(2)∵△ABE≌△AC D,∴∠AEB=∠A D C.∵∠A D C+∠AF D=90°,∴∠AEB+∠AF D=90°.∵∠AF D=∠CFE,∴∠AEB+∠CFE=90°,∴∠FCE=90°,∴D C⊥BE;(3)∵CE=2,B C=4,∴BE=6,∵△ABE≌△ACD,∴C D=BE=6,∴△D CE的面积=CE•C D=×2×6=6.28.解:(1)△AC P与△BP Q全等,理由如下:当t=2时,AP=B Q=4cm,则BP=12﹣4=8cm,∴BP=AC=8cm,又∵∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).(2)PC⊥P Q,证明:∵△ACP≌△BP Q,∴∠ACP=∠BPQ,∴∠APC+∠BP Q=∠APC+∠ACP=90°.∴∠CP Q=90°,即线段PC与线段P Q垂直.(3)①若△ACP≌△BP Q,则AC=BP,AP=B Q,∴12﹣2t=8,解得,t=2(s),则x=2(cm/s).②若△ACP≌△BQ P,则AC=B Q,AP=BP,则2t=×12,解得,t=3(s),则x=8÷3=(cm/s),故当t=2s,x=2cm/s或t=3s,x=cm/s时,△AC P与△BP Q全等.∴CE=CF,∴△CEF是等腰三角形.26.解:设这项工程的规定时间是x天,根据题意得=1.解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.27.解:(1)△ABE≌△AC D,∵△ABC和△A D E是等腰直角三角形,∴AB=AC,AE=A D,∠BA C=∠EA D=90°,∴∠BAC+∠EA C=∠DAE+∠EA C,∴∠BAE=∠CAD,在△ABE和△ACD中,∴△ABE≌△ACD(SAS).(2)∵△ABE≌△AC D,∴∠AEB=∠A D C.∵∠A D C+∠AF D=90°,∴∠AEB+∠AF D=90°.∵∠AF D=∠CFE,∴∠AEB+∠CFE=90°,∴∠FCE=90°,∴D C⊥BE;(3)∵CE=2,B C=4,∴BE=6,∵△ABE≌△ACD,∴C D=BE=6,∴△D CE的面积=CE•C D=×2×6=6.28.解:(1)△AC P与△BP Q全等,理由如下:当t=2时,AP=B Q=4cm,则BP=12﹣4=8cm,∴BP=AC=8cm,又∵∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).(2)PC⊥P Q,证明:∵△ACP≌△BP Q,∴∠ACP=∠BPQ,∴∠APC+∠BP Q=∠APC+∠ACP=90°.∴∠CP Q=90°,即线段PC与线段P Q垂直.(3)①若△ACP≌△BP Q,则AC=BP,AP=B Q,∴12﹣2t=8,解得,t=2(s),则x=2(cm/s).②若△ACP≌△BQ P,则AC=B Q,AP=BP,则2t=×12,解得,t=3(s),则x=8÷3=(cm/s),故当t=2s,x=2cm/s或t=3s,x=cm/s时,△AC P与△BP Q全等.∴CE=CF,∴△CEF是等腰三角形.26.解:设这项工程的规定时间是x天,根据题意得=1.解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.27.解:(1)△ABE≌△AC D,∵△ABC和△A D E是等腰直角三角形,∴AB=AC,AE=A D,∠BA C=∠EA D=90°,∴∠BAC+∠EA C=∠DAE+∠EA C,∴∠BAE=∠CAD,在△ABE和△ACD中,∴△ABE≌△ACD(SAS).(2)∵△ABE≌△AC D,∴∠AEB=∠A D C.∵∠A D C+∠AF D=90°,∴∠AEB+∠AF D=90°.∵∠AF D=∠CFE,∴∠AEB+∠CFE=90°,∴∠FCE=90°,∴D C⊥BE;(3)∵CE=2,B C=4,∴BE=6,∵△ABE≌△ACD,∴C D=BE=6,∴△D CE的面积=CE•C D=×2×6=6.28.解:(1)△AC P与△BP Q全等,理由如下:当t=2时,AP=B Q=4cm,则BP=12﹣4=8cm,∴BP=AC=8cm,又∵∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).(2)PC⊥P Q,证明:∵△ACP≌△BP Q,∴∠ACP=∠BPQ,∴∠APC+∠BP Q=∠APC+∠ACP=90°.∴∠CP Q=90°,即线段PC与线段P Q垂直.(3)①若△ACP≌△BP Q,则AC=BP,AP=B Q,∴12﹣2t=8,解得,t=2(s),则x=2(cm/s).②若△ACP≌△BQ P,则AC=B Q,AP=BP,则2t=×12,解得,t=3(s),则x=8÷3=(cm/s),故当t=2s,x=2cm/s或t=3s,x=cm/s时,△AC P与△BP Q全等.。

2021-2022学年新人教版八年级上学期期末数学复习复习卷(二)(含答案解析)

2021-2022学年新人教版八年级上学期期末数学复习复习卷(二)(含答案解析)

2021-2022学年新人教版八年级上学期期末数学复习复习卷(二)一、选择题(本大题共10小题,共30.0分)1.若分式x2−9的值为零,则x的值是()x2−3xA. ±3B. −3C. 3D. −22.下列说法正确的是()A. 平行四边形是轴对称图形B. 平行四边形的邻边相等C. 平行四边形的对角线互相垂直D. 平行四边形的对角线互相平分3.肥皂泡的厚度为0.00000007m,这个数用科学记数法表示为()A. 0.7×10−7mB. 0.7×l0−8mC. 7×10−7mD. 7×10−8m4.如图,已知a//b,∠1=55°,∠2=90°,则∠3的度数为()A. 35°B. 55°C. 125°D. 145°5.下列各式中,计算结果为a6的是()A. a2+a4B. a8−a2C. a2⋅a3D. a7÷a6.如图,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等的三角形有()A. 2对B. 3对C. 4对D. 5对7.如图,在边长为2的等边△ABC中,D是BC边上的中点,以点A为圆心,AD为半径作圆与AB,AC分别交于E,F两点,则图中阴影部分的面积为()A. π6B. π3C. π2D. 2π38.如图,在Rt△ACB中,∠ACB=90°,BC=2,AC=4,点D为AB边的中点,点E为线段AC上的一点,连接EB,将△ABE沿AB翻折得到△ABE′,连接DE、DE′,当BC//DE′时,则BE′的长是()A. √103B. √853C. 2√853D. 2√1039.多边形的边数增加1,这个多边形内角增加____,外角增加_____()A. 180°,180°B. 360°,360°C. 180°,0°D. 360°,0°10.把分式方程3x+5−x−3x−5+1=0去分母可得()A. 3(x−5)−(x−5)(x−3)+1=0B. 3(x−5)+(x+5)(x−3)+(x+5)(x−5)=0C. 3(x−5)−(x+5)(x−3)+(x+5)(x−5)=(x+5)(x−5)D. 3(x−5)−(x+5)(x−3)+(x+5)(x−5)=0二、填空题(本大题共8小题,共24.0分)11.若点P(m,m−1)在x轴上,则点P关于x轴对称的点为______ .12.要使分式x+2x−1的值为0,则x的值为______.13.因式分解:x2−81=______ ,3ax2−6axy+3ay2=______ .14.如图,△ABC中,∠C=90°,DE垂直平分AB,如果∠1:∠2=2:3,那么∠B=______ 度.15.是整数,则最小的正整数a的值是。

人教版八年级数学上册(RJ) 期末复习专题:三角形及其性质

人教版八年级数学上册(RJ) 期末复习专题:三角形及其性质

专题三角形及其性质☞解读考点☞2年中考【题组】(崇左)如果一个三角形的两边长分别是2和5,则第三边可能是()1.A.2 B.3 C.5 D.8【答案】C.【解析】试题分析:设第三边长为x,则由三角形三边关系定理得5﹣2<x<5+2,即3<x<7.故选C.考点:三角形三边关系.(来宾)如图,△ABC中,∠A=40°,点D为延长线上一点,且∠CBD=120°,2.则∠C=()A.40° B.60° C.80° D.100°【答案】C.【解析】试题分析:由三角形的外角性质得,∠C=∠CBD﹣∠A=120°﹣40°=80°.故选C.考点:三角形的外角性质.3.(柳州)如图,图中∠1的大小等于()A.40° B.50° C.60° D.70°【答案】D.考点:三角形的外角性质.4.(南通)下列长度的三条线段能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a (a>0)【答案】A.【解析】试题分析:A.∵10﹣5<6<10+5,∴三条线段能构成三角形,故本选项正确;B.∵11﹣5=6,∴三条线段不能构成三角形,故本选项错误;C.∵3+4=7<8,∴三条线段不能构成三角形,故本选项错误;D.∵4a+4a=8a,∴三条线段不能构成三角形,故本选项错误.故选A.考点:三角形三边关系.5.(宿迁)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C. 7或9 D.9或12【答案】B.【解析】试题分析:当腰为5时,根据三角形三边关系可知此情况成立,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立;所以这个三角形的周长是12.故选B.考点:1.等腰三角形的性质;2.三角形三边关系;3.分类讨论.6.(雅安)已知等腰三角形的腰和底的长分别是一元二次方程的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.10【答案】B.考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质;4.分类讨论.7.(绵阳)如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118° B.119° C.120° D.121°【答案】C.【解析】试题分析:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C 的平分线,∴∠CBE=∠ABC,∠BCD=∠BCA,∴∠CBE+∠BCD=(∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选C.考点:三角形内角和定理.8.(广州)已知2是关于x的方程的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或10【答案】B.考点:1.解一元二次方程-因式分解法;2.一元二次方程的解;3.三角形三边关系;4.等腰三角形的性质;5.分类讨论.9.(北海)三角形三条中线的交点叫做三角形的()A.内心 B.外心 C.中心 D.重心【答案】D.【解析】试题分析:三角形的重心是三角形三条中线的交点.故选D.考点:三角形的重心.10.(百色)下列图形中具有稳定性的是()A.正三角形 B.正方形 C.正五边形 D.正六边形【答案】A.【解析】试题分析:∵三角形具有稳定性,∴A正确,B.C、D错误.故选A.考点:三角形的稳定性.11.(百色)△ABC的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是()A.4 B.4或5 C.5或6 D.6【答案】B.【解析】试题分析:设长度为4、12的高分别是a,b边上的,边c上的高为h,△ABC的面积是S,那么a=,b=,c=,又∵a﹣b<c<a+b,∴,即,解得3<h<6,∴h=4或h=5,故选B.考点:1.一元一次不等式组的整数解;2.三角形的面积;3.三角形三边关系;4.综合题.12.(广安)下列四个图形中,线段BE是△ABC的高的是()A. B.C.D.【答案】D.考点:三角形的角平分线、中线和高.13.(宜昌)下列图形具有稳定性的是()A.正方形 B.矩形 C.平行四边形 D.直角三角形【答案】D.【解析】试题分析:直角三角形具有稳定性.故选D.考点:1.三角形的稳定性;2.多边形.14.(长沙)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【答案】A.【解析】试题分析:为△ABC中BC边上的高的是A选项.故选A.考点:三角形的角平分线、中线和高.15.(鄂尔多斯)如图,A.B是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是()A. B. C. D.【答案】A.考点:1.概率公式;2.三角形的面积.16.(淄博)如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB、AD的中点,则△AEF与多边形BCDFE的面积之比为()A. B. C. D.【答案】C.考点:1.相似三角形的判定与性质;2.三角形的面积;3.三角形中位线定理;4.综合题.17.(淮安)将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是.【答案】75°.【解析】试题分析:如图,∵含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,∴AB∥CD,∴∠3=∠4=45°,∴∠2=∠3=45°,∵∠B=30°,∴∠1=∠2+∠B=30°+45°=75°,故答案为:75°.考点:1.三角形的外角性质;2.三角形内角和定理.18.(宜宾)如图,AB∥CD,AD与BC交于点E.若∠B=35°,∠D=45°,则∠AEC= .【答案】80°.考点:1.平行线的性质;2.三角形的外角性质.19.(巴中)若a、b、c为三角形的三边,且a、b满足,则第三边c的取值范围是.【答案】1<c<5.【解析】试题分析:由题意得,,,解得a=3,b=2,∵3﹣2=1,3+2=5,∴1<c<5.故答案为:1<c<5.考点:1.三角形三边关系;2.非负数的性质:偶次方;3.非负数的性质:算术平方根.(南充)如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,20.∠B=40°,则∠ACE的大小是度.【答案】60.【解析】试题分析:∵∠ACD=∠B+∠A,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°,∵CE平分∠ACD,∴∠ACE=60°,故答案为:60.考点:三角形的外角性质.21.(佛山)各边长度都是整数、最大边长为8的三角形共有个.【答案】10.【解析】试题分析:∵各边长度都是整数、最大边长为8,∴三边长可以为:1,8,8;2,7,8;2,8,8;3,6,8;3,7,8;3,8,8;4,5,8;4,6,8;4,7,8;4,8,8;故各边长度都是整数、最大边长为8的三角形共有10个.故答案为:10.考点:三角形三边关系.(广东省)如图,△ABC三边的中线AD、BE、CF的公共点为G,若,22.则图中阴影部分的面积是.【答案】4.考点:1.三角形的面积;2.综合题.23.(长春)如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为.【答案】5.【解析】试题分析:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE===5,故答案为:5.考点:1.正方形的性质;2.三角形的面积;3.勾股定理.24.(昆明)如图,△ABC是等边三角形,高AD、BE相交于点H,BC=,在BE上截取BG=2,以GE为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.【答案】.考点:1.等边三角形的判定与性质;2.三角形的重心;3.三角形中位线定理;4.综合题;5.压轴题.25.(临沂)如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD 与CE相交于点O,则= .【答案】2.【解析】试题分析:∵△ABC的中线BD、CE相交于点O,∴点O是△ABC的重心,∴=2.故答案为:2.考点:1.三角形的重心;2.相似三角形的判定与性质.26.(六盘水)如图,已知, l1∥l2,C1在l1上,并且C1A⊥l2,A为垂足,C2,C3是l1上任意两点,点B在l2上,设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.【答案】理由见试题解析.考点:1.平行线之间的距离;2.三角形的面积.27.(达州)化简,并求值,其中a与2、3构成△ABC 的三边,且a为整数.【答案】,1.【解析】试题分析:原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到结果,把a的值代入计算即可求出值.考点:1.分式的化简求值;2.三角形三边关系.28.(青岛)【问题提出】用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?【问题探究】不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.【探究一】(1)用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1.(2)用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形.所以,当n=4时,m=0.(3)用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形.所以,当n=5时,m=1.(4)用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形.所以,当n=6时,m=1.综上所述,可得:表①【探究二】(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?(仿照上述探究方法,写出解答过程,并将结果填在表②中)(2)用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)表②你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…【问题解决】:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1,4k,4k+1,4k+2,其中k是正整数,把结果填在表③中)表③【问题应用】:用根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(写出解答过程),其中面积最大的等腰三角形每腰用了根木棒.(只填结果)【答案】【探究二】:2;1;2;2;【问题解决】:k;k﹣1;k;k;【问题应用】:672.考点:1.作图—应用与设计作图;2.三角形三边关系;3.等腰三角形的判定与性质;4.探究型.【题组】1.(福建南平)下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,2 C.1,2,3 D.1,2,4 【答案】B.【解析】试题分析:根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可:A、1+1=2,不能组成三角形,故此选项错误;B、1+2>2,能组成三角形,故此选项正确;C、1+2=3,不能组成三角形,故此选项错误;D、1+2<4,能组成三角形,故此选项正确.故选B.考点:三角形的三边关系.2.(浙江台州)如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=50cm,当它的一端B着地时,另一端A离地面的高度AC为()A.25cm B.50cm C.75cm D.100cm【答案】D.考点:三角形的中位线.3.(•北海)如图△ABC中,D、E分别是边AB、AC的中点,已知DE=5,则BC的长为()A.8 B.9 C.10 D.11【答案】C.【解析】试题分析:∵D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴BC=2DE=2×5=10.故选C.考点:三角形中位线定理.4.(•营口)如图,在△ABC中,点D、E分别是边AB、AC的中点,∠B=50°,∠A=26°,将△ABC沿DE折叠,点A的对应点是点A′,则∠AEA′的度数是()A.145° B.152° C.158° D.160°【答案】B.考点:翻折变换(折叠问题);三角形中位线定理.5.(•威海)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°【答案】B.【解析】试题分析:根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠ABO,然后利用三角形的内角和定理求出∠AOB 再根据对顶角相等可得∠DOC=∠AOB,根据邻补角的定义和角平分线的定义求出∠DCO,再利用三角形的内角和定理列式计算即可∠BDC,判断出AD为三角形的外角平分线,然后列式计算即可求出∠DAC.试题解析:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=180°-50°-60°=70°,故A选项正确,∵BD平分∠ABC,∴∠ABO=∠ABC=×50°=25°,在△ABO中,∠AOB=180°-∠BAC-∠ABO=180°-70°-25°=85°,∴∠DOC=∠AOB=85°,故B选项错误;∵CD平分∠ACE,∴∠ACD=(180°-60°)=60°,∴∠BDC=180°-85°-60°=35°,故C选项正确;∵BD、CD分别是∠ABC和∠ACE的平分线,∴AD是△ABC的外角平分线,∴∠DAC=(180°-70°)=55°,故D选项正确.故选B.考点:角平分线的性质;三角形内角和定理.6.(江苏淮安)若一个三角形三边长分别为2,3,x,则x的值可以为(只需填一个整数)【答案】4(答案不唯一).考点:三角形的三边关系.7、(广东广州)△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是___________°.【答案】140..【解析】试题分析:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.考点:三角形的外角的性质.8.(湖北随州)将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.【答案】75.【解析】试题分析:如答图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.考点:1.三角形内角和定理;2.对顶角的性质.☞考点归纳归纳 1:三角形的有关线段基础知识归纳:中线:连接一个顶点与它对边中点的线段,三角形的三条中线的交点叫做三角形的重心高线:从三角形一个顶点到它对边所在直线的垂线段.角平分线:一个内角的平分线与这个角的对边相交,顶点与交点之间的线段中位线:连接三角形两边中点的线段基本方法归纳:三角形的中位线平行线于第三边,且等于第三边的一半注意问题归纳:三角形的中线将三角形分成面积相等的两部分【例1】如图,EF是△ABC的中位线,BD平分∠ABC交EF于点D,若AB =4,BC=6,则DF=_____.【答案】1.考点:1.三角形中位线定理;2.等腰三角形的判定与性质.归纳 2:三角形的三边关系基础知识归纳:三角形两边的和大于第三边,两边的差小于第三边.基本方法归纳:三角形的三边关系是判断三条线段能否构成三角形的依据,并且还可以利用三边关系列出不等式求某些量的取值范围.注意问题归纳:三角形的三边关系是中考的热点问题之一,是解决三角形的边的有关问题的重要依据.【例2】已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.12【答案】B.考点:三角形三边关系.归纳 3:内角和定理基础知识归纳:三角形三个内角的和等于180°.基本方法归纳:在同一个三角形中,大边对大角,小边对小角.注意问题归纳:三角形的内角和定理是求三角形一个角的度数或证明角相等的重要工具.【例3】如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC 于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°【答案】C.【解析】试题分析:∵∠B=46°,∠C=54°,∴∠BAC=180°-∠B-∠C=180°-46°-54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选C.考点:平行线的性质;三角形内角和定理.归纳 4:三角形的外角基础知识归纳:(1)三角形的外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.基本方法归纳:三角形的外角等于与它不相邻的两个内角的和.注意问题归纳:三角形的外角是解决角的计算与角的大小比较的重要工具.【例4】如图,AB∥CD,AD与BC相交于点O,∠B=30°,∠D=40°,则∠AOC的度数为()A.60°B.70°C.80°D.90°【答案】B.考点:1.平行线的性质;2.三角形的外角性质.☞1年模拟1.(北京市平谷区中考二模)如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10° B.15° C.20° D.25°【答案】D.【解析】试题分析:根据平行线的性质及三角形的内角和定理,有图像可知∠1与∠2互余,因此∠2=90°-65°=25°.故选D.考点:1.平行线的性质;2.三角形内角和定理.2.(安徽省安庆市中考二模)如图所示,AB∥CD,∠D=26°,∠E=35°,则∠ABE的度数是()A.61° B.71° C.109° D.119°【答案】A .考点:1.平行线的性质;2.三角形的外角性质.3.(山西省晋中市平遥县九年级下学期4月中考模拟)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20° B.40° C.30° D.25°【答案】A.【解析】试题分析:由三角形的外角性质,∠3=∠1+∠B=70°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣70°﹣90°=20°.故选A.考点:1.三角形的外角性质;2.平行线的性质.4.(广东省佛山市初中毕业班综合测试)如图,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,则∠1+∠2的度数为()A.120° B.135° C.150° D.180°【答案】D.考点:1.翻折变换(折叠问题);2.三角形内角和定理.5.(山东省济南市平阴县中考二模)如图,△ABC的各个顶点都在正方形的格点上,则sinA的值为()A. B. C. D.【答案】A.【解析】试题分析:如图所示:延长AC交网格于点E,连接BE,∵AE=2,BE=,AB=5,∴AE2+BE2=AB2,∴△ABE是直角三角形,∴sinA=,故选A.考点:1.锐角三角函数的定义;2.三角形的面积;3.勾股定理;4.表格型.6.(山东省威海市乳山市中考一模)如图,已知S△ABC=8m2,AD平分∠BAC,且AD⊥BD于点D,则S△ADC= m2.【答案】4.考点:1.等腰三角形的判定与性质;2.三角形的面积.7.(四川省成都市外国语学校中考直升模拟)长为1、2、3、4、5的线段各一条,从这5条线段中任取3条,能构成钝角三角形的概率是.【答案】.【解析】试题分析:从长度分别为1,2,3,4,5的五条线段中,任取三条,所有的情况共有10种,其中,取出的三边能构成钝角三角形时,必须最大边的余弦值小于零,即:较小的两个边的平方和小于第三边的平方,故满足构成钝角三角形的取法只有:2、3、4 和2、4、5 两种,故取出的三条线段为边能构成钝角三角形的概率是.考点:1.列表法与树状图法;2.三角形三边关系.8.(广东省佛山市初中毕业班综合测试)如图,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=度.【答案】220.考点:1.三角形的外角性质;2.三角形内角和定理.9.(湖北省黄石市6月中考模拟)如图,点A1,A2,A3,A4,…,An在射线OA上,点B1,B2,B3,…,Bn﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥An﹣1Bn﹣1,A2B1∥A3B2∥A4B3∥…∥AnBn﹣1,△A1A2B1,△A2A3B2,…,△An﹣1AnBn﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为__________;面积小于的阴影三角形共有__________个.【答案】;6.【解析】试题分析:由题意得,△A2B1B2∽△A3B2B3,因此可知==,==,再由考点:1.相似三角形的判定与性质;2.平行线的性质;3.三角形的面积;4.规律型.。

人教版初中数学-学年八年级上学期期末专题复习 专题5:等腰三角形 解析版

人教版初中数学-学年八年级上学期期末专题复习 专题5:等腰三角形 解析版

人教版初中数学2019-2020学年八年级上学期期末专题复习专题5:等腰三角形一、单选题1.△ABC中,AB=AC,∠A=∠C,则△ABC是()A. 等腰三角形B. 等边三角形C. 不等边三角形D. 不能确定2.已知∠AOB=30°,点P在∠AOB的内部,点P1和点P关于OA对称,点P2和点P关于OB对称,则P1、O、P2三点构成的三角形是()A. 直角三角形B. 钝角三角形C. 等腰直角三角形D. 等边三角形3.如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM∥BC交∠ABC的外角平分线于M,交AB,AC于F,E,以下结论:①MB⊥BD,②FD=EC,③EC=EF+DG,④CE=MD/2,其中一定正确的有()A. 1个B. 2个C. 3个D. 4个4.如图,在△ABC 中,∠BAC=72°,∠C=36°,∠BAC 的平分线AD 交BC 于D,则图中有等腰三角形()A. 0 个B. 1 个C. 2 个D. 3 个二、填空题5.如图,在中,,,,与的关系是________.6.如图,D是AB边上的中点,将△ABC沿过D的直线折叠,使点A落在BC上F处,若∠B=50°,则∠BDF=________度.7.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为________cm.8.如图,等边△ABC边长为10,P在AB上,Q在BC延长线,CQ=P A,过点P作PE⊥AC点E,过点P作PF∥BQ,交AC边于点F,连接PQ交AC于点D,则DE的长为________.三、综合题9.如果三角形有一边上的中线恰好等于这边的长,那么我们称这个三角形为“美丽三角形”,(1)如图△ABC中,AB=AC= ,BC=2,求证:△ABC是“美丽三角形”;(2)在Rt△ABC中,∠C=90°,AC=2 ,若△ABC是“美丽三角形”,求BC的长.10.图1、图2中,点B为线段AE上一点,△ABC与△BED都是等边三角形.(1)如图1,求证:AD=CE.(2)如图2,设CE与AD交于点F,连接BF.①求证:∠CFA=60°.②求证:CF+BF=AF.11.如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:∠AEB=∠ADC;(2)连接DE,若∠ADC=105°,求∠BED的度数.答案解析部分一、单选题1. B解:∵△ABC中,AB=AC,∴∠B=∠C,又∵∠A=∠C,∴∠A=∠B=∠C,△ABC是等边三角形.故答案为:B.【分析】根据等边对等角得出∠B=∠C,又∠A=∠C,故∠A=∠B=∠C,根据三个角都相等的三角形是等边三角形即可得出结论:△ABC是等边三角形.2. D如图,根据轴对称的性质可知,OP1=OP2=OP,∠P1OP2=60°,∴△P1OP2是等边三角形.故答案为:D.【分析】根据轴对称的性质及有一个角是60°的等腰三角形是等边三角形即可判断得出答案.3. Cj解:∵BD分别是∠ABC的角平分线,BM是∠ABC的外角平分线,故MB⊥BD,①成立;而AB=AC,∴∠FDB=∠DBC;∵∠FBD=∠DBC,∴∠FBD=∠FDB,∴FD=BF,FD=EC,②成立;∠C与∠BGC的大小不确定,∴DE不一定等于DG,∵EC=DF=EF+DE,∴EC不一定等于EF+DG;故错误;而CE=BF,④成立.故答案为:C.【分析】根据角平分线的定义及邻补角的定义得出∠MBD=90°,故MB⊥BD,①成立;根据平行线分线段成比例定理得出BF=EC,根据平行线的性质及角平分线的定义得出∠FBD=∠FDB,根据等角对等边得出FB=FD,所以FD=EC,②成立;由于∠C与∠BGC的大小不确定,DE不一定等于DG,EC不一定等于EF+DG,故错误;根据直角三角形斜边上的中线等于斜边的一半得出而CE=BF,故④成立,综上所述即可得出答案.4. D解:在△ABC中,∠BAC=72°,∠C=36°,∴∠B=180°-72°-36°=72°=∠BAC,∴AC=BC,∵AD平分∠BAC,∴∠CAD=∠BAD=36°=∠C,∴AD=CD,∠ADB=72°=∠B,∴AD=BD,∴△ABC、△ABD、△ACD是等腰三角形,故等腰三角形有3个;故答案为::D.【分析】根据三角形的内角和定理及等量代换得出∠B==72°=∠BAC,根据角平分线的定义及等量代换得出∠CAD=∠BAD=36°=∠C,根据等角对等边得出AC=BC,AD=CD,根据等边对等角及三角形的外角定理得出∠ADB=72°=∠B,从而根据等腰三角形的判定方法得出△ABC、△ABD、△ACD是等腰三角形.二、填空题5.解:∵AB=AC,∴∠B=∠C,∵BF=CD,BD=CE,∴△BDF≌△CED(SAS),∴∠BFD=∠EDC,∵α+∠BDF+∠EDC=180°,∴α+∠BDF+∠BFD=180°,∵∠B+∠BDF+∠BFD=180°,∴∠B=α,∴∠C=∠B=α,∵∠A+∠B+∠C=180°,∴2α+∠A=180°,∴,故答案为:.【分析】根据等边对等角得出∠B=∠C,从而利用SAS判断出△BDF≌△CED,根据全等三角形的对应角相等得出∠BFD=∠EDC,根据平角的定义及三角形的内角和、等式的性质得出∠B=α,从而根据三角形的内角和即可得出.6. 80解:根据折叠的性质,可得:AD=DF,∵D是AB边上的中点,即AD=BD,∴BD=DF,∵∠B=50°,∴∠DFB=∠B=50°,∴∠BDF=180°﹣∠B﹣∠DFB=80°.故答案为:80.【分析】根据折叠的性质及中点的定义得出BD=DF,根据等边对等角得出∠DFB=∠B=50°,然后根据三角形的内角和定理即可得出∠BDF的度数.7. 8解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC= BC•AD= ×4×AD=12,解得AD=6cm,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+ BC=6+ ×4=6+=8cm.【分析】连接AD,根据等腰三角形的三线合一得出AD⊥BC,从而根据三角形的面积计算方法列出方程求出AD的长,根据垂直平分线的性质得出点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,从而即可解决问题.8. 5∵PF∥BQ,∴∠Q=∠FPD,∵△ABC是等边三角形,∴∠APF=∠B=60°,∠AFP=∠ACB=60°,∴△APF是等边三角形,∴AP=PF,∵AP=CQ,∴PF=CQ,∵在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵PE⊥AC于E,△APF是等边三角形,∴AE=EF,∴AE+DC=EF+FD,∴DE=AC,∵AC=10,∴DE=AC=5.故答案为:5.【分析】先证明△PFD和△QCD全等,推出FD=CD,再通过证明△APF是等边三角形和PE⊥AC,推出AE=EF,即可推出AE+DC=EF+FD,可得DE= AC,即可推出DE的长度.三、综合题9. (1)证明:如图,作BC的中线AD,如图,∵AB=AC= ,AD是BC的中线,∴AD⊥BC, BD=CD= ,在Rt△ABD中,由勾股定理得AD= ,∴AD=BC,∴△ABC是美丽三角形.(2)解:①如图1,作AC的中线BD,△ABC是“美丽三角形”,当BD=AC= 时,则CD= ,由勾股定理得.②如图2,作BC的中线AD,△ABC是“美丽三角形”,当BC=AD时,则CD= ,在Rt△ACD中,由勾股定理得,则,解得CD=2,∴BC=2CD=4.故BC=3或BC=4【分析】(1)作BC的中线AD,利用等腰三角形三线合一的性质,可求出BD的长,再利用勾股定理求出AD的长,从而可证得AD=BC,即可证得结论。

人教版八年级数学上册期末综合复习测试题(含答案)

人教版八年级数学上册期末综合复习测试题(含答案)

八年级数学上册期末综合复习测试题(含答案)一、选择题(本大题10小题,每小题3分,共30分) 1.下列图形中具有稳定性的是( ) A .正方形 B .长方形 C .直角三角形 D .平行四边形 2.计算:a 6÷a 3=( ) A .a 2 B .a 3 C .1 D .0 3.点(-3,-2)关于x 轴对称的点是( )A .(3,-2)B .(-3,2)C .(3,2)D .(-2,-3) 4.若分式x +3x -2的值为0,则x 的值为( ) A .x =-3 B .x =2 C .x ≠-3 D .x ≠25.如图1,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,再添加一个条件,仍不能判定△ABC ≌△BAD 的是( )图1A .AC =BDB .AD =BC C .∠ABD =∠BAC D .∠CAD =∠DBC 6.若x 2+2mx +9是一个完全平方式,则m 的值是( ) A .6 B .±6 C .3 D .±3 7.如图2,在△ABC 中,D ,E 分别是边BC ,AB 的中点.若△ABC 的面积是8,则△BDE 的面积是( )图2A.2 B .3 C .4 D .5 8.已知2m +3n =3,则9m ·27n 的值是( ) A .9 B .18 C .27 D .819.某生产小组计划生产3 000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务.设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( )A .3 000x -3 000x +2=5 B .3 0002x -3 000x =5C .3 000x +2-3 000x =5D .3 000x -3 0002x=510.如图3,在平面直角坐标系中,点A ,B 分别在y 轴、x 轴上,∠ABO =60°,在坐标轴上找一点P ,使得△P AB 是等腰三角形,则符合条件的点P 的个数是( )图3A .5个B .6个C .7个D .8个 二、填空题(本大题7小题,每小题4分,共28分)11.人体淋巴细胞的直径大约是0.000 009米,将0.000 009用科学记数法表示为__________.12.如果等腰三角形的一个内角是80°,那么它的顶角的度数是__________.13.当a =4b 时,a 2+b 2ab的值是__________.14.如图4,在△ABC 中,分别以点A 和点C 为圆心,大于12 AC 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交BC ,AC 于点D ,E ,若△ABC 的周长为23 cm ,△ABD 的周长为13 cm ,则AE 的长为__________cm.图415.若x +y =6,xy =-3,则2x 2y +2xy 2=__________.16.如图5,在△ABC 中,AB =BC ,BE 平分∠ABC ,AD 为BC 边上的高,且AD =BD ,则∠DAC =__________°.图517.如图6,△ABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点, P 是AD 上一动点,当PC 与PE 的和最小时,∠ACP 的度数是__________.图6三、解答题(一)(本大题3小题,每小题6分,共18分)18.解方程:4x 2-9 -x3-x =1.19.先化简,再求值:(-x -y )2-(-y +x )(x +y )+2xy ,其中x =-2,y =12.20.如图7,在△ABC 中,∠BAC =60°,∠C =80°,AD 是△ABC 的角平分线,E 是AC 上一点,且∠ADE =12∠B ,求∠CDE 的度数.图7四、解答题(二)(本大题3小题,每小题8分,共24分)21.在平面直角坐标系中,△ABC 的三个顶点的位置如图8所示.(1)请画出△ABC 关于y 轴对称的△A ′B ′C ′;(其中A ′,B ′,C ′分别是A ,B ,C 的对应点,不写画法)(2)请直接写出点A ′,B ′,C ′的坐标; (3)求出△A ′B ′C ′的面积.图822.如图9,点B ,C ,E ,F 在同一条直线上,点A ,D 在BC 的异侧,AB =CD ,BF =CE ,∠B =∠C .(1)求证:AE ∥DF ; (2)若∠A +∠D =144°,∠C =30°,求∠AEC 的度数.图923.随着智能分拣设备在快递业务中的普及,快件分拣效率大幅提高.使用某品牌智能分拣设备,每人每小时分拣的快件量是传统分拣方式的25倍,经过测试,由5人用此设备分拣8 000件快件的时间,比20人用传统方式分拣同样数量的快件节省4小时.(1)使用智能分拣设备后,每人每小时可分拣快件多少件?(2)已知某快递中转站平均每天需要分拣10万件快件,每天工作时间为8小时,如果使用此智能分拣设备,每天只需要安排多少名工人就可以完成分拣工作?五、解答题(三)(本大题2小题,每小题10分,共20分)24.如图10①,把一个长为2m 、宽为2n 的矩形,沿图中虚线用剪刀均分成四块小矩形,然后拼成一个如图10②所示的正方形.(1)请用两种不同的方法求图10②中阴影部分的面积.(直接用含m ,n 的式子表示) 方法1:____________________________; 方法2:____________________________.(2)根据(1)中结论,下列三个式子(m +n )2,(m -n )2,mn 之间的等量关系为____________________.(3)根据(2)中的等量关系,解决如下问题:已知x +1x =3,请求出x -1x的值.图1025.(1)【问题发现】如图11①,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一条直线上,连接BE ,求∠AEB 的度数.(2)【拓展探究】如图11②,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A ,D ,E 在同一条直线上,CM 为△DCE 中DE 边上的高,连接BE .请求出∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由.图11答案1.C 2.B 3.B 4.A 5.D 6.D 7.A 8.C 9.D 10.B11.9×10-6 12.80°或20° 13.174 14.5 15.-36 16.22.5 17.30°18.解:方程两边乘(x -3)(x +3),得4+x (x +3)=x 2-9.解得x =-133.检验:当x =-133 时,(x -3)(x +3)≠0.所以,原分式方程的解是x =-133.19.解:原式=x 2+y 2+2xy -(x 2-y 2)+2xy =x 2+y 2+2xy -x 2+y 2+2xy =2y 2+4xy . 当x =-2,y =12 时,原式=2×⎝⎛⎭⎫12 2 +4×(-2)×12 =-72 .20.解:在△ABC 中,∠BAC =60°,∠C =80°,∴∠B =180°-60°-80°=40°. ∵AD 平分∠BAC ,∴∠BAD =12 ∠BAC =30°.∴∠ADC =∠B +∠BAD =70°.∵∠ADE =12 ∠B =20°,∴∠CDE =∠ADC -∠ADE =70°-20°=50°.21.解:(1)如答图1,△A ′B ′C ′即为所求.答图1(2)A ′(3,3),B ′(-1,-3),C ′(0,4).(3)由图可得S △A ′B ′C ′=4×7-12 ×1×7-12 ×3×1-12 ×4×6=11.22.(1)证明:∵BF =CE ,∴BF +EF =CE +EF ,即BE =CF . 在△ABE 和△DCF 中,⎩⎪⎨⎪⎧AB =DC ,∠B =∠C ,BE =CF ,∴△ABE ≌△DCF (SAS).∴∠AEB =∠DFC .∴AE ∥DF .(2)解:∵△ABE ≌△DCF ,∴∠A =∠D ,∠B =∠C =30°. ∵∠A +∠D =144°,∴∠A =72°. ∴∠AEC =∠A +∠B =72°+30°=102°.23.解:(1)设使用传统分拣方式,每人每小时可分拣快件x 件,则使用智能分拣设备后,每人每小时可分拣快件25x 件.依题意,得 8 00020x -8 0005×25x=4.解得x =84.经检验,x =84是原方程的解,且符合题意.∴25x =2 100.答:使用智能分拣设备后,每人每小时可分拣快件2 100件. (2)100 000÷8÷2 100=52021 (名),5+1=6(名).答:每天只需要安排6名工人就可以完成分拣工作. 24.解:(1)(m +n )2-4mn (m -n )2. (2)(m -n )2=(m +n )2-4mn .(3)∵x +1x =3,∴⎝⎛⎭⎫x -1x 2 =⎝⎛⎭⎫x +1x 2 -4x ·1x =9-4=5.∴x -1x=±5 .25.解:(1)∵△ACB 和△DCE 均为等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =∠CDE =∠CED =60°. ∴∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE . 在△ACD 和△BCE 中,⎩⎪⎨⎪⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴∠ADC =∠BEC .∵点A ,D ,E 在同一条直线上,∴∠ADC =180°-∠CDE =120°. ∴∠BEC =120°.∴∠AEB =∠BEC -∠CED =60°. (2)∠AEB =90°,AE =BE +2CM .理由:∵△ACB 和△DCE 均为等腰直角三角形, ∴CA =CB ,CD =CE ,∠ACB =∠DCE =90°.∴∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE . 在△ACD 和△BCE 中,⎩⎪⎨⎪⎧CA =CB ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE (SAS).∴AD =BE ,∠ADC =∠BEC . ∵△DCE 为等腰直角三角形, ∴∠CDE =∠CED =45°.∵点A ,D ,E 在同一条直线上, ∴∠ADC =180°-∠CDE =135°. ∴∠BEC =135°.∴∠AEB =∠BEC -∠CED =90°. ∵CD =CE ,CM ⊥DE , ∴DM =ME ,∠DCM =90°-∠CDE =45°. ∴∠DCM =∠CDE . ∴DM =ME =CM .∴AE =AD +DE =BE +2CM。

人教版八年级上册数学期末复习提纲

人教版八年级上册数学期末复习提纲

人教版八年级上册数学期末复习提纲一、一元一次方程与不等式
- 一元一次方程的含义与解法
- 一元一次方程的实际应用:两个运动员相向而行
- 不等式的定义及解法
- 不等式的实际应用:节约用水
二、平面图形
- 四边形:平行四边形、矩形、菱形、正方形、梯形
- 计算几何:平面图形的面积和周长
- 平行四边形的性质
- 矩形、正方形和菱形的性质
- 梯形的性质
三、函数
- 函数的概念与表达方式
- 函数的实际应用:移动电话资费
- 函数的增减性及其应用
- 函数的最大值和最小值及其应用
四、统计
- 统计的概念及基本术语
- 统计图及其应用:条形图、折线图、饼图
- 统计的平均数及其应用:算术平均数、加权平均数- 统计的离散程度及其应用:极差、方差、标准差
五、三角形
- 三角形的内角和定理及其应用
- 相似三角形及其应用
- 勾股定理及其应用
- 三角形面积的计算方法及其应用
六、立体图形
- 空间图形的基本概念:棱、面、顶点- 立方体、长方体的图形及其应用
- 平面与立体图形的转化
- 空间图形的表面积和体积计算及其应用。

人教版 八年级数学上册 期末单元复习练习卷 第11章 三角形 含答案

人教版 八年级数学上册  期末单元复习练习卷 第11章 三角形  含答案

第11章三角形一.选择题(共11小题)1.三角形按边分类可以用集合来表示,如图所示,图中小椭圆圈里的A表示()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形2.如图,AD是△ABC的中线,已知△ABD的周长为22cm,AB比AC长3cm,则△ACD的周长为()A.19cm B.22cm C.25cm D.31cm3.下列各图中,正确画出AC边上的高的是()A.B.C.D.4.下列说法中错误的是()A.三角形三条高至少有一条在三角形的内部B.三角形三条中线都在三角形的内部C.三角形三条角平分线都在三角形的内部D.三角形三条高都在三角形的内部5.三角形两边长为2,5,则第三边的长不能是()A.3 B.4 C.5 D.66.在一个三角形中,如果一个外角是其相邻内角的4倍,那么这个外角的度数为()A.36°B.45°C.135°D.144°7.如图,若∠A=70°,∠B=40°,∠C=32°.则∠BDC=()A.102°B.110°C.142°D.148°8.如图,CD是直角△ABC斜边AB上的高,CB>CA,图中相等的角共有()A.2对B.3对C.4对D.5对9.下列多边形中,对角线是5条的多边形是()A.四边形B.五边形C.六边形D.七边形10.将一个多边形纸片沿一条直线剪下一个三角形后,变成一个六边形,则原多边形纸片的边数不可能是()A.5 B.6 C.7 D.811.若一个n边形的内角和是1620°,则n的值为()A.9 B.10 C.11 D.12二.填空题(共8小题)12.如图,在△ABC中,∠ACB=120°,CD平分∠ACB,作AE∥DC,交BC的延长线于点E,则△ACE是三角形.13.如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD的周长为15cm,则AC长为.14.若△ABC的周长为18,其中一条边长为4,则△ABC中的最长边x的取值范围为.15.如图,在△ABC中,∠A=64°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;∠A2BC和∠A2CD的平分线交于点A3,则∠A5=.16.如图,在△ABC中,∠B=46°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=.17.如图,直线a∥b,在Rt△ABC中,点C在直线a上,若∠1=54°,∠2=24°,则∠B 的度数为.18.如图所示,将多边形分割成三角形、图(1)中可分割出2个三角形;图(2)中可分割出3个三角形;图(3)中可分割出4个三角形;由此你能猜测出,n边形可以分割出个三角形.19.如图,在正六边形ABCDEF中,连接AE,DF交于点O,则∠AOD=°.三.解答题(共5小题)20.如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B=42°,∠C=70°,求∠AEC 和∠DAE的度数.21.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,∠B=60°,试求∠EDC的度数.解:∵AD是∠BAC的平分线(已知)∠BAC=2∠1()又∵EF平分∠DEC(已知)∴()又∵∠1=∠2(已知)∴∠BAC=()∴AB∥DE()∴∠EDC═60°()22.如图,点D是△ABC的边BC上的一点,∠B=∠1,∠ADC=70°,∠C=70°(1)求∠B的度数;(2)求∠BAC的度数.23.请在下面括号里补充完整证明过程:已知:如图,△ABC中,∠ACB=90°,AF平分∠CAB,交CD于点E,交CB于点F,且∠CEF=∠CFE.求证:CD⊥AB.证明:∵AF平分∠CAB(已知)∴∠1=∠2∵∠CEF=∠CFE,又∠3=∠CEF(对顶角相等)∴∠CFE=∠3(等量代换)∵在△ACF中,∠ACF=90°(已知)∴+∠CFE=90°∵∠1=∠2,∠CFE=∠3(已证)∴+ =90°(等量代换)在△AED中,∠ADE=90°(三角形内角和定理)∴CD⊥AB.24.(1)如图1,计算下列五角星图案中五个顶角的度数和.即:求∠A+∠B+∠C+∠D+∠E的大小.(2)如图2,若五角星的五个顶角的度数相等,求∠1的大小.参考答案与试题解析一.选择题(共11小题)1.三角形按边分类可以用集合来表示,如图所示,图中小椭圆圈里的A表示()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【分析】根据三角形的分类可直接得到答案.【解答】解:三角形根据边分类,∴图中小椭圆圈里的A表示等边三角形.故选:D.2.如图,AD是△ABC的中线,已知△ABD的周长为22cm,AB比AC长3cm,则△ACD的周长为()A.19cm B.22cm C.25cm D.31cm【分析】根据题意得到AB=AC+3,根据中线的定义得到BD=DC,根据三角形的周长公式计算即可.【解答】解:由题意得,AB=AC+3,∵AD是△ABC的中线,∴BD=DC,∵△ABD的周长为22,∴AB+BD+AD=AC+3+DC+AD=22,则AC+DC+AD=19,∴△ACD的周长=AC+DC+AD=19(cm),故选:A.3.下列各图中,正确画出AC边上的高的是()A.B.C.D.【分析】根据三角形高的定义,过点B与AC边垂直,且垂足在直线AC上,然后结合各选项图形解答.【解答】解:根据三角形高线的定义,只有D选项中的BE是边AC上的高.故选:D.4.下列说法中错误的是()A.三角形三条高至少有一条在三角形的内部B.三角形三条中线都在三角形的内部C.三角形三条角平分线都在三角形的内部D.三角形三条高都在三角形的内部【分析】根据三角形的中线,角平分线和高线的定义以及在三角形的位置对各选项分析判断后利用排除法求解.【解答】解:A、三角形三条高至少有一条在三角形的内部,故正确;B、三角形三条中线都在三角形的内部,故正确;C、三角形三条角平分线都在三角形的内部,故正确.D、直角三角形有两条高就是直角三角形的边,一条在内部,钝角三角形有两条高在外部,一条在内部,故错误.故选:D.5.三角形两边长为2,5,则第三边的长不能是()A.3 B.4 C.5 D.6【分析】根据三角形的第三边大于两边之差小于两边之和,即可解决问题.【解答】解:∵三角形的第三边大于两边之差小于两边之和,∴三角形的两边长分别是2、5,则第三边长a的取值范围是3<a<7.故选:A.6.在一个三角形中,如果一个外角是其相邻内角的4倍,那么这个外角的度数为()A.36°B.45°C.135°D.144°【分析】设这个内角为α,则与其相邻的外角为4α,根据邻补角的和等于180°列式进行计算即可得解.【解答】解:设这个内角为α,则与其相邻的外角为4α,所以,α+4α=180°,解得α=36°,4α=4×36°=144°.故选:D.7.如图,若∠A=70°,∠B=40°,∠C=32°.则∠BDC=()A.102°B.110°C.142°D.148°【分析】连接AD并延长,根据三角形的外角性质计算,得到答案.【解答】解:连接AD并延长,∠BDE=∠BAD+∠B,∠CDE=∠CAD+∠C,则∠BDC=∠BDE+∠CDE=∠BAD+∠B+∠CAD+∠C=∠BAC+∠B+∠C=142°,故选:C.8.如图,CD是直角△ABC斜边AB上的高,CB>CA,图中相等的角共有()A.2对B.3对C.4对D.5对【分析】根据直角和高线可得三对相等的角,根据同角的余角相等可得其它两对角相等:∠A=∠DCB,∠B=∠ACD.【解答】解:∵CD是直角△ABC斜边AB上的高,∴∠ACB=∠ADC=∠CDB=90°,∴∠A+∠ACD=∠ACD+∠DCB=90°,∴∠A=∠DCB,同理得:∠B=∠ACD,∴相等的角一共有5对,故选:D.9.下列多边形中,对角线是5条的多边形是()A.四边形B.五边形C.六边形D.七边形【分析】根据n边形的对角线有条,把5代入即可得到结论.【解答】解:由题意得,=5,解得:n=5,(负值舍去),故选:B.10.将一个多边形纸片沿一条直线剪下一个三角形后,变成一个六边形,则原多边形纸片的边数不可能是()A.5 B.6 C.7 D.8【分析】实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到.【解答】解:如图可知,原来多边形的边数可能是5,6,7.不可能是8.故选:D.11.若一个n边形的内角和是1620°,则n的值为()A.9 B.10 C.11 D.12【分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.【解答】解:设多边形的边数是n,则(n﹣2)•180°=1620°,解得n=11.故选:C.二.填空题(共8小题)12.如图,在△ABC中,∠ACB=120°,CD平分∠ACB,作AE∥DC,交BC的延长线于点E,则△ACE是等边三角形.【分析】根据角平分线的性质及平行的性质求得△ACE的各个角均为60度,从而得出△ACE是等边三角形.【解答】解:∵CD平分∠ACB,∠ACB=120°∴∠1=∠2==60°∵AE∥DC∴∠3=∠2=60°,∠E=∠1=60°∴∠3=∠4=∠E=60°∴△ACE是等边三角形.故答案是:等边.13.如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD的周长为15cm,则AC长为7cm.【分析】先根据△ABD周长为15cm,AB=6cm,AD=5cm,由周长的定义可求BD的长,再根据中线的定义可求BC的长,由△ABC的周长为21cm,即可求出AC长.【解答】解:∵AB=6cm,AD=5cm,△ABD周长为15cm,∴BD=15﹣6﹣5=4cm,∵AD是BC边上的中线,∴BC=8cm,∵△ABC的周长为21cm,∴AC=21﹣6﹣8=7cm.故AC长为7cm,故答案为:7cm.14.若△ABC的周长为18,其中一条边长为4,则△ABC中的最长边x的取值范围为7≤x <9 .【分析】根据已知条件可以得到三角形的第三边的长,再根据三角形的三边关系以及x 为△ABC中的最长边可以得到关于x的不等式组,解出不等式组即可.【解答】解:∵△ABC的周长为18,其中一条边长为4,这个三角形的最大边长为x,∴第三边的长为:18﹣4﹣x=14﹣x,∴x>4且x≥14﹣x,∴x≥7,根据三角形的三边关系,得:x<14﹣x+4,解得:x<9;∴7≤x<9,故答案为:7≤x<9.15.如图,在△ABC中,∠A=64°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;∠A2BC和∠A2CD的平分线交于点A3,则∠A5=2°.【分析】根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可求出∠A1的度数,同理求出∠A2,可以发现后一个角等于前一个角的,根据发现后一个角等于前一个角的的规律即可得解,把∠A=64°代入∠A n=∠A解答即可.【解答】解:∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,∴∠A1BC=∠ABC,∠A1CD=∠ACD,又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,∴(∠A+∠ABC)=∠ABC+∠A1,∴∠A1=∠A,同理可得∠A2=∠A1=×∠A=∠A,由此可得一下规律:∠A n=∠A,当∠A=64°时,∠A5=∠A=2°,故答案为:2°.16.如图,在△ABC中,∠B=46°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=70°.【分析】先根据三角形内角和定理计算出∠BAC+∠BCA=180°﹣∠B=140°,则利用邻补角定义计算出∠DAC+∠FCA=180°﹣∠BAC+180°﹣∠BCA=220°,再根据角平分线定义得到∠EAC=∠DAC,∠ECA=∠FCA,所以∠EAC+∠ECA=(∠DAC+∠FCA)=110°,然后再利用三角形内角和计算∠AEC的度数.【解答】解:∵∠B=40°,∴∠BAC+∠BCA=180°﹣40°=140°,∴∠DAC+∠FCA=180°﹣∠BAC+180°﹣∠BCA=360°﹣140°=220°,∵AE和CE分别平分∠DAC和∠FCA,∴∠EAC=∠DAC,∠ECA=∠FCA,∴∠EAC+∠ECA=(∠DAC+∠FCA)=110°,∴∠AEC=180°﹣(∠EAC+∠ECA)=180°﹣110°=70°.故答案为:70°.17.如图,直线a∥b,在Rt△ABC中,点C在直线a上,若∠1=54°,∠2=24°,则∠B 的度数为60°.【分析】利用平行线的性质,三角形的外角的性质求出∠A即可解决问题.【解答】解:如图,∵a∥b,∴∠1=∠3=54°,∵∠3=∠2+∠A,∴∠A=54°﹣24°=30°,∵∠ACB=90°,∴∠B=90°﹣30°=60°,故答案为60°.18.如图所示,将多边形分割成三角形、图(1)中可分割出2个三角形;图(2)中可分割出3个三角形;图(3)中可分割出4个三角形;由此你能猜测出,n边形可以分割出(n ﹣1)个三角形.【分析】(1)三角形分割成了两个三角形;(2)四边形分割成了三个三角形;(3)以此类推,n边形分割成了(n﹣1)个三角形.【解答】解:n边形可以分割出(n﹣1)个三角形.19.如图,在正六边形ABCDEF中,连接AE,DF交于点O,则∠AOD=120 °.【分析】由正六边形的性质得出∠AFB=∠DEF=120°,AF=EF=DE,由等腰三角形的性质和三角形内角和定理得出∠FAE=∠FEA=∠EFD=30°,求出∠AFD=90°,由三角形的外角性质即可求出∠AOD的度数.【解答】解:∵六边形ABCDEF是正六边形,∴∠AFB=∠DEF=120°,AF=EF=DE,∴∠FAE=∠FEA=∠EFD=(180°﹣120°)÷2=30°,∴∠AFD=120°﹣30°=90°,∴∠AOD=∠FAE+∠AFD=30°+90°=120°.故答案为:120.三.解答题(共5小题)20.如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B=42°,∠C=70°,求∠AEC 和∠DAE的度数.【分析】由三角形内角和定理可求得∠BAC的度数,在Rt△ADC中,可求得∠DAC的度数,AE是角平分线,有∠EAC=∠BAC,故∠EAD=∠EAC﹣∠DAC.【解答】解:∵∠B=42°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=68°,∵AE是角平分线,∴∠EAC=∠BAC=34°.∵AD是高,∠C=70°,∴∠DAC=90°﹣∠C=20°,∴∠EAD=∠EAC﹣∠DAC=34°﹣20°=14°,∠AEC=90°﹣14°=76°.21.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,∠B=60°,试求∠EDC的度数.解:∵AD是∠BAC的平分线(已知)∠BAC=2∠1(角平分线的定义)又∵EF平分∠DEC(已知)∴∠DEC=2∠2 (角平分线的定义)又∵∠1=∠2(已知)∴∠BAC=∠DEC(等量代换)∴AB∥DE(同位角相等两直线平行)∴∠EDC═60°(两直线平行同位角相等)【分析】根据平行线的判定方法以及角平分线的定义解决问题即可.【解答】解:∵AD是∠BAC的平分线(已知)∠BAC=2∠1(角平分线的定义)又∵EF平分∠DEC(已知)∴∠DEC=2∠2(角平分线的定义)又∵∠1=∠2(已知)∴∠BAC=∠DEC(等量代换)∴AB∥DE(同位角相等两直线平行)∴∠EDC═60°(两直线平行同位角相等)故答案为:角平分线的定义,∠DEC=2∠2,角平分线的定义,∠DEC,等量代换,同位角相等两直线平行,两直线平行同位角相等.22.如图,点D是△ABC的边BC上的一点,∠B=∠1,∠ADC=70°,∠C=70°(1)求∠B的度数;(2)求∠BAC的度数.【分析】(1)根据三角形的外角性质计算;(2)根据三角形内角和定理计算.【解答】解:(1)∵∠ADC=∠1+∠B,∠B=∠1,∴∠B=∠ADC=×70°=35°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣35°﹣70°=75°.23.请在下面括号里补充完整证明过程:已知:如图,△ABC中,∠ACB=90°,AF平分∠CAB,交CD于点E,交CB于点F,且∠CEF=∠CFE.求证:CD⊥AB.证明:∵AF平分∠CAB(已知)∴∠1=∠2 (角平分线的定义)∵∠CEF=∠CFE,又∠3=∠CEF(对顶角相等)∴∠CFE=∠3(等量代换)∵在△ACF中,∠ACF=90°(已知)∴∠1 +∠CFE=90°(直角三角形的性质)∵∠1=∠2,∠CFE=∠3(已证)∴∠2 + ∠3 =90°(等量代换)在△AED中,∠ADE=90°(三角形内角和定理)∴CD⊥AB(垂直的定义).【分析】根据角平分线的定义、直角三角形的性质、三角形内角和定理、垂直的定义填空.【解答】证明:∵AF平分∠CAB(已知)∴∠1=∠2(角平分线的定义)∵∠CEF=∠CFE,又∠3=∠CEF(对顶角相等)∴∠CFE=∠3(等量代换)∵在△ACF中,∠ACF=90°(已知)∴∠1+∠CFE=90°(直角三角形的性质)∵∠1=∠2,∠CFE=∠3(已证)∴(∠2)+(∠3)=90°(等量代换)在△AED中,∠ADE=90°(三角形内角和定理)∴CD⊥AB(垂直的定义).故答案为:(角平分线的定义);∠1;(直角三角形的性质);∠2;∠3;(垂直的定义).24.(1)如图1,计算下列五角星图案中五个顶角的度数和.即:求∠A+∠B+∠C+∠D+∠E的大小.(2)如图2,若五角星的五个顶角的度数相等,求∠1的大小.【分析】(1)设CE与BD、AD的交点分别为M、N,可分别在△MBE和△NAC中,由三角形的外角性质求得∠DMN=∠B+∠E、∠DNM=∠A+∠C,进而在△DMN中根据三角形内角和定理得出所求的结论;(2)根据多边形的外角和等于360°解答即可.【解答】解:(1)如图1,设BD、AD与CE的交点为M、N;△MBE和△NAC中,由三角形的外角性质知:∠DMN=∠B+∠E,∠DNM=∠A+∠C;△DMN中,∠DMN+∠DNM+∠D=180°,故∠A+∠B+∠C+∠D+∠E=180°;(2)如图2,∵五角星的五个顶角的度数相等,∴,∴∠1=180°﹣∠2=108°.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版八年级数学上学
期期末复习
Prepared on 22 November 2020
八年级数学期末复习题四
班级___ ____ 姓名_ ______ 总分__ _____
一.选择题(每小题3分,共30分)
1.下列各式由左边到右边的变形中,是分解因式的为( )。

A 、a (x + y) =a x + a y
B 、x 2-4x+4=x(x -4)+4
C 、10x 2-5x=5x(2x -1)
D 、x 2-16+3x=(x -4)(x+4)+3x
2.下列运算中,正确的是( )。

A 、x 3·x 3=x 6
B 、3x 2÷2x=x
C 、(x 2)3=x 5
D 、(x+y 2)2=x 2+y 4
3.下列图形中,不是轴对称图形的是( )。

4.已知△ABC 的周长是24,且AB=AC ,又AD ⊥BC ,D 为垂足,若△ABD 的周长是20,则AD 的长为( )。

A 、6
B 、8
C 、10
D 、12
5.8.已知m 6x =,3n x =,则2m n x -的值为( )。

A 、9
B 、
43 C 、12 D 、34
6. 一次函数y =-3x +5的图象经过( )
A 、第一、三、四象限
B 、第二、三、四象限
C 、第一、二、三象限
D 、第一、二、四象限
7.已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为( )。

A 、14
B 、16
C 、10
D 、14或16
8.已知m 6x =,3n x =,则2m n x -的值为( )。

A 、9
B 、
43 C 、12 D 、34
9.已知正比例函数y kx = (k ≠0)的函数值y 随x 的增大而减小,则一次函数
A B C
D
y=x +k 的图象大致是( ).
x
y
O A
x
y O
B
x
y
O
C
x y O
D
10.直线与1y x =-两坐标轴分别交于A 、B 两点,点C 在坐标轴上,若△ABC 为等
腰三角形,则满足条件的点C 最多有( )。

A 、4个
B 、5个
C 、7个
D 、8个
二.填空题 (每小题3分,共30分)
11.当m= _______时,函数y=(m -3)x 2+4x-3是一次函数。

12.三角形的三条边长分别为3cm 、5cm 、x cm ,则此三角形的周长y(cm) 与x(cm)的函数关系式是。

13.在“线段、锐角、三角形、等边三角形”这四个图形中,其中是轴对称图形的有
个,其中对称轴最多的是 。

14. 已知点A (l ,-2) ,若A 、B 两点关于x 轴对称,则B 点的坐标为________。

15.分解因式3322x 2y x y xy -+= 。

16.若函数y =4x +3-k 的图象经过原点,那么k = 。

17.若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 。

18. 多项式142+a 加上一个单项式后,使它能成为一个整式的完全平方,那么加上的
单项式可以是___________。

(填上一个你认为正确的即可)
19.已知x +y =1,则2211
22
x xy y ++= 。

20.如图EB 交AC 于M ,交FC 于D ,AB 交FC 于N ,∠E =∠F =
90°,
∠B =∠C ,AE =AF 。

给出下列结论:①∠1=∠2;②BE =CF ;
M
N A
C
D
E F
1 2
③△ACN ≌△ABM ;④CD=DN 。

其中正确的结论有 (
填序号) 三、简答题:(共6题,共90分)
21.化简(每题6分,共12分)
(1))22(4)25(22a a a +-+; (2))1)(1(52-+x x x
22. 分解因式(每题6分,共12分)
(1) 4
16a - (2) 2
2
29x xy y -+-
23.(6分)作图题(不写作图步骤,保留作图痕迹).
已知:如图,求作点P ,使点P 到A 、B 两点的距 离相等,且P 到∠MON 两边的距离也相等.
24.(10分)△ABC 为正三角形,点M 是射线BC 上任意一点,点N 是射线CA 上
任意一点,且BM=CN ,BN 与AM 相交于Q 点,∠AQN 等于多少度.
25.(10分)已知函数y=(m+1)x+m –1
(第23题)
O N
M .
· A B
若这个函数的图象经过原点,求m 的值;并画出函数的图像。

26.(10分) 一次函数y=k 1x -4与正比例函数y=k 2x 的图象经过点(2,-1),
(1) 分别求出这两个函数的表达式;
(2) 求这两个函数的图象与x 轴围成的三角形的面积。

27.(10分)先化简,再求值:
8m 2-5m(-m +3n) +4m(-4m -2
5
n),其中m =2,n =-1
28.(10分)如图,直线y=k x +6分别与x 轴、y 轴相交于点E 和点F ,点E 的坐标为
(-8,0),点A 的坐标为(0,6)。

(1)求k 的值;
(2)若点P(x,y)是第二象限内的直线上的一个动点,当点P运动过程中,试写出△OPA的面积S与x
27
(3)探究:当P运动到什么位置时,△OPA的面积为
8
29.(10分)已知a,b,c是△ABC的三边,且满足关系式a2+c2=2a b+2bc-2b2,试说明△ABC是等边三角形.
八年级期末试题参考答案
一、选择:
1、C
2、A
3、B
4、B
5、C
6、D
7、D
8、C
9、A 10、B 二、填空:
11、y=x+8,(2<x<8).12、、3,等边三角形14、(1,2)15、2(1)xy xy -16、K=、015或 075.18、答案不唯一。

19
、1
2
20、①②③ 三、简答题:
21、解:(1) (2)
22222(52)4(22)5288328
a a a a a a a a +-+=+--=-+- 22242
5(1)(1)
5(1)
55x x x x x x x +-=-=-
22、解:(1) (2)
4
2
2
216
(4)(4)(4)(2)(2)
a a a a a a -=+-=++-
2
222()3((39
)23)
x y x y x y x xy y =--=-+----+
24、解:∠AQN=60o ,
如图,在△ABM 和△BCN 中,易证∠BCN=∠ABM=60o ,CN=BM ,又∵AB=AC ,
∴△ABM ≌△BCN ,∴∠BAM=∠CBN ,
又∵∠AQN=∠BAQ+∠ABQ=∠NBC+∠ABQ=∠ABC=60o .
∴∠AQN =∠ABC=60o。

相关文档
最新文档