ch..概率密度函数的监督参数估计法.ppt
分布函数与概率密度函数的参数估计方法
分布函数与概率密度函数的参数估计方法在概率统计学中,分布函数和概率密度函数是用来描述随机变量的性质的重要工具。
而参数估计则是根据给定的样本数据,通过某种方法对分布函数和概率密度函数中的未知参数进行估计的过程。
本文将介绍分布函数与概率密度函数的参数估计方法,包括最大似然估计、矩估计以及贝叶斯估计。
最大似然估计(Maximum Likelihood Estimation,MLE)是一种常用的参数估计方法。
其核心思想是选择使得给定数据样本出现概率最大的参数值作为估计值。
对于给定的样本数据x1,x2,…,xn,假设其分布函数为F(x;θ),其中θ为未知参数。
最大似然估计的目标是找到使得样本数据出现概率最大的参数值θ^。
具体来说,最大似然估计通过对似然函数L(θ)=∏(i=1)^n f(xi;θ)(其中f(x;θ)为概率密度函数)取对数,并对参数θ进行求导来求解参数值θ^。
矩估计(Method of Moments,MoM)是另一种常用的参数估计方法。
其基本原理是利用样本矩与理论分布矩的对应关系进行参数估计。
对于给定的样本数据x1,x2,…,xn,假设其概率密度函数为f(x;θ),其中θ为未知参数。
矩估计的目标是使样本矩与理论矩之间的差异最小化,即找到使得原始矩和样本矩最接近的参数值θ^。
除了最大似然估计和矩估计之外,贝叶斯估计(Bayesian Estimation)是一种基于贝叶斯理论的参数估计方法。
其核心思想是将未知参数视为一个随机变量,并基于先验分布和样本数据来求得后验分布。
贝叶斯估计不仅考虑了样本数据的信息,还考虑了先验信息的影响,因此对于样本数据较少或者不确定性较高的情况下,贝叶斯估计能够提供更稳健的参数估计结果。
总结起来,分布函数与概率密度函数的参数估计方法主要包括最大似然估计、矩估计和贝叶斯估计。
最大似然估计通过最大化样本数据出现的概率来估计参数,矩估计通过比较样本矩和理论矩之间的差异来估计参数,而贝叶斯估计则综合考虑了先验分布和样本数据来求得后验分布。
概率密度函数的估计.
∵ P(Xk| μ )=N(μ ,σ2),P(u)=N(μ 0,σ02)
P ( | X i ) a
k 1
1 1 Xk exp{ 2 2
1 N Xk 2 0 2 a' exp{ [ ]} 2 k 1 0
1 N 1 2 1 N 0 a' ' exp{ [( 2 2 ) 2( 2 Xk 2 ) ]} 2 0 k 1 0
三. 参数估计的基本概念
1. 统计量:样本中包含着总体的信息,总希望通过样本 集把有关信息抽取出来。也就是说,针对不同要求构 造出样本的某种函数,该函数称为统计量。 2. 参数空间:在参数估计中,总假设总体概率密度函数 的形式已知,而未知的仅是分布中的参数,将未知参 数记为 ,于是将总体分布未知参数 的全部可容许 值组成的集合称为参数空间,记为 。 3. 点估计、估计量和估计值:点估计问题就是构造一个 统计量d x1, , xN 作为参数 θ 的估计ˆ ,在统计学中 i i 是属于类别 的几个 称 ˆ 为 θ 的估计量。若 x1 , , xN i 样本观察值,代入统计量d就得到对于第i类的ˆ 的具体 数值,该数值就称为 θ 的估计值。
Xk
T
结论:①μ 的估计即为学习样本的算术平均
②估计的协方差矩阵是矩阵 X k X k 的算术 平均(nⅹn阵列, nⅹn个值)
T
二. 贝叶斯估计
极大似然估计是把待估的参数看作固定的未知量, 而贝叶斯估计则是把待估的参数作为具有某种先验 分布的随机变量,通过对第i类学习样本Xi的观察, 通过贝叶斯准则将概率密度分布P(Xi/θ)转化为后 验概率P(θ/Xi) ,进而求使得后验概率分布最大的 参数估计,也称最大后验估计。 估计步骤:
关于概率密度函数的参数估计课件
a41 a14
a32 a23
v1 b41
a24
v2
b42 b43
w4
v3
a44
a43 a13 a34
b31 v1
w3
b32 b33
a33
v2 v3
模式识别 – 概率密度函数的参数估计
HMM的工作原理
• 观察序列的产生过程:HMM的内部状态转移过程同 Markov模型相同,在每次状态转移之后,由该状态输 出一个观察值,只是状态转移过程无法观察到,只能 观察到输出的观察值序列。
3.1 最大似然估计
• 独立同分布假设:样本集D中包含n个样本:x1,
x2, …, xn,样本都是独立同分布的随机变量 (i.i.d,independent identically distributed)。
• 对类条件概率密度函数的函数形式作出假设,参 数可以表示为参数矢量θ:
pxi,θi
模式识别 – 概率密度函数的参数估计
概率密度函数的估计方法
• 参数估计方法:预先假设每一个类别的概 率密度函数的形式已知,而具体的参数未 知;
– 最大似然估计(MLE, Maximum Likelihood Estimation);
– 贝叶斯估计(Bayesian Estimation)。
• 非参数估计方法。
模式识别 – 概率密度函数的参数估计
1. begin initialize 样本数n,聚类数K,初始聚类中
心μ1, …, μc;
2. do 按照最近邻μi分类n个样本;
3.
重新计算聚类中心μ1, …, μc;
4. until μi不再改变;
5. return μ1, …, μc;
6. end
chap7参数估计.ppt
若p的可供选择的估计值有许多,仍应选择发生概率最大的 p
作为p的估计,这就是极大似然估计的思想。
极大似然估计的原理(教材p180-181)
设总体X的概率密度函数族为f(x; ) (或概率分布函数族为
P(X=x)=p(x ; ) ),。
设 (x1,x2, ,xn ) 为任一组样本观察值(一组抽象的数),则
求的矩估计值和极大似然估计值。
说明:1. 本题中因 P(X= xi )无一般表达式,故不能先求极大
似然估计量,再将样本观察值代入求极大似然估计值。
2. 本题处理思想在解决实际问题时很有用。
极大似然估计的性质:若 为总体X中未知参数的极大似
然估计量,u=u( ) 有单值反函数 = (u),则u( )是u( ) 的
k
k次着n火k天数 75 90 54 22
6
2
1 =
250
1) 试用矩估计法估计参数; 2) 试用极大似然估计法估计参数; 3) 试求P(X=0)的极大似然估计值。
例2(2002年数学三考研试题填空题)
设总体X的概率密度为 f (x;
)
e
, ( x ) 0,
若x 若x
, .
而 X1,X 2, ,X n 是来自总体X的简单随机样本,则未知
大似然估计值。
求L()的极大值 :
通过
d
ln
L(
)
0,求出
。
d
说明:1. 因为L()是样本观察值的函数(此时样本观察值不变),
故求出的 一般也是样本观察值的函数。
2. 由于 d ln L( ) 0 只是lnL()取极值的必要条件,从理论上
d
来说,还应验证lnL( ) lnL(), 对所有样本观察值都
分布函数与概率密度函数的求法ppt文件
04
分布函数与概率密度函数的求解方法
离散型随机变量的求解方法
定义法
根据随机变量的定义,利用公式计算离散型随机变量的概率,从而得到其分布函 数和概率密度函数。
表格法
将随机变量取值的所有可能结果列成一个表格,计算每个可能结果的概率,从而 得到其分布函数和概率密度函数。
连续型随机变量的求解方法
公式法
连续型随机变量的关系
• 连续型随机变量的分布函数是一个连续函数,它描述了随机变量取某个范围内的概率。例如,正态分布的 分布函数可以表示为
• f(x) = 1/√(2πσ^2) * exp(-(x-μ)^2/(2σ^2)), x∈R • 其中,μ是均值,σ是标准差。 • 连续型随机变量的概率密度函数是一个连续函数,它描述了随机变量取某个范围内的概率密度。例如,正
分布函数与概率密度函数的 求法
xx年xx月xx日
contents
目录
• 分布函数的定义与性质 • 概率密度函数的定义与性质 • 分布函数与概率密度函数的关系 • 分布函数与概率密度函数的求解方法 • 分布函数与概率密度函数的应用
01
分布函数的定义与性质
分布函数的定义
离散型随机变量的分布函数
对于离散型随机变量X,其分布函数F(x)定义为事件{X≤x}的概率,即F(x)=P(X≤x)。
分布函数与概率密度函数在统计分析中的应用
参数估计
假设检验
方差分析
相关分析
回归分析
利用样本数据估计未知 参数,包括点估计和区 间估计。
利用样本数据对未知参 数进行假设检验,包括 参数检验和非参数检验 。
分析多个因素对观测值 的影响,判断各因素对 观测值的影响是否显著 。
研究两个或多个变量之 间的相关关系,包括线 性相关和非线性相关。
心理与教育统计学课件张厚粲版ch7参数估计
2
X X
2
2
nS 2
由公式8 4,我们可利用理论 2值与样本方差来 确定总体方差的置信区 间 : nS 2
6
n
。
第二节 总体平均数的估计
一、总体平均数估计的计算步骤: ⒈利用抽样的方法抽取样本,计算出样本的平均 值 X 和标准差S。 ⒉计算样本平均数的标准误 SEX : ①当总体方差已知时,样本平均数的标准误的计 算为:
SEX
n
②当总体方差未知时,样本平均数的标准误的计 算为: Sn SEX n 1
因此, 的95%的置信区间为 : 115.8 2.042 0.81 115.8 2.042 0.81 即114.15 117.45
的99%的置信区间为 : 115.8 2.75 0.81 115.8 2.75 0.81 即113.57 118.03
15
三、总体方差未知,对总体平均数的估计
⒉当总体为非正态分布时(只有当样本容量n>30 时,此时样本抽样分布服从自由度为n-1的t分 布,这时可依t 分布对总体平均数进行估计, 否则不能对总体 平均数进行估计。) 例6 某校进行一次数学考试,从中抽取40名考生, 经计算,这40 名考生的平均成绩为82分,标准 差为7 分,试求全体考生平均成绩的95%和 99%的置信区间。
例2 已知某市6岁正常男童体重的总体方差为6.55公斤,从该
市随机抽取40 名6岁男童,其平均体重为20.4公斤,试求该 市6 岁男童平均体重的95%和99%的置信区间。
9
例1的计算
SE X
• 解: n 95%的置信区间的显著性水平α=0.05, Z 2 1.96 因此,μ的95%的置信区间为:
第八章 参数估计PPT课件
点估计
最大似然估计法
如 果 似 然 函 数 L (x 1 ,x 2 ,...,x n ; )在 ˆ 处 取 得 最 大 值 ,则 称 ˆ 为 总 体 参 数 的 最 大 似 然 估 计 .
由于函数y lnx在定义域内单增,则如果当
ˆ时似然函数L(x1, x2,..., xn;)取得最大值,则 当 ˆ时lnL(x1, x2,..., xn;)也取得最大值;反之 亦然.因此我们只需考虑lnL(x1, x2,..., xn;)的最
(1) X n1 X1 n2 X 2 是的无偏估计 ;
n1 n2
(2)S
2
(n1
1)S12
(n2
1)SLeabharlann 2 2是2的无偏估计
.
n1 n2 2
9
估计量优劣标准
有效估计
设 和 都是的无偏估计,若样本容量为n, 的
方差小于 的方差,则称 是比 有效的估计量。
如果在的一切无偏估计量里中, 的方差达到最小, 则称为的有效估计量。
(1) 设为连续型随机变量 , 其概率密度函数为
( x; ), 其中 为未知参数 ,由于样本的独立性 , 样
本( X 1, X 2 ,..., X n )的联合概率密度函数为
n
L( x1, x2 ,..., xn ; ) ( xi ; ) i 1
对于样本 ( X 1, X 2 ,..., X n )的一组观测值 ( x1, x2 ,..., xn )
是 向 量 ,则 求 偏 导 数 );
第 四 ,令 导 数 等 于 零 ,解 出 即 可 .
18
点估计
最大似然估计法的例题
1. 0—1分布中p的最大似然估计;
2. Poisson分布的参数 的最大似然估计; 3. 指数分布的参数 的最大似然估计;
《概率密度函数》课件
期望和方差
总结词
概率密度函数的期望值和方差描述了随机变量的中心趋势和离散程度。
详细描述
期望值是概率密度函数在定义域上的积分,表示随机变量的平均值或中心趋势。方差则描述了随机变 量取值离散程度的大小,即各个取值与期望值的偏离程度。期望值和方差是概率密度函数的重要特征 ,用于描述随机变量的统计特性。
二项分布
01
二项分布适用于描述伯努利试 验中成功的次数,例如抛硬币 的结果、遗传学中的基因型等 。
02
二项分布的概率密度函数是 f(k)=C(n, k)p^k(1-p)^(n-k) ,其中n是试验次数,k是成功 的次数,p是每次试验成功的 概率。
03
二项分布在统计学、生物学和 经济学等领域有广泛应用,例 如在可靠性工程、市场调查等 领域。
02
常见概率密度函数
正态分布
正态分布是一种常见的概率密 度函数,其概率密度曲线呈钟 形,对称轴为均值所在直线。
正态分布具有两个参数,即 均值和标准差,它们决定了
分布的形状和范围。
在自然界和社会现象中,许多 随机变量的概率分布都服从正 态分布,例如人类的身高、考
试分数等。
指数分布
01
指数分布适用于描述独立随机事件的时间间隔,例如电子元件 的寿命、排队等待时间等。
概率密度函数是微积分中连续函数概念在概率论中的推广。在微积分中,连续函 数可以用其导数描述其变化率;而在概率论中,概率密度函数描述了随机变量取 值在某个区间的概率与该区间长度的关系。
概率密度函数的积分(即概率质量函数)与微积分中的定积分有相似的性质和计 算方法。
概率密度函数的估计与应用
概率密度函数的估计与应用概率密度函数(probability density function,简称PDF)是概率论和数理统计中常用的概念,广泛应用于可变量的分布描述、数据拟合以及随机变量的概率计算中。
在实际应用中,我们经常用到概率密度函数的估计,以求得随机变量的分布特征和统计学参数,从而为数据分析和建模提供有力支撑。
一、概率密度函数的基本概念及分布函数概率密度函数是描述随机变量取值的概率分布的一种数学模型。
简单来说,概率密度函数是一个连续函数,其在某个点的导数表示该点处的概率密度,对于某个区间上的积分则表示该区间内的概率和。
当随机变量服从某一分布时,我们可以通过该分布的概率密度函数来描述其分布特征。
分布函数是概率密度函数的一个相关概念,其所描述的是随机变量取值在某一范围内的累积概率。
与概率密度函数不同的是,分布函数是一个非降的右连续函数,其在某一点的最左极限为该点处的概率。
二、概率密度函数的估计方法根据大数定律和中心极限定理,我们可以利用样本数据来对总体的概率密度函数进行估计。
这里介绍两种常用的概率密度函数估计方法,分别是核密度估计和最大似然估计。
1. 核密度估计核密度估计将样本数据和一个给定的核函数结合起来,通过计算核函数在每个观测值处的值和分布范围,得到在该点处的概率密度函数估计值。
核密度估计的优点在于其所得到的概率密度函数是一个连续函数,并且无需对数据做出具体的分布假设。
2. 最大似然估计最大似然估计是一种常用的参数估计方法,其原理是选择某个分布参数(如均值、方差、形状参数等),使得样本数据在该分布下的概率最大。
对于正态分布、指数分布等常见分布,最大似然估计具有较好的稳健性和准确性。
三、概率密度函数的应用概率密度函数的应用十分广泛,下面将简单介绍几个常见的应用场景。
1. 数据拟合在数据分析和建模中,常常需要使用概率密度函数来对数据进行拟合。
通过使用不同的概率密度函数,可以描述不同类型的随机变量,如正态分布、指数分布、泊松分布等。
概率密度函数的估计
第5章 参数估计
猎物射击,结果该猎物身中一弹,你认为谁打中的可能
性最大? 根据经验而断:老猎人打中猎物的可能性最大. 极大似然估计法的思想就是对固定的样本值,选
择待估参数的估计值使“样本取样本值”[离散型]或 “样
本取值落在样本值附近”[连续型] 的概率最大。
(2、极大似然估计的求法
单参数情形
根据总体分 布律写出似 然函数:换x 为xi
来得到待估参数θ 的极大似然估计值(驻点);
③ 、必要时,参照极大似然估计值写出极大似然
估计量.
【例6】求服从二项分布B(m,p)的总体X未知参数 p的极大似然估计量。 〖解〗单参数,离散型。 因为总体 X
~ B(m, p),
x m x
其分布律为
m x
f ( x; p) C p (1 p)
下面分离散型与连续型总体来讨论. 设离散型总体X的分布律
P{X x} p( x; )
( )
形式已知,θ 为待估参数. X 1 , X 2 ,..., X n 为来自总体X的
样本, x1 , x2 ,..., xn 为其样本值,则 X 1 , X 2 ,..., X n 的联合分
布律为:
用其观察值
ˆ( X , X ,..., X ), 1 2 n
——θ 的估计量
ˆ( x , x ,..., x ) 1 2 n
——θ 的估计值
来估计未知参数θ .
今后,不再区分估计量和估计值而统称为θ 的估计,
ˆ . 均记为
二、构造估计量的两种方法
1、矩估计法 理论根据:样本矩(的连续函数)依概率收敛于总
因为X~N(μ ,σ 2),所以X总体的概率密度为
2 1 (x ) 2 f ( x; , ) exp ( R, 0) 2 2 2
概率密度函数估计.
为了便于分析,还可以定义对数似然函数 H ( ) ln l ( )。
3.2
最大似然估计(Maximum
Likelihood Estimation)
求解: 若似然函数满足连续、可微的条件,则最大似然估计量就是方程
i
P(Xi/θi)
利用上式求出 的估值 ,即为 =
i
上图有5个解,只有一个解最大即.
3.2
最大似然估计(Maximum
Likelihood Estimation)
正态分布下的最大似然估计示例 以单变量正态分布为例
[1, , 2 ]T
p( x | ) 1
1,
2 2
1 x 2 exp 2 2
样本集
X x1 , x2 ,, x N
l ( x ) p ( X | ) p ( xk | )
k 1 N
似然函数
3.2
最大似然估计(Maximum
dl( ) / d 0 或 dH ( ) / d 0
的解(必要条件)。 若未知参数不止一个,即 [1 , 2 ,, s ]T ,记梯度算子
, , , s 1 2
T
则最大似然估计量的必要条件由S个方程组成:
似然函数(likelihood function)
l ( ) p( X | ) p( x1 , x2 ,, x N | ) p( xi | )
i 1 N
—— 在参数 下观测到样本集 X 的概率(联合分布)密度
概率论与数理统计(叶慈南 刘锡平 科学出版社)第7章 参数估计教程
估计 θ ,故称这种估计为点估计.
5 6
,σ 2未知,
… 随机抽查100个婴儿 得100个体重数据 10,7,6,6.5,5,5.2, …
而全部信息就由这100个数组成. 据此,我们应如何估计 和 σ 呢?
我们知道,服从正态分布N ( , σ 2 )的r.v. X , E ( X ) = , 由大数定律, 样本体重的平均值 1 → ∑ X i P n i =1 自然想到把样本体重的平均值作为总体平均 体重的一个估计. X= 用样本体重的均值 X估计 , 类似地,用样本体重的方差 S 2估计 σ 2 . 1 n 1 n 2 X = ∑ Xi, S = ∑ ( X i X )2 n 1 i =1 n i =1
(一)矩估计法
基本思想:用样本矩估计总体矩
(二)最大似然估计法
基本思想:
15
16
最大似然估计法 (最大似然法)
它首先是由德国数学家 高斯在1821年提出的 , 然而,这个方法常归功于 英国统计学家费希尔(Fisher) . 费希尔在1922年重新发现了 这一方法,并首先研究了这 种 方法的一些性质 . Fisher
1. 矩估计法 2. 最大似然法 3. 最小二乘法 4. 贝叶斯方法 ……
(一) 矩估计法(简称"矩法")
它是基于一种简单的"替换"思想 建立起来的一种估计方法 . 英国统计学家 K. 皮尔逊 最早提出的 . 基本思想: 用样本矩估计总体矩 . 理论依据: 大数定律
Ak = 1 n k P ∑ X i → k = E ( X k ) n i =1
4
在参数估计问题中,假定总体分布 形式已知,未知的仅仅是一个或几个 参数.
3概率密度函数的估计79页PPT
➢概率密度函数的形式已知,参数未知,为了描述
概率密度函数p(x|ωi)与参数θ的依赖关系,用
p(x|ωi,θ)表示。
独立地按概率密度p(x|θ)抽取样本集
K={x1, x2 ,…, xN},用K估计未知参数θ
第三章 概率密度密度的估计
第三章 概率密度密度的估计
14
最大似然估计示意图
最大似 然估计
p(K|θ)
ln p(K|θ)
第三章 概率密度密度的估计
15
计算方法
最大似 然估计
最大似然估计量使似然函数梯度为0 :
N
θ H (θ )|ˆM L θlnp (x k|θ )|ˆM L 0 k 1
T
θ 1
...
s
第三章 概率密度密度的估计
argmax p(K | ) p( )
p(K)
argmax p(K | ) p( )
第三章 概率密度密度的估计
17
贝叶斯决策问题与贝叶斯估计问题
贝叶斯 估计
贝叶斯决策问题: 样本x 决策ai 真实状态wj 状态空间A是离散空间 先验概率P(wj)
贝叶斯参数估计问题: 样本集K={xi} 估计量^s 真实参数s 参数空间S是连续空间 参数的先验分布p(s)
第三章 概率密度函数的估计
请各位思考的问题
+ 1、我们可以构造一个比贝叶斯规则更好的 分类器吗?
+ 2、利用贝叶斯法则构造分类器何要估计密度以及如何估计密度?
Table of Contents
第三章 概率密度密度的估计
4
3.1 引言
分类器
x1
概率密度函数的估计
⒋区间估计
除点估计外,还有另一类估计,它要求用区间 (d1,d2)作为 θ 可能取值范围的一种估计。这个 区间称为置信区间,这类估计问题称为区间估 计。 要求估计总体分布的具体参数是点估计问题。 介绍两种主要的点估计方法 最大似然估计和贝叶斯估计。 它们都能得到相应的估计值,当然评价一个 估计的“好坏”,不能按一次抽样结果得到的 估计值与参数真值的偏差大小来确定,而必须 从平均的和方差的角度出发进行分析
θˆ2 = x( N )
二、贝叶斯估计和贝叶斯学习
㈠贝叶斯估计 前面从决策论的角度论述了最小风险贝 叶斯决策,实际上贝叶斯决策和贝叶斯 估计是统一的。 贝叶斯决策的论述 设状态空间 ={ω1,ω2,…ωc} 识别对象 x = [x1,x2,…,xd]T , 决策空间 A ={ α1 ,α 2 ,… ,α i }
l (θ ) = p ( X | θ ) = p( x1 , x 2 ,…,x N | θ ) 这个密度可以看成是θ 的函数,具体地说,
l (θ ) = p ( x1 , x2 , …,x N | θ ) = p ( x1 | θ ) p ( x2 | θ ) … p ( x N | θ ) 似然函数 l (θ )给出了从总体中抽出x1,
k =1
θ 例如随机变量x服从均匀分布,但参数 θ1 、 2 未知, 1
p ( x | θ ) = θ 2 − θ 1 0
θ1 < x < θ 2
其它
设从总体中独立地抽取出N个样本x1, x2,…,xN。则其似然函数为
1 p( x1 , x 2 , …, x N | θ 1 ,θ 2 ) = (θ 2 − θ 1 ) N l (θ ) = p( X | θ ) = 0
概率密度函数的估计
j 1 c
i 1, 2,, c
ˆ H) R ( 考虑到 H 的各种取值,我们应求 在空间 中的 期望 , N E d E d E d 。
p ( x H ) p ( x , H )d
在 已知的条件下, H 对 x 已不具有什么信息
p ( x , H ) p ( H )d p ( x ) p ( H )d
返回本章首页
第3章 概率密度函数的估计
p ( x H ) p ( x ) p ( H )d
返回本章首页
第3章 概率密度函数的估计
参数估计——包括监督参数估计和非监督参数估计 监督参数估计——样本所属的类别及类条件总体概率密 度函数的形式为已知,而表征概率密度函数的某些参数 是未知的 非监督参数估计——已知总体概率密度函数的形式但未 知样本所属类别,要求推断出概率密度函数的某些参数 参数估计的方法——最大似然估计和Bayes估计
第3章 概率密度函数的估计
第3章
概率密度函数的估计
3.1 最大似然估计 3.2 Bayes估计和Bayes学习 3.3 正态分布的监督参数估计 3.4 非监督参数估计 3.5 总体分布的非参数估计
第3章 概率密度函数的估计
在上一章,我们介绍了先验概率和类条件概率密 度函数已知时,怎么去设计一个最优分类器,但 是在一般的模式识别问题中,要知道所讨论问题 的全部概率结构是不大可能的。通常对于研究的 问题只有一些一般性的、模糊的知识。可能有的 就是一些样本了。现在的问题就转变为如何利用 上述信息去对概率总体作出估计,从而进一步设 计出分类器。在模式识别问题中,先验概率的估 计并不困难,困难的是类条件概率密度函数的估 计,包括形式和参数两方面的问题。形式已知的 称为参数估计,未知的称为非参数估计。
参数估计PPT课件
目录
• 参数估计简介 • 最小二乘法 • 最大似然估计法 • 贝叶斯估计法 • 参数估计的评估与选择
01 参数估计简介
参数估计的基本概念
参数估计是一种统计学方法,用于估计未知参数的值。通过使用样本数据和适当的统计模型,我们可 以估计出未知参数的合理范围或具体值。
参数估计的基本概念包括总体参数、样本参数、点估计和区间估计等。总体参数描述了总体特征,而 样本参数则描述了样本特征。点估计是使用单一数值来表示未知参数的估计值,而区间估计则是给出 未知参数的可能范围。
到样本数据的可能性。
最大似然估计法的原理是寻找 使似然函数最大的参数值,该 值即为所求的参数估计值。
最大似然估计法的计算过程
确定似然函数的表达式
根据数据分布和模型假设,写出似然函数的表达式。
对似然函数求导
对似然函数关于参数求导,得到导数表达式。
解导数方程
求解导数方程,找到使似然函数最大的参数值。
确定参数估计值
04
似然函数描述了样本数据与参数之间的关系,即给定参数值下观察到 样本数据的概率。
贝叶斯估计法的计算过程
首先,根据先验信息确定参数的先验分布。 然后,利用样本信息和似然函数计算参数的后验分布。 最后,根据后验分布进行参数估计,常见的估计方法包括最大后验估计(MAP)和贝叶斯线性回归等。
贝叶斯估计法的优缺点
参数估计的常见方法
最小二乘法
最小二乘法是一种常用的线性回归分析方法,通过最小化误差的平方和来估计未知参数。这种方法适用于线性回归模 型,并能够给出参数的点估计和区间估计。
极大似然法
极大似然法是一种基于概率模型的参数估计方法,通过最大化样本数据的似然函数来估计未知参数。这种方法适用于 各种概率模型,并能够给出参数的点估计和区间估计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一 、均值矢量和协方差阵的矩法估计
参数估计
矩法估计是用样本(的统计)矩作为总体(理论)矩的估 值。若类的概型为正态分布,我们用矩法估计出类的 均值矢量和协方差阵后,类的概密也就完全确定了。
均值矢量 :
Ex
xp(x)dx
(1 , 2
,,
n
)
均值无偏估计:
ˆ
1 N
N
xj
j 1
m(N )
一协、方均差值阵矢量: 和协方EE差x(xx阵的矩)(法x估计)
未知参数的某一估计量,代入样本值计算得到的具体结果。
估计量ˆ 作为随机样本的函数,它是一个随机变量,并且不包含 任何未知参数,而估计值仅是抽取一个样本计算估计量得到的一 个具体数值。对于同一个估计量,不同的样本实现,得到的估计 值是不同的。
参数估计的基本概念
③点估计和区间估计?
点估计是指根据抽取到的具体样本数据,代入估计量得到的一个估 计值。区间估计是在点估计的基础上估计出总体参数一个可能的
N 1C(N) N
1 N 1 ( xN 1
m(N
))( xN 1
m(N ))'
一 、均值矢量和协方差阵的矩法估计
参数估计
二 、极大似然估计法(MLE) Maximum Likelihood Estimate
参数估计
如同矩法估计一样,最大似然估计要求已知总体的概型,即
概密的具体函数形式,它也将被估计量作为确定性的变量对待。
3.2 概率密度函数的参数估计
❖均值矢量和协方差阵的矩法估计 ❖极大似然估计 (MLE) ❖Bayes估计 (BE) ❖Bayes学习
问题的产生
利用Bayes决策规则进行分类器设计时,所需的概率密度
函数 p(x | i )和P(i ) 未知,导致:
基于两步的Bayes决策
步骤一:采集各类别的样本集,用以估计各类别的 pˆ (x | i )和Pˆ(i )
将概率密度函数写成形如: p( x | )
1
2
...
p
参数估计的基本概念
①参数?有两种理解。狭义的理解,参数是指描述某一随机变量 分布的概率函数中的一个或若干个数值,这些数值决定了该随
机变量的分布特征。如正态分布有两个参数 和 ,2 表示正态
分布随机变量所有可能值的中心位置, 表示2 该随机变量取值 的离散程度。广义的理解,参数是指描述总体特征的一个或若
二.监督学习与无监督学习
监督学习:在已知类别样本指导下的学习和训练,参数估计和非参数估计都属 于监督学习。
无监督学习:不知样本类别,只知道样本的某些信息去估计,如:聚类分析。
概率密度函数的监督参数估计的前提:
已知条件:
1) 样本集中样本所属类别
2) 该类别的概率密度函数 p(x | i的) 分布形式(数学模型) 估计: 概率密度函数中的某些未知参数θi
范围,同时还给出总体参数以多大的概率落在这个范围之内。
估计量评价的标准
①无偏性:是指估计量的数学期望等于总体参数的真值。 E(ˆ)
无偏性的含义是,估计量 ˆ是一随机变量,对于样本的每一次实现, 由估计量算出的估计值有时可能偏高,有时可能偏低,但这些估计 值平均起来等于总体参数的真值。在平均意义下,无偏性表示没有 系统误差。
ˆ
C
1 N 1
N j 1
(xj
)( x j
)
或
1 N 1
N (xj
j 1
m(N ))( x j
m(N ))
一 、均值矢量和协方差阵的矩法估计
参数估计
设
m(N
)和
C ( N )是由 N
个样本算得的均矢和协方差阵,
若再加入一个新的样本
xN
1
则可采用递推公式进行估算
m(N
1)
N
C ( N 1
N
1)
N 1 x
j 1
jx
1 N j '
N 1 (xj
j 1
N 1
N
m(N 1))( x j m(N
m(
N
1)m(
N
1)'
1))'
1 N 1 N 1 1
N
j1 x j x j ' N
xN 1xN 1'
N
[ (N
1)2
( Nm( N
)
xN 1)(
参数估计
121 122 12n
221
222
22n
2n1 2n2 2nn
2 kl
E
( xk
k )( xl
l )
(xk k )(xl l ) p(xk , xl )dxk dxl
一 、均值矢量和协方差阵的矩法估计
参数估计
协方差阵 :
E(x
)(
x
)
协方差阵无偏估计 :
步骤二:将 pˆ (x | i )和Pˆ(i ) 代入Bayes决策规则设计分类器
术语
一.参数估计与非参数估计
参数估计:先假定待估计的密度函数具有某种数学模型,如正态分布,二项分 布,再用已知类别的学习样本估计概率密度函数里面的参数。
非参数估计:不假定数学模型,直接用已知类别的学习样本的先验知识直接估 计概率密度函数的数学模型。
1
1
N 1 j 1
x
j
1 N
N
( 1
j 1
x
j
xN 1 )
1
N
(Nm(N ) 1
xN 1)
m( N )
N
1
1
(
xN
1
m( N ))
初始值:
m(1) x1
参数估计
一 、均值矢量和协方差阵的矩法估计
初始值:协 方差 矩阵 的递推 估 计式:
C(1) x1x1'm(1)m(1)' x1x1'x1x1' F
Nm( N
)
xN 1)'
]
1 N
N j 1
x
j
xj
'
N N 1
m( N
)m( N
)'
2 N 1
m(N
)xN
1'
1 N
1
xN
1 xN
1'
N 1[ 1 N N 1
N j 1
x jx j '
N
m(N )m(N )'
N 1
]
N
1
1
(
xN
1
m(N ))(xN 1
m(N ))'
估计量评价的标准
②有效性:是指估计量与总体参数的离散程度。如果两个估计量都 是无偏的,那么离散程度较小的估计量相对而言是较为有效的。 离散程度是用方差度量的,因此在无偏估计量中,方差愈小愈 有效。
估计量评价的标准
③一致性: 一致性,又称相合性,是指随着样本容量的增大,数值,例如总体的均值、总体的比例和总体的方差等数字 特征,两个或两个以上总体间的相关系数、偏相关系数、复相 关系数和回归系数等数字特征。本章所涉及的参数估计问题,
主要指狭义的参数。参数估计的目的就是利用抽样得到的样本 信息来估计未知的总体参数。
参数估计的基本概念
②估计量和估计值?
估计量是指用来估计总体未知参数的统计量,估计值是指估计总体