空间向量的夹角和距离公式

合集下载

空间向量的夹角和距离公式

空间向量的夹角和距离公式

§9.6空间向量的坐标运算 (2)【教学目的】 (1)掌握空间向量的模长公式、夹角公式、两点间的距离公式,会用这些公式解决有关问题;(2)会根据向量的坐标判断两个向量共线或垂直【教学重点】夹角公式、距离公式【教学难点】模长公式、夹角公式、两点间的距离公式及其运用【课型】新授课【教学过程】(一)复习引入:空间向量的数量积有哪些重要性质?(二) 新课: 1 模长公式:若123(,,)a a a a =,123(,,)b b b b =,则2||a a a a =⋅=+2||b b b b =⋅=+.2.夹角公式:2cos ||||a b a b a b a⋅⋅==⋅+ 3.两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则2||(AB AB x ==或,A B d =例1 已知(3,3,1)A ,(1,0,5)B , 求:(1)线段AB 的中点坐标和长度;(2)到,A B 两点的距离相等的点(,,)P x y z 的坐标,,x y z 满足的条件解:点评:到,A B 两点的距离相等的点(,,)P x y z 构成的集合就是线段AB 的中垂面,若将点P 的坐标,,x y z 满足的条件46870x y z +-+=的系数构成一个向量(4,68)a =-,发现与(2,3,4)AB =--共线例2.如图正方体1111ABCD A B C D -中,11111114B E D F A B ==,求1BE 与1DF 所成角的余弦例3.已知三角形的顶点是(1,1,1)A -,(2,1,1)B -,(1,1,2)C ---,试求这个三角形的面积 分析:可用公式1||||sin 2S AB AC A =⋅⋅来求面积 解:,点评:三角形的内角可看成由该角的顶点出发的两边所在向量的夹角课堂练习: 1若(3cos ,3sin ,1)A θθ,(2cos ,2sin ,1)B θθ,求||AB 的取值范围;2.已知(,2,0)a x =,2(3,2,)b x x =-,且a 与b 的夹角为钝角,求x 的取值范围;3.若(cos ,sin ,2sin )P ααα,(2cos ,2sin ,1)Q ββ,求||PQ 的最大值和最小值4.求证:如果两条直线同垂直于一个平面,则这两条直线平行.已知:直线OA ⊥平面α,直线BD ⊥平面α,O 、B 为垂足.求证:OA //BD .证明:以点O 为原点,以射线OA 为非负z 轴,建立空间直角坐标系O -xyz ,i ,j ,k 为沿x 轴,y 轴,z 轴的坐标向量,且设BD =),,(z y x .∵BD ⊥α,∴⊥i ,⊥j , ∴BD ·i =),,(z y x ·(1,0,0)=x =0,BD ·j =),,(z y x ·(0,1,0)=y =0,∴=(0,0,z ).∴=z k .即//k .由已知O 、B 为两个不同的点,∴OA //BD .说明:⑴请注意此例建立空间直角坐标系的方法,这是今后解题时常用的方法;⑵如果表示一个向量的有向线段所在直线垂直于平面α,则表示该向量所有的有向线段所在直线都垂直于α.如果表示向量a 的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作a ⊥α. 如果a ⊥α,那么向量a 叫做平面α的法向量.1.空间向量的模长公式、两点间的距离公式的形式与平面向量中相关内容一致,因此可类比记忆;2.在计算异面直线所成角时,仍然用向量数量积的知识,建立空间直角坐标系后能方便的求出向量的坐标,则通常考虑用坐标运算来求角3.对于一些较特殊的几何体或平面图形中有关夹角,距离,垂直,平行的问题,都可以通过建立坐标系将其转化为向量间的夹角,模,垂直,平行的问题,从而利用向量的坐标运算求解,并可以使解法简单化.值得注意的是——坐标系的选取要合理、适当.作业:《数学之友》第167页。

1.4.2用空间向量研究距离、夹角问题之二:夹角问题

1.4.2用空间向量研究距离、夹角问题之二:夹角问题
量的夹角,所以只需要求出这两个平面的
法向量的夹角即可.
典型例题
例5如图,在直三棱柱ABC-A1B1C1中,AC=CB=2,AA1=3,∠ACB=90°,P为BC的
中点,点Q, R分别在棱AA1,BB1上,A1Q=2AQ,BR=2RB1.求平面PQR与平面
A1B1C1夹角的余弦值.
解:先做出平面PQR与平面A1 1 1 的
典型例题
例5如图,在直三棱柱ABC-A1B1C1中,AC=CB=2,AA1=3,
∠ACB=90°,P为BC的中点,点Q, R分别在棱AA1,BB1上,
A1Q=2AQ,BR=2RB1.求平面PQR与平面A1B1C1夹角的余弦值.
分析:因为平面PQR与平面A1B1C1的夹角
可以转化为平面PQR与平面A1B1C1的法向
若异面直线l1,l2所成的角为 (0 ≤ ) ,其方向向量分别为 , Ԧ
则 =< , Ԧ >, 或 = −<, >
Ԧ
2
∙ Ԧ
= < , Ԧ > =
Ԧ
不要将两异面直线所成的角与其方向向量的夹角等
同起来,因为两异面直线所成角的范围是0 ≤ ,而
交线。
做PE⊥ 1 1 于E,则PE//Q1 ,PQ∩
1 = .
PR∩ 1 1 = ,则GH即为平面PQR与
平面A1 1 1 的交线。
做PF⊥ 于F,连C1 , ∠1 就是平面
PQR与平面A1 1 1 的二面角的平面角。
我们在⊿PF1 中求∠1 ,接下去就是
= < 1 , 2 > =
.
1 2
反思:1、三式中到底是sin还是cos,我们要通过记图来记住公

空间向量的夹角与距离求解公式-高中数学知识点讲解

空间向量的夹角与距离求解公式-高中数学知识点讲解

空间向量的夹角与距离求解公式1.空间向量的夹角与距离求解公式【知识点的认识】1.空间向量的夹角公式→→设空间向量푎=(a1,a2,a3),푏=(b1,b2,b3),→→cos<푎,푏>=→→푎⋅푏→→|푎|⋅|푏|=푎1푏1+푎2푏2+푎3푏3푎12+푎22+푎32⋅푏12+푏22+푏32注意:→→→→(1)当 cos<푎,푏>= 1时,푎与푏同向;→→→→(2)当 cos<푎,푏>=― 1时,푎与푏反向;→→→→(3)当 cos<푎,푏>= 0时,푎⊥푏.2.空间两点的距离公式设A(x1,y1,z1),B(x2,y2,z2),则→퐴퐵=(푥2―푥1,푦2―푦1,푧2―푧1)→d A,B=|퐴퐵| =→퐴퐵⋅→퐴퐵=(푥2―푥1)2+(푦2―푦1)2+(푧2―푧1)2.【解题思路点拨】1.求空间两条直线的夹角建系→写出向量坐标→利用公式求夹角2.求空间两点的距离建系→写出点的坐标→利用公式求距离.【命题方向】(1)利用公式求空间向量的夹角→→例:已知A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),则向量퐴퐵与퐴퐶的夹角为()1/ 3A.30°B.45°C.60°D.90°→→→分析:由题意可得:퐴퐵=(0,3,3),퐴퐶=(―1,1,0),进而得到퐴퐵⋅→→→→→퐴퐶与|퐴퐵|,|퐴퐶|,再由cos<퐴퐵,퐴퐶>=→→퐴퐵⋅퐴퐶→→可得答案.|퐴퐵||퐴퐶|解答:因为A(2,﹣5,1),B(2,﹣2,4),C(1,﹣4,1),所以→→퐴퐵=(0,3,3),퐴퐶=(―1,1,0),→所以퐴퐵⋅→→→퐴퐶═0×(﹣1)+3×1+3×0=3,并且|퐴퐵|=3 2,|퐴퐶| = 2,→→所以 cos<퐴퐵,퐴퐶>=→→퐴퐵⋅퐴퐶→→|퐴퐵||퐴퐶|=332×2=12,→→∴퐴퐶的夹角为 60°퐴퐵与故选C.点评:解决此类问题的关键是熟练掌握由空间中点的坐标写出向量的坐标与向量求模,以及由向量的数量积求向量的夹角,属于基础试题.(2)利用公式求空间两点的距离例:已知空间直角坐标系中两点A(3,﹣1,2),B(0,﹣1,﹣2),则A,B 两点间的距离是()A.3B. 29C.25D.5分析:求出AB 对应的向量,然后求出AB 的距离即可.解答:因为空间直角坐标系中两点A(3,﹣1,2),B(0,﹣1,﹣2),→→所以퐴퐵=(﹣3,0,﹣4),所以|퐴퐵|=(―3)2+02+(―4)2= 5.故选D.点评:本题考查空间两点的距离求法,考查计算能力.2/ 33/ 3。

空间向量的夹角和距离公式(讲课)

空间向量的夹角和距离公式(讲课)
aba1b1a2b2a3b3 ;
a//b a 1 b 1 ,a 2 b 2 ,a 3 b 3 ( R ) ;
a 1/b 1a 2/b 2a 2/b 2 . a b a1b 1a2b2a3b30;
二、距离与夹角 (1)空间两点间的距离公式
在空间直角坐标系中,已知 A(x1 , y1 , z1) 、 B(x2 , y2 ,z2),则
例2 如图,在正方体 A B C DA 1B 1C 1D 1中,B1E1
D1F1
A1B1 4
,求
BE1

D
F1
所成的角的余弦值。
z
D1
F1
C1
D F 1 0 , 1 4, 1 (0 ,0 ,0 ) 0 , 1 4, 1 .
A1
E1 B1
B E 1D F 1 0 0 1 4 1 4 1 1 1 1 6 5,
| AM| 5 30 6.故 点 A到 直 线 EF的 距 离 为6.
2 10 4
4
课堂练习:
1 . 若 正 方 体 A B C D A 1 B 1 C 1 D 1 的 边 长 为 1 , E , F 分 别 是
C C 1 , D 1 A 1 的 中 点 . 求 ( 1 ) < F E , F A , ( 2 ) 点 A 到 直 线 E F 的 距 离 .
D1
F A1
C1 B1
E
2021/3/11
D A
C B
9
课堂练习:
1 . 若 正 方 体 A B C D A 1 B 1 C 1 D 1 的 边 长 为 1 , E , F 分 别 是
C C 1 , D 1 A 1 的 中 点 . 求 ( 1 ) < F E , F A , ( 2 ) 点 A 到 直 线 E F 的 距 离 .

高一数学《夹角和距离公式》

高一数学《夹角和距离公式》
解:a=AB―→=(1,1,0),b=AC―→=(1,0,1), ∴|a|= 2,|b|= 2,且 a·b=1, ∴cos〈a,b〉=|aa|·|bb|=12, ∵〈a,b〉∈[0°,180°], ∴〈a,b〉=60°.
距离问题
【例 2】 已知正方体 ABCDA1B1C1D1 的棱长为 1,点 E、F 分别在 DA1、AC 上,且 EF⊥A1D,EF⊥AC.求 EF 的长.
∵EF⊥AC,EF⊥DA1,
∴EDFA―1―→→·A·ECF――→→==ab--ba+-1a-=b0=0

a=13 b=32.
∴E,F 坐标分别为(13,0,13),(23,13,0),
∴EF=|EF―→|= 23-312+13-02+0-132= 33.
求线段的长度,可以利用公式|a|= a·a来求,也可以选择适当的空间直角坐 标系,由 A(x1,y1,z1),B(x2,y2,z2),用两点间的距离公式
nn··ab= =00 .
④解方程组,取其中的一个解,即得法向量. (3)方法二必须建立空间直角坐标系,方法一不一定要建立空间直角坐标系. (4)在求平面的法向量时,要先找有没有和平面垂直的直线,若没有则用待定系数法.
(5)在利用方法二求解平面的法向量时,方程组nn··ab= =00 有无数多个解,只需给 x,y,z
dA,B= x2-x12+y2-y12+z2-z12求解.
变式训练 21:如图所示,在正方体 ABCDA1B1C1D1 中,边长为 1,M、N 分别是 AD1, BD 上的动点,且 D1M=DN=a(0<a< 2),求 MN 的最小值.
解:如图所示,建立空间直角坐标系 则 M( 22a,0,1- 22a),N( 22a, 22a,0), ∴NM= 22a- 22a2+0- 22a2+1- 22a-02

空间向量的距离和夹角公式

空间向量的距离和夹角公式

例2 在正方體ABCD-A1B1C1D1中,E、F分別是BB1、 D1 B1的中點,求證:EF⊥ DA1
例3 在正方體ABCD-A1B1C1D1中,E、F分別是BB1、 CD的中點,求證:D1F⊥ 平面ADE
例4 如圖,在正方體ABCD-A1B1C1D1中,已知
B1E1
D1F1
1 4
AB
,與BE1與DF1所成的角的余弦值。
BC=1,AA1=√6,M是棱CC1的中點,
求證:A1B⊥AM
C1
B1
A1
M
C
B
A
3、在棱長為1的正方體ABCD-A1B1C1D1中,E、F分別
是DD1,DB中點,G在棱CD上,CD=4CG,H是C1G的
中點,
z
(1) 求證:EF⊥B1C ;
D1
C1
A1 E
B1 H
D
G
C y
F
A
B
x
3、在棱長為1的正方體ABCD-A1B1C1D1中,E、F分別
| a| | b |
a12 a22 a32 b12 b22 b32
(2) 空間兩點間的距離公式 在空間直角坐標系中,已知A(x1 , y1 , z1),
B(x2 , y2 , z2),則
AB (x2 x1, y2 y1, z2 z1)
| AB | AB AB (x2 x1)2 ( y2 y1)2 (z2 z1)2
是DD1,DB中點,G在棱CD上,CD=4CG,H是C1G的
中點,
z
(2) 求EF與C1G所成的角的余弦; D1
C1
(3) 求FH的長。A1 EB1 H NhomakorabeaD
G
C y
F

高一数学《夹角和距离公式》

高一数学《夹角和距离公式》

做一做: 教师备用:已知 a=(0,-1,1),b=(1,2,-1),则 a 与 b 的夹角等于( D ) (A)30° (B)60° (C)90° (D)150°
解析:a·b=0-2-1=-3,
|a|= 2,|b|= 1+22+1= 6,
∴cos〈a,b〉=|aa|·|bb|=
-3 =- 2· 6
nn··ab= =00 .
④解方程组,取其中的一个解,即得法向量. (3)方法二必须建立空间直角坐标系,方法一不一定要建立空间直角坐标系. (4)在求平面的法向量时,要先找有没有和平面垂直的直线,若没有则用待定系数法.
(5)在利用方法二求解平面的法向量时,方程组nn··ab= =00 有无数多个解,只需给 x,y,z
角时可以在两条异面直线上分别取出两个向量,通过求这两个向量所成的角来求异面直线所
成的角,但需注意异面直线所成角范围(0°,90°],注意这两个角相互转化时范围的不同.
知识要点二:线段的长度的求法
1.利用 a·a离公式来求.
知识要点三:对平面法向量的理解 1.所谓平面的法向量,就是指所在的直线与平面垂直的向量,显然,一个平面的法向 量有无数多个,它们是共线向量.由于过直线外一点作与已知直线垂直的平面有且只有一个, 因此,在空间中,给定一个点 A 和一个向量 a,那么以向量 a 为法向量且经过 A 的平面是唯 一确定的. 2.求平面法向量的方法 (1)方法一:找到一条与已知平面垂直的直线,则该直线的任意方向向量都是该平面的法 向量. (2)方法二:待定系数法 若要求出一个平面的法向量的坐标,一般要建立空间直角坐标系,然后用待定系数法求 解,一般步骤如下: ①设出平面的法向量为 n=(x,y,z). ②找出(求出)平面内的两个不共线的向量的坐标 a=(a1,b1,c1),b=(a2,b2,c2). ③根据法向量的定义建立关于 x、y、z 的方程组

向量法求空间的距离和角

向量法求空间的距离和角

所以异面直线BD与D1A间的距离为
3 。 3
(2) A1 B1 = (0,1, 0), 设n = ( x, y, z )是平面A1DB的一 个法向量,因为DA1 = (1, 0,1), DB = (1,1, 0), ì ì x +z = 0 nDA1 = 0 镲 由眄 即 取x = - 1, 镲 î x+y =0 î nDB = 0 | nA1 B1 | 1 2 于是n = (-1,1,1, ),且 = = 。 2 |n| 2 2 所以点B1到平面A1 BD的距离为 。 2
例1:如图1所示: 三棱柱ABC - A1 B1C1中,CA=CB, AB = AA1, ? BAA1 60o, ( 1)求证:AB^ A1C (2)若平面ABC ^ 平面AA1 B1 B, AB =CB,求直线A1C与平面BB1C1C 所成角的正弦值。
C C1
B A A1
B1
图1
C
C1
O
B A1
Z
解:由(1)知OC ^ AB,OA1 ^ AB, 又平面ABC ^ 平面AA1 B1 B,交线 为AB,所以OC ^ 平面AA1 B1 B, 故OA、OA1、OC两两相互垂直。 建立如图所示的空间直角坐标系 A
O
C
C1
B A1
B1 图1-2
X o - xyz 设AB = 2,由题设知A(1, 0, 0)、B(- 1, 0, 0)、C (0, 0, 3)、A1 (0, 3, 0), 则BC = (1, 0, 3)、 BB1 = AA1 = (- 1, 3, 0)、 A1C = (0, - 3, 3). 设n = ( x, y, z )是平面BBCC的法向量,则 ì x + 3z = 0 ì nBC = 0 镲 即 可取n = ( 3,1, -1), 眄 镲 î nBB1 = 0 î - x + 3y = 0 nA1C 10 故 cos < n, A1C >= =. 5 | n | ×| A1C |

1.4.2 用空间向量研究距离、夹角问题(第1课时)

1.4.2 用空间向量研究距离、夹角问题(第1课时)

2 30
.
5
4.求点到平面的距离
①等体积法(将点面距离看作三棱锥的高)
D1
P35-2(3).棱长为2的正方体ABCD-A1B1C1D1中,E,F
分别是线段DD1的中点,求点A1到平面AEB1的距离.
B1
A1
析 : 设点A1到平面AEB1的距离hA1 .
C1
E
VA1 AEB VB1 AEA1 ,


a
2 8
4
C1
A
C
B
2.求点到直线的距离
①公式法(找斜线的方向向量 及直线l的方向向量 )
2
d a (
②等面积法(将点线距离视为三角形的高)
a l 2
)
|l |
[变式]棱长为a的正方体ABCD-A1B1C1D1中,M是线段DC1上的动点,
求点M到直线AD1的距离的最小值.
D1
析 : 建系Dxyz , A(a,0,0), D1 (0,0, a ), 设M (0, x, x )
AB (0,2,0), AC1 (2,2,2), AB AC1 4, | AB | 2, | AC1 | 2 3,
D
C
2
A
B
点B到直线AC1的距离为 AB (
AB AC1 2
4 2 2 6
) 4(
)
3
2 3
| AC1 |
2.求点到直线的距离
①公式法(找斜线的方向向量 及直线l的方向向量 或单位方向向量 )
D1
a a
析 : 建系Dxyz, A(a,0,0), D1 (0,0, a ), M (0, , )
2 2
a a

用空间向量研究距离,夹角问题公式

用空间向量研究距离,夹角问题公式

用空间向量研究距离,夹角问题公式
对于距离和夹角问题的研究,空间向量提供了一种有效的方法。

空间向量是指具有方向和大小的矢量,可以用来表示在三维空间中的物理量或者几何对象。

首先,我们来讨论两个点之间的距离问题。

在空间向量中,两个点的距离可以通过计算它们的欧几里得距离来确定。

欧几里得距离是指从一个点到另一个点的直线距离。

如果我们将两个点表示为向量A和向量B,那么它们之间的欧几里得距
离可以使用以下公式计算:
距离 = |向量AB| = √((Bx-Ax)^2 + (By-Ay)^2 + (Bz-Az)^2)
其中,Ax、Ay、Az分别表示向量A的x、y、z坐标,Bx、By、Bz分别表示
向量B的x、y、z坐标。

通过这个公式,我们可以计算出两个向量之间的距离。

接下来,让我们来看一下关于夹角问题的公式。

在空间向量中,可以使用两个向量的点积和模长之间的关系来计算它们之间的夹角。

如果我们将两个向量表示为向量A和向量B,它们的夹角可以通过以下公式计算:
夹角θ = arccos((向量A·向量B) / (|向量A| × |向量B|))
其中,向量A·向量B表示两个向量的点积,|向量A|和|向量B|分别表示向量A 和向量B的模长。

通过这个公式,我们可以确定两个向量之间的夹角。

通过使用上述的距离和夹角问题的公式,我们可以将空间向量用于研究并解决各种几何和物理问题。

这些公式能够提供详细而完整的信息,帮助我们深入了解空间中不同物体之间的距离和夹角关系。

无论是在几何学、物理学还是其他相关领域,空间向量的研究都具有重要的应用价值。

空间向量的夹角和距离公式PPT教学课件

空间向量的夹角和距离公式PPT教学课件
3
定理三:如果一个锥体(棱锥、圆锥)的底面积 是S,高是h,那么它的体积是 V锥体= 1 Sh
推论:如果圆锥的底面半3径是r,高是h, 那么它的体积是 V圆锥= 1 πr2h
3
例题一:如图:已知三棱锥A-BCD的侧棱AD垂直于底
面BCD,侧面ABC与底面所成的角为θ 求证:V三棱锥= 1 S△ABC·ADcosθ
3
A’
C’ 把三棱锥1以
△ABC为底面、
B’
AA1为侧棱补成 一个三棱柱。
A
C
B
定理二:如果三棱锥的底面积是S,高是h,那么
它的体积是 V三棱锥= 1 Sh
3
连接B’C,然后
A’
C’ 把这个三棱柱
3
分割成三个三
B’
2
棱锥。 就是三棱锥1

和另两个三棱
A
C
锥2、3。
B
定理二:如果三棱锥的底面积是S,高是h,那么
1 13
问题2、解答过程中的
A
3
×2
BC ·AEcosθ·AD其中 1 AEcosθ·AD可表示意思?
2
分析:
B θ
E C
∵AEcosθ=ED
1
D ∴S△AED= 2 ED·AD 又BE与CE都垂直平面AED,故BE、CE 分别是三棱锥B-AED、C-AED的高。
结论: V三棱锥=VC-AE D+VB-AE D
高也相等(顶点都是A’)。
定理二:如果三棱锥的底面积是S,高是h,那么
它的体积是 V三棱锥= 1 Sh
A’
A’
3
A’
2 B’
3
C’
B’
1
A
C
C

距离和夹角公式(空间向量) 精品

距离和夹角公式(空间向量) 精品
A1
D1
C1
思路二:利用空间向量的知识,
转化为求 EF和BG的 夹角,进一步转化为求 它们的数量积和长度.
B1 D
G
Cy F A E B
x
问题:正方体ABCD-A1B1C1D1中,E,F,G分别为AB,BC, CC1的中点,那么EF与BG所成角的余弦值为----z 解:不妨设已知正方体的棱长 为1个单位长度,且设DA=i D1 C1 DC=j,DD1=k,以i,j,k为坐标 向量建立空间直角坐标系 G A1 D-xyz B1
cos a, b a b | a ||b |

a1b1 a2b2 a3b3 a1 a2 a3 b1 b2 b3
2 2 2 2 2 2
;
a b a1b1 a2b2 a3b3 ;
| a | a a a1 a2 a3
2 2 2 2
| b | b b b b2 b3
2
2 1
2
2
练习:求下列向量的夹角的余弦: (1)a=(2,-3, 3), b=(1,0,0) (2)a=(-1,-1,1), b=(-1,01,)
思 已知A(0,2,3)、B( 2,1,6), C (1,1,5), 用向量 考
方法求ABC的面积S。
距离和夹角公式
(空间向量)
复习
空间向量的数量积: a b a b cos a, b 空间向量的坐标运算:
设a (a1, a2 , a3 ),b (b1 , b2 , b3 )则
a b a1b1 a2b2 a3b3 ;
请思考: 2+a 2+a 2 2 a· a= a 1 2 3 |a| = |a|= √ a12+a22+a32 b=b12+b22+b32 |b|2= b· |b|= √ b12+b22+b323页第7题,第9题

空间向量及常用公式

空间向量及常用公式

空间向量及常用公式(1)共线:.)0(//b a b b a λλ=⇔≠使存在实数(2)若1=++⇔++=z y x C B A P OC z OB y OA x op 是共面、、、,则四点(3)空间两个向量的夹角公式232221232221332211,cos b b b a a a b a b a b a b a ++++++>=<(4)直线AB 与平面所成角)(arcsin 的法向量为平面ααm m AB mAB ⋅=(5)的法向量),为平面或的平面角二面角βαπθβαn m n m nm n m nm l ,(arccos arccos ⋅⋅=--- (6)三余弦公式:21cos cos cos θθθ=(7)空间两点间的距离公式 212212212,222111)()()(,,,,z z y y x x AB AB AB d z y x B z y x A B A -+-+-=⋅==则)()(若(8))()()(122PQ b PA a l l P b a a b a a h l Q ==⋅-=,向量的方向向量上,直线在直线点距离到直线点(9)异面直线间的距离n nCD d ⋅=(21,l l 是两异面直线,其公垂向量为n ,C 、D 分别为21,l l 上任一点,D 为21,l l 间的距离)(10)点B 到平面α的距离)(ααα∈⋅=A AB n n nAB d 的一条斜线,是平面的法向量,为平面(11)异面直线上两点距离公式θcos 2222mn n m d AB -++=(12)面积射影定理 ),(cos θθ面角的为它们所在平面所成锐二、面积分别是平面多边形及其射影的S S S S ''=。

1.4.2-用空间向量研究距离、夹角问题

1.4.2-用空间向量研究距离、夹角问题

探究 已知直线l的单位方向向量为u, A是直线l上的定点,P是直线l外一点. 如何利
用这些条件求点P到直线l的距离? 如图示,向量AP在直线l上的投影向量为 AQ ,则△APQ是直角
u
P
三角形,因为A,P都是定点,所以|AP|,AP 与 u 的夹角∠PAQ都
dn
是确定的. 于 是可求 |AQ|. 再利用勾股定理,可以求出点P到直线l
点C1到平面AB1 E
的距离为 |
C1B1 |n|
n
|
1 3
.
D
A x
F
C
y
B
即直线FC1到平面AB1
E的距离为
1 3
.
3. 如图,在棱长为1的正方体ABCD-A1B1C1D1中,求平面A1DB与平面D1CB1的距离.
解 : 平面A1DB//平面D1CB1,平面A1DB与平面D1CB1的距离 z
MN AN AM
1 ( AB AF ) 1 ( AB AD)
2
2
1 (c b) 2
∴|MN|2 1 (c b )2 1 ,
4
2
∴|MN| 2 ,即MN 2 .
2
2
【巩固训练4】如图,两条异面直线a, b所成的角为θ,在直线a, b上分别取点A′, E和
点A, F,使AA′⊥a,且AA′⊥b (AA′称为异面直线a, b的公垂线). 已知A′E=m, AF=n,
易得C1 (0, 1, 1),
A(1,
0, 0),
E(0,
0,
1 ). 2
E
∴C1 A
(1,
1, 1),
AE
(1, 0,
1 ). 2
D
F

高中数学必修知识点空间向量知识点

高中数学必修知识点空间向量知识点

高中数学必修知识点空间向量知识点高中数学必修知识点:空间向量知识点在高中数学的学习中,空间向量是一个重要的知识板块。

它为我们解决空间几何问题提供了全新的思路和方法,使复杂的空间关系能够通过代数运算得以清晰展现。

接下来,让我们一起深入探索空间向量的奥秘。

一、空间向量的基本概念空间向量是指具有大小和方向的量。

与平面向量类似,空间向量也由起点和终点来确定。

但由于是在三维空间中,其表现形式更加丰富。

空间向量用有向线段来表示,有向线段的长度表示向量的模,也就是向量的大小。

而向量的方向则由有向线段的指向来确定。

在空间直角坐标系中,我们通常用坐标来表示空间向量。

若向量的起点坐标为$(x_1, y_1, z_1)$,终点坐标为$(x_2, y_2, z_2)$,则该向量的坐标为$(x_2 x_1, y_2 y_1, z_2 z_1)$。

二、空间向量的运算1、加法和减法空间向量的加法和减法遵循三角形法则或平行四边形法则。

两个向量相加或相减,其结果仍然是一个空间向量。

例如,若有向量$\overrightarrow{a}=(x_1, y_1, z_1)$,$\overrightarrow{b}=(x_2, y_2, z_2)$,则$\overrightarrow{a} +\overrightarrow{b} =(x_1 + x_2, y_1 + y_2, z_1 + z_2)$,$\overrightarrow{a} \overrightarrow{b} =(x_1 x_2, y_1 y_2, z_1 z_2)$。

2、数乘运算实数$\lambda$与空间向量$\overrightarrow{a}=(x, y, z)$的乘积$\lambda\overrightarrow{a}=(\lambda x, \lambda y, \lambda z)$。

数乘运算改变向量的大小,但不改变向量的方向(当$\lambda >0$时)或使向量反向(当$\lambda < 0$时)。

线到面的距离公式空间向量

线到面的距离公式空间向量

线到面的距离公式空间向量
空间向量的夹角公式:cosθ=a*b/(|a|*|b|)1、a=(x1,y1,z1),b=(x2,y2,z2)。

a*b=x1x2+y1y2+z1z2 2、|a|=√(x1^2+y1^2+z1^2),|b|=√(x2^2+y2^2+z2^2)。

3、
cosθ=a*b/(|a|*|b|)
1.直线与面的夹角:求出直线的一个方向向量l和平面的一个法向量n,用向量的夹角公式求出两个向量夹角余弦cos=m直线与平面所成角π/2-arccos|m|。

2.二面角:分别谋出来两个平面的法向量m,n利用公式谋出来两个法向量夹角余弦cos,二面角的平面角与两法向量夹角成正比或优势互补,(融合图确认,若两法向量同时指
向平面外或内则优势互补;若一个指向内一个指向外则成正比)。

3.点到面距离:设平面外一点a,找到平面内任意一点b,求出向量ab坐标,求平面一
个法向量n,则点a到平面距离d=|ab*n|/|n|。

4.线面平行的距离其实也就是点面距离(直线上任一一点至平面距离),所以带发修
行和点面距离方法一样,a在直线上投,b在平面内挑,先至面的距离d=|ab*n|/|n|(*则表
示数量内积,还有些向量符号没标箭头,你能够看看明白不)。

长度为0的向量叫做零向量,记为0。

模为1的向量称为单位向量。

与向量a长度相
等而方向相反的向量,称为a的相反向量。

记为-a方向相等且模相等的向量称为相等向量。

空间向量的夹角和距离公式

空间向量的夹角和距离公式

空间向量的夹角和距离公式
cosθ = (A·B) / (,A, * ,B,)
其中,A·B表示向量A和向量B的点乘,A,和,B,表示向量A和向量B的模。

点乘的计算方法如下:
A·B=A1*B1+A2*B2+A3*B3
其中,A1、A2、A3和B1、B2、B3分别表示向量A和向量B的三个分量。

模的计算方法如下:
A,=√(A1^2+A2^2+A3^2)
B,=√(B1^2+B2^2+B3^2)
其中,^2表示求平方根的操作。

夹角θ的取值范围是[0,π],即0到180度。

此外,空间向量的夹角还可以通过向量的叉乘计算。

设有两个三维向量A和B,它们的夹角θ可以通过以下公式计算:
sinθ = ,A × B, / (,A, * ,B,)
其中,A×B表示向量A和向量B的叉乘。

叉乘的计算方法如下:
A×B=(A2*B3-A3*B2,A3*B1-A1*B3,A1*B2-A2*B1)
其中,A1、A2、A3和B1、B2、B3分别表示向量A和向量B的三个分量。

距离公式:
两点A(x1,y1,z1)和B(x2,y2,z2)之间的距离可以通过以下公式计算:d=√((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)
其中,^2表示求平方根的操作。

这个公式适用于二维和三维空间的点之间的距离计算。

总结起来,空间向量的夹角可以通过点乘和叉乘计算,距离可以通过
坐标差的平方和再开方计算。

这些公式在物理学、几何学和计算机图形学
等领域有广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2 2
例 5 求证以 M 1 ( 4,3,1) 、 M 2 ( 7,1,2) 、 M 3 ( 5,2,3) 三点为顶点的三角形是一个等腰三角形.
解 M1 M 2 (7 4)2 (1 3)2 (2 1)2 14,
2
M 2 M 3 (5 7)2 (2 1)2 (3 2)2 6,
N C A1 M C1 B1
A
B
解答; ⑴∵CA=CB=1,∠BCA=90,又AA1=2,N是其 中点。 ∴AB= 2 ,AN=1 ∴BN= 3 ⑵将 BA 与CB 平移后相交后即可以求解 ⑶同理,将C1M投射到地面为CM1,则所求角 额为A1B与CM1的夹角。显然为直角
M
1
2
1
2
例题:
• 例8正三棱柱ABC-A1B1C1的底面边长为a,高 为 ,求AC1与侧面ABB1A1所成的角
y
B1 P(x,y) 1
O
B(x2,y2)
结论1:一个向量的坐标 等于表示此向量的有 向线段终点的坐标减 去始点的坐标。
a
b
x
A (x1,y1) A 1
j
i 1
夹角、
cos a, b a b | a ||b |
a1b1 a2b2 a3b3 a1 a2 a3 b1 b2 b3
a b a1b1 a2b2 a3b3 0;
问 1 :设 a AB, a 的坐标与 A、B的坐标有何关系? 若 A( x1, y1 ), B( x2 , y2 ), 则 AB ( x x , y y ) 2 1 2 1
问2:什么时候向量的坐标和点的坐标统一起来? 问3:相等向量的坐标有什么关系?
y B(-1,3))
4 3
C(3,4)
2
A(-2,1)
-6 -4 -2
D(x,y)
1
O
-1 -2
2
4
6
x
-3
-4
例4:已知平行四边形ABCD的三个顶点的坐标 分别是(- 2,1)、(- 1,3)、(3,4),求 y 顶点D的坐标. 解:设顶点D的坐标为(x, y) C
AB (1 (2),3 1) (1,2)
数学与信息学院 2007080140216
简岳
知识结构框架图及分析
平面向量与平 面直角坐标系
平面向量的 坐标表示 平面向量直 角坐标运算
平面向量坐标运算
类比结论
空间向量坐标运算
类比方法
二元
平面图形
模仿公式应用
应用公式 类比方法
模仿公式应用
应用公式
三元
空间图形
向量的直角坐标运算
a b (a1b1 , a2 b2 , a3 b3 );
2
M 3 M1
2
(4 5)2 (3 2)2 (1 3)2 6,
原结论成立.
M 2 M 3 M 3 M1 ,
例 6 设 P 在 x 轴上,它到 P1 ( 0, 2 ,3) 的距离为 到点 P2 ( 0,1,1) 的距离的两倍,求点 P 的坐标.
解 因为 P 在x 轴上, 设P点坐标为 ( x ,0,0),
B D x A DC (3 x,4 y) O 有AB DC得:( , 3-x, 4 y) 1 2)(
x 2 1 3 x 2 4 y y 2 顶点D的坐标是(, 22 )
空间两点间的距离公式、
在空间直角坐标系中, 已知A( x1 , y1 , z1 ), B ( x2 , y2 , z 2 ),则 | AB | AB AB ( x2 x1 ) ( y2 y1 ) ( z 2 z1 ) ;
2 2 2 2 2 2
;
a b a1b1 a2b2 a3b3 ;
| a | a a a1 a2 a3
2 2 2 2
| b | b b b b2 b3
2 2 1 2
2
解: b (2,1) (3,4) (1,5) a a b (2,1) (3,4) (5, 3)
1
1
1
2
2
3 a 4 b 3(2,1) 4( 3, 4) (6, 3) ( 12,16) ( 6,19)
例2:已知 a (2,1), b ( 3, 4), 求a b, a b, 3a 4b 的坐标.
例3:已知平行四边形ABCD的三个顶点A、B、C 的坐标分别为(-2,1)、(-1,3)、(3,4), 求顶点D的坐标。
C1 z
A1 C O A x
B1
B y
• • • • • • • • •
解:建立如图示的直角坐标系,则 A( ,0,0),B(0, ,0) A1( ,0,). C(- ,0, ) 设面ABB1A1的法向量为n=(x,y,z) a 3 AB ( , a,0), AA (0,0, 2a) 由 得 2 2 a 3 x 3 y x ay 0 0 2 2 ,解得 z 0 , 2az 0 取y= 3 ,得n=(3, 3 ,0) 而 AC (a,0, 2a) | 3a 0 0 | 3a 1 sin | cos n, AC | ∴ 2 3 3a 2 9 3 0 a 0 2a ∴ 30.
设a (a1, a2 , a3 ),b (b1 , b2 , b3 )则
a b (a1b1 , a2 b2 , a3 b3 );
a (a1 , a2 , a3 ), ( R);
a b a1b1 a2b2 a3b3 ;
a // b a1 b1, a2 b2 , a3 b3 ; ( R);
PP1 x 2 2 2 32 x 2
2
x 2 2,
PP1 2 PP2 , x 2 11 2 x 2 2
x 1,
所求点为 (1,0,0), ( 1,0,0).
例题7:
如图:直三棱柱ABC A1 B1C1 , 底面ABC中, CA=CB=1,BCA=90o,棱AA1=2,M、 N分别为A1B1、AA1的中点, 1)求BN的长; 2)求 cos BA1 , CB1 的值; 3)求证:A1B C1M。
相关文档
最新文档