2020年北京市中考数学模拟试卷及答案

合集下载

【精品】2020年北京市中考数学一模试卷及答案解析

【精品】2020年北京市中考数学一模试卷及答案解析

2020年北京市中考数学一模试卷一、单选题(共0分)1.(本题0分)某几何体从三个不同方向看到的形状图如图,则该几何体是( )A.圆锥B.圆柱C.球D.长方体2.(本题0分)据统计,今年“五一”小长假期间,我市约有26.8万人次游览了植物园和动物园,则数据26.8万用科学记数法表示正确的是()A.268×103B.26.8×104C.2.68×105D.0.268×1063.(本题0分)如图所示,BE,CF是直线,OA,OD是射线,其中构成对顶角的是( )A.∠AOE与∠COD B.∠AOD与∠BODC.∠BOF与∠COE D.∠AOF与∠BOC4.(本题0分)下列轴对称图形中,对称轴最多的图形是()A.B.C.D.5.(本题0分)将一个n边形变成(n+2)边形,内角和将()A.减少180 B.增加180°C.减少360°D.增加360°6.(本题0分)数轴上表示整数的点叫整点,某数轴单位长度为1cm,若在数轴上随意画一条长为2015cm的线段AB,则线段AB盖住的整点的个数为()A.2015 B.2014 C.2015或2014 D.2015或20167.(本题0分)规定:“上升数”是一个右边数位上的数字比左边数位上的数字大的自然数(如23,567,3467等).一不透明的口袋中装有3个大小、形状完全相同的小球,其上分别标有数字1,2,3,从袋中随机摸出1个小球(不放回),其上所标数字作为十位上的数字,再随机摸出1个小球,其上所标数字作为个位上的数字,则组成的两位数是上升数的概率为()A .16B .13C .12D .23 8.(本题0分)有一个装有水的容器,如图所示.容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A .正比例函数关系B .一次函数关系C .二次函数关系D .反比例函数关系二、填空题(共0分)9.(本题0分)要使分式有意义,则x 的取值范围是 .10.(本题0分)已知关于 x 的一元二次方程20x k -+= 有两个相等的实数根,则 k 的值为_____.11.(本题0分)若a 是一个含有根号的无理数,且3<a <4.写出任意一个符合条件的值____. 12.(本题0分)对于两个实数,m n ,定义一种新运算,规定2m n m n =+☆,例如3523511=⨯+=☆,若2a b ☆且21b a =☆,则b a =__________.13.(本题0分)如图,平面直角坐标系xOy 中,有A 、B 、C 、D 四点,若有一直线l 经过点(-1,3)且与y 轴垂直,则l 也会经过的点是_____(填A 、B 、C 或D )14.(本题0分)如图已知∠ABC=∠DEF,BE=FC,要证明△ABC≌△DEF,若以“ASA”为依据,还需要添加的条件__________.15.(本题0分)如图所示的网格是正方形网格,A ,B ,C ,D 是网格交点,则ABC 的面积与ABD 的面积的大小关系为:ABC S ______ABD S (填“>”,“=”或“<”)16.(本题0分)如图是某剧场第一排座位分布图:甲、乙、丙、丁四人购票,所购票分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序______.三、解答题(共0分)17.(本题0分)计算:11()4523---︒18.(本题0分)解不等式组()324211122x x x x ⎧--≥⎪⎨-++≥⎪⎩①②. 19.(本题0分)不解方程组23532x y x y +=⎧⎨-=-⎩,求(2x+y)(2x-3y)+3x(2x+y)的值 20.(本题0分)等角转化;如图1,已知点A 是BC 外一点,连结AB 、AC ,求∠BAC +∠B +∠C 的度数.(1)阅读并补充下面的推理过程解:过点A 作ED ∥BC ,∴∠B =∠EAB ,∠C = ( )又∵∠EAB +∠BAC +∠DAC =180°∴∠B+∠BAC+∠C=180°从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC、∠B、∠C“凑”在一起,得出角之间的关系,使问题得以解决.(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数(提示:过点C作CF∥AB);(3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=80°,点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE、DE所在的直线交于点E,点E在两条平行线AB与CD之间,求∠BED的度数.21.(本题0分)如图,在ABCD中,对角线AC,BD交于点O,OA=OB,过点B作BE⊥AC于点E.(1)求证:ABCD是矩形;(2)若AD=cos∠,求AC的长.22.(本题0分)如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(-2,0).(1)求线段AD所在直线的函数表达式.(2)动点P从点A出发,以每秒2个单位长度的速度,按照A→D→C→B的顺序在菱形的边上匀速运动,设运动时间为t秒.求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切?23.(本题0分)如图,ABC 中,ACB 90∠=,D 为AB 上一点,以CD 为直径的O 交BC 于点,连接AE 交CD 于点,交O 于点F ,连接DF ,CAE ADF ∠∠=.()1判断AB 与O 的位置关系,并说明理由.()2若PF :PC 1=:2,AF 5=,求CP 的长.24.(本题0分)在平面直角坐标系中,直线l 1:y=﹣12x+4分别与x 轴、y 轴交于点A 、点B ,且与直线l 2:y=x 于点C .(1)如图①,求出B 、C 两点的坐标; (2)若D 是线段OC 上的点,且△BOD 的面积为4,求直线BD 的函数解析式.(3)如图②,在(2)的条件下,设P 是射线BD 上的点,在平面内是否存在点Q ,使以O 、B 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.25.(本题0分)学校团委发起“爱心储蓄”活动,鼓励学生将自己的压岁钱存入银行,定期一年,到期后取回本金,而把利息捐给家庭贫困的儿童.学校共有学生1200人全部参加了此项活动,图1是该校各年级学生人数比例分布的扇形统计图,图2是该校学生人均存款情况的条形统计图.(1)求该学校的人均存款数;(2)若银行一年定期存款的年利率是2.25%,且每702元能提供给1位家庭贫困儿童一年的基本费用,那么该学校一年能够帮助多少位家庭贫困儿童?26.(本题0分)在平面直角坐标系xOy 中,抛物线()2420y ax ax a a =-+≠的顶点为P ,且与y 轴交于点A ,与直线y a =-交于点B ,C (点B 在点C 的左侧).(1)求抛物线()2420y ax ax a a =-+≠的顶点P 的坐标(用含a 的代数式表示); (2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC 围成的封闭区域(不含边界)为“W 区域”.①当2a =时,请直接写出“W 区域”内的整点个数;②当“W 区域”内恰有2个整点时,结合函数图象,直接写出a 的取值范围.27.(本题0分)如图,在平面直角坐标系中,点A(4,0),B(0,3),以线段AB 为边在第一象限内作等腰直角三角形ABC ,∠BAC =90°.若第二象限内有一点P 1,2a ⎛⎫ ⎪⎝⎭,且△ABP 的面积与△ABC 的面积相等.(1)求直线AB 的函数表达式.(2)求a 的值.(3)在x轴上是否存在一点M,使△MAC为等腰三角形?若存在,直接写出点M的坐标;若不存在,请说明理由.28.(本题0分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A(4,0),B两点,与y轴交于点C(0,2),对称轴x=1,与x轴交于点H.(1)求抛物线的函数表达式;(2)直线y=kx+1(k≠0)与y轴交于点E,与抛物线交于点P,Q(点P在y轴左侧,点Q在y轴右侧),连接CP,CQ,若△CPQ的面积为1-4,求点P,Q的坐标;(3)在(2)的条件下,连接AC交PQ于G,在对称轴上是否存在一点K,连接GK,将线段GK 绕点G顺时针旋转90°,使点K恰好落在抛物线上,若存在,请直接写出点K的坐标;若不存在,请说明理由.。

北京市2020中考数学模拟试卷解析版

北京市2020中考数学模拟试卷解析版

北京市2020中考数学模拟试卷一.选择题(每题2分,满分16分)1.﹣3的倒数是()A.﹣B.C.±3 D.32.电影《流浪地球》深受人们喜欢,截止到2019年2月17日,票房达到3650000000,则数据3650000000科学记数法表示为()A.0.365×1010B.36.5×108C.3.65×108D.3.65×1093.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.4.若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为()A.15πcm2B.24πcm2C.39πcm2D.48πcm25.在一个有 10 万人的小镇,随机调查了 1000 人,其中有 120 人周六早上观看中央电视台的“朝闻天下”节目,那么在该镇随便问一个人,他在周六早上观看中央电视台的“朝闻天下”节目的概率大约是()A.B.C.D.6.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A.=B.=+100C.=D.=﹣1007.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是() A .5,5B .5,6C .6,6D .6,58.已知:如图,点P 是正方形ABCD 的对角线AC 上的一个动点(A 、C 除外),作PE ⊥AB 于点E ,作PF ⊥BC于点F ,设正方形ABCD 的边长为x ,矩形PEBF 的周长为y ,在下列图象中,大致表示y 与x 之间的函数关系的是( )A .B .C .D .二.填空题(共8小题,满分16分,每小题2分) 9.如果在实数范围内有意义,则x 的取值范围是 .10.分解因式:a 3﹣a 2+a = . 11.化简÷= .12.如图,△ABC 中,点D 、E 分別在AB 、AC 上,DE ∥BC ,AD :DB =1:2,则△ADE 与△ABC 的面积的比为 .13.不等式组的解集为 .14.(2分)如图,OC 是⊙O 的半径,AB 是弦,OC ⊥AB ,点P 在⊙O 上,∠APC =23°,则∠AOB = .15.如图,已知抛物线y=x2﹣1与x轴正半轴交于C点,顶点为D点过O点任作直线交抛物线于A、B,过点B作BE⊥x轴于E,则OB﹣BE的值为.16.不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4,随机抽取一张卡片,则抽取的卡片上数字是偶数的概率是.三.解答题(共12小题,满分68分)17.(5分)计算:()﹣2﹣+(﹣4)0﹣cos45°.18.(5分)解方程:2x(x﹣y)+2xy=8.19.(5分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD =DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.20.(5分)如图,在平行四边形ABCD中,AM⊥BC,AN⊥CD,垂足分别为M.M,求证:△AMN ∽△DCA.21.(5分)已知关于x的二次方程x2+mx+n2+1=0.(1)若n=1,且此方程有一个根为﹣1,求m的值;(2)若m=2,判断此方程根的情况.22.(5分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.23.(6分)如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,AD=5,求OC的值.24.(6分)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据:从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制如下:甲:78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙:93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40 整理、描述数据按如下(表格)分数段整理、描述这两组样本数据:(说明:成绩80分及以上为生产技能优秀,70﹣79分为生产技能良好,60﹣69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下(表格)表所示:得出结论:(1)请补充表格1:a = ,b = . (2)估计乙部门生产技能优秀的员工人数为 ;(3)可以推断出 部门员工的生产技能水平较高,理由为:① ;② .(从两个不同的角度说明你推断的合理性)25.(6分)如图,AB 为⊙O 的直径,P 是BA 延长线上一点,CG 是⊙O 的弦∠PCA =∠ABC ,CG ⊥AB ,垂足为D(1)求证:PC 是⊙O 的切线; (2)求证:=;(3)过点A 作AE ∥PC 交⊙O 于点E ,交CD 于点F ,连接BE ,若sin ∠P =,CF =5,求BE 的长.26.(6分)已知抛物线y =﹣x 2+bx +c 经过点A (3,0),B (﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.27.(7分)如图,已知△ABC,以A为圆心AB为半径作圆交AC于E,延长BA交圆A于D 连DE并延长交BC于F,CE2=CF•CB.(1)判断△ABC的形状,并证明你的结论;(2)如图1,若BE=CE=2,求⊙A的面积;(3)如图2,若tan∠CEF=,求cos∠C的值.28.(7分)如图,直线y=x+a与x轴交于点A(4,0),与y轴交于点B,抛物线y=x2+bx+c 经过点A,B.点M(m,0)为x轴上一动点,过点M且垂直于x轴的直线分别交直线AB 及抛物线于点P,N.(1)填空:点B的坐标为,抛物线的解析式为;(2)当点M在线段OA上运动时(不与点O,A重合),①当m为何值时,线段PN最大值,并求出PN的最大值;②求出使△BPN为直角三角形时m的值;(3)若抛物线上有且只有三个点N到直线AB的距离是h,请直接写出此时由点O,B,N,P构成的四边形的面积.参考答案一.选择题1.解:﹣3的倒数是﹣,故选:A.2.解:将3650000000用科学记数法表示为:3.65×109.故选:D.3.解:A、此图形是中心对称图形,不是轴对称图形,故此选项正确;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:A.4.解:这个圆锥的全面积=•2π•3•5+π•32=24π(cm2).故选:B.5.解:由题意知:1000人中有120人看中央电视台的早间新闻,∴在该镇随便问一人,他看早间新闻的概率大约是=.故选:C.6.解:设学校购买文学类图书平均每本书的价格是x元,可得:,故选:B.7.解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.8.解:由题意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长.则y=2x,为正比例函数.故选:A.二.填空题(共8小题,满分16分,每小题2分)9.解:∵在实数范围内有意义,∴x+8≥0,∴x的取值范围是x≥﹣8,故答案为:x≥﹣8.10.解:原式=a(a2﹣a+1),故答案为:a(a2﹣a+1)11.解:原式=÷=•(x+1)(x﹣1)=x+1,故答案为:x+1.12.解:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE :S△ABC=1:9.故答案为:1:9.13.解:解不等式8x>48,得:x>6,解不等式2(x+8)<34,得:x<9,则不等式组的解集为6<x<9,故答案为:6<x<9.14.解:∵OC是⊙O的半径,AB是弦,OC⊥AB,∴=,∴∠AOC=∠BOC,∵∠APC=23°,∴∠AOC=2∠APC=46°,∴∠BOC=46°,∴∠AOB=46°+46°=92°,故答案为:92°.15.解:设B(m, m2﹣1),则OB==+1.∵BE⊥x轴,∴BE=m2﹣1.∴OB﹣BE=2.故答案为2.16.解:∵有四张完全相同的卡片,把它们分别标上数字1、2、3、4,其中卡片上数字是偶数的有2张,∴抽取的卡片上数字是偶数的概率是=;故答案为:.三.解答题(共12小题,满分68分)17.解:原式=4﹣3+1﹣×=2﹣1=1.18.解:2x2﹣2xy+2xy=8,x2=8,x=±2,19.解:(1)∵AD垂直平分BE,EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C=∠AED=35°;(2)∵△ABC周长13cm,AC=6cm,∴AB+BE+EC=7cm,即2DE+2EC=7cm,∴DE+EC=DC=3.5cm.20.解:∵AM⊥BC,AN⊥CD,∴∠AMC=∠ANC=90°,∴A ,M ,N ,C 四点共圆, ∴∠ACM =∠ANM ,∠MAN =∠MCN , ∵在平行四边形ABCD 中,AD ∥BC ,∴∠D =∠MCN ,∠DAC =∠ACM , ∴∠DAC =∠ANM ,∠D =∠MAN , ∴△AMN ∽△DCA .21.【解答】解:(1)将x =﹣1,n =1代入原方程,得:(﹣1)2﹣m +12+1=0, 解得:m =3.(2)当m =2时,原方程为x 2+2x +n 2+1=0, ∴△=22﹣4×1×(n 2+1)=﹣4n 2.当n =0时,△=﹣4n 2=0,此时原方程有两个相等的实数根; 当n ≠0时,△=﹣4n 2<0,此时原方程无解.22.解:(1)把A 点(1,4)分别代入反比例函数y =,一次函数y =x +b , 得k =1×4,1+b =4, 解得k =4,b =3,∵点B (﹣4,n )也在反比例函数y =的图象上, ∴n ==﹣1;(2)如图,设直线y =x +3与y 轴的交点为C , ∵当x =0时,y =3, ∴C (0,3),∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.23.(1)证明:连结DO.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中,,∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°.又∵点D在⊙O上,∴CD是⊙O的切线;(2)解:∵△COD≌△COB.∴CD=CB.∵DE=2BC,∴ED=2CD.∵AD∥OC,∴△EDA∽△ECO.∴,∵AD=5,∴OC=.24.解:(1)由题意知a=7、b=10,故答案为:7、10;(2)故估计乙部门生产技能优秀的员工人数为×400=240(人).故答案为:240;(3)可以推断出甲部门员工的生产技能水平较高,理由为:①甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;②甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高.25.解:(1)如图所示,连接OC,∵AB为⊙O的直径,∴∠ACB=90°,即∠ACO+∠OCB=90°,∵OB=OC,∴∠OCB=∠ABC,∴∠ACO+∠ABC=90°,∵∠PCA=∠ABC,∴∠PCA+∠ACO=90°,∴PC是⊙O的切线;(2)∵∠P=∠P,∠PCA=∠PBC,∴△PCA∽△PBC,∴=,∵CG⊥AB,∴∠ADC=∠ACB=90°,∵∠CAD=∠BAC,∴△ACD∽△ABC,∴=,∴=;(3)∵AE∥PC,∴∠PCA=∠CAF,∵AB⊥CG,∴=,∴∠ACF=∠ABC,∵∠PCA=∠ABC,∴∠ACF=∠CAF,∴FA=FC,∵CF=5,∴AF=5,∵AE∥PC,∴∠FAD=∠P,∵sin∠P=,∴sin∠FAD=,∴FD=3,AD=4,CD=8,在Rt△COD中,设CO=r,则有r2=(r﹣4)2+82∴r=10,∴AB=2r=20,∵AB是直径,∴∠AEB=90°,∴sin∠EAB=,∴=,∴=,∴EB=12.26.解:(1)∵抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).∴抛物线的解析式为:y=﹣(x﹣3)(x+1),即y=﹣x2+2x+3,(2)∵抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的顶点坐标为:(1,4).27.解:(1)∵CE2=CF•CB,∴,∴△CEF∽△CBE,∴∠CBE=∠CEF,∵AE=AD,∴∠ADE=∠AED=∠FEC=∠CBE,∵BD为直径,∴∠ADE+∠ABE=90°,∴∠CBE+∠ABE=90°,∴∠DBC=90°∴△ABC为直角三角形.(2)∵BE=CE∴设∠EBC=∠ECB=x,∴∠BDE=∠EBC=x,∵AE=AD∴∠AED=∠ADE=x,∴∠CEF=∠AED=x∴∠BFE=2x在△BDF中由△内角和可知:3x=90°,∴x=30°,∴∠ABE=60°∴,∴⊙A的面积为(3)由(1)知:∠BDF=∠CEF=∠CBE,∵tan∠CBE=,设EF=a,BE=2a,∴,∴AD=AB=,∴DE=2BE=4a,过F作FK∥BD交CE于K,∴∵∴,∴∴∴28.解:(1)把点A坐标代入直线表达式y=x+a,解得:a=﹣3,则:直线表达式为:y═x﹣3,令x=0,则:y=﹣3,则点B坐标为(0,﹣3),将点B的坐标代入二次函数表达式得:c=﹣3,把点A的坐标代入二次函数表达式得:×16+4b﹣3=0,解得:b=﹣,故:抛物线的解析式为:y=x2﹣x﹣3,故:答案为:(0,﹣3),y=x2﹣x﹣3;(2)①∵M(m,0)在线段OA上,且MN⊥x轴,∴点P(m, m﹣3),N(m, m2﹣m﹣3),∴PN=m﹣3﹣(m2﹣m﹣3)=﹣(m﹣2)2+3,∵a=﹣<0,∴抛物线开口向下,∴当m=2时,PN有最大值是3,②当∠BNP=90°时,点N的纵坐标为﹣3,把y=﹣3代入抛物线的表达式得:﹣3=m2﹣m﹣3,解得:m=3或0(舍去m=0),∴m=3;当∠NBP=90°时,∵BN⊥AB,两直线垂直,其k值相乘为﹣1,设:直线BN的表达式为:y=﹣x+n,把点B的坐标代入上式,解得:n=﹣3,则:直线BN的表达式为:y=﹣x﹣3,将上式与抛物线的表达式联立并解得:m=或0(舍去m=0),当∠BPN=90°时,不合题意舍去,故:使△BPN为直角三角形时m的值为3或;(3)∵OA=4,OB=3,在Rt△AOB中,tanα=,则:cosα=,sinα=,∵PM∥y轴,∴∠BPN=∠ABO=α,若抛物线上有且只有三个点N到直线AB的距离是h,则只能出现:在AB直线下方抛物线与过点N的直线与抛物线有一个交点N,在直线AB 上方的交点有两个.当过点N的直线与抛物线有一个交点N,点M的坐标为(m,0),设:点N坐标为:(m,n),则:n=m2﹣m﹣3,过点N作AB的平行线,则点N所在的直线表达式为:y=x+b,将点N坐标代入,解得:过N点直线表达式为:y=x+(n﹣m),将抛物线的表达式与上式联立并整理得:3x2﹣12x﹣12+3m﹣4n=0,△=144﹣3×4×(0=﹣12+3m﹣4n)=0,将n=m2﹣m﹣3代入上式并整理得:m2﹣4m+4=0,解得:m=2,则点N的坐标为(2,﹣),则:点P坐标为(2,﹣),则:PN=3,∵OB=3,PN∥OB,∴四边形OBNP为平行四边形,则点O到直线AB的距离等于点N到直线AB的距离,即:过点O与AB平行的直线与抛物线的交点为另外两个N点,即:N′、N″,直线ON的表达式为:y=x,将该表达式与二次函数表达式联立并整理得:x2﹣4x﹣4=0,解得:x=2±2,则点N′、N″的横坐标分别为2,2﹣2,作NH ⊥AB 交直线AB 于点H ,则h =NH =NP sin α=,作N ′P ′⊥x 轴,交x 轴于点P ′,则:∠ON ′P ′=α,ON ′==(2+2),S 四边形OBPN =BP •h =×=6,则:S 四边形OBP ′N ′=S △OP ′N ′+S △OBP ′=6+6,同理:S 四边形OBN ″P ″=6﹣6,故:点O ,B ,N ,P 构成的四边形的面积为:6或6+6或6﹣6.。

2020年北京中考数学模拟试卷解析版

2020年北京中考数学模拟试卷解析版

中考数学模拟试卷题号一二三总分得分一、选择题(本大题共8小题,共40.0分)1.在国家大数据战略的引领下,我国在人工智能领域取得显著成就,自主研发的人工智能“绝艺”获得全球最前沿的人工智能赛事冠军,这得益于所建立的大数据中心的规模和数据存储量,它们决定着人工智能深度学习的质量和速度,其中的一个大数据中心能存储58000000000本书籍,将58000000000用科学记数法表示应为( )A. 5.8×1010B. 5.8×1011C. 58×109D. 0.58×10112.在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是( )A. 千里江山图B. 京津冀协同发展C. 内蒙古自治区成立七十周年D. 河北雄安新区建立纪念3.如图是某个几何体的三视图,该几何体是( )A. 三棱柱B. 圆柱C. 六棱柱D. 圆锥4.若实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是( )A. a<-5B. b+d<0C. |a|-c<0D. c5.如果一个正多边形的内角和等于720°,那么该正多边形的一个外角等于( )A. 45°B. 60°C. 72°D. 90°6.二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.如图是一年中部分节气所对应的白昼时长示意图.在下列选项中白昼时长不足11小时的节气是( )A. 惊蛰B. 小满C. 秋分D. 大寒7.如图,△ABC中,AC<BC,如果用尺规作图的方法在BC上确定点P,使PA+PC=BC,那么符合要求的作图痕迹是( )A. B.C. D.8.图1是2020年3月26日全国新冠疫情数据表,图2是3月28日海外各国疫情统计表,图3是中国和海外的病死率趋势对比图,根据这些图表,选出下例说法中错误的项( )A. 图1显示每天现有确诊数的增加量=累计确诊增加量-治愈人数增加量-死亡人数增加量B. 图2显示美国累计确诊人数虽然约是德国的两倍,但每百万人口的确诊人数大约只有德国的一半C. 图2显示意大利当前的治愈率高于西班牙D. 图3显示大约从3月16日开始海外的病死率开始高于中国的病死率二、填空题(本大题共8小题,共40.0分)9.若代数式的值为0,则实数x的值为______.10.若a-b=2,则代数式(-b)•=______.11.如图,在△ABC中,DE∥AB,DE分别与AC,BC交于D,E两点.若,AC=3,则DC=______.12.比较大小:______1(填“>”、“<”或“=”).13.举例说明命题“若>,则b>a.”是假命题,a=______,b=______.14.如图所示的网格是正方形网格,则∠ABC+∠ACB=______.(点A,B,C是网格线交点).15.数学课上,王老师让同学们对给定的正方形ABCD,建立合适的平面直角坐标系,并表示出各顶点的坐标.下面是4名同学表示各顶点坐标的结果:甲同学:A(0,1),B(0,0),C(1,0),D(1,1);乙同学:A(0,0),B(0,-1),C(-1,-1),D(1,0);丙同学:A(0,3),B(0,0),C(3,0),D(3,3);丁同学:A(1,1),B(1,-2),C(4,-2),D(4,1);上述四名同学表示的结果中,四个点的坐标都表示正确的同学是______.16.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如表统计表,其中“√”表示购买,“×”表示未购买.假定每位顾客购买商品的可能性相同.商品甲乙丙丁顾客人数100√×√√217×√×√200√√√×300√×√×85√×××98×√××(1)估计顾客同时购买乙和丙的概率为______.(2)如果顾客购买了甲,并且同时也在乙、丙、丁中进行了选购,则购买______(填“乙”、“丙”、“丁”)商品的可能性最大.三、解答题(本大题共7小题,共56.0分)17.计算:+()-1-2cos45°-|2-3|.18.解不等式组,并求该不等式组的非负整数解.19.已知关于x的方程mx2+(3m+1)x+3=0.(1)求证:不论m为任何实数,此方程总有实数根;(2)若抛物线y=mx2+(3m+1)x+3与x轴交于两个不同的整数点,且m为正整数,试确定此抛物线的解析式.20.如图,四边形ABCD是矩形,点E在BC边上,点F在BC延长线上,且∠CDF=∠BAE.(1)求证:四边形AEFD是平行四边形;(2)若DF=3,DE=4,AD=5,求CD的长度.21.国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.国家创新指数得分的频数分布直方图(数据分成7组:30≤x<40,40≤x<50,50≤x <60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.国家创新指数得分在60≤x<70这一组的是:61.7、62.4、63.6、65.9、66.4、68.5、69.1、69.3、69.5c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:d.中国的国家创新指数得分为69.5.(以上数据来源于《国家创新指数报告(2018)》)根据以上信息,回答下列问题:(1)中国的国家创新指数得分排名世界第______;(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l1的上方,请在图中用“〇”圈出代表中国的点;(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)(4)下列推断合理的是______.①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值.22.在平面直角坐标系xOy中,抛物线G:y=mx2+2mx+m-1(m≠0)与y轴交于点C,抛物线G的顶点为D,直线:y=mx+m-1(m≠0).(1)当m=1时,画出直线和抛物线G,并直接写出直线被抛物线G截得的线段长.(2)随着m取值的变化,判断点C,D是否都在直线上并说明理由.(3)若直线被抛物线G截得的线段长不小于2,结合函数的图象,直接写出m的取值范围.23.已知C为线段AB中点,∠ACM=α.Q为线段BC上一动点(不与点B重合),点P在射线CM上,连接PA,PQ,记BQ=kCP.(1)若α=60°,k=1,①如图1,当Q为BC中点时,求∠PAC的度数;②直接写出PA、PQ的数量关系;(2)如图2,当α=45°时.探究是否存在常数k,使得②中的结论仍成立?若存在,写出k的值并证明;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:将580 00000000用科学记数法表示应为5.8×1010.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【答案】C【解析】解:A选项是轴对称图形,不是中心对称图形,故本选项错误;B选项不是中心对称图形,故本选项错误;C选项为中心对称图形,故本选项正确;D选项不是中心对称图形,故本选项错误.故选:C.根据中心对称图形的概念求解.本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合.3.【答案】C【解析】【分析】由主视图和左视图确定是柱体、锥体还是球体,再由俯视图确定具体形状.考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由俯视图可知有六个棱,再由主视图及左视图分析可知为六棱柱,故选C.4.【答案】D【解析】【分析】本题考查了实数与数轴、实数加减的符号法则及算术平方根.解决本题的关键是掌握实数加减的符号法则:减法:大数-小数>0,小数-大数<0;加法:正数+正数>0,负数+负数<0,正数+负数的符号与绝对值较大的加数的符号相一致.根据各点在数轴上的位置、加减法符号法则、实数的算术平方根,对各个选择作出判断.【解答】解:由数轴知:-5<a<-4,a<b<0<d,|b|<|d|,|a|>|c|∵-5<a<-4,所以选项A错误;∵b<0<d且|b|<|d|,所以b+d>0,故选项B错误;∵a<0<c且|a|>|c|,所以|a|-c>0.故选项C错误;∵0<c<1,,所以c<.故选项D正确.故选D.5.【答案】B【解析】【分析】本题考查了正多边形的内角和与外角和,掌握多边形内角和公式:(n-2)•180°,外角和等于360°是解题的关键.根据正多边形的内角和公式(n-2)×180°列方程求出多边形的边数,再根据正多边形外角和为360°,且每个外角相等求解可得.【解答】解:多边形内角和(n-2)×180°=720°,∴n=6.则正多边形的一个外角=,故选B.6.【答案】D【解析】解:由图可得,白昼时长不足11小时的节气是立春、立秋、冬至、大寒,故选:D.根据图象,可以写出白昼时长不足11小时的节气,然后即可解答本题.本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.7.【答案】C【解析】解:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选:C.由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得,点P在AB的垂直平分线上,进而得出结论.本题考查了复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.8.【答案】C【解析】解:A、图1显示每天现有确诊数的增加量=累计确诊增加量-治愈人数增加量-死亡人数增加量,故原题说法正确;B、图2显示美国累计确诊人数虽然约是德国的两倍,但每百万人口的确诊人数大约只有德国的一半,故原题说法正确;C、图2显示西班牙当前的治愈率高于意大利,故原题说法错误;D、图3显示大约从3月16日开始海外的病死率开始高于中国的病死率,故原题说法正确;故选:C.根据所给图表和折线图针对每个选项进行分析即可.本题主要考查了统计表和折线统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.9.【答案】x=1【解析】【分析】本题考查了分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.分式的值为零,分子等于零.【解答】解:依题意得:,所以x-1=0,解得x=1.故答案为1.10.【答案】【解析】解:(-b)•===,当a-b=2时,原式==,故答案为:.根据分式的减法和乘法可以化简题目中的式子,然后将a-b的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.11.【答案】2【解析】【分析】本题考查了相似三角形的判定与性质,利用相似三角形的判定定理找出△DEC∽△ABC 是解题的关键.由DE∥AB可得出△DEC∽△ABC,根据相似三角形的性质可得出=()2=,再结合AC=3即可求出DC的长度.【解答】解:∵DE∥AB,∴△DEC∽△ABC,∴=()2=,∴=.又∵AC=3,∴DC=2.故答案为2.12.【答案】>【解析】解:∵2<<3,∴1<-1<2,故>1.故答案为:>.直接估计出的取值范围,进而得出答案.此题主要考查了实数大小比较,正确得出的取值范围是解题关键.13.【答案】1答案不唯一 -2【解析】解:当a=1,b=-2时,>,得出a>b,故答案为:答案不唯一,1,-2.通过实例说明命题不成立即可.本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.14.【答案】45°【解析】解:延长BA交格点于D,连接CD,则AD2=CD2=1+22=5,AC2=12+32=10,∴AD2+CD2=AC2,∴∠ADC=90°,∴∠DAC=∠ABC+∠ACB=45°.故答案为:45°.延长BA交格点于D,连接CD,根据勾股定理得到AD2=CD2=1+22=5,AC2=12+32=10,求得AD2+CD2=AC2,于是得到∠ADC=90°,根据三角形外角的性质即可得到结论.本题考查了勾股定理的逆定理,勾股定理,三角形的外角的性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.15.【答案】甲,丙,丁【解析】解:甲同学:如图1,易知点B为原点,则AB=BC=CD=AD=1,故甲同学所标的四个点的坐标正确;乙同学:如图2,易知点A为原点,则AB=BC=CD=AD=1,则A(0,0),B(0,-1),C(1,-1),D(1,0),故乙同学所标C点的坐标错误;丙同学:如图1,易知点B为原点,则AB=BC=CD=AD=3,故丙同学所标的四个点的坐标正确;丁同学:如图3,易知AB=BC=CD=AD=3,故丁同学所标的四个点的坐标正确;上述四名同学表示的结果都正确的是:甲,丙,丁;故答案为:甲,丙,丁.正确画图,根据四个同学的原点确定平面直角坐标系,根据各点的坐标确定正方形的边长,可得结论.本题主要考查对正方形的性质及坐标系的特点,正确画图确定平面直角坐标系是关键.16.【答案】0.2 丙【解析】解:(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,故顾客同时购买乙和丙的概率为=0.2.(2)在这1000名顾客中,同时购买甲和乙的概率为=0.2,同时购买甲和丙的概率为=0.6,同时购买甲和丁的概率为=0.1,故同时购买甲和丙的概率最大.故答案为:0.2;丙.(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,从而求得顾客同时购买乙和丙的概率.(2)在这1000名顾客中,求出同时购买甲和乙的概率、同时购买甲和丙的概率、同时购买甲和丁的概率,从而得出结论.本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.17.【答案】解:+()-1-2cos45°-|2-3|=3+5-2×-(3-2)=3+5--3+2=4+2.【解析】直接利用负指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】解:解不等式3(x+2)≥x+4,得:x≥-1,解不等式<1,得:x<3,∴原不等式解集为-1≤x<3,∴原不等式的非负整数解为0,1,2.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【答案】(1)证明:当m=0时,方程变形为x+3=0,解得x=-3;当m≠0时,△=(3m+1)2-4m•3=(3m-1)2,∵(3m-1)2≥0,即△≥0,∴m≠0时,方程总有两个实数解,∴不论m为任何实数,此方程总有实数根;(2)解:根据题意得m≠0,mx2+(3m+1)x+3=0.(mx+1)(x+3)=0,解得x1=-,x2=-3,则抛物线y=mx2+(3m+1)x+3与x轴的两交点坐标为(-,0),(-3,0),而m为正整数,-也为整数,所以m=1,所以抛物线解析式为y=x2+4x+3.【解析】(1)分类讨论:当m=0时,方程变形为一元一次方程,有一个解;当m≠0时,先计算判别式的值得到△=(3m-1)2,根据非负数的性质得△≥0,则根据判别式的意义得到方程总有两个实数解,然后综合两种情况得到不论m为任何实数,此方程总有实数根;(2)先解方程得到x1=-,x2=-3,根据抛物线与x轴的两交点问题得到交点坐标为(-,0),(-3,0),再根据正数的整除性易得m=1,从而得到抛物线解析式.本题考查了一元二次方程根的判别式(△=b2-4ac):一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了抛物线与x轴的交点问题.20.【答案】(1)证明:∵四边形ABCD是矩形,∴AB=DC,∠B=∠DCF=90°,∵∠BAE=∠CDF,在△ABE和△DCF中,,∴△ABE≌△DCF(ASA),∴BE=CF,∴BC=EF,∵BC=AD,∴EF=AD,又∵EF∥AD,∴四边形AEFD是平行四边形;(2)解:由(1)知:EF=AD=5,在△EFD中,∵DF=3,DE=4,EF=5,∴DE2+DF2=EF2,∴∠EDF=90°,∴•ED•DF=EF•CD,∴CD=.【解析】此题主要考查了矩形的性质以及勾股定理的逆定理,得出BC=EF是解题关键.(1)直接利用矩形的性质结合全等三角形的判定与性质得出BE=CF,进而得出答案;(2)利用勾股定理的逆定理得出∠EDF=90°,进而得出•ED•DF=EF•CD,求出答案即可.21.【答案】解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,故答案为:17;(2)如图所示:(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.7万美元;故答案为:2.7;(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值;合理;故答案为:①②.【解析】本题考查了频数分布直方图、统计图、近似数等知识;读懂频数分布直方图和统计图是解题的关键.(1)由国家创新指数得分为69.5以上(含69.5)的国家有17个,即可得出结果;(2)根据中国在虚线l1的上方,中国的创新指数得分为69.5,找出该点即可;(3)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;(4)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.22.【答案】解:(1)当m=1时,抛物线G的函数表达式为y=x2+2x,直线的函数表达式为y=x,直线被抛物线G截得的线段长为,画出的两个函数的图象如图所示:(2)无论m取何值,点C,D都在直线上.理由如下:∵抛物线G:y=mx2+2mx+m-1(m≠0)与y轴交于点C,∴点C的坐标为C(0,m-1),∵y=mx2+2mx+m-1=m(x+1)2-1,∴抛物线G的顶点D的坐标为(-1,-1),对于直线:y=mx+m-1(m≠0),当x=0时,y=m-1,当x=-1时,y=m×(-1)+m-1=-1,∴无论m取何值,点C,D都在直线上;(3)解方程组,得,或,∴直线与抛物线G的交点为(0,m-1),(-1,-1).∵直线被抛物线G截得的线段长不小于2,∴≥2,∴1+m2≥4,m2≥3,∴m≤-或m≥,∴m的取值范围是m≤-或m≥.【解析】(1)当m=1时,抛物线G的函数表达式为y=x2+2x,直线的函数表达式为y=x ,求出直线被抛物线G截得的线段,再画出两个函数的图象即可;(2)先求出C、D两点的坐标,再代入直线的解析式进行检验即可;(3)先联立直线与抛物线的解析式,求出它们的交点坐标,再根据这两个交点之间的距离不小于2列出不等式,求解即可.本题考查了二次函数的性质,二次函数图象上点的坐标特征,两函数交点坐标的求法,函数的图象,都是基础知识,需熟练掌握.23.【答案】解:(1)①如图1,在CM上取点D,使得CD=CA,连接AD,∵∠ACM=60°,∴△ADC为等边三角形.∴∠DAC=60°.∵C为AB的中点,Q为BC的中点,∴AC=BC=2BQ.∵BQ=CP,∴AC=BC=CD=2CP.∴AP平分∠DAC.∴∠PAC=∠PAD=30°.②∵△ADC是等边三角形,∴∠ACP=60°,∵PC=CQ,∴∠PQC=∠CPQ=30°,∴∠PAC=∠PQC=30°,∴PA=PQ;(2)存在,使得②中的结论成立.证明:过点P作PC的垂线交AC于点D.∵∠ACM=45°,∴∠PDC=∠PCD=45°.∴PC=PD,∠PDA=∠PCQ=135°.∵,,∴CD=BQ.∵AC=BC,∴AD=CQ.∴△PAD≌△PQC(SAS).∴PA=PQ.【解析】(1)如图1,作辅助线,构建等边三角形,证明△ADC为等边三角形.根据等边三角形三线合一可得∠PAC=∠PAD=30°;②根据①中得结论:∠PAC=∠PQC=30°,则PA=PQ;(2)存在,如图2,作辅助线,构建全等三角形,证明△PAD≌△PQC(SAS).可得结论.本题是三角形的综合题,考查三角形全等的性质和判定、等边三角形、等腰直角三角形、勾股定理等知识,解题的关键是作辅助线,构建等边三角形和三角形全等,难度适中,属于中考常考题型.。

北京市2020年中考数学模拟试卷四含答案

北京市2020年中考数学模拟试卷四含答案

北京市2020年中考数学模拟试卷四学校 姓名 准考证号一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1. 下面的多边形中,内角和与外角和相等的是(A ) (B ) (C ) (D )2.已知实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是A .a >bB .|a |<|b |C .ab >0D .﹣a >b3.2019年春运期间,全国铁路有23天旅客发送量每天超过1000万人次,那么这23 天约发送旅客总人次是(A )2.3×103 (B )2.3×104 (C )2.3×107 (D )2.3×1084.右图是某几何体的三视图,该几何体是(A )三棱锥 (B )三棱柱 (C )长方体 (D )正方体5.如图,将一张矩形纸片折叠,若∠1=80°,则∠2的度数是A .50°B .60°C .70°D .80° 6.如果2320a a +-=,那么代数式2231-3()93a a a a +•-+的值为A .1B .12 C .13 D . 147.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从 长安出发.问甲乙经过多少日相逢?设甲乙经过x 日相逢,可列方程为 A.7512x x +=+ B. 2175x x ++= C. 7512x x -=+ D. 275x x+= 8.某市组织全民健身活动,有100名男选手参加由跑、跳、投等10个田径项目组成的“十项全能”比赛.其中25名选手的一百米跑成绩排名,跳远成绩排名与10项总成绩的排名情况如图所示,甲、乙、丙表示三名男选手,下面有3个推断: ①甲的一百米跑成绩排名比10项总成绩排名靠前; ②乙的一百米跑成绩排名比10项总成绩排名靠后; ③丙的一百米跑成绩排名比跳远成绩排名靠前. 其中合理的是 (A )①(B )②(C )①②(D )①③二、填空题(本题共16分,每小题2分)9.若2x -在实数范围内有意义,则实数x 的取值范围是 .10.为了解同学们对网络游戏的喜好和作业量多少的相关性,小明随机对年级50名同学进行了调查,并将调查的情况进行了整理,如下表:O跳远成绩排名10项总成绩排名100100丙O一百米跑成绩排名 10项总成绩排名100甲乙如果小明再随机采访一名同学,那么这名同学是“喜欢网络游戏并认为作业多”的可能性 .“不喜欢网络游戏并认为作业不多”的可能性. (填“>”,“=”或 “<”) 11.分解因式:22xy xy x -+= .12.如图,将△ABC 沿BC 所在的直线平移得到△DEF .如果AB =7,GC =2,DF =5,那么GE = .(第12题图) (第13题图)13.如图,△ABC 的内切圆⊙O 与AB ,BC ,CA 分别相切于点D ,E ,F ,且AD=2,△ABC的周长为14,则BC 的长为 .14.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问几何日相逢?译文:甲从长安出发,5日到齐国; 乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问甲乙经过多少日相逢?设甲乙经过x 日相逢,可列方程为 .15.我国古代数学著作《算法统宗》中记载了“绳索量竿”问题,其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索和竿的长度.设绳索长x 尺,竿长y 尺,可列方程组为 .16.如图,方格纸中每个小正方形的边长都是1,A ,B ,C ,D 均落在格点上.(1)S △BDC :S △BAC =________;(2)点P 为BD 的中点,过点P 作直线l ∥BC ,分别过点B 作BM ⊥l 于点M ,过点C 作CN ⊥l 于点N ,则矩形BCNM 的面积为________.认为作业多认为作业不多合计 喜欢网络游戏18 9 27 不喜欢网络游戏8 15 23 合计262450BAGCE DF作业量多少网络游戏的喜好三、解答题(本题共68分,第17-22题,每小题5分;第23-26题,每小题6分;第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.计算:213tan 60()12233---+-°.18.解不等式组:()+2124132x x x x -≥-⎧⎪⎨+>⎪⎩19.下面是小东设计的“过直线上一点作这条直线的垂线”的尺规作图过程.已知:直线l 及直线l 上一点A . 求作:直线AB ,使得AB ⊥l .作法:①以点A 为圆心,任意长为半径画弧,交直线l 于C ,D 两点;②分别以点C 和点D 为圆心,大于21CD 长为半径画弧, 两弧在直线l 一侧相交于点B ; ③作直线AB .所以直线AB 就是所求作的垂线. 根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明:∵AC = ,BC = ,∴AB ⊥l ( ).(填推理的依据).20.已知关于x 的方程2220x x m -+-=有两个不相等的实数根. (1)求m 的取值范围;(2)如果m 为正整数,且该方程的根都是整数,求m 的值.21.如图,在△ABC 中,CD 平分∠ACB ,CD 的垂直平分线分别交AC ,DC ,BC 于点E ,F ,G ,连接DE ,DG .(1)求证:四边形DGCE 是菱形;(2)若∠ACB =30°,∠B =45°,ED =6,求BG 的长.22.如图,AB 是⊙O 的直径,AE 是弦,C 是AE 的中点,过点C 作⊙O 的切线交BA 的延长线于点G ,过点C 作CD ⊥AB 于点D ,交AE 于点F . (1)求证:GC ∥AE ;(2)若sin ∠EAB =53,OD AE 的长.23.如图,在平面直角坐标系xOy 中,直线l :y =x +1与y 轴交于点A ,与函数xky =(x >0)的图象交于点B (2,a ).(1)求a 、k 的值; (2)点M 是函数xky =(x >0)图象上的一点,过点M 作平行于y 轴的直线,交直线l 于点P ,过点A 作平行于x 轴的直线交直线MP 于点N ,已知点M 的横坐标为m . ①当23=m 时,求MP 的长; ②若MP ≥PN ,结合函数的图象, 直接写出m 的取值范围.24.2019年初,电影《流浪地球》和《绿皮书》陆续热播,为了解某大学1800名学生对两部电影的喜爱程度,调查小组随机抽取了该大学20名学生对两部电影打分,过程如下. 收集数据 20名大学生对两部电影的打分结果如下:《流浪地球》 78 75 99 98 79 67 88 78 76 98 88 79 97 91 78 80 93 90 99 99 《绿皮书》 88 79 68 97 85 74 96 84 92 97 89 81 91 75 80 85 91 89 97 92 整理、描述数据 绘制了如下频数分布直方图和统计表,请补充完整.(说明:60≤x<70表示一般喜欢,70≤x<80表示比较喜欢,80≤x<90表示喜欢,90≤x<100表示超级喜欢)分析数据、推断结论),25.如图,点E 在弦AB 所对的优弧上,且»BE为半圆,C 是»BE 上一动点,连接CA ,CB , 已知AB =4cm ,设B ,C 两点间的距离为x cm ,点C 到弦AB 所在直线的距离为1y cm , A ,C 两点间的距离为2y cm .小明根据学习函数的经验,分别对函数1y ,2y ,随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值;(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y 1),(x ,y 2)并画出函数y 1,y 2的图象;(3)结合函数图象,解决问题:①连结BE ,则BE 的长约为 cm .②当以A ,B ,C 为顶点组成的三角形是直角三角形时,BC 的长度约为 cm .26.在平面直角坐标系xOy 中,抛物线c bx ax y ++=2过原点和点A (-2,0). (1)求抛物线的对称轴;(2)横、纵坐标都是整数的点叫做整点.已知点B (0,23),记抛物线与直线AB 围成的封闭区域(不含边界)为W .①当=1a 时,求出区域W 内的整点个数;②若区域W 内恰有3个整点,结合函数图象,直接写出的取值范围.27.如图,在正方形ABCD 中,E 是边BC 上一动点(不与点B ,C 重合),连接DE ,点C关于直线DE 的对称点为C ʹ,连接ACʹ并延长交直线DE 于点P ,F 是AC ′中点,连接DF .(1)求∠FDP 的度数;(2)连接BP ,请用等式表示AP ,BP ,DP 三条线段之间的数量关系,并证明. (3)连接AC ,若正方形的边长为2,请直接写出△ACC ′的面积最大值.28.对于平面直角坐标系xoy 中的点P 和图形G 上任意一点M ,给出如下定义:图形G 关于原点O 的中心对称图形为G′,点M 在G′上的对应点为M′,若∠MP M′=90°,则称 点P 为图形G ,G′的“直角点”,记作Rt(G ,P ,G′). 已知点A (-2,0),B (2,0),C (0, 32).(1) 如图1,在点P 1(1,1),P 2(0,3),P 3(0,-2)这三个点中,Rt(OA,P,OA′)是 ;(2) 如图2,⊙D 的圆心为D (1,1),半径为1,在直线b x y +=3上存在点P ,满足Rt(⊙D ,P ,⊙D′),求b 的取值范围;(3)⊙T 的半径为3,圆心(t,t 33),若⊙T 上存在点P ,满足 Rt(△ABC ,P ,△ABC′),直接写出⊙T 的横坐标的取值范围.数 学一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.x ≥2 10.>11.x (y-1)212.145. 13.5 14.1 15.2175x x++= 16.5:1,152; 三、解答题(本题共68分,第17-22题,每小题5分;第23-26题,每小题6分;第27-28题,每小题7分) 17.(本小题满分5分)解:原式392=-………………………………… 4分. ………………………………… 5分18.(本小题满分5分)7=-()+2124(1)13(2)2x x xx -≥-⎧⎪⎨+>⎪⎩由(1)得,x ≤2 ………………………………… 2分 由(2)得,x >-1 ………………………………… 4分∴不等式的解集为-1<x ≤2 ……………………………… 5分 19.(本小题满分5分)(1)略; ………………………………2分 (2)AD ,BD ;依据:“到线段两个端点距离相等的点在这条线段的垂直平分线上”或“三线合一”. ………………………………5分20.(本小题满分5分)解:(1)∵方程有两个不相等的实数根.∴4420m ∆=-->(). ∴ 3m <. ……………………… 2分(2)∵ 3m <且m 为正整数, ∴ 1m =或2. ……………………… 3分 当1m =时,原方程为2210x x --=.它的根不是整数,不符合题意,舍去; 当2m =时,原方程为220x x -=.∴ (2)0x x -=.∴ 120,2x x ==.符合题意. 综上所述,2m = …………………………… 5分 21.(本小题满分5分)(1)证明:∵EG 垂直平分DC ∴DE =CE ,∴EDC ECD ∠=∠. ∵CD 平分ECG ∠, ∴ECD DCG ∠=∠. ∴EDC DCG ∠=∠.∴DE ∥GC . ………………………………1分 同理DG ∥EC .∴四边形DGCE 是平行四边形. ∵DE =CE ,∴四边形DGC E 是菱形. ……………………………… 2分 (2)解:Q 四边形DGCE 是菱形, ∴DG =DE =6. ∵DG //EC ,∴030DGB ACB ∠=∠=. ……………………………… 3分 如图,过点D 作DH ⊥BG 于点H ,∴13DH DG ==. ∴HG = ……………………………… 4分 ∵45B ∠=︒,∴BH =DH =3.∴3BG =+ ……………………………… 5分22.(本小题满分5分)(1)证明:连接OC ,交AE 于H.∵C 是弧AE 的中点,∴OC ⊥AE . ............ ......1分 ∵GC 是⊙O 的切线, ∴OC ⊥GC .∴∠OHA=∠OCG =90°.∴GC ∥AE . .............. .....2分(2)解: ∵OC ⊥AE ,CD ⊥AB ,∴∠OCD =∠EAB .∴3sin sin 5OCD EAB ∠=∠=.在Rt △CDO 中,OD∴OC =∴AB =连接BE.∵AB 是⊙O 的直径,∴∠AEB =90°.在Rt △A EB 中,∵3sin 5BE EAB AB ∠==,∴BE =∴AE = ...................….........5分23.(本小题满分6分)解:(1)由题意,得A (0,1) .∵直线l 过点B (2,a ),∴3a =. .................…..........1分 ∵反比例函数(0)k y x x=>的图象经过点B (2,3),∴6k =. .................…..........2分 (2)①由题意,得335(,4),(,)222M P .∴32MP =; .................…..........4分②3062m m <≤≥或. .................…..........6分24.(本小题满分6分)……………………………4分(1)720 …………………………………5分 (2)答案不唯一,如: 喜欢《流浪地球》理由:在被调查者中,喜欢《流浪地球》的众数高于喜欢《绿皮书》的众数.喜欢《绿皮书》理由:在被调查者中,喜欢《绿皮书》的中位数高于喜欢的《流浪地球》中位数;为《绿皮书》打分在80分以上的有16人,而为《流浪地球》打分在80分以上的只有12人 …………………………………6分流浪地球25.(本小题满分6分)解:(1)5.70. ………………………1分(2)画出2y 的图象.……………………….3分(3)①6;………………………4分 ②6,4.47.……………………….6分 26.(本小题满分6分)解:(1)∵二次函数2y x ax b =-+在0x =和4x =时的函数值相等.∴对称轴为直线2x =. ……………… 1分 (2)① 不妨设点M 在点N 的左侧.∵对称轴为直线2x =,2MN =,∴点M 的坐标为(1,1),点N 的坐标为(3,1).……………… 2分∴22ax -=-=,11a b =-+. ∴4a =,4b =. ……………… 4分 ② 15b <≤. ……………… 6分27.(本小题满分7分)解:(1)由对称可知 CD =C ′D ,∠CDE =∠C ′DE .在正方形ABCD 中,AD =CD ,∠ADC =90°, ∴AD =C ′D .又∵F 为AC ′中点,∴DF ⊥AC ′,∠ADF =∠C ′DF .……………………………………………………1分∴∠FDP =∠FDC ′+∠EDC ′=12∠ADC =45°.…………………2分(2)结论:BP+DP.……………………………………………………3分如图,作AP′⊥AP交PD延长线于P′,∴∠P AP′=90°.在正方形ABCD中,DA=BA,∠BAD=90°,∴∠DAP′=∠BAP.由(1)可知∠APD=45°,∴∠P′=45°.∴AP=AP′……………………………………………………4分在△BAP和△DAP′中,BA DABAP DAP AP AP=⎧⎪'∠=∠⎨⎪'=⎩,∴△BAP≌△DAP′(SAS)……………………………………………………5分∴BP=DP′.∴DP+BP=PP′.(31……………………………………………………7分PBAP'PBA28.(本小题满分7分)解:(1)P 1,P 3. …………………………………2分(2)当b >0时,点O 到直线的距离为时,.…………………………4分当b <0时,.∴.………6分(3).………………………7分b x y +=312+222+=b 222--=b 222222+≤≤--b 2929≤≤-t。

2020年北京中考数学模拟试卷(一)

2020年北京中考数学模拟试卷(一)

∴CE=10,∴AE=6,∴BD=6.
22.(6分)如图,在Rt△ABE中,∠B=90°,以AB为直径的☉O交AE于点C,CE的垂直平分线FD交BE于点D,连接 CD. (1)判断CD与☉O的位置关系,并证明; (2)若AC·AE=12,求☉O的半径长.
解析 (1)答:CD与☉O相切.
证明:如图1,连接OC. ∵FD是CE的垂直平分线,
答案 A 58 000 000 000=5.8×1010.故选A.
5.若正多边形的一个外角是120°,则该正多边形的边数是 ( ) A.6 B.5 C.4 D.3
答案 D 由多边形外角和为360°,可得360°÷120°=3.故选D.
6.如果x+y=4,那么代数式
2x x2 y
2
-
2y x2 y
∴在Rt△CDB中,sin∠CBD= CD = 4 .
CB 5
∴CB= 5 .∴CE=CB+BE=11 .
2
2
∴点C的纵坐标为11 .当点C在直线AB下方时,如图,
2
同理可求得CB=
5 2
,则CE=BE-CB=
1 2
.
∴点C的纵坐标为
1 2
.综上所述,点C的纵坐标为
11 2

1 2
.
24.(6分)阅读下面材料: 小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.
20.(5分)解方程:
x
x 1Βιβλιοθήκη -2x x21 1
=1.
解析 去分母,得x(x+1)-(2x-1)=x2-1,解得x=2. 经检验,x=2是原方程的解, ∴原方程的解为x=2.

2020年北京市中考数学预测试题(含答案)

2020年北京市中考数学预测试题(含答案)

北京市2020年中考数学模拟检测试题含答案一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>03.(2.00分)方程组的解为()A.B.C.D.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2B.7.14×104m2C.2.5×105m2D.2.5×106m25.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.47.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x 轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④ D.①②③④二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC ∠DAE.(填“>”,“=”或“<”)10.(2.00分)若在实数范围内有意义,则实数x的取值范围是.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a= ,b= ,c= .12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB= .13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路30≤t≤35 35<t≤40 40<t≤45 45<t≤50 合计A 59 151 166 124 500B 50 50 122 278 500C 45 265 167 23 500早高峰期间,乘坐(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90 100 130 150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB= ,CB= ,∴PQ∥l()(填推理的依据).18.(5.00分)计算4si n45°+(π﹣2)0﹣+|﹣1|19.(5.00分)解不等式组:20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A(4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;x/cm 0 1 2 3 4 5 6y1/cm 5.62 4.67 3.76 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11 (2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为cm.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A 75.8 m 84.5B 72.2 70 83根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是(填“A“或“B“),理由是,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.26.(6.00分)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.27.(7.00分)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.28.(7.00分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k 的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.【分析】根据立体图形的定义及其命名规则逐一判断即可.【解答】解:A、此几何体是圆柱体;B、此几何体是圆锥体;C、此几何体是正方体;D、此几何体是四棱锥;故选:A.【点评】本题主要考查立体图形,解题的关键是认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:∵﹣4<a<﹣3∴|a|<4∴A不正确;又∵a<0 c>0∴ac<0∴C不正确;又∵a<﹣3 c<3∴a+c<0∴D不正确;又∵c>0 b<0∴c﹣b>0∴B正确;故选:B.【点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负.3.(2.00分)方程组的解为()A.B.C.D.【分析】方程组利用加减消元法求出解即可;【解答】解:,①×3﹣②得:5y=﹣5,即y=﹣1,将y=﹣1代入①得:x=2,则方程组的解为;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2B.7.14×104m2C.2.5×105m2D.2.5×106m2【分析】先计算FAST的反射面总面积,再根据科学记数法表示出来,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.确定n的值是易错点,由于249900≈250000有6位,所以可以确定n=6﹣1=5.【解答】解:根据题意得:7140×35=249900≈2.5×105(m2)故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°【分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.4【分析】先将括号内通分,再计算括号内的减法、同时将分子因式分解,最后计算乘法,继而代入计算可得.【解答】解:原式=(﹣)•=•=,当a﹣b=2时,原式==,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m【分析】将点(0,54.0)、(40,46.2)、(20,57.9)分半代入函数解析式,求得系数的值;然后由抛物线的对称轴公式可以得到答案.【解答】解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m).故选:B.【点评】考查了二次函数的应用,此题也可以将所求得的抛物线解析式利用配方法求得顶点式方程,然后直接得到抛物线顶点坐标,由顶点坐标推知该运动员起跳后飞行到最高点时,水平距离.8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x 轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④ D.①②③④【分析】由天安门和广安门的坐标确定出每格表示的长度,再进一步得出左安门的坐标即可判断.【解答】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12),此结论正确;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(11,﹣11),此结论正确;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:C.【点评】本题主要考查坐标确定位置,解题的关键是确定原点位置及各点的横纵坐标.二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC >∠DAE.(填“>”,“=”或“<”)【分析】作辅助线,构建三角形及高线NP,先利用面积法求高线PN=,再分别求∠BAC、∠DAE的正弦,根据正弦值随着角度的增大而增大,作判断.【解答】解:连接NH,BC,过N作NP⊥AD于P,S△ANH=2×2﹣﹣×1×1=AH•NP,=PN,PN=,Rt△ANP中,sin∠NAP====0.6,Rt△ABC中,sin∠BAC===>0.6,∵正弦值随着角度的增大而增大,∴∠BAC>∠DAE,故答案为:>.【点评】本题考查了锐角三角函数的增减性,构建直角三角形求角的三角函数值进行判断,熟练掌握锐角三角函数的增减性是关键.10.(2.00分)若在实数范围内有意义,则实数x的取值范围是x≥0 .【分析】根据二次根式有意义的条件可求出x的取值范围.【解答】解:由题意可知:x≥0.故答案为:x≥0.【点评】本题考查二次根式有意义,解题的关键正确理解二次根式有意义的条件,本题属于基础题型.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a= 1 ,b= 2 ,c= ﹣1 .【分析】根据题意选择a、b、c的值即可.【解答】解:当a=1,b=2,c=﹣2时,1<2,而1×(﹣1)>2×(﹣1),∴命题“若a<b,则ac<bc”是错误的,故答案为:1;2;﹣1.【点评】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB= 70°.【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB ﹣∠ABC,进而得出答案.【解答】解:∵=,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故答案为:70°.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为.【分析】根据矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF=•AC,即可求出CF的长.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.【点评】本题考查了相似三角形的判定与性质、矩形的性质以及勾股定理,利用相似三角形的性质找出CF=2AF是解题的关键.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时30≤t≤35 35<t≤40 40<t≤45 45<t≤50 合计公交车用时的频数线路A 59 151 166 124 500B 50 50 122 278 500C 45 265 167 23 500早高峰期间,乘坐 C (填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.【分析】分别计算出用时不超过45分钟的可能性大小即可得.【解答】解:∵A 线路公交车用时不超过45分钟的可能性为=0.752,B线路公交车用时不超过45分钟的可能性为=0.444,C线路公交车用时不超过45分钟的可能性为=0.954,∴C线路上公交车用时不超过45分钟的可能性最大,故答案为:C.【点评】本题主要考查可能性的大小,解题的关键是掌握频数估计概率思想的运用.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90 100 130 150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为390 元.【分析】分四类情况,分别计算即可得出结论.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,∴租船费用为150×2+90=390元,而810>490>390,∴租3艘六人船或2艘八人船1艘两人船费用最低是390元,故答案为:390.【点评】此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第 3 .【分析】两个排名表相互结合即可得到答案.【解答】解:根据中国创新综合排名全球第22,在坐标系中找到对应的中国创新产出排名为第11,再根据中国创新产出排名为第11在另一排名中找到创新效率排名为第3故答案为:3【点评】本题考查平面直角坐标系中点的坐标确定问题,解答时注意根据具体题意确定点的位置和坐标.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB= AP ,CB= CQ ,∴PQ∥l(三角形中位线定理)(填推理的依据).【分析】(1)根据题目要求作出图形即可;(2)利用三角形中位线定理证明即可;【解答】(1)解:直线PQ如图所示;(2)证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理).故答案为:AP,CQ,三角形中位线定理;【点评】本题考查作图﹣复杂作图,平行线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|【分析】直接利用特殊角的三角函数值以及零指数幂的性质和二次根式的性质分别化简得出答案.【解答】解:原式=4×+1﹣3+1=﹣+2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(5.00分)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<3,∴不等式组的解集为﹣2<x<3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【解答】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.【点评】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【分析】(1)先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【解答】解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.【点评】此题主要考查了等腰三角形的性质,切线的性质,全等三角形的判定和性质,锐角三角函数,正确作出辅助线是解本题的关键.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A(4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.【分析】(1)把A(4,1)代入y=中可得k的值;(2)直线OA的解析式为:y=x,可知直线l与OA平行,①将b=﹣1时代入可得:直线解析式为y=x﹣1,画图可得整点的个数;②分两种情况:直线l在OA的下方和上方,画图计算边界时点b的值,可得b的取值.【解答】解:(1)把A(4,1)代入y=得k=4×1=4;(2)①当b=﹣1时,直线解析式为y=x﹣1,解方程=x﹣1得x1=2﹣2(舍去),x2=2+2,则B(2+2,),而C(0,﹣1),如图1所示,区域W内的整点有(1,0),(2,0),(3,0),有3个;②如图2,直线l在OA的下方时,当直线l:y=+b过(1,﹣1)时,b=﹣,且经过(5,0),∴区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1.如图3,直线l在OA的上方时,∵点(2,2)在函数y=(x>0)的图象G,当直线l:y=+b过(1,2)时,b=,当直线l:y=+b过(1,3)时,b=,∴区域W内恰有4个整点,b的取值范围是<b≤.综上所述,区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.【点评】本题考查了新定义和反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,本题理解整点的定义是关键,并利用数形结合的思想.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;x/cm 0 1 2 3 4 5 6y1/cm 5.62 4.67 3.76 3 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11 (2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为3或4.91或5.77 cm.【分析】(1)利用圆的半径相等即可解决问题;(2)利用描点法画出图象即可.(3)图中寻找直线y=x与两个函数的交点的横坐标以及y1与y2的交点的横坐标即可;【解答】解:(1)当x=3时,PA=PB=PC=3,∴y1=3,故答案为3.(2)函数图象如图所示:(3)观察图象可知:当x=y,即当PA=PC或PA=AC时,x=3或4.91,当y1=y2时,即PC=AC时,x=5.77,综上所述,满足条件的x的值为3或4.91或5.77.故答案为3或4.91或5.77.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A 75.8 m 84.5B 72.2 70 83根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是 B (填“A“或“B“),理由是该学生的成绩小于A课程的中位数,而大于B课程的中位数,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.【分析】(1)先确定A课程的中位数落在第4小组,再由此分组具体数据得出第30、31个数据的平均数即可;。

2020年北京市西城区中考数学一模试卷(解析版)

2020年北京市西城区中考数学一模试卷(解析版)

2020年北京市西城区中考数学一模试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)北京大兴国际机场目前是全球建设规模最大的机场,2019年9月25日正式通航,预计到2022年机场旅客吞吐量将达到45000000人次,将45000000用科学记数法表示为()A.45×106B.4.5×107C.4.5×108D.0.45×1082.(2分)如图是某个几何体的三视图,该几何体是()A.圆锥B.圆柱C.长方体D.正三棱柱3.(2分)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(2分)在数轴上,点A,B表示的数互为相反数,若点A在点B的左侧,且AB=2,则点A,点B表示的数分别是()A.﹣,B.,﹣C.0,2D.﹣2,2 5.(2分)如图,AB是⊙O的直径,C,D是⊙O上的两点.若∠CAB=65°,则∠ADC的度数为()A.65°B.35°C.32.5°D.25°6.(2分)甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为甲,乙,射击成绩的方差依次记为s甲2,s乙2,则下列关系中完全正确的是()A.甲=乙,s甲2>s乙2B.甲=乙,s甲2<s乙2C.甲>乙,s甲2>s乙2D.甲<乙,s甲2<s乙27.(2分)如图,在数学实践活动课上,小明同学打算通过测量树的影长计算树的高度.阳光下他测得长1.0m的竹竿落在地面上的影长为0.9m.在同一时刻测量树的影长时,他发现树的影子有一部分落在地面上,还有一部分落在墙面上.他测得这棵树落在地面上的影长BD为2.7m,落在墙面上的影长CD为1.0m,则这棵树的高度是()A.6.0m B.5.0m C.4.0m D.3.0m8.(2分)设m是非零实数,给出下列四个命题:①若﹣1<m<0,则<m<m2;②若m>1,则<m2<m;③若m<<m2,则m<0;④若m2<m<,则0<m<1.其中命题成立的序号是()A.①③B.①④C.②③D.③④二、填空题(本题共16分,每小题2分)9.(2分)若在实数范围内有意义,则x的取值范围是.10.(2分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.11.(2分)已知y是以x为自变量的二次函数,且当x=0时,y的最小值为﹣1,写出一个满足上述条件的二次函数表达式.12.(2分)如果a2+a=1,那么代数式﹣的值是.13.(2分)如图,在正方形ABCD中,BE平分∠CBD,EF⊥BD于点F.若DE=,则BC的长为.14.(2分)如图,△ABC的顶点A,B,C都在边长为1的正方形网格的格点上,BD⊥AC 于点D,则AC的长为,BD的长为.15.(2分)如图,在平面直角坐标系xOy中,点A,B,C的坐标分别是(0,4),(4,0),(8,0),⊙M是△ABC的外接圆,则点M的坐标为.16.(2分)某景区为了解游客人数的变化规律,提高旅游服务质量,收集并整理了某月(30天)接待游客人数(单位:万人)的数据,绘制了下面的统计图和统计表.每日接待游客人数(单位:万人)游玩环境评价0≤x<5好5≤x<10一般10≤x<15拥挤15≤x<20严重拥挤根据以上信息,以下四个判断中,正确的是(填写所有正确结论的序号).①该景区这个月游玩环境评价为“拥挤或严重拥挤”的天数仅有4天;②该景区这个月每日接待游客人数的中位数在5~10万人之间;③该景区这个月平均每日接待游客人数低于5万人;④这个月1日至5日的五天中,如果某人曾经随机选择其中的两天到该景区游玩,那么他“这两天游玩环境评价均为好”的可能性为.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)17.(5分)计算:()﹣1+(1﹣)0+|﹣|﹣2sin60°.18.(5分)解不等式组:19.(5分)关于x的一元二次方程x2﹣(2m+1)x+m2=0有两个实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.20.(5分)如图,在▱ABCD中,对角线AC,BD交于点O,OA=OB,过点B作BE⊥AC 于点E.(1)求证:▱ABCD是矩形;(2)若AD=2,cos∠ABE=,求AC的长.21.(5分)先阅读下列材料,再解答问题.尺规作图已知:△ABC,D是边AB上一点,如图1,求作:四边形DBCF,使得四边形DBCF是平行四边形.小明的做法如下:(1)设计方案先画一个符合题意的草图,如图2,再分析实现目标的具体方法,依据:两组对边分别平行的四边形是平行四边形.(2)设计作图步骤,完成作图作法:如图3,①延长BC至点E;②分别作∠ECP=∠EBA,∠ADQ=∠ABE;③DQ与CP交于点F.∴四边形DBCF即为所求.(3)推理论证证明:∵∠ECP=∠EBA,∴CP∥BA.同理,DQ∥BE.∴四边形DBCF是平行四边形.请你参考小明的做法,再设计一种尺规作图的方法(与小明的方法不同),使得画出的四边形DBCF是平行四边形,并证明.22.(6分)运用语音识别输入软件可以提高文字输入的速度.为了解A,B两种语音识别输入软件的准确性,小秦同学随机选取了20段话,其中每段话都含100个文字(不计标点符号).在保持相同语速的条件下,他用标准普通话朗读每段话来测试这两种语音识别输入软件的准确性.他的测试和分析过程如下,请补充完整.(1)收集数据两种软件每次识别正确的字数记录如下:A 98 98 92 92 92 92 92 89 89 85 84 84 83 83 79 79 78 78 69 58B 99 96 96 96 96 96 96 94 92 89 88 85 80 78 72 72 71 65 58 55(2)整理、描述数据根据上面得到的两组样本数据,绘制了频数分布直方图:(3)分析数据两组样本数据的平均数、众数、中位数、方差如表所示:平均数众数中位数方差A84.784.588.91B83.796184.01(4)得出结论根据以上信息,判断种语音识别输入软件的准确性较好,理由如下:(至少从两个不同的角度说明判断的合理性).23.(6分)如图,四边形OABC中,∠OAB=90°,OA=OC,BA=BC.以O为圆心,以OA为半径作⊙O.(1)求证:BC是⊙O的切线;(2)连接BO并延长交⊙O于点D,延长AO交⊙O于点E,与BC的延长线交于点F,若=,①补全图形;②求证:OF=OB.24.(6分)如图,在△ABC中,AB=4cm,BC=5cm.P是上的动点,设A,P两点间的距离为xcm,B,P两点间的距离为y1cm,C,P两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm01234y1/cm 4.00 3.69 2.130y2/cm 3.00 3.91 4.71 5.235(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),点(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,①当△PBC为等腰三角形时,AP的长度约为cm;②记所在圆的圆心为点O,当直线PC恰好经过点O时,PC的长度约为cm.25.(5分)在平面直角坐标系xOy中,直线l1:y=kx+2k(k>0)与x轴交于点A,与y轴交于点B,与函数y=(x>0)的图象的交点P位于第一象限.(1)若点P的坐标为(1,6),①求m的值及点A的坐标;②=;(2)直线l2:y=2kx﹣2与y轴交于点C,与直线l1交于点Q,若点P的横坐标为1,①写出点P的坐标(用含k的式子表示);②当PQ≤P A时,求m的取值范围.26.(6分)已知抛物线y=ax2+bx+a+2(a≠0)与x轴交于点A(x1,0),点B(x2,0)(点A在点B的左侧),抛物线的对称轴为直线x=﹣1.(1)若点A的坐标为(﹣3,0),求抛物线的表达式及点B的坐标;(2)C是第三象限的点,且点C的横坐标为﹣2,若抛物线恰好经过点C,直接写出x2的取值范围;(3)抛物线的对称轴与x轴交于点D,点P在抛物线上,且∠DOP=45°,若抛物线上满足条件的点P恰有4个,结合图象,求a的取值范围.27.(7分)如图,在等腰直角△ABC中,∠ACB=90°.点P在线段BC上,延长BC至点Q,使得CQ=CP,连接AP,AQ.过点B作BD⊥AQ于点D,交AP于点E,交AC于点F.K是线段AD上的一个动点(与点A,D不重合),过点K作GN⊥AP于点H,交AB于点G,交AC于点M,交FD的延长线于点N.(1)依题意补全图1;(2)求证:NM=NF;(3)若AM=CP,用等式表示线段AE,GN与BN之间的数量关系,并证明.28.(7分)对于平面直角坐标系xOy中的图形W1和图形W2,给出如下定义:在图形W1上存在两点A,B(点A与点B可以重合),在图形W2上存在两点M,N(点M与点N可以重合),使得AM=2BN,则称图形W1和图形W2满足限距关系.(1)如图1,点C(1,0),D(﹣1,0),E(0,),点P在线段DE上运动(点P 可以与点D,E重合),连接OP,CP.①线段OP的最小值为,最大值为,线段CP的取值范围是;②在点O,点C中,点与线段DE满足限距关系;(2)如图2,⊙O的半径为1,直线y=x+b(b>0)与x轴、y轴分别交于点F,G.若线段FG与⊙O满足限距关系,求b的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两点,分别以H,K为圆心,1为半径作圆得到⊙H和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r 的取值范围.2020年北京市西城区中考数学一模试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)北京大兴国际机场目前是全球建设规模最大的机场,2019年9月25日正式通航,预计到2022年机场旅客吞吐量将达到45000000人次,将45000000用科学记数法表示为()A.45×106B.4.5×107C.4.5×108D.0.45×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:将数据45000000用科学记数法可表示为:4.5×107.故选:B.2.(2分)如图是某个几何体的三视图,该几何体是()A.圆锥B.圆柱C.长方体D.正三棱柱【分析】由主视图和左视图确定是柱体、锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是圆柱.故选:B.3.(2分)下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、不是轴对称图形,是中心对称图形,故此选项不合题意;C、既是轴对称图形又是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:C.4.(2分)在数轴上,点A,B表示的数互为相反数,若点A在点B的左侧,且AB=2,则点A,点B表示的数分别是()A.﹣,B.,﹣C.0,2D.﹣2,2【分析】根据相反数的定义即可求解.【解答】解:由A、B表示的数互为相反数,且AB=2,点A在点B的左边,得点A、B表示的数是﹣,.故选:A.5.(2分)如图,AB是⊙O的直径,C,D是⊙O上的两点.若∠CAB=65°,则∠ADC的度数为()A.65°B.35°C.32.5°D.25°【分析】首先利用直径所对的圆周角是直角确定∠ACB=90°,然后根据∠CAB=65°求得∠ABC的度数,利用同弧所对的圆周角相等确定答案即可.【解答】解:∵AB是直径,∴∠ACB=90°,∵∠CAB=65°,∴∠ABC=90°﹣∠CAB=25°,∴∠ADC=∠ABC=25°,故选:D.6.(2分)甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为甲,乙,射击成绩的方差依次记为s甲2,s乙2,则下列关系中完全正确的是()A.甲=乙,s甲2>s乙2B.甲=乙,s甲2<s乙2C.甲>乙,s甲2>s乙2D.甲<乙,s甲2<s乙2【分析】分别计算平均数和方差后比较即可得到答案.【解答】解:(1)甲=(8×4+9×2+10×4)=9;=(8×3+9×4+10×3)=9;乙s甲2=[4×(8﹣9)2+2×(9﹣9)2+4×(10﹣9)2]=0.8;s乙2=[3×(8﹣9)2+4×(9﹣9)2+3×(10﹣9)2]=0.7;∴甲=乙,s甲2>s乙2,故选:A.7.(2分)如图,在数学实践活动课上,小明同学打算通过测量树的影长计算树的高度.阳光下他测得长1.0m的竹竿落在地面上的影长为0.9m.在同一时刻测量树的影长时,他发现树的影子有一部分落在地面上,还有一部分落在墙面上.他测得这棵树落在地面上的影长BD为2.7m,落在墙面上的影长CD为1.0m,则这棵树的高度是()A.6.0m B.5.0m C.4.0m D.3.0m【分析】根据在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似进而解答即可.【解答】解:根据物高与影长成正比得:,即解得:DE=1.0,则BE=2.7+1.0=3.7米,同理,即:,解得:AB≈4.答:树AB的高度为4米,故选:C.8.(2分)设m是非零实数,给出下列四个命题:①若﹣1<m<0,则<m<m2;②若m>1,则<m2<m;③若m<<m2,则m<0;④若m2<m<,则0<m<1.其中命题成立的序号是()A.①③B.①④C.②③D.③④【分析】判断一个命题是假命题,只需举出一个反例即可.【解答】解:①若﹣1<m<0,则<m<m2;,当m=﹣时,,是真命题;②若m>1,则<m2<m,当m=2时,,原命题是假命题;③若m<<m2,则m<0,当m=﹣时,,原命题是假命题;④若m2<m<,则0<m<1,当m=时,,是真命题;故选:B.二、填空题(本题共16分,每小题2分)9.(2分)若在实数范围内有意义,则x的取值范围是x≥1.【分析】直接利用二次根式有意义的条件进而得出答案.【解答】解:若在实数范围内有意义,则x﹣1≥0,解得:x≥1.故答案为:x≥1.10.(2分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形的边数为6.故答案为:6.11.(2分)已知y是以x为自变量的二次函数,且当x=0时,y的最小值为﹣1,写出一个满足上述条件的二次函数表达式y=x2﹣1.【分析】直接利用二次函数的性质得出其顶点坐标,进而得出答案.【解答】解:∵y是以x为自变量的二次函数,且当x=0时,y的最小值为﹣1,∴二次函数对称轴是y轴,且顶点坐标为:(0,﹣1),故满足上述条件的二次函数表达式可以为:y=x2﹣1.故答案为:y=x2﹣1.12.(2分)如果a2+a=1,那么代数式﹣的值是1.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a2+a的值整体代入即可得.【解答】解:原式=﹣===,当a2+a=1时,原式=1,故答案为:1.13.(2分)如图,在正方形ABCD中,BE平分∠CBD,EF⊥BD于点F.若DE=,则BC的长为.【分析】根据正方形的性质、角平分线的性质及等腰直角三角形的三边比值为1:1:来解答即可.【解答】解:∵四边形ABCD为正方形,∴∠C=90°,∠CDB=45°,BC=CD.∴EC⊥CB.又∵BE平分∠CBD,EF⊥BD,∴EC=EF.∵∠CDB=45°,EF⊥BD,∴△DEF为等腰直角三角形.∵DE=,∴EF=1.∴EC=1.∴BC=CD=DE+EC=+1.故答案为:+1.14.(2分)如图,△ABC的顶点A,B,C都在边长为1的正方形网格的格点上,BD⊥AC 于点D,则AC的长为5,BD的长为3.【分析】根据图形和三角形的面积公式求出△ABC的面积,根据勾股定理求出AC,根据三角形的面积公式计算即可.【解答】解:如图所示:由勾股定理得:AC==5,S△ABC=BC×AE=×BD×AC,∵AE=3,BC=5,即,解得:BD=3.故答案为:5,3.15.(2分)如图,在平面直角坐标系xOy中,点A,B,C的坐标分别是(0,4),(4,0),(8,0),⊙M是△ABC的外接圆,则点M的坐标为(6,6).【分析】由题意得出M在AB、BC的垂直平分线上,则BN=CN,求出ON=OB+BN=6,证△OMN是等腰直角三角形,得出MN=ON=6,即可得出答案.【解答】解:如图所示:∵⊙M是△ABC的外接圆,∴点M在AB、BC的垂直平分线上,∴BN=CN,∵点A,B,C的坐标分别是(0,4),(4,0),(8,0),∴OA=OB=4,OC=8,∴BC=4,∴BN=2,∴ON=OB+BN=6,∵∠AOB=90°,∴△AOB是等腰直角三角形,∵OM⊥AB,∴∠MON=45°,∴△OMN是等腰直角三角形,∴MN=ON=6,∴点M的坐标为(6,6);故答案为:(6,6).16.(2分)某景区为了解游客人数的变化规律,提高旅游服务质量,收集并整理了某月(30天)接待游客人数(单位:万人)的数据,绘制了下面的统计图和统计表.每日接待游客人数(单位:万人)游玩环境评价0≤x<5好5≤x<10一般10≤x<15拥挤15≤x<20严重拥挤根据以上信息,以下四个判断中,正确的是①④(填写所有正确结论的序号).①该景区这个月游玩环境评价为“拥挤或严重拥挤”的天数仅有4天;②该景区这个月每日接待游客人数的中位数在5~10万人之间;③该景区这个月平均每日接待游客人数低于5万人;④这个月1日至5日的五天中,如果某人曾经随机选择其中的两天到该景区游玩,那么他“这两天游玩环境评价均为好”的可能性为.【分析】根据统计图与统计表,结合相关统计或概率知识逐个选项分析即可.【解答】解:①根据题意每日接待游客人数10≤x<15为拥挤,15≤x<20为严重拥挤,由统计图可知,游玩环境评价为“拥挤或严重拥挤”,1日至5日有2天,25日﹣30日有2天,共4天,故①正确;②本题中位数是指将30天的游客人数从小到大排列,第15与第16位的和除以2,根据统计图可知0≤x<5的有16天,从而中位数位于0≤x<5范围内,故②错误;③从统计图可以看出,接近10的有6天,大于10而小于15的有2天,15以上的有2天,10上下的估算为10,则(10×8+15×2﹣5×10)÷16=3.25,可以考虑为给每个0至5的补上3.25,则大部分大于5,而0至5范围内有6天接近5,故平均数一定大于5,故③错误;④由题意可知“这两天游玩环境评价均为好”的可能性为:×=,故④正确.故答案为:①④.三、解答题(本题共68分,第17-21题,每小题5分,第22-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)17.(5分)计算:()﹣1+(1﹣)0+|﹣|﹣2sin60°.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=2+1+﹣2×=3+﹣=3.18.(5分)解不等式组:【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:,由①得:x<4,由②得:x>,则不等式组的解集为<x<4.19.(5分)关于x的一元二次方程x2﹣(2m+1)x+m2=0有两个实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.【分析】(1)先根据方程有两个实数根得出△=[﹣(2m+1)]2﹣4×1×m2>0,解之可得;(2)在以上所求m的范围内取一值,如m=0,再解方程即可得.【解答】解:(1)∵方程有两个实数根,∴△=[﹣(2m+1)]2﹣4×1×m2>0,解得m≥﹣;(2)取m=0,此时方程为x2﹣x=0,∴x(x﹣1)=0,则x=0或x﹣1=0,解得x=0或x=1(答案不唯一).20.(5分)如图,在▱ABCD中,对角线AC,BD交于点O,OA=OB,过点B作BE⊥AC 于点E.(1)求证:▱ABCD是矩形;(2)若AD=2,cos∠ABE=,求AC的长.【分析】(1)根据平行四边形的性质得到OA=OC,OB=OD,求得AC=BD,于是得到结论;(2)根据矩形的性质得到∠BAD=∠ADC=90°,求得∠CAD=∠ABE,解直角三角形即可得到结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴OA=OB=OC=OD,∴AC=BD,∴▱ABCD是矩形;(2)解:∵▱ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠BAC+∠CAD=90°,∵BE⊥AC,∴∠BAC+∠ABE=90°,∴∠CAD=∠ABE,在Rt△ACD中,AD=2,cos∠CAD=cos∠ABE=,∴AC=5.21.(5分)先阅读下列材料,再解答问题.尺规作图已知:△ABC,D是边AB上一点,如图1,求作:四边形DBCF,使得四边形DBCF是平行四边形.小明的做法如下:(1)设计方案先画一个符合题意的草图,如图2,再分析实现目标的具体方法,依据:两组对边分别平行的四边形是平行四边形.(2)设计作图步骤,完成作图作法:如图3,①延长BC至点E;②分别作∠ECP=∠EBA,∠ADQ=∠ABE;③DQ与CP交于点F.∴四边形DBCF即为所求.(3)推理论证证明:∵∠ECP=∠EBA,∴CP∥BA.同理,DQ∥BE.∴四边形DBCF是平行四边形.请你参考小明的做法,再设计一种尺规作图的方法(与小明的方法不同),使得画出的四边形DBCF是平行四边形,并证明.【分析】根据平行四边形的判定方法即可作图并证明.【解答】解:(1)设计方案先画一个符合题意的草图,如图2,再分析实现目标的具体方法,依据:两组对边分别相等的四边形是平行四边形.(2)设计作图步骤,完成作图作法:如图,①以点C为圆心,BC长为半径画弧;②以点D为圆心,BC长为半径画弧,;③两弧交于点F.∴四边形DBCF即为所求.(3)推理论证证明:∵CF=BD,DF=BC.∴四边形DBCF是平行四边形.22.(6分)运用语音识别输入软件可以提高文字输入的速度.为了解A,B两种语音识别输入软件的准确性,小秦同学随机选取了20段话,其中每段话都含100个文字(不计标点符号).在保持相同语速的条件下,他用标准普通话朗读每段话来测试这两种语音识别输入软件的准确性.他的测试和分析过程如下,请补充完整.(1)收集数据两种软件每次识别正确的字数记录如下:A 98 98 92 92 92 92 92 89 89 85 84 84 83 83 79 79 78 78 69 58B 99 96 96 96 96 96 96 94 92 89 88 85 80 78 72 72 71 65 58 55(2)整理、描述数据根据上面得到的两组样本数据,绘制了频数分布直方图:(3)分析数据两组样本数据的平均数、众数、中位数、方差如表所示:平均数众数中位数方差A84.784.588.91B83.796184.01(4)得出结论根据以上信息,判断A种语音识别输入软件的准确性较好,理由如下:∵A种语音的平均数=84.7,B种语音的平均数=83.7,∴A种语音的平均数>B种语音的平均数,故A种语音识别输入软件的准确性较好,∵A种语音的方差=88.91,B种语音的方差=184.01,∴88.91<184,01,∴A种语音识别输入软件的准确性较好.(至少从两个不同的角度说明判断的合理性).【分析】(2)根据题意补全频数分布直方图即可;(3)根据众数和中位数的定义即可得到结论;(4)根据A,B两种语音识别输入软件的准确性的方差的大小即可得到结论.【解答】解:(2)根据题意补全频数分布直方图如图所示;(3)补全统计表;平均数众数中位数方差A84.79284.588.91B83.79688.5184.01(4)A种语音识别输入软件的准确性较好,理由如下:∵A种语音的平均数=84.7,B种语音的平均数=83.7,∴A种语音的平均数>B种语音的平均数,故A种语音识别输入软件的准确性较好,∵A种语音的方差=88.91,B种语音的方差=184.01,∴88.91<184,01,∴A种语音识别输入软件的准确性较好.故答案为:A,∵A种语音的平均数=84.7,B种语音的平均数=83.7,∴A种语音的平均数>B种语音的平均数,故A种语音识别输入软件的准确性较好,∵A种语音的方差=88.91,B种语音的方差=184.01,∴88.91<184,01,∴A种语音识别输入软件的准确性较好.23.(6分)如图,四边形OABC中,∠OAB=90°,OA=OC,BA=BC.以O为圆心,以OA为半径作⊙O.(1)求证:BC是⊙O的切线;(2)连接BO并延长交⊙O于点D,延长AO交⊙O于点E,与BC的延长线交于点F,若=,①补全图形;②求证:OF=OB.【分析】(1)连接AC,根据等腰三角形的性质得到∠OAC=∠OCA,∠BAC=∠BCA,得到∠OCB=∠OAB=90°,根据切线的判定定理证明;(2)①根据题意画出图形;②根据切线长定理得到BA=BC,得到BD是AC的垂直平分线,根据垂径定理、圆心角和弧的关系定理得到∠AOC=120°,根据等腰三角形的判定定理证明结论.【解答】(1)证明:如图1,连接AC,∵OA=OC,∴∠OAC=∠OCA,∵BA=BC,∴∠BAC=∠BCA,∴∠OAC+∠BCA=∠OCA+∠BCA,即∠OCB=∠OAB=90°,∴OC⊥BC,∴BC是⊙O的切线;(2)①解:补全图形如图2;②证明:∵∠OAB=90°,∴BA是⊙O的切线,又BC是⊙O的切线,∴BA=BC,∵BA=BC,OA=OC,∴BD是AC的垂直平分线,∴=,∵=,∴==,∴∠AOC=120°,∴∠AOB=∠COB=∠COE=60°,∴∠OBF=∠F=30°,∴OF=OB.24.(6分)如图,在△ABC中,AB=4cm,BC=5cm.P是上的动点,设A,P两点间的距离为xcm,B,P两点间的距离为y1cm,C,P两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm012342.130y1/cm 4.00 3.69 3.09(答案不唯一)y2/cm 3.00 3.91 4.71 5.235(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),点(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,①当△PBC为等腰三角形时,AP的长度约为0.83或2.49(答案不唯一)cm;②记所在圆的圆心为点O,当直线PC恰好经过点O时,PC的长度约为 5.32(答案不唯一)cm.【分析】(1)利用图象法解决问题即可;(2)描点绘图即可;(3)①分PB=PB、PC=BC、PB=BC三种情况,分别求解即可;②当直线PC恰好经过点O时,PC的长度取得最大值,观察图象即可求解.【解答】解:(1)由画图可得,x=4时,y1≈3.09cm(答案不唯一).故答案为:3.09(答案不唯一).(2)描点绘图如下:(3)①由y1与y2的交点的横坐标可知,x≈0.83cm时,PC=PB,当x≈2.49cm时,y2=5cm,即PC=BC,观察图象可知,PB不可能等于BC,故答案为:0.83或2.49(答案不唯一).②当直线PC恰好经过点O时,PC的长度取得最大值,从图象看,PC=y2≈5.32cm,故答案为5.32(答案不唯一).25.(5分)在平面直角坐标系xOy中,直线l1:y=kx+2k(k>0)与x轴交于点A,与y轴交于点B,与函数y=(x>0)的图象的交点P位于第一象限.(1)若点P的坐标为(1,6),①求m的值及点A的坐标;②=;(2)直线l2:y=2kx﹣2与y轴交于点C,与直线l1交于点Q,若点P的横坐标为1,①写出点P的坐标(用含k的式子表示);②当PQ≤P A时,求m的取值范围.【分析】(1)①把P(1,6)代入函数y=(x>0)即可求得m的值,直线l1:y=kx+2k (k>0)中,令y=0,即可求得x的值,从而求得A的坐标;②把P的坐标代入y=kx+2k即可求得k的值,进而求得B的坐标,然后根据勾股定理求得PB和P A,即可求得的值;(2)①把x=1代入y=kx+2k,求得y=3k,即可求得P(1,3k);②分别过点P、Q作PM⊥x轴于M,QN⊥x轴于N,则点M、点N的横坐标1,2+,若PQ=P A,则=1,根据平行线分线段成比例定理则==1,得出MN=MA=3,即可得到2+﹣1=3,解得k=1,根据题意即可得到当=≤1时,k≥1,则m =3k≥3.【解答】解:(1)①令y=0,则kx+2k=0,∵k>0,解得x=﹣2,∴点A的坐标为(﹣2,0),∵点P的坐标为(1,6),∴m=1×6=6;②∵直线l1:y=kx+2k(k>0)函数y=(x>0)的图象的交点P,且P(1,6),∴6=k+2k,解得k=2,∴y=2x+4,令x=0,则y=4,∴B(0,4),∵点A的坐标为(﹣2,0),∴P A==,PB==,∴==,故答案为;(2)①把x=1代入y=kx+2k得y=3k,∴P(1.3k);②由题意得,kx+2k=2kx﹣2,解得x=2+,∴点Q的横坐标为2+,∵2+>1(k>0),∴点Q在点P的右侧,如图,分别过点P、Q作PM⊥x轴于M,QN⊥x轴于N,则点M、点N的横坐标1,2+,若PQ=P A,则=1,∴==1,∴MN=MA,∴2+﹣1=3,解得k=1,∵MA=3,∴当=≤1时,k≥1,∴m=3k≥3,∴当PQ≤P A时,m≥3.26.(6分)已知抛物线y=ax2+bx+a+2(a≠0)与x轴交于点A(x1,0),点B(x2,0)(点A在点B的左侧),抛物线的对称轴为直线x=﹣1.(1)若点A的坐标为(﹣3,0),求抛物线的表达式及点B的坐标;(2)C是第三象限的点,且点C的横坐标为﹣2,若抛物线恰好经过点C,直接写出x2的取值范围;(3)抛物线的对称轴与x轴交于点D,点P在抛物线上,且∠DOP=45°,若抛物线上满足条件的点P恰有4个,结合图象,求a的取值范围.【分析】(1)抛物线的对称轴为x=﹣1=﹣,求出b=2a,将点A的坐标代入抛物线的表达式,即可求解;(2)点C在第三象限,即点A在点C和函数对称轴之间,故﹣2<x1<﹣1,即可求解;(3)满足条件的P在x轴的上方有2个,在x轴的下方也有2个,则抛物线与y轴的交点在x轴的下方,即可求解.【解答】解:(1)抛物线的对称轴为x=﹣1=﹣,解得:b=2a,故y=ax2+bx+a+2=a(x+1)2+2,将点A的坐标代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣(x+1)2+2=﹣x2﹣x+;令y=0,即﹣x2﹣x+=0,解得:x=﹣3或1,故点B的坐标为:(1,0);(2)由(1)知:y=a(x+1)2+2,点C在第三象限,即点C在点A的下方,即点A在点C和函数对称轴之间,故﹣2<x1<﹣1,而(x1+x2)=﹣1,即x2=﹣2﹣x1,故﹣1<x2<0;(3)∵抛物线的顶点为(﹣1,2),∴点D(﹣1,0),∵∠DOP=45°,若抛物线上满足条件的点P恰有4个,∴抛物线与x轴的交点在原点的左侧,如下图,∴满足条件的P在x轴的上方有2个,在x轴的下方也有2个,则抛物线与y轴的交点在x轴的下方,当x=0时,y=ax2+bx+a+2=a+2<0,解得:a<﹣2,故a的取值范围为:a<﹣2.27.(7分)如图,在等腰直角△ABC中,∠ACB=90°.点P在线段BC上,延长BC至点Q,使得CQ=CP,连接AP,AQ.过点B作BD⊥AQ于点D,交AP于点E,交AC于点F.K是线段AD上的一个动点(与点A,D不重合),过点K作GN⊥AP于点H,交AB于点G,交AC于点M,交FD的延长线于点N.(1)依题意补全图1;(2)求证:NM=NF;(3)若AM=CP,用等式表示线段AE,GN与BN之间的数量关系,并证明.【分析】(1)根据题意补全图1即可;(2)根据等腰三角形的性质得到AP=AQ,求得∠APQ=∠Q,求得∠MFN=∠Q,同理,∠NMF=∠APQ,等量代换得到∠MFN=∠FMN,于是得到结论;(3)连接CE,根据线段垂直平分线的性质得到AP=AQ,求得∠P AC=∠QAC,得到∠CAQ=∠QBD,根据全等三角形的性质得到CP=CF,求得AM=CF,得到AE=BE,推出直线CE垂直平分AB,得到∠ECB=∠ECA=45°,根据全等三角形的性质即可得到结论.【解答】解:(1)依题意补全图1如图所示;(2)∵CQ=CP,∠ACB=90°,∴AP=AQ,∴∠APQ=∠Q,∵BD⊥AQ,∴∠QBD+∠Q=∠QBD+∠BFC=90°,∴∠Q=∠BFC,。

2020年北京市中考数学模拟试卷及答案解析

2020年北京市中考数学模拟试卷及答案解析

2020年北京市中考数学模拟试卷一、选择题(每题5分,共30分)1.(5分)2019年2月,美国宇航局(NASA)的卫星监测数据显示地球正在变绿,分析发现是中国和印度的行为主导了地球变绿,尽管中国和印度的土地面积加起来只占全球的9%,但过去20年间地球三分之一的新增植被两国贡献的,面积相当于一个亚马逊雨林,已知亚马逊雨林的面积为6560000m2,则过去20年间地球新增植被的面积约为()A.6.56×106m2B.6.56×107m2C.2×107m2D.2×108m22.(5分)下列运算正确的是()A.2a+3b=5ab B.a1•a4=a6C.(a2b)3=a6b3D.(a+2)2=a2+43.(5分)若﹣1<x<0,则﹣=()A.2x+1B.1C.﹣2x﹣1D.﹣2x+14.(5分)一个试验室在0:00﹣4:00的温度T(单位:℃)与时间t(单位:h)的函数关系的图象如图所示,在0:00﹣2:00保持恒温,在2:00﹣4:00匀速升温,则开始升温后试验室每小时升高的温度为()A.5℃B.10℃C.20℃D.40℃5.(5分)代数式x2﹣4x+5的最小值是()A.﹣1B.1C.2D.56.(5分)以方程组的解为坐标,点(x,y)在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(每题5分,共30分)7.(5分)如果二次根式有意义,那么x的取值范围是.8.(5分)分解因式:2x2﹣18=.9.(5分)当a取时,一次函数y=3x+a+6与y轴的交点在x轴下方.(在横线上填上一个你认为恰当的数即可)10.(5分)一次函数y=kx+b的图象经过第一、二、三象限且经过(0,2)点.任写一个满足上述条件的一次函数的表达式是.11.(5分)如图1,将边长为a的大正方形剪去一个边长为b的小正方形并沿图中的虚线剪开,拼接后得到图2,这种变化可以用含字母a,b的等式表示为.12.(5分)抛物线y=x2﹣6x+5的顶点坐标为.三、解答题(共40分)13.计算:()﹣2+|﹣2|﹣(3﹣π)0﹣3tan30°.14.解下列方程(组)或不等式组:(1)解方程组(2)解分式方程+1=:(3)求不等式组的整数解.15.已知x2﹣2x﹣1=0.求代数式(x﹣1)2+x(x﹣4)+(x﹣2)(x+2)的值.16.关于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有两个实数根.(1)求m的取值范围;(2)若m为正整数,求此方程的根.17.在平面直角坐标系xOy中,直线y=x+b与双曲线y=的一个交点为A(m,2),与y轴分别交于点B.(1)求m和b的值;(2)若点C在y轴上,且△ABC的面积是2,请直接写出点C的坐标.。

2020年北京市东城区中考数学一模试卷(含答案解析)

2020年北京市东城区中考数学一模试卷(含答案解析)

2020年北京市东城区中考数学一模试卷一、选择题(本大题共7小题,共14.0分)1.如图,点A,B在数轴上对应的实数分别为m,n,则A,B间的距离是()A. m+nB. m−nC. n−mD. |m+n|2. 6.数轴上分别有A、B、C三个点,对应的实数分别为a、b、c且满足,|a|>|c|,b⋅c<0,则原点的位置()A. 点A的左侧B. 点A点B之间C. 点B点C之间D. 点C的右侧3.如图,等边三角形ABC内接于⊙O,若⊙O的半径为2,则图中阴影部分的面积等于()A. π3B. 2π3C. 4π3D. 2π4.如图,把△ABC经过一定的变化得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A. (−x,y−2)B. (−x+2,y+2)C. (−x+2,−y)D. (−x,y+2)5.甲、乙两个工程队进行污水管道整修,已知乙比甲每天多修3km,甲整修6km的工作时间与乙整修8km的工作时间相等,求甲、乙两个工程队每天分别整修污水管道多少km?设甲每天整修xkm,则可列方程为()A. 6x−3=8xB. 6x=8x+3C. 6x+3=8xD. 6x=8x−36.四张质地、大小、背面完全相同的卡片上,正面分别画有正方体、圆锥、圆柱和球四个图案,现把它们正面朝下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是柱体的概率是()A. 1B. 12C. 14D. 347.如图1为某立交桥示意图(道路宽度忽略不计),A−F−G−J为高架,以O为圆心的圆盘B−C−D−E位于高架下方,其中AB,AF,CH,DI,EJ,GJ为直行道,且AB=CH=DI=EJ,AF=GJ,弯道FG是以点O为圆心的圆上的一段弧(立交桥的上下高度差忽略不计),点B,C,D,E是圆盘O的四等分点.某日凌晨,有甲、乙、丙、丁四车均以10m/s的速度由A口驶入立交桥,并从出口驶出,若各车到圆心O的距离y(m)与从A口进入立交后的时间x(s)的对应关系如图2所示,则下列说法错误的是()A. 甲车在立交桥上共行驶10sB. 从I口出立交的车比从H口出立交的车多行驶30mC. 丙、丁两车均从J口出立交D. 从J口出立交的两辆车在立交桥行驶的路程相差60m二、填空题(本大题共8小题,共16.0分)8.若式子√2x−5在实数范围内有意义,则x的取值为______.9.因式分解:2a2−8a+8=______.10. 一个多边形的边数是10,则这个多边形的内角和是______°. 11. 计算:1xy ÷(1y −1x )=______.12. 如图△ABC 中,∠C =90°,D 、E 分别是BC 、AB 上两点,DE//AC ,BD =2,CD =1,∠BED =30°,则AE 的长为______.13. 将一次函数y =3x −1的图象沿y 轴向上平移3个单位后,得到的图象对应的函数关系式为___________.14. 甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:甲:9、5、7、8、7、6、8、6、7、7;乙:7、8、6、8、6、5、9、10、7、4经过计算,两人射击环数的平均数均为7,S 甲2=1.2,S 乙2=______,因为S 甲2______S 乙2,所以______的成绩更稳定.15. 已知⊙O 的半径是4,则该圆的内接正方形的边长是______ . 三、计算题(本大题共3小题,共17.0分)16. 计算:4sin60°−|3−√12|+(12)−1−(2018−π)017. 解不等式组{3(x −1)≤5x +12x <9−x 4并写出它的所有整数解.18.已知抛物线y=mx2+(3−2m)x+m−2(m≠0)与x轴有两个不同的交点.(1)求m的取值范围;(2)判断点P(1,1)是否在抛物线上;(3)当m=1时,求抛物线的顶点Q的坐标.四、解答题(本大题共9小题,共51.0分)19.22.如图1,已知ΔABC中,点D在AB边上,DE//BC交边AC于点E,且DE平分∠ADC.(1)求证:DB=DC;(2)如图2,在BC边上取点F,使∠DFC=60∘,若BC=7,BF=2,求DF的长。

2020年北京市中考数学一模试卷 (含解析)

2020年北京市中考数学一模试卷 (含解析)

2020年北京市中考数学一模试卷一、选择题(本大题共8小题,共16.0分)1.图中三视图对应的几何体是()A. B.C. D.2.2013年12月2日,“嫦娥三号”从西昌卫星发射中心发射升空,并于12月14日在月球上成功实施软着陆.月球距离地球平均为38万公里,将数38万用科学记数法表示,其结果()A. 3.8×104B. 38×104C. 3.8×105D. 3.8×1063.如图,直线AB、CD相交于点O,若∠1+∠2=100°,则∠1等于()A. 30°B. 40°C. 50°D. 60°4.下列图形中,既是轴对称图形又是中心对称图形的有()个A. 0B. 1C. 2D. 35.八边形的外角和等于()。

A. 180ºB. 360ºC. 1080ºD. 1440º6.实数m,n在数轴上对应点的位置如图所示,则下列判断正确的是()A. |m|<1B. 1−m>1C. mn>0D. m+1>07.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字−1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A. 18B. 16C. 14D. 128.有一个安装有进出水管的30升容器,水管每单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据下图信息给出下列说法:①每分钟进水5升;②当4≤x≤12时,容器中水量在减少;③若12分钟后只放水,不进水,还要8分钟可以把水放完;④若从一开始进出水管同时打开需要24分钟可以将容器灌满.以上说法中正确的有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共8小题,共16.0分)9.8.若代数式1+1在实数范围内有意义,则实数x的取值范围为____.x−110.已知关于x的方程x2−2(m+1)x+m2−3=0,当m取______时,方程有两个相等的实数根.11. 已知k 为整数,且满足√6<k <√10,则k 的值是______. 12. 方程组{x +y =16,5x +3y =72的解是______.13. 如图,双曲线y =kx 于直线y =−12x 交于A 、B 两点,且A(−2,m),则点B 的坐标是______.14. 如图1,△ABC 中,AD 是∠BAC 的平分线,若AB =AC +CD ,那么∠ACB 与∠ABC 有怎样的数量关系?小明通过观察分析,形成了如下解题思路:如图2,延长AC 到E ,使CE =CD ,连接DE.由AB =AC +CD ,可得AE =AB.又因为AD 是∠BAC 的平分线,可得△ABD≌△AED ,进一步分析就可以得到∠ACB 与∠ABC 的数量关系. (1)判定△ABD 与△AED 全等的依据是______; (2)∠ACB 与∠ABC 的数量关系为:______.15. 如图,是大小相等的边长为1的正方形构成的网格,A ,B ,C ,D 均为格点.则△ACD 的面积为______.16.某旅行团在一城市游览,有甲、乙、丙、丁四个景点,导游说:“①甲、乙要么都去,要么都不去;②乙、丙只能去一个;③丙、丁要么都去,要么都不去.”根据导游的说法,在下列选项中,该旅行团可能游览的景点是()A.甲、丙B.甲、丁C.乙、丁D.丙、丁三、解答题(本大题共12小题,共68.0分)17.计算:|−2|−3−1+sin30°+√16.18.解不等式组:{2x−3>1 2−x3>x3−2.19.化简求值:已知x2−2x=2,求代数式(x−1)2+(x+3)(x−3)+(x−3)(x−1)的值.20.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于E,连结AC、OC、BC.求证:∠ACO=∠BCD.21.如图,在菱形ABCD中,对角线AC、BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若BF=8,DF=4,求CD的长.x,且经过点A(2,3),与22.在平面直角坐标系xOy中(如图),已知一次函数的图象平行于直线y=12x轴交于点B.(1)求这个一次函数的解析式;(2)设点C在y轴上,当AC=BC时,求点C的坐标.23.如图,AB是⊙O的直径,CB与⊙O相切于点B.点D在⊙O上,且BC=BD,连接CD交⊙O于点E.过点E作EF⊥AB于点H,交BD于点M,交⊙O于点F.(1)求证:∠MED=∠MDE.(2)连接BE,若ME=3,MB=2.求BE的长.24.已知关于x的一次函数y=mx−3m2+12,请按要求解答问题:(1)m为何值时,函数图象过原点,且y随x的增大而减小?(2)若函数图象平行于直线y=−x,求一次函数的表达式;(3)若点(0,−15)在函数图象上,求m的值.25.某射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了8次测试,测试成绩(单位:环)如下表:(1)根据表格中的数据,计算出甲的平均成绩是______ 环,乙的平均成绩是______ 环;(2)分别计算甲、乙两名运动员8次测试成绩的方差;(3)根据(1)(2)计算的结果,你认为推荐谁参加全国比赛更合适,并说明理由.26.在平面直角坐标系xOy中,抛物线y=ax2+bx+3a过点A(−1,0).(1)求抛物线的对称轴;(2)直线y=x+4与y轴交于点B,与该抛物线对称轴交于点C.如果该抛物线与线段BC有交点,结合函数的图象,求a的取值范围;(3)在(2)的条件下,抛物线与线段BC的交点记为D,若D为线段BC的三等分点,求出a的值.27.如图,已知AB=12,AB⊥BC于点B,AB⊥AD于点A,AD=5,BC=10,点E是CD的中点,求AE的长.28.在平面直角坐标系xOy中,⊙O的半径为1,P是坐标系内任意一点,点P到⊙O的距离S P的定义如下:若点P与圆心O重合,则S P为⊙O的半径长;若点P与圆心O不重合,作射线OP交⊙O于点A,则S P为线段AP的长度.图1为点P在⊙O外的情形示意图.),则S B=______;S C=______;S D=______;(1)若点B(1,0),C(1,1),D(0,13(2)若直线y=x+b上存在点M,使得S M=2,求b的取值范围;(3)已知点P,Q在x轴上,R为线段PQ上任意一点.若线段PQ上存在一点T,满足T在⊙O内且S T≥S R,直接写出满足条件的线段PQ长度的最大值.【答案与解析】1.答案:C解析:本题考查三视图,用到的知识点为:由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.由主视图和左视图可得此几何体为下部是柱体,根据俯视图可判断出此上面是圆台,由此即可得出结论.解:从主视图推出这两个几何体接触部分的宽度相同,从俯视图推出下面是圆柱体,上面是圆台.由此可以判断对应的几何体是C.故选C.2.答案:C解析:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:38万=3.8×105.故选:C.3.答案:C解析:解:∵∠1+∠2=100°且∠1=∠2,∴∠1=∠2=50°,故选:C.由∠1+∠2=100°且∠1=∠2可得答案.本题主要考查对顶角的概念,解题的关键是掌握对顶角相等这一性质.4.答案:C解析:此题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.根据轴对称图形与中心对称图形的概念分别分析得出答案.解:等边三角形是轴对称图形,不是中心对称图形,正五边形是轴对称图形,不是中心对称图形,正方形和正六边形既是轴对称图形又是中心对称图形,故选:C.5.答案:B解析:本题主要考查的是多边形的外角和的有关知识,由题意利用多边形的外角和等于360°直接求解即可.解:八边形的外角和为360°.故选B.6.答案:B解析:本题考查了实数与数轴:数轴上的点与实数一一对应;右边的数总比左边的数大.利用数轴表示数的方法得到m<0<1<n,|m|>1,然后对各选项进行判断.解:利用数轴得m<0<1<n,|m|>1,所以−m>0,1−m>1,mn<0,m+1<0.故选B.7.答案:C解析:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,解题时注意:概率=所求情况数与总情况数之比.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案.解:画树状图如下:∵共有16种等可能的结果,两个数字都是正数的有4种情况,∴记录的两个数字都是正数的概率是416=14.故选C.8.答案:C解析:本题考查了一次函数的图象,正确理解图象中表示的实际意义是关键.根据图象可以得到单独打开进水管4分钟注水20升,而同时打开放水管,8分钟内放进10升水,据此即可解答.解:①每分钟进水204=5(升),则①正确;②当4≤x≤12时,y随x的增大而增大,因而容器中水量在增加,则②错误;③每分钟放水5−30−2012−4=5−1.25=3.75(升),则放完水需要303.75=8(分钟),故③正确;④同时打开进水管和放水管,每分钟进水30−2012−4=1.25(升),则同时打开将容器灌满需要的时间是301.25=24(分钟),④正确.故选C.9.答案:x≠1解析:根据分式有意义的条件解答即可.【详解】∵1+1在实数范围内有意义,x−1∴x−1≠0,解得:x≠1.故答案为:x≠1本题考查分式有意义的条件,要使分式有意义,分母不为0.10.答案:−2解析:解:∵关于x的方程x2−2(m+1)x+m2−3=0有两个相等的实数根,∴△=[−2(m+1)]2−4×1×(m2−3)=8m+16=0,解得:m=−2.故答案为:−2.根据方程的系数结合根的判别式△=0,即可得出关于m的一元一次方程,解之即可得出结论.本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.11.答案:3解析:本题考查了估算无理数的大小和实数的大小比较,能估算出√6和√10的范围是解此题的关键.先估算出√6和√10的范围,再得出答案即可.解:∵2<√6<3,3<√10<4,∴整数k =3,故答案为3.12.答案:{x =12y =4解析:解:{ x +y =16 ①5x +3y =72 ②②−3×①,得2x =24,∴x =12.把x =12代入①,得12+y =16,∴y =4.∴原方程组的解为{x =12y =4. 故答案为:{x =12y =4. 用代入法或加减法求解二元一次方程组即可.本题考查的是二元一次方程的解法.掌握二元一次方程组的代入法、加减法是解决本题的关键. 13.答案:(2,−1)解析:【试题解析】解:当x =−2时,y =−12×(−2)=1,即A(−2,1),由正比例函数与反比例函数图象交点关于原点对称,∴B(2,−1),故答案为:(2,−1).本题考查了反比例函数与一次函数的交点问题,由正比例函数与反比例函数图象交点关于原点对称即可得解.根据自变量的值,可得相应的函数值,即得A 点坐标,由正比例函数与反比例函数图象交点关于原点对称,即可得出答案.14.答案:(1)SAS ;(2)∠ACB=2∠ABC解析:本题考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的性质是解题的关键.(1)根据已知条件即可得到结论;(2)根据全等三角形的性质和等腰三角形的性质即可得到结论.解:(1)SAS;(2)∵△ABD≌△AED,∴∠B=∠E,∵CD=CE,∴∠CDE=∠E,∴∠ACB=2∠E,∴∠ACB=2∠ABC.故答案为:SAS,∠ACB=2∠ABC.15.答案:52解析:解:由题意S△ADC=12×5×1=52,故答案为52.利用三角形的面积公式计算即可.本题考查三角形的面积,解题的关键是看清楚题意,熟练掌握基本知识.16.答案:D解析:此题主要考查了推理与论证,关键是正确分情况,进行讨论.根据导游说的分两种情况进行分析:①甲、乙要么都去,要么都不去;②乙、丙只能去一个;③丙、丁要么都去,要么都不去;然后分析可得答案.解:导游说:“①甲、乙要么都去,要么都不去;②乙、丙只能去一个;③丙、丁要么都去,要么都不去.”,①假设甲、乙要么都去,要么都不去,因此可以去甲、乙或丙、丁;②假设乙、丙只能去一个,因此可以去甲、乙或丙、丁;③假设丙、丁要么都去,要么都不去,因此可以去甲、乙或丙、丁.综上所述,该旅行团可能游览的景点是甲、乙或丙、丁.故选D.17.答案:解:原式=2−13+12+4=376.解析:直接利用负指数幂的性质以及特殊角的三角函数值和二次根式的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.答案:解:解不等式2x−3>1,得:x>2,解不等式2−x3>x3−2,得:x<4,∴不等式组的解集为2<x<4解析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.答案:解:(x−1)2+(x+3)(x−3)+(x−3)(x−1)=x2−2x+1+x2−9+x2−3x−x+3=3x2−6x−5当x2−2x=2时,原式=3(x2−2x)−5=3×2−5=1.解析:此题考查整式的混合运算,化简求值.先利用多项式乘以多项式法则,平方差公式,完全平方公式去括号,再合并同类项,最后把x2−2x=2整体代入计算即可.20.答案:证明:∵AB是⊙O的直径,CD⊥AB,∴BC⏜=BD⏜,∴∠A=∠BCD,又∵OA=OC,∴∠ACO=∠A.∴∠ACO=∠BCD.解析:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.先根据垂径定理得到BC⏜=BD⏜,再根据圆周角定理得到∠A=∠BCD,加上∠ACO=∠A.然后利用等量代换得到结论.21.答案:(1)证明:∵在菱形ABCD中,∴AD//BC且AD=BC,∵BE=CF,∴BC=EF,∴AD=EF,∵AD//EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴四边形AEFD是矩形;(2)解:设BC=CD=x,则CF=8−x,在Rt△DCF中,∵CF2+DF2=CD2,∴x2=(8−x)2+42 ,∴x=5,∴CD=5.解析:本题考查了矩形的判定和性质,菱形的性质,勾股定理,正确的识别图形是解题的关键.(1)根据菱形的性质得到AD//BC且AD=BC,由CF=BE等量代换证明AD=EF,推出四边形AEFD 是平行四边形,根据矩形的判定定理即可得到结论;(2)设BC=CD=x,则CF=8−x,根据勾股定理即可得到结论.22.答案:解:(1)设一次函数的解析式为:y=kx+b,∵一次函数的图象平行于直线y=12x,∴k=12,∵一次函数的图象经过点A(2,3),∴3=12×2+b,∴b=2,∴一次函数的解析式为y=12x+2;(2)由y=12x+2,令y=0,得12x+2=0,∴x=−4,∴一次函数的图形与x轴的解得为B(−4,0),∵点C在y轴上,∴设点C的坐标为(0,y),∵AC=BC,∴√(2−0)2+(3−y)2=√(−4−0)2+(0−y)2,∴y=−12,经检验:y=−12是原方程的根,∴点C的坐标是(0,−12).解析:(1)设一次函数的解析式为y=kx+b,解方程即可得到结论;(2)求得一次函数的图形与x轴的解得为B(−4,0),根据两点间的距离公式即可得到结论.本题考查了两直线相交与平行问题,待定系数法求函数的解析式,正确的理解题意是解题的关键.23.答案:(1)证明:∵CB与⊙O相切于点B,∴OB⊥BC,∵EF⊥AB,∴EF//BC,∴∠DEM=∠C,∵BC=BD,∴∠C=∠MDE,∴∠MED=∠MDE;(2)∵EF⊥AB,AB是⊙O的直径,∴BE⏜=BF⏜,∴∠D=∠BEF,∵∠EBM=∠DBE,△BEM∽△BDE,∴BEBM =BDBE,即BE2=BM⋅BD,∵BM=2,ME=3,BD=5,∴BE=√10.解析:(1)由题意得EF//BC,则∠C=∠DEM,又∠C=∠MDE,则结论得证;(2)连BE,BE⏜=BF⏜,可得∠BEF=∠D,可证△BEM∽△BDE,则BE2=BM⋅BD,可求BE的长.本题考查了等腰三角形的判定与性质,垂径定理,圆周角定理,切线的性质,相似三角形的判定与性质,勾股定理等知识点,能综合运用知识点进行推理是解此题的关键.24.答案:解:(1)∵一次函数y=mx−3m2+12,函数图象过原点,且y随x的增大而减小,∴{m<0−3m2+12=0解得,m=−2,即当m=−2时,函数图象过原点,且y随x的增大而减小;(2)∵一次函数y=mx−3m2+12,函数图象平行于直线y=−x,∴m=−1,∴−3m2+12=−3×(−1)2+12=9,∴一次函数解析式是y=−x+9;(3)∵一次函数y=mx−3m2+12,点(0,−15)在函数图象上,∴m×0−3m2+12=−15,解得,m=±3,即m的值是±3.解析:本题考查一次函数的性质,解题的关键是明确一次函数的性质,根据题目中的条件解决问题.(1)根据函数图象过原点,且y随x的增大而减小,可知m<0,−3m2+12=0,该函数为正比例函数;(2)根据函数图象平行于直线y=−x,可知m=−1,从而可以得到一次函数解析式;(3)根据点(0,−15)在函数图象上,可以得到关于m的方程,从而可以得到m的值.25.答案:(1)9;9[(10−9)2+(8−9)2+(9−9)2+(8−9)2+(10−9)2+(9−9)2+(10−9)2+ (2)甲的方差为:18(8−9)2]=0.75,[(10−9)2+(7−9)2+(10−9)2+(10−9)2+(9−9)2+(8−9)2+(8−9)2+乙的方差为:18(10−9)2]=1.25.(3)∵0.75<1.25,∴甲的方差小,∴甲比较稳定,故选甲参加全国比赛更合适.×(10+8+9+8+10+9+10+8)=9,解析:解:(1)甲的平均成绩为:18×(10+7+10+10+9+8+8+10)=9,乙的平均成绩为:18故答案为:9;9;(2)见答案;(3)见答案.(1)根据平均数的计算公式计算即可;(2)利用方差公式计算;(3)根据方差反映了一组数据的波动大小,方差越大,波动性越大解答即可.[(x1−本题考查的是方差的概念和性质,一般地设n个数据,x1,x2,…x n的平均数为x,方差S2=1nx)2+(x2−x)2+⋯+(x n−x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.26.答案:解:(1)把A(−1,0)代入得b=4a所以对称轴为x=−2;(2)把b=4a代入解析式得y=a(x+1)(x+3),则抛物线过(−1,0)(−3,0)两点,当a>0时,x=0代入得y=3a>4,所以a>43,当a<0时,x=−2代入得y=−a>2,所以a<−2,综上,a>43或a<−2;(3)B(0,4),C(−2,2),当a>0时,D(−23,103)则a=307,当a<0时,D(−43,83)则a=−245.解析:本题考查了二次函数的性质以及解一元一次不等式,解题的关键是熟练掌握一元一次不等式,待定系数法求抛物线解析式,此题属于中档题,但实际知识点较多,需要对二次函数足够了解才能快捷的解题.(1)根据坐标轴上点的坐标特征代入点A坐标,得出b=4a,则解析式为y=a(x+1)(x+3),进一步得出对称轴;(2)结合图形,分两种情况:①a>0;②a<0;进行讨论即可求解;(3)求出B(0,4),C(−2,2),分两种情况:①a>0;②a<0;进行讨论即可求解.27.答案:解:延长AE交BC于F,∵AB⊥BC,AB⊥AD,∴AD//BC,∴∠D=∠C,∠DAE=∠CFE,又∵点E是CD的中点,∴DE=CE,∵在△AED与△FEC中,{∠D=∠C∠DAE=∠CFE DE=CE,∴△AED≌△FEC(AAS),∴AE=FE,AD=FC,∵AD=5,BC=10,∴BF=5,在Rt△ABF中,AF=√AB2+BF2=√122+52=13,∴AE=12AF=6.5.解析:本题主要考查的是平行线的性质,平行线的判定,全等三角形的判定及性质,勾股定理等有关知识.延长AE交BC于F,利用全等三角形的判定及性质得到AE=FE,AD=FC,然后利用勾股定理求出AF,进而求出此题的答案.28.答案:(1)0,√2−1,23;(2)设直线y=x+b与分别与x轴、y轴交于F、E,作OG⊥EF于G,∵∠FEO=45°,∴OG=GE,当OG=3时,GE=3,由勾股定理得,OE=3√2,此时直线的解析式为:y=x+3√2,∴直线y=x+b上存在点M,使得S M=2,b的取值范围是−3√2≤b≤3√2;(3)∵T在⊙O内,∴S T≤1,∵S T≥S R,∴S R≤1,∴线段PQ长度的最大值为1+2+1=4.解析:解:(1)∵点B(1,0),∴S B=0,∵C(1,1),∴S C=√2−1,),∵D(0,13∴S D=2,3;故答案为:0;√2−1;23(2)见答案;(3)见答案.(1)根据点的坐标和新定义解答即可;(2)根据直线y=x+b的特点,结合S M=2,根据等腰直角三角形的性质解答;(3)根据T在⊙O内,确定S T的范围,根据给出的条件、结合图形求出满足条件的线段PQ长度的最大值.本题考查的是等腰直角三角形的性质、新定义、点与圆的位置关系,正确理解点P到⊙O的距离S P的定义、灵活运用数形结合思想是解题的关键.。

2020年北京市中考数学模拟试题与答案

2020年北京市中考数学模拟试题与答案

2020年北京市中考数学模拟试题与答案(试卷满分120分,考试时间120分钟)一、选择题(本题共12小题。

每小题3分,共36分。

在每小题给出的四个选项中,只有一项是正确的。

)1.﹣8的相反数是( )A .﹣8B .C .8D .﹣ 2.计算232(3)x x ⋅-的结果是( )A .56x - B .56x C .62x - D .62x 3.一个多边形的内角和是720°,这个多边形的边数是( ) A .6B .7C .8D .94. 在一个不透明的口袋中装有5张完全相同的卡片,卡片上面分别写有数字-2.-1.0、1.3,从中机抽出一张卡片,卡片上面的数字是负数的概率为( ) A.0.8 B.0.6 C.0.4 D.0.25.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为( ) A .44×108B .4.4×109C .4.4×108D .4.4×10106. 过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为( )7.如(x +a )与(x +3)的乘积中不含x 的一次项,则a 的值为( ) A .3B .﹣3C .1D .﹣18.如图,某电信公司提供了A ,B 两种方案的移动通讯费用y (元)与通话时间x (元)之间的关系,则下列结论中正确的有( )(1)若通话时间少于120分,则A方案比B方案便宜20元;(2)若通话时间超过200分,则B方案比A方案便宜12元;(3)若通讯费用为60元,则B方案比A方案的通话时间多;(4)若两种方案通讯费用相差10元,则通话时间是145分或185分.A.1个B.2个C.3个D.4个9.如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为()A.20°B.25°C.30°D.35°10.关于圆的性质有以下四个判断:①垂直于弦的直径平分弦,②平分弦的直径垂直于弦,③在同圆或等圆中,相等的弦所对的圆周角相等,④在同圆或等圆中,相等的圆周角所对的弦相等,则四个判断中正确的是()A.①③B.②③C.①④D.②④11.如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC →CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AD边的长为()A.3 B.4 C.5 D.612.如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于t的函数图象大致为()A. B.C. D.二、填空题(本题共6小题,满分18分。

【2020年】北京市中考数学模拟试题(含答案)

【2020年】北京市中考数学模拟试题(含答案)

2020年北京市中考数学模拟试题含答案考 生 须 知 1.本试卷共 8页,共三道大题, 29道小题,满分 120 分.考试时间 120 分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5. 考试结束,将本试卷、答题卡和草稿纸一并交回。

、选择题(本题共 30分,每小题 3 分)第 1—10题均有四个选项,符合题意的选项只有 ..一个.1.如图所示,用刻度尺度量线段 AB, 可以读出线段 AB 的长度为 (A) 5.2cm (B) 5.4cm (C) 6.2cm (D) 6.4cm2. 怀柔素有“北京后花园”之称,因为有着“一半山水一半城,山凝水重入画屏”的美丽自 然景观,吸引着中外游客 . 2016 年 1 至 11 月怀柔主要旅游区 ( 点) 共接待中外游客约为 5870000 人次.将 5870000用科学记数法表示为 (A)5.87 ×105(B) 5.87 ×106(C) 0.587 ×107(D)58.7 ×1053.数轴上有 A , B ,C ,D 四个点,其中表示互为相反数的两个点是 (A) 点 B 与点 C (B) 点 A 与点 C (C) 点 A 与点 D (D) 点 B 与点 D 4. 下列各式运算结果为 a 9的是3 3 3 3( A) a a (B) (a )5. 下列成语中描述的事件是随机事件的是( A)水中捞月 (B)瓮中捉鳖( 6.下面的几何体中,主视图、左视图和俯视图形状都相同,大小–3 –2 –1 0 1 233312 2( C) a3a 3(D) a12a 2拔苗助长 (D )守株待兔A B C D均相等的是7.内角为 108°的正多边形是8.如图,函数 y =-2x 2的图象是9.如图, A,B 两点分别位于一个池塘的两端,小明想用绳子测量 A,B 间的距离,但绳子不够长,于是他想到了一个办法,先在地上取一个可以直接到达 A 点和 B 点的 O 点,连接 AO 并延长到 C ,11使 OC= AO ,连接 BO 并延长到 D ,使 OD= OB ,连接 DC ,测得 DC=20m 这, 样小明就可以A )圆柱 (B ) 圆锥 (C ) 三棱柱D )球A )①C )③( D )④(C )B )②–3第 8 题第 9 题22算出 A,B 间的距离为A)30m B)40m C)60m D)80m10.在“校园读书月” 活动中,小华调查了班级里 40 名同学本学期购买课外书的花费情况, 并将结果绘制成如图所示的统计图 . 下面有四个推断:这次调查获取的样本数据的众数是 30 元 这次调查获取的样本数据的中位数是 40 元 若该校共有学生 1200 人,根据样本 数据,估计本学期计划购买课外书花费 50 元的学生有 300 人 ④花费不超过 50 元的同学共有 18 人 其中合理的是 (A) (B) ④ (C)(D)④11. 分解因式: 2am 2 18a = __________ 12.写出图象经过点( -1 ,2)的一个函数的表达式14 .上 图 中 的 四 边 形 均 为 矩 形 . 根 据 图 形 , 写 出 一 个 正 确的 等 式:15.算筹是中国古代用来记数、列式和进行各种数与式演算的一种工具 . 在算筹计数法中,以“立”,“卧”两种排列方式来表示单位数目,表示多位数时,个位用立式,十位用卧 式,百位用立式,千位用卧式,以此类推 . 《九章算术》的“方程”一章中介绍了一种用“算筹图”解决一次方程组的方法.如图 1,从左向右的符号中,前两个符号分别代表、填空题(本题共 18分,每小题 3 分)费用 /元13.如图,在 Y ABCD 中, ED=2, BC=5, ∠ ABC 的平分线交 AD 于点 E ,则 AB 的长为ab人数20 30 50 80 100未知数 x,y的系数.因此,根据此图可以列出方程: x+10y=26.请你根据图 2 列出方程已知:如图,直线 L 和 L 外一点 P. 求作:直线 PQ ,使 PQ ⊥ L 于点 Q .小强的作法如下:1. 在直线 L 上任取一点 A ,连接 PA ;2.分别以 A , P 为圆心,以大于 21AP 长为半径作弧,两弧交于 C , D 两点; 3. 作直线 CD ,交 AP 于点 O ;4. 以 O 为圆心,以 OA 长为半径作圆,交直线 L 于点 Q ;5. 作直线 PQ. 所以直线 PQ 即为所求 . 老师“小强的作法正请回答:小强这样作图的依据是 : .三、解答题 (本题共 72分,第 17-26 题,每小题 5分,第 27题 7分,第 28题7分,第 29 题 8分)解答应写出文字说明 , 演算步骤或证明过程 .11 2 3 5 4sin 30 .218.已知 a 2a 1 0 ,求代数式 (a 1)2(a 1)(a 1)的值19.如图,在 V ABC 中,∠ ACB=90°,点 D 是AB 边的中点,21. 调查作业:了解某家超市不同品牌饮料的销售情况 .为调查不同品牌饮料的市场销售情况, 小东和小芸两位同学对一家超市进行了调查,道尺规作CE=CD ,∠ B=∠ E . 求证: CF=DF . 20.解不等式组:2x x 7,43(x 1) x 216人在某天对照 50 名顾客购买饮料的品牌进行了记录小东的作法如果一个顾客购买某一品牌的饮料, 就将这一饮料的品牌名表 1 是记录的初始数据 表12:小芸的作法是: 先设计一个统计表, 再进行数据的收集与整理, 她的方法是如果一个顾 客购买某一品牌的饮料,就将这一饮料的品牌在相应的表格中画记一笔“正”字,上面表 3 是小芸设计的表格及调查时画记和填写的数据 . 根据以上材料回答问题:本次调查如果让你去做, 在收集整理数据时, 你会选择他们中的哪种方法?请你说明理由或统一冰茶 可口可乐 可口可乐 统一冰茶 露露 统一冰茶 可口可乐 露露 百事汇源果汁 露露 百事可乐 可口可乐 百事可乐 汇源果汁 可口可乐 汇源果汁 露露 可口可乐 统一冰茶 百事可乐 露露 汇源果汁 可口可乐 百事可乐表3者介绍一种新的方法22.如图,已知菱形 ABCD的对角线 AC,BD相交于点O,延长 AB至点 E,使 BE=AB,连接 CE.( 1)求证:四边形 BECD是平行四边形;2)若∠ E=60°, AC=4 3,求菱形 ABCD的面积.23. 如图,在平面直角坐标系 xOy 中,直线 y=x+b 与k双曲线y 相交于 A,B两点,已知A(1,3), B(-3,m). x(1)求一次函数和反比例函数的表达式;(2)如果点P 是 y 轴上一点,且△ ABP 的面积是 4,求点P 的坐标.24.阅读下列材料:为保障和改善民生建设,北京市建立了以最低生活保障为基础、专项救助相配套、临时救助为补充的城乡社会救助体系,逐年提高救助标准,全市困难群众基本生活得到较好保障,并达到全覆盖的目的 .2013年底全市共有农村低保人数 5.96 万人,城市低保人数 10.37 万人 .2014 年底全市共有农村低保人数 5.13 万人 , 比上年同期减少了 13.9%,城市低保人数8.91 万人,比上年同期减少了 14.1%.2015 年底全市共有农村低保人数比上年同期减少了 4.8%, 城市低保人数 8.49 万人 .2016 年底全市共有低保人数 12.68 万人,其中农村低保人数比城市低保人数少 3.36 万人 .根据以上材料解答下列问题:(1)2015 年底北京市农村低保人数约为万人;(2) 2016 年底北京市城市低保人数约为 万人;(3) 利用统计表或.统计图将 2013 - 2016 年北京市农村低保人数和城市低保人数表示出来;(4) 针对以上文字内容,谈谈你的看法 .25.如图,在△ ABC 中,点 D 为BC 上一点,过 A ,B ,D 三点作⊙ O ,AE 是⊙ O 的直径, AC 是⊙ O 的切线, AD=DC ,连结 DE . ( 1)求证: AB=AC;26.已知 y 是 x 的函数,下表是 y 与 x 的几组对应值x2 3 4 5 6 7y123 25小聪根据学习函数的经验,利用上述表格所反映出的 y 与 x 之间的变化规律,对该函 数的表达式,图象和性质进行了探究 . 下面是小聪的探究过程,请补充完整 :(1) 根据上述表格所反映出的 y 与 x 之间的变化规律, 写出该函数的表达式 : ;(2) 该函数自变量 x 的取值范围是 ;(3) 如图, 在平面直角坐标系 xOy 中,描出上表中各对对应值为坐标的点的位置(近似即可), 根据描出的点,画出该函数的图象2)若 sinE 1, AC=4 2a ,求△ ADE 的周长(用含 a 的代数式表示) 3C DAO(4)根据画出的函数图象,写出该函数的质:27.已知二次函数y ax 22ax a 1( a>0) .值 y 的最小值范围是 2≤y≤6,求 a 的取值范围 . 条性1) 求证:抛物线与 x 轴有两个交点;2) 求该抛物线的顶点坐标;3) 结合函数图象回答:当 x≥1 时,其对应的函数28.(1)如图 1,在△ ACB 和△ ADB 中,∠ C=∠D =90°,过 A , B ,C 三点可以作一个圆,此 时 AB 为圆的直径, AB 的中点 O 为圆心.因为∠ D=90°,利用圆的定义可知点 D 也在此 圆上,若连接 DC ,当∠ CAB=31°时,利用圆的知识可知∠ CDB=度 .(2)如图 2,在△ ACB 中,∠ ACB=90°, AC=BC=,3 CE ⊥AB 于 E ,点 F 是 CE中点,连接 AF 并延长交 BC 于点 D.CG ⊥ AD 于点 G ,连接 EG. ①求证 :BD=2DC;②借助( 1)中求角的方法,写出求 EG 长的思路 . (可以不写出计算的结果)29. 在平面直角坐标系 xOy 中,点 P 的坐标为( x,y ),若过点 p 的直线与 x 轴夹角为 60° 时,则称该直线为点 P 的“相关直线”, 1)已知点 A 的坐标为( 0,2 ), 求点 A 的“相关直线”的表达式;2)若点 B 的坐标为( 0, 3),点 B 的“相关直线” 与直线 y=2 3 交于点 C ,求点 C 的坐标;3)⊙ O 的半径为 3 ,若⊙ O 上存在一点 N ,点 N 的“相关直线”33与双曲线 y=(x >0) 相交于点 M,请直接写出点 M 的横坐标的取值范围图1图2x∴∠ DCB=∠ B. 2分数学试卷答案及评分参考、选择题(本题共 30分,每小题 3 分) 题号 123456 7 8 9 10 答案 B B A B D DBCBC二、填空题(本题共 18分,每小题 3 分)11. 2a(m 3)(m 3)12. 答案比唯一 . 如: y=-2x. 13.314.(m+n)(a+b)=ma+mb+na+nbx 2y 22 15.x y 1816.直径所对的圆周角是 90o ;两点确定一条直线 . 到线段两端距离相等的点在线段的垂直18.解: 原式 a 22a 1 a 21 ⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分2a 22a . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分2∵ a 2a 1 0 ,∴原式2(a a) 2 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分 19. 证明:∵在 VABC 中,∠ ACB=90°,点 D 是 AB 边的中点,∴CD=BD. 三、解答题 (本题共 72 分,第 17-26 题,每小题题 8 分 )11 17 解: 12235 4sin 30 .2 3 2 1 4 126 2⋯⋯⋯⋯⋯⋯ 5 分5 分,第 27 题 7 分,第 28 题 7 分,第 29 1分平分线4分BE∵CD=CE,∴∠ CDE=∠ E.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分∵∠ B=∠E, ∴∠ DCF=∠ CDF.⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分∴ CF=DF.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分20.解不等式①,得 x<1. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分1解不等式②,得 x≥ - 1. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分21∴不等式组的解集为:- ≤x<1. ⋯⋯⋯⋯⋯⋯ 5 分221.选择小芸的作法 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分因为小芸的方法清晰,方便,简明 . (答案不唯一)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分22.(1)证明:∵四边形 ABCD是菱形,∴ AB=CD, AB∥ CD.⋯⋯⋯⋯⋯⋯⋯⋯ 1 分又∵ BE=AB,∴ BE=CD.⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分∵ BE∥CD,∴四边形 BECD是平行四边形 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分( 2)解:∵四边形 BECD是平行四边形,∴ BD∥ CE.∴∠ ABO=∠ E=60°. ⋯⋯⋯⋯⋯⋯⋯⋯ 4 分又∵四边形 ABCD是菱形,∴ AC丄 BD,OA=OC.∴∠BOA=9°0 ,∴∠ BAO=30° .∵AC=4 3 , ∴ OA=OC=2 3. ∴OB=OD=2. ∴BD=4.∴菱形 ABCD的面积 =1 AC BD 1 4 3 4 8 3 225分23.解:(1)把 A(1,3)代入 y=x+b中,得 3=1+b ,解得 b=2 .∴∠ DCB=∠ B. 2分S △ABP = 4 ,∴一次函数的表达式为1 分;把 A ( 1, 3)代入 y k x中,x得3 k k1 ,解得 ∴反比例函数的表达式为2 分;x2)把 B (-3,m ) 代入 y=x+2,可得 B (- 3,- 1). 设一次函数 y x 2 的图象与 y 轴的交点 C 的坐标为 0,2)∴ 1 PC 1 1PC 3 4.22∴PC 2. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分∴点 P 的坐标为( 0,0),(0,4).⋯⋯⋯⋯⋯⋯⋯⋯ 5 分 24. 解: (1)4.88. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分(2)8.02 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分低保类别人口数量 ( 万人 ) 年度农村低保城市低保2013 5.96 10.37 2014 5.13 8.91 20154.888.49 2016 4.66 8.024) 北京市低保人数逐年递减, 政府加强了民生的保障和改善, 社会生活水平有新的提高(答案不唯一,要体现正能量)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分25. ( 1)证明:∵ AD=DC ,∴∠ CAD=∠C.∵AC 是⊙ O 的切线,∴∠ CAE=90° . ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分 ∴∠ CAD+∠EAD=90° .∵AE 是⊙ O 的直径,∴∠ ADE=90° .人2013—2016 年北京市农村低保和城市低保人数统计图(2)8.02 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(3) 2013 — 2016 年北京市农村低保和城市低保人数统计表 CFAO∴∠ DCB=∠ B.2分∴∠ E+∠EAD=90° .∴∠ CAD=∠E.又∵∠ E=∠B,∴∠ C=∠ B.∴AB=AC. 2分 (2)解:过点 D 作 DF ⊥ AC 于点 F.①由 DA=DC , AC=4 2a , 可得 CF=1AC =2 2a .21.在 Rt △CDF 中,求出CD=DA=3a.31 ③在 Rt △ADE 中,利用 sinE 13,求出 AE=9a.∴ ax 22ax a 1 0. ∵△ =4a 24a (a 1) =4a,∵a>0, ∴ 4a>0. ∴△ >0. ∴抛物线与 x 轴有两个交点 . 2分 2) x2a 2a1. 3分把 x=-1 代入 y ax 2 2ax a 1 ∴y=-1. ∴顶点坐标( -1 ,-1).4分23)①把( 1,2 )代入 y ax 22ax a 1.②由∠ C=∠E, sinE1 ,可得 sinC( 或利用△ CDF ∽△ ADE 求 ).3分1分再利用勾股定理得出 DE=6 2a . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分3∴a . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5分42②把( 1,6 )代入y ax22ax a 1.7∴a . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分437∴由图象可知:≤a≤ . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 7 分4428.解:(1) 31° . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(2)①过点 E作 EH∥AD交 CB于 H点. ⋯⋯⋯⋯⋯⋯⋯⋯ 3 分∵CE⊥ AB于点 E, AC=BC,∴点 E是 AB中点. ∴BH=DH.∵点 F是CE中点,∴ HD=DC.∴BD=2CD. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分②∵ CE⊥AB于点 E,∴∠ CEA=90° .∵CG⊥ AD于点 G,∴∠ CGA=90°. ∴ AC为圆的直径 .∵∠ACB=90°, AC=BC,∴∠ CAE =45°.∵CE⊥ AB于点 E,∴∠ ACE =45°. ∴∠ AGE=45°.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5分方法 1:解斜三角形法在 Rt△DCA中,因为∠ C =90°, CG ⊥AD于点 G, DC=1. 所以可以求出CG的长. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分又因为∠ CGE==135°,CE= 3 2 .2解△ ECG可求出 EG的长. (此题解△ AEG也可行)⋯⋯⋯⋯⋯⋯⋯ 7 分方法 2:证明等腰直角三角形法 .3延长 CG交 EH于 M点 .因为 EH∥AD交 CB于 H 点,点 F是 CE中点,所以点 G为 MC的中点 .因为 AD= CA2 DC2 1 9 10 .E∴CG=3 10 . ∴ MG=3 10. ⋯⋯⋯⋯⋯⋯⋯⋯ 6 分 10 . 10 .因为∠ EGA=∠ACE=45°,所以∠ CGE==135° .所以∠ MGE ∠= GEM=4°5 , 所以 GE 可解 .3 10 3 5 ∵ME=MG= . ,∴EG= .⋯⋯⋯⋯⋯⋯⋯⋯⋯ 10 . 5 .方法 3:相似法∵AC=BC=3,∴ AB=3 2 . ∴ AE=3 2..2∵CD=1,∴ BD=2, AD 10 . 7分 A ∵∠ AGE=∠B= 45 °, ∠ DAB=∠ EAD.∴△AGE : △ABD.6分 32AE GE∴ 2 AD DB 10 EG . ∴EG=3 525方法 4:旋转法:过 E 作 EK ⊥GE 交 AD 于点K , 可证△ AKE △ CGE ( ASA ) .⋯⋯⋯⋯⋯⋯⋯ 6 分 ∴AK=CG=3 2 ∵ CD=1, AD 10 ∴ 1010 . , DG=10 .7分3 10 3 5 ∴KG= 5 .∴EG= 5 . 7分 29. 解:( 1)①当过点 A 的直线与 x 轴正方向夹角为 60°时,点 A 的相关直线表达式:y 3x 21分②当过点 A 的直线与 x轴负方向夹角为 60°时,点 A 的相关直线表达式:3x 22分2)可知 BC 1 直线表达式为 y3x 3∴C 1(1, 2 3 ). 3分同理 C2( -1 , 2 3).3)设点 N1 的“相关直线”与⊙ O相切,y 33x交双曲线x于点 M1.可求得直线 N1 M1的表达式为y 3x 2 3 . ⋯⋯⋯ 4分y 3x 2 333y∴xx=1或 x=-3 (舍) . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分∴M1(1,3 3). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分同理 M2(3,3). ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 7分∴M 的横坐标的取值范围是 1≤X M≤ 3. ⋯⋯⋯⋯⋯⋯ 8 分。

北京市2020年中考数学模拟试卷六含答案

北京市2020年中考数学模拟试卷六含答案

北京市2020年中考数学模拟试卷六一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1. 中国一直高度重视自主创新能力,从2000年以来,中国全社会研发经费投入以年均近20%的速度增长,到2017年,这一投入达到1.76万亿元人民币,位居全球第二. 将1.76万亿用科学记数法表示应为A .81.7610⨯B .111.7610⨯C .121.7610⨯D .131.7610⨯ 2.下列各式计算正确的是A . 235x x x ⋅= B .22434x x x += C .824x x x ÷= D .2242(3)6x y x y = 3.实数a 在数轴上的对应点的位置如图所示,则实数a 可能是A.B. C. D.4.如图所示,用量角器度量∠AOB 和∠AOC 的度数. 下列说法中,正确的是A .∠AOB =110° B .∠AOB =∠AOC C .∠AOB +∠AOC =90°D .∠AOB +∠AOC =180°5.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了甲、乙两类玩具,其中甲类玩具的进价比乙类玩具的进价每个多5元,经调查:用1000元购进甲类玩具的数量与用750元购进乙类玩具的数量相同.设甲类玩具的进价为x 元/个,根据题意可列方程为 A .10007505=-x x B .10007505=-x x C .10007505=+x x D . 1000750+5=x x6.如图,在Y ABCD 中,AC =8,BD=6 ,AD=5,则Y ABCD 的面积为A .6B .12C .24D .487.5G 网络是第五代移动通信网络,它将推动我国数字经济发展迈上新台阶. 据预测,2020年到2030年中国5G 直接经济产出和间接经济产出的情况如下图所示.根据上图提供的信息,下列推断不合理的是A .2030年5G 间接经济产出比5G 直接经济产出多4.2万亿元B .2020年到2030年,5G 直接经济产出和5G 间接经济产出都是逐年增长C .2030年5G 直接经济产出约为2020年5G 直接经济产出的13倍D .2022年到2023年与2023年到2024年5G 间接经济产出的增长率相同8. 平面直角坐标系xOy 中,点P (a ,b )经过某种变换后得到的对应点为P '12a +1,12b -1æèçöø÷. 已知A ,B ,C 是不共线的三个点,它们经过这种变换后,得到的对应点分别为A ',B ',C '.若△ABC 的面积为S 1,△A 'B 'C '的面积为S 2,则用等式表示S 1与S 2的关系为A .1212S S =B .1214S S = C .122S S = D .124S S =二、填空题(本题共16分,每小题2分)9x 的取值范围是 . 10.因式分解:3269a a a -+=11.已知y 是x 的函数,其函数图象经过(1,2),并且当x >0时,y 随x 的增大而减小.请写出一个满足上述条件的函数表达式: .O DCBA12.如图,在∆ABC 中,AD 平分∠BAC ,⊥BD AD ,点E 是BC 的中点,连结DE ,且6=AB ,10=AC ,则=DE .13.如图,AB 是⊙O 的弦,直径CD 交AB 于点E ,若AE =EB =3,∠C =15°,则OE 的长为 .(第13题图) (第14题图)14.如图是某几何体的展开图,则该几何体是 .15.某水果公司新购进10000千克柑橘,每千克柑橘的成本为9元. 柑橘在运输、存储过程中会有损坏,销售人员从所有的柑橘中随机抽取若干柑橘,进行“柑橘损坏率”统计,并把获得的 数据记录如下:根据以上数据,估计柑橘损坏的概率为 (结果保留小数点后一位);由此可知,去掉损坏的柑橘后,水果公司为了不亏本,完好柑橘每千克的售价至少为元.16.如图,在喷水池的中心A 处竖直安装一根水管AB ,水管的顶端安有一个喷水头,使喷ECDAB出的抛物线形水柱在与池中心A 的水平距离为1m 处达到最高点C ,高度为3m ,水柱 落地点D 离池中心A 处3m ,以水平方向为x 轴,建立平面直角坐标系,若选取点A 为 坐标原点时的抛物线的表达式为()()2313034y x x =--+≤≤,则选取点D 为坐标原点 时的抛物线表达式为 ,水管AB 的长为 m三、解答题(本题共68分,第17-22题,每小题5分;第23-26题,每小题6分;第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:.18.解方程:.19.下面是小明设计的“作三角形的高线”的尺规作图过程. 已知:△ABC .求作:BC 边上的高线.作法:如图,①分别以A ,B 为圆心,大于12AB 长为半径画弧,两弧交于点D ,E ; ②作直线DE ,与AB 交于点F ,以点F 为圆心,F A 长为半径画圆,交CB 的延长线于点G ;③连接AG .-(-5)-2cos45°+-+14æèçöø÷-1x x +1=1+1xACB所以线段AG 就是所求作的BC 边上的高线.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面证明.证明:连接DA ,DB ,EA ,EB , ∵DA =DB ,∴点D 在线段AB 的垂直平分线上( ) (填推理的依据). ∵ = ,∴点E 在线段AB 的垂直平分线上. ∴ DE 是线段AB 的垂直平分线. ∴F A =FB .∴AB 是⊙F 的直径.∴∠AGB=90°( ) (填推理的依据). ∴ AG ⊥BC即AG 就是BC 边上的高线.20.已知关于x 的一元二次方程()22310m x x -+-=有两个不相等的实数根.(1)求m 的取值范围;(2)若方程的两个根都是有理数,请选择一个合适的m ,并求出此方程的根.21.如图,在四边形ABCD 中,AB =DC ,AD =BC ,AD ⊥CD . 点E 在对角线CA 的延长线上,连接BD ,BE .ACBED(1)求证:AC =BD ;(2)若BC =2,BE =,求EC 的长.22.已知:如图,在△ABC 中,∠ACB =90°,以BC 为直径的⊙O 交AB 于点D ,E 为BD ⌒的中点.(1)求证:∠ACD=∠DEC ;(2)延长DE 、CB 交于点P ,若PB=BO ,DE =2,求PE 的长23.在平面直角坐标系xOy 中,A (-3,2),B (0,1),将线段AB 沿x 轴的正方向平移n(n >0)个单位,得到线段A B '',且点A B '',恰好都落在反比例函数()0my m x=≠的图象上.(1)用含n 的代数式表示点A B '',的坐标; (2)求n 的值和反比例函数()0my m x=≠的表达式; (3)点C 为反比例函数()0my m x=≠图象上的一个动点,直线CA '与x 轴交于点 D ,若2CD A D '=,请直接写出点C 的坐标.24.某医药研究所开发一种新的药物,据监测,如果成年人按规定的剂量服用,服药后2小时,tan ÐABE=23BCA每毫升血液中的含药量达到最大值,之后每毫升血液中的含药量逐渐衰减.若一次服药后每毫升血液中的含药量y(单位:微克)与服药后的时间t(单位:小时)之间近似满足某种函数关系,下表是y与t的几组对应值,其部分图象如图所示.(1)在所给平面直角坐标系中,继续描出上表中已列出数值所对应的点(t,y),并补全该函数的图象;(2)结合函数图象,解决下列问题:①某病人第一次服药后5小时,每毫升血液中的含药量约为_______微克;若每毫升血液中含药量不少于0.5微克时治疗疾病有效,则第一次服药后治疗该疾病有效的时间共持续约_______小时;②若某病人第一次服药后8小时进行第二次服药,第二次服药对血液中含药量的影响与第一次服药相同,则第二次服药后2小时,每毫升血液中的含药量约为_______微克.25. 丁老师为了解所任教的两个班的学生数学学习情况,对数学进行了一次测试,获得了两个班的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.①A、B两班学生(两个班的人数相同)数学成绩不完整的频数分布直方图如下(数据分成5组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):A、B两班学生数学成绩频数分布直方图②A 、B 两班学生测试成绩在80≤x <90这一组的数据如下: A 班: 80 80 82 83 85 85 86 87 87 87 88 89 89B 班: 80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89③A 、B 两班学生测试成绩的平均数、中位数、方差如下: 根据以上信息,回答下列问题:(1)补全数学成绩频数分布直方图; (2)写出表中m 、n 的值;(3)请你对比分析A 、B 两班学生的数学学习情况(至少从两个不同的角度分析).26.在平面直角坐标系xOy 中. 已知抛物线y =ax 2+bx +a -2的对称轴是直线x =1.(1)用含a 的式子表示b ,并求抛物线的顶点坐标; (2)已知点A 0,-4(),B 2,-3(),若抛物线与线段AB 没有公共点,结合函数图象,求a 的取值范围;(3)若抛物线与x 轴的一个交点为C (3,0),且当m ≤x ≤n 时,y 的取值范围是m ≤y ≤6,结合函数图象,直接写出满足条件的m ,n 的值.BA 频数/分27.如图,在△ABC 中,∠ACB =90°,AC=BC ,E 为外角∠BCD 平分线上一动点(不与点C 重合),点E 关于直线BC 的对称点为F ,连接BE ,连接AF 并延长交直线BE 于点G .(1)求证:AF =BE ;(2)用等式表示线段FG ,EG 与CE 的数量关系,并证明.28.对于平面直角坐标系xOy 中的任意两点M (1x ,1y ),N (2x ,2y ),给出如下定义:点M 与点N 的“折线距离”为:2121),(y y x x N M d -+-=.例如:若点M (-1,1),点N (2,-2),则点M 与点N 的“折线距离”为:(,)121(2)336d M N =--+--=+=.根据以上定义,解决下列问题: (1) 已知点P (3,- 2) .① 若点A (-2,-1),则d (P ,A )=② 若点B (b , 2),且d (P ,B )=5,则b =③ 已知点C (m , n )是直线y x =-上的一个动点,且d (P ,C )<3 ,求m的取值C范围.(2) ⊙F的半径为1,圆心F的坐标为(0,t),若⊙F上存在点E,使d (E,O)=2,直接写出t的取值范围.数 学一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9. X≤2 10. ()23a a -11.答案不唯一,如:3y x =-+.12.2 13. 14.三棱锥15.0.1,10.16.()23234y x =-++;94三、解答题(本题共68分,第17-22题,每小题5分;第23-26题,每小题6分;第27-28题,每小题7分) 17.(本小题满分5分)解:原式=524- ………………………………………………………4分=9+ …………………………………………………………………5分18.(本小题满分5分)解:两边同乘(1)x x +,得2(1)1x x x x =+++. ……………………………………2分整理得 21x =-.解得 12x =-. ……………………………………………………………………4分 经检验,12x =-是原方程的解. …………………………………………………5分19.(本小题满分5分)解:(1)使用直尺和圆规,补全图形;(保留作图痕迹)………………………2分(2)到线段两端距离相等的点在这条线段的垂直平分线上 ………………………3分EA =EB ………………………4分 直径所对的圆周角是直角 ……………………5分20.(本小题满分5分)解:(1)依题意,得41020m m ∆=+>⎧⎨-≠⎩解得:14m >-且2m ≠(2)当0m =时,1∆=此方程的两个根都是有理数.原方程的两个根为:12112x x ==,.21.(本小题满分5分)解:(1)补全的图形如图所示; ………………2分 (2)CD ,平行四边形的对角线互相平分. ……5分22.(本小题满分5分)(1)证明:∵BC 是⊙O 的直径,∴ ∠BDC =90°,∴ ∠BCD +∠B =90°, ∵ ∠ACB =90°, ∴ ∠BCD +∠ACD =90°,∴ ∠ACD =∠B ,……………………………1分 ∵ ∠DEC=∠B ,∴ ∠ACD=∠DEC ………………………2分(2)证明:连结OE∵E 为BD 弧的中点.ACBEDFG………………………………2分 ………………………………1分 ………………………………3分………………………………5分BCA∴∠DCE =∠BCE ∵OC =OE ∴∠BCE =∠OEC ∴∠DCE =∠OEC∴OE ∥CD ………………………………3分 ∴△POE ∽△PCD , ∴ PO PE PC PD=∵PB=BO ,DE =2 ∴ PB=BO=OC∴23PO PE PC PD == ……………………………4分∴223PE PE =+ ∴ PE =4 …………………………………………5分23.(本小题满分6分)解:(1)()-3,2A n '+,(),1B n '(2)∵点()-3,2A n '+,(),1B n '均在函数my x=的图象上, ∴()23m n n =-+=.∴6n =,反比例函数表达式为6y x=. (3)点C 的坐标为3,42⎛⎫ ⎪⎝⎭或3,42⎛⎫--⎪⎝⎭.24.(本小题满分6分)解:本题答案不唯一,如:(1)图象如图所示;………………………2分 (2)①1.41,7.75; …………………………………………………………………5分②4.25. ………………………………………………………………………6分………………………………2分………………………………3分………………………………6分………………………………4分A 频数/分………………………………3分 ………………………………2分………………………………4分25.(本小题满分6分)解:(1)A 、B 两班学生数学成绩频数分布直方图如下:-----------------------2分( 2 ) m=81 , n =85 ----------------------------------------------------------4分 (3) 略 ------------------------------------------------------------------------------6分26.(本小题满分6分)解:(1)∵12b a-=, ∴2b a =-. ……………………………………………………………………1分∴抛物线为222y ax ax a =-+-.当1x =时,222y a a a =-+-=-,∴抛物线的顶点为(1,2-). ………………………………………………2分(2)若0a >,抛物线与线段AB 没有公共点;若0a <,当抛物线经过点B (2,3-)时,它与线段AB 恰有一个公共点,此时3442a a a -=-+-,解得1a =-.∵抛物线与线段AB 没有公共点,∴结合函数图象可知,10a -<<或0a >. ………………………………4分(3)2,5m n =-⎧⎨=⎩ 或25.m n ⎧=⎪⎨=⎪⎩ …………………………………………………6分27.(本小题满分7分)(1)证明:连接EF ,CF .在△ABC 中,∠ACB =90°,AC =BC , ∵CE 平分∠BCD , ∴∠BCE =45°.∵点E ,F 关于直线BC 对称, ∴CF=CE ,BC ⊥EF . ∴∠FCB =∠BCE =45°. ∴∠ACF =∠BCE =45°. ∴△ACF ≌△BCE . ∴AF=BE .(2)数量关系:FG 2+EG 2=2CE 2.………………………………5分………………………………7分 证明:∵△ACF ≌△BCE ,∴∠CAF =∠CBE . ∵∠1=∠2,∴∠AGB =∠∴∠AGE =90°∴在Rt △FGE ∵∠FCB =∠∴∠FCE =90°在Rt △FCE 中,∵CF 2+CE 2=EF 2,CF=CE , ∴FG 2+EG 2=CF 2+CE 2=2CE 2.即:FG 2+EG 2=2CE 2. 28.(本小题满分7分)解:(1) ① )1()2()2(3),(---+--=Q P d =6 -------------1分② 5432)2(3),(=+-=--+-=b b H P d∴ 13=-b∴b =2或4 ----------------------3分③ 32323)2(3),(<-+-=+-+-=--+-=m m m m n m C P d 即数轴上表示数m 的点到表示数3的点的距离与到表示数2的点的距离之和小于3,所以1<m <4 ----------------5分 (2) 223322-≤≤-≤≤-t t 或 -------------------7分。

北京市2020届中考数学仿真模拟试卷 (含解析)

北京市2020届中考数学仿真模拟试卷 (含解析)

北京市2020届中考数学仿真模拟试卷一、选择题(本大题共8小题,共16.0分)1.下列四个水平放置的几何体中,三视图如图所示的是()A.B.C.D.2.2020年3月9日,中国第54颗北斗导航卫星成功发射,其轨道高度约为36000000m.数36000000用科学记数法表示为()A. 0.36×108B. 36×107C. 3.6×108D.3.6×1073.如图,直线AB,CD,EF相交于点O,则∠1+∠2+∠3的度数为()A. 90°B. 120°C. 180°D.360°4.下面几种中式窗户图形既是轴对称又是中心对称的是()A. B. C. D.5.八边形的外角和等于()。

A. 180ºB. 360ºC. 1080ºD. 1440º6.实数a,b在数轴上的位置如图所示,则a−b的值().a+bA. 大于0B. 小于0C. 等于0D. 为非负数7. 一个不透明的袋子装有3个小球,它们除分别标有的数字1,3,5不同外,其他完全相同,任意从袋子中摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之和为6的概率是( )A. 16B. 29C. 13D. 23 8. 有一个安装有进出水管的30升容器,水管每单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据下图信息给出下列说法:①每分钟进水5升;②当4≤x ≤12时,容器中水量在减少;③若12分钟后只放水,不进水,还要8分钟可以把水放完;④若从一开始进出水管同时打开需要24分钟可以将容器灌满.以上说法中正确的有( )A. 1个B. 2个C. 3个D. 4个 二、填空题(本大题共8小题,共16.0分) 9. 若使代数式2x−1x+2有意义,则x 的取值范围是_____.10. 若方程x 2−2x +1=m 有两个相等的实数根,则m 的值是______ .11. 写出一个满足√3<a <√17的整数a 的值为______.12. 已知方程组{2x +y =4,x +2y =5,则x +y 的值为 . 13. 已知双曲线y =1x 与直线y =x −2√3相交于点P(a,b),则1a −1b =_______.14. 如图,△ABC 中,AB =AC ,点E 是∠BAC 的平分线AD 上任意一点,则图中有______对全等三角形.15. 如图,在△ABC 中,E 是BC 上的一点,EC =2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别为S △ABC 、S △ADF 、S △BEF ,且S △ABC =12,则S △ADF −S △BEF =________.16. 某旅行团在一城市游览,有甲、乙、丙、丁四个景点,导游说:“①甲、乙要么都去,要么都不去;②乙、丙只能去一个;③丙、丁要么都去,要么都不去.”根据导游的说法,在下列选项中,该旅行团可能游览的景点是( )A .甲、丙 B.甲、丁 C.乙、丁 D.丙、丁三、解答题(本大题共12小题,共68.0分)17. 计算:√16−2sin45°+(13)−1−|2−√2|.18. 解不等式组{2x +1>0①2−x 2≥x+33②.19. 先化简,再求值:(1)[(−3a 5)2÷(−a 2)3+3a 5(2a 2−4a )]÷(−3a 2)2,其中a =−3;(2)已知x 2−4=0,求代数式x (x +1)2−x (x 2−x )−x −7的值.20.如图,四边形ABCD是⊙O的内接四边形,对角线AC⊥BD.(1)用尺规作图,过点O作OF⊥AD于点F(保留作图痕迹,不写作法);(2)若(1)中所作OF=2,求BC的长.AC,连接AE、CE.21.如图,菱形ABCD的对角线AC、BD相交于点O,DE//AC,DE=12(1)求证四边形ODEC为矩形;(2)若AB=2,∠ABC=60°,求AE的长.22.将函数y=2x−3的图象平移,使得它经过点A(2,0),求平移后的函数解析式.23.如图,AB为⊙O直径,且弦CD⊥AB于点E,过点B作⊙O的切线与AD的延长线交于点F.(1)若EN⊥BC于点N,延长NE与AD相交于点M.求证:AM=MD;(2)若⊙O的半径为10,且cosC=45,求切线BF的长.24.已知二次函数y=x2−(3m−1)x+2m2−2m,其中m>−1.(1)若二次函数关于y轴对称,求m的值.(2)若二次函数与x轴的两个交点分别是(x1,0),(x2,0),其中x1>x2,当−2<12x1+13x2<1时,求m的取值范围.(3)请写出一个a的值,使x≤a时,y随x的增大而减小.25.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):(1)根据表格中的数据,分别计算出甲、乙两人的平均成绩;(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.26.在平面直角坐标系xOy中,抛物线y=ax2+bx+3a过点A(−1,0).(1)求抛物线的对称轴;(2)直线y=x+4与y轴交于点B,与该抛物线对称轴交于点C.如果该抛物线与线段BC有交点,结合函数的图象,求a的取值范围;(3)在(2)的条件下,抛物线与线段BC的交点记为D,若D为线段BC的三等分点,求出a的值.27.如图,在△ABC中,AB=AC,M为BC的中点,MD⊥AB于点D,ME⊥AC于点E.求证:MD=ME.28.已知:AB是⊙O直径,点E、F是弦AD、CD延长线上的点,∠F=∠BAD;(1)求EF与AC的位置关系.(2)连接CE交⊙O于G,连接BD,若2∠CAE+∠DAG=∠ABD,求证:AC=CE.(3)在(2)的条件下,延长AB、EF交于K,EK=2AC,AK=10,△AEK的面积=18,求线段EK的长度.-------- 答案与解析 --------1.答案:D解析:本题考查了由三视图判断几何体.关键是根据三视图和空间想象得出从物体正面、左面和上面看,所得到的图形.根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,即可得出答案.解:从主视图、左视图、俯视图可以看出这个几何体的正面、左面、底面是长方形,所以这个几何体是长方体;故选D.2.答案:D解析:此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解:36000000=3.6×107,故选:D.3.答案:C解析:本题考查对顶角相等的性质,平角的定义,准确识图是解题的关键.根据对顶角相等可得∠4=∠1,再根据平角的定义解答.解:如图,由对顶角性质可知∠4=∠1,∵∠2+∠3+∠4=180°,∴∠1+∠2+∠3=180°.故选C.4.答案:C解析:解:A、不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、不是轴对称图形,也不是中心对称图形,故本选项不合题意;C、既是轴对称图形,又是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故本选项不合题意;故选:C.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后完全可重合,中心对称图形是要寻找对称中心,旋转180度后两部分完全重合.5.答案:B解析:本题主要考查的是多边形的外角和的有关知识,由题意利用多边形的外角和等于360°直接求解即可.解:八边形的外角和为360°.故选B.6.答案:B解析:本题考查了实数与数轴,根据数轴得出−1<a<0,b>2,可判断出a−b<0,a+b>0,进而可得答案.解:根据数轴可知:−1<a<0,b>2,所以a−b<0,a+b>0,所以a−ba+b<0.7.答案:C解析:解:画树状图得:∵共有9种等可能的结果,两次摸出的球所标数字之和为6的有:(1,5),(3,3),(5,1),∴两次摸出的球所标数字之和为6的概率是:39=13.故选:C.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球所标数字之和为6的情况,然后利用概率公式求解即可求得答案.此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验.8.答案:C解析:本题考查了一次函数的图象,正确理解图象中表示的实际意义是关键.根据图象可以得到单独打开进水管4分钟注水20升,而同时打开放水管,8分钟内放进10升水,据此即可解答.=5(升),则①正确;解:①每分钟进水204②当4≤x≤12时,y随x的增大而增大,因而容器中水量在增加,则②错误;=5−1.25=3.75(升),③每分钟放水5−30−2012−4=8(分钟),故③正确;则放完水需要303.75=1.25(升),④同时打开进水管和放水管,每分钟进水30−2012−4=24(分钟),④正确.则同时打开将容器灌满需要的时间是301.25故选C.9.答案:x≠−2解析:本题考查了分式有意义的条件,解题的关键是熟练的掌握分式有意义的条件.直接利用分式有意义则其分母不为零,进而得出答案.∵分式2x−1有意义,x+2∴x+2≠0,解得:x≠−2.故答案是:x≠−2.10.答案:0解析:根据已知方程有两个相等的实数根得出△=0,得出△=(−2)2−4×1×(1−m)=0,求出即可.本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.解:x2−2x+1=m,x2−2x+1−m=0,∵方程x2−2x+1=m有两个相等的实数根,∴△=(−2)2−4×1×(1−m)=0,解得:m=0,故答案为0.11.答案:2解析:解:∵1<√3<2,4<√17<5,∴一个满足√3<a<√17的整数a的值为2,故答案为:2.答案不唯一,先估算出√3和√17的范围,再求出一个符合的即可.本题考查了估算无理数的范围,能估算出√3和√17的范围是解此题的关键.12.答案:3解析:本题考查了解二元一次方程组,将方程组中两方程相加,变形即可求出x+y的值;解:{2x+y=4 ①, x+2y=5 ②,①+②得:3x+3y=9,则x+y=3,故答案为:3.13.答案:−2√3解析:此题考查了反比例函数与一次函数的交点问题,利用了待定系数法,熟练掌握待定系数法是解本题的关键.由两函数图象交于P点,将P坐标分别代入两函数解析式,得到ab与a−b的值,将所求式子通分并利用同分母分式的减法法则计算,把ab与a−b的值代入即可求出值.解:∵双曲线y=1x与直线y=x−2√3相交于点P(a,b),∴b=1a,b=a−2√3,∴ab =1,a −b =2√3,则1a −1b =b−a ab =−2√31=−2√3.故答案为−2√3.14.答案:3解析:此题主要考查了全等三角形的判定和性质,属于基础题.首先利用角平分线定义可得∠BAD =∠CAD ,然后利用SAS 判定△ABD≌△ACD ,根据全等三角形的性质可得BD =CD ,∠ADB =∠ADC ,再判定△BDE≌△CDE ,最后证明∴△ABE≌△ACE 即可. 解:∵AD 平分∠BAC ,∴∠BAD =∠CAD ,在△ABD 和△ACD 中{AB =AC∠BAD =∠CAD AD =AD,∴△ABD≌△ACD(SAS),∴BD =CD ,∠ADB =∠ADC ,在△BED 和△CED 中{BD =CD∠BDE =∠CDE ED =ED,∴△BDE≌△CDE(SAS),在△ABE 和△ACE 中{AB =AC∠BAE =∠CAE AE =AE,∴△ABE≌△ACE(SAS),共3对全等三角形,故答案为:3.15.答案:2解析:本题考查三角形的面积,关键知道当高相等时,面积等于底边的比,根据此可求出三角形的面积,然后求出差.S △ADF −S △BEF =S △ABD −S △ABE ,所以求出三角形ABD 的面积和三角形ABE 的面积即可,因为EC =2BE ,点D 是AC 的中点,且S △ABC =12,就可以求出三角形ABD 的面积和三角形ABE 的面积. 解:∵点D 是AC 的中点,∴AD =12AC ,∵S△ABC=12,∴S△ABD=12S△ABC=12×12=6.∵EC=2BE,S△ABC=12,∴S△ABE=13S△ABC=13×12=4,∵S△ABD−S△ABE=(S△ADF+S△ABF)−(S△ABF+S△BEF)=S△ADF−S△BEF,即S△ADF−S△BEF=S△ABD−S△ABE=6−4=2.故答案为2.16.答案:D解析:此题主要考查了推理与论证,关键是正确分情况,进行讨论.根据导游说的分两种情况进行分析:①甲、乙要么都去,要么都不去;②乙、丙只能去一个;③丙、丁要么都去,要么都不去;然后分析可得答案.解:导游说:“①甲、乙要么都去,要么都不去;②乙、丙只能去一个;③丙、丁要么都去,要么都不去.”,①假设甲、乙要么都去,要么都不去,因此可以去甲、乙或丙、丁;②假设乙、丙只能去一个,因此可以去甲、乙或丙、丁;③假设丙、丁要么都去,要么都不去,因此可以去甲、乙或丙、丁.综上所述,该旅行团可能游览的景点是甲、乙或丙、丁.故选D.17.答案:解:原式=4−2×√22+3−(2−√2)=4−√2+3−2+√2=5.解析:直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质、负指数幂的性质进而化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.答案:解:解不等式①,得:x>−12,解不等式②,得:x≤0,∴不等式组的解集为−12<x≤0.解析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.答案:解:(1)[(−3a5)2÷(−a2)3+3a5(2a2−4a)]÷(−3a2)2,=[9a10÷(−a6)+6a7−12a6]÷9a4=(−9a4+6a7−12a6)÷9a4=−1+23a3−43a2,当a=−3时,原式=−1−18−12=−31,(2)x(x+1)2−x(x2−x)−x−7=x(x2+2x+1)−x3+x2−x−7=x3+2x2+x−x3+x2−x−7=3x2−7,∵x2−4=0,∴x2=4,原式=3×4−7=5.解析:本题考查了整式的化简求值,(1)本题考查了整式的化简求值,先根据整式的混合运算的法则先化简,再代入求值即可;(2)本题考查了整式的化简求值,根据整式的混合运算的法则,完全平方公式,单项式乘多项式的计算法则化简,再整体代入即可;20.答案:解:(1)用尺规作图,过点O作OF⊥AD于点F,如下图所示:(2)如上图,连接AO并延长交⊙O于点M,连接DM,由(1)得OF⊥AD,∴AF=DF,∵OA=OM,∴DM=2FO=4,∵AC⊥BD,∴∠ABD+∠BAC=90∘,∵AM为直径,∴∠ADM=90∘,∴∠AMD+∠MAD=90∘,∵∠ABD=∠AMD,∴∠BAC=∠MAD,⏜,∴BC⏜=DM∴BC=DM=4.解析:本题考查了尺规作图,垂径定理,三角形中位线性质,圆周角定理及推论.(1)直接利用尺规过点O作出OF⊥AD于点F即可;(2)利用垂径定理,三角形中位线性质,圆周角定理及推论即可求得答案.AC.21.答案:解:(1)证明:在菱形ABCD中,OC=12∴DE=OC.∵DE//AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形;(2)在菱形ABCD中,∠ABC=60°,∴AC=AB=2,∴在矩形OCED中,CE=OD=√AD2−AO2=√22−12=√3.在Rt△ACE中,AE=√AC2+CE2=√7.解析:本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.(1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED 是矩形即可;(2)根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.22.答案:解:设平移后的函数解析式y=2x+b,∵平移后的函数图象经过点A(2,0),∴0=4+b,解得:b=−4.∴平移后的函数解析式为:y=2x−4.解析:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k的值不变.根据平移不改变k的值可设y=2x+b,然后将点(2,0)代入即可得出直线的函数解析式.23.答案:(1)证法一:∵∠A与∠C对同弧BD,∴∠A=∠C,∵CD⊥AB于点E,∴∠CEB=90°.∴∠C+∠CBE=90°.∵MN⊥BC,∴∠ENB=90°.∴∠NEB+∠CBE=90°.∴∠C=∠NEB,∵∠NEB=∠AEM,∴∠AEM=∠A,∴AM=ME,∵∠AEM=∠A,∠MED+∠AEM=90°,∠EDA+∠A=90°,∴∠MED=∠EDA,∴ME=MD,∴AM=MD.证法二:∵∠CDA与∠CBA对同弧AC,∴∠CDA=∠CBA,∵CD⊥AB于点E,∴∠AED=90°,∴∠MED+∠MEA=90°,∵MN⊥BC,∴∠ENB=90°,∴∠CBA+∠BEN=90°,∵∠MEA=∠BEN,∴∠MED=∠CBA,∴∠MED=∠CDA,∴ME=MD,∵∠MED+∠AEM=90°,∠CDA+∠A=90°,∴∠AEM=∠A,∴AM=ME,∴AM=MD.(2)解:∵BF与⊙O相切于点B,∴AB⊥BF.∴∠ABF=90°.∵∠C与∠A对同弧BD,∴∠C=∠A,∴cosA=cosC=45,∴cosA=ABAF =45,∴AF=54AB=54×20=25,∴BF=√AF2−AB2=√252−202=15.解析:(1)想办法证明AM=EM,DM=EM即可解决问题;(2)求出AF=54AB=54×20=25,根据BF=√AF2−AB2计算即可解决问题;本题考查切线的性质、垂径定理、勾股定理、锐角三角函数、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.24.答案:解:(1)∵二次函数关于y轴对称对称轴为y轴,∴可得−−(3m−1)2=0,∴m=13;(2)根据x1>x2,m>−1可得x1=2m,x2=m−1,代入不等式解得−54<m<1,∴综合得−1< m<1.(3)对称轴为直线x=3m−12=−12+3m2,∵m>−1,∴−12+3m2>−2,∵二次函数开口向上,对称轴左侧y随x的增大而减小∴取a≤−2都可以.解析:本题考查二次函数的图像,二次函数的性质,二次函数与一元二次方程的关系.(1)根据二次函数关于y轴对称得−b2a=0,得方程,解方程即可解答;(2)根据二次函数与一元二次方程的关系.解方程x2−(3m−1)x+2m2−2m=0得x1和x2,代入−2<12x1+13x2<1得不等式组,解不等式组即可解答;(3)根据二次函数的增减性即可解答.25.答案:解:(1)x甲=16(10+9+8+8+10+9)=9,.x乙=16(10+10+8+10+7+9)=9;(2)S甲2=16[(10−9)2+(9−9)2+(8−9)2+(8−9)2+(10−9)2+(9−9)2]=23,S 乙2=16[(10−9)2+(10−9)2+(8−9)2+(10−9)2+(7−9)2+(9−9)2]=43;(3)甲参加省比赛更合适,因为甲比较稳定.理由:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.解析:本题考查的是平均数、方差的计算和性质,掌握平均数、方差的计算公式是解题的关键.(1)根据平均数的计算公式计算即可;(2)根据方差S2=1n[(x1−.x)2+(x2−.x)2+⋯+(x n−.x)2]计算即可;(3)根据方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定解答即可.26.答案:解:(1)把A(−1,0)代入得b=4a所以对称轴为x=−2;(2)把b=4a代入解析式得y=a(x+1)(x+3),则抛物线过(−1,0)(−3,0)两点,当a>0时,x=0代入得y=3a>4,所以a>43,当a<0时,x=−2代入得y=−a>2,所以a<−2,综上,a>43或a<−2;(3)B(0,4),C(−2,2),当a>0时,D(−23,103)则a=307,当a<0时,D(−43,83)则a=−245.解析:本题考查了二次函数的性质以及解一元一次不等式,解题的关键是熟练掌握一元一次不等式,待定系数法求抛物线解析式,此题属于中档题,但实际知识点较多,需要对二次函数足够了解才能快捷的解题.(1)根据坐标轴上点的坐标特征代入点A坐标,得出b=4a,则解析式为y=a(x+1)(x+3),进一步得出对称轴;(2)结合图形,分两种情况:①a>0;②a<0;进行讨论即可求解;(3)求出B(0,4),C(−2,2),分两种情况:①a>0;②a<0;进行讨论即可求解.27.答案:证明:连接AM,如图,在△ABM和△ACM中{AB=AC AM=AM BC=CM,∴△ABM≌△ACM(SSS),∴∠BAM=∠CAM,∵MD⊥AB,ME⊥AC,∴MD=ME.解析:本题考查的是全等三角形的判定与性质有关知识,连接AM,证明出△ABM≌△ACM得出∠BAM=∠CAM,再根据MD⊥AB,ME⊥AC即可解答.28.答案:解:(1)如图1,延长FE,AC交于点H,连接BD,∵AB是直径,∴∠ADB=90°,∴∠DAB+∠ABD=90°,∵四边形ABDC是圆内接四边形,∴∠HCD=∠ABD,且∠F=∠BAD,∴∠HCD+∠F=90°,∴∠H=90°,∴AC⊥EF;(2)如图2,延长FE,AC交于点H,连接BD,∵四边形ABDC是圆内接四边形,∴∠HCD=∠ABD,∵2∠CAE+∠DAG=∠ABD,且∠HCD=∠CAE+∠ADC,∴∠CAE+∠ADC=2∠CAE+∠DAG,∴∠ADC=∠CAE+∠DAG,且∠AGC=∠ADC,且∠AGC=∠AEC+∠GAD,∴∠CAE+∠DAG=∠GAD+∠AEC,∴∠AEC=∠CAE,∴AC=CE;(3)如图3,过点K作KM⊥AE,过点E作EN⊥AK,过点A作AP⊥CE,交EC的延长线于P,∵∠H=∠AMK=90°,∠AEH=∠MEF,∴∠HAE=∠MKE,且∠HAE=∠CEA,∴∠CEA=∠MKE,∵PA⊥AE,∠HAE=∠CEA,∴∠CPA=∠CAP,∴PC=AC,且AC=CE,∴PE=2AC,且EK=2AC,∴PE=EK,且∠PAE=∠KME=90°,∠CEA=∠MKE,∴△PAE≌△EMK(AAS)∴AE=MK,∵AK=10,△AEK的面积=18,∴12AK×EN=12×10×EN=18,12AE×MK=12×AE2=18,∴EN=185,AE=6,∴AN=√AE2−EN2=√36−32425=245,∴KN=AK−AN=265,∴EK=√EN2+NK2=√32425+67625=2√10.解析:(1)如图1,延长FE,AC交于点H,连接BD,由圆周角定理可求∠DAB+∠ABD=90°,由圆的内接四边形的性质可得∠HCD=∠ABD,可求∠H=90°,可得AC⊥EF;(2)如图2,延长FE,AC交于点H,连接BD,由圆的内接四边形的性质可得∠HCD=∠ABD,由角的数量关系可求∠AEC=∠CAE,可得AC=CE;(3)如图3,过点K作KM⊥AE,过点E作EN⊥AK,过点A作AP⊥CE,交EC的延长线于P,由“AAS”可证△PAE≌△EMK,可得AE=MK,由三角形面积公式可求EN=185,AE=6,由勾股定理可求解.本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,等腰三角形的性质,直角三角形的性质,勾股定理等知识,添加恰当辅助线构造全等三角形是本题的关键.。

北京市2020年数学中考模拟试卷一含答案

北京市2020年数学中考模拟试卷一含答案

北京市2020年数学中考模拟试卷一一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个.1.下列几何体中,是圆锥的为A .B .C .D . 2.若分式1x+2在实数范围内有意义,则实数x 的取值范围是 ( ) A .x >-2 B .x <-2 C .x =-2 D .x ≠-23.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是A .a>bB .a=b>0C .ac>0D .4.若正多边形的内角和是540°,则该正多边形的一个外角为 A .45° B .60° C .72° D .90°5.马赫是表示速度的量词,通常用于表示飞机、导弹、火箭的飞行速度,一马赫即一倍音速(音速≈340m/s).我国建造的全球最大口径自由活塞驱动高能脉冲风洞FD -21,速度高达15马赫,则FD -21的速度约为A .5.1×103 m/sB .5.1×104 m/sC .3.4×103 m/sD .1.5×103 m/s 6.如果a 2+2a -1=0,那么代数式(a −4a )⋅a 2a−2的值是 ( ) A.-3 B.-1 C.1 D.37.下面的统计图反映了我国出租车(巡游出租车和网约出租车)客运量结构变化.(以上数据摘自《中国共享经济发展年度报告(2019)》) 根据统计图提供的信息,下列推断合理的是A .2018年与2017年相比,我国网约出租车客运量增加了20%以上2015-2018年巡游出租车与网约出租车客运量统计图网约出租车客运量(亿人次)巡游出租车客运量(亿人次)B .2018年,我国巡游出租车客运量占出租车客运总量的比例不足60%C .2015年至2018年,我国出租车客运的总量一直未发生变化D .2015年至2018年,我国巡游出租车客运量占出租车客运总量的比例逐年增加 8.右图是北京市地铁部分线路示意图.若分别以正东、正北方向为x 轴,y 轴的正方向建立平面直角坐标系,表示西单的点的坐标为(-4,0),表示雍和宫的点的坐标为(4,6),则表示南锣鼓巷的点的坐标是 A .(5,0) B .(5,3) C .(1,3) D .(-3,3)二、填空题(本题共16分,每小题2分)9.如图,在线段AD , AE , AF 中,△ABC 的高是线段。

2020年北京市数学中考一模试卷含答案

2020年北京市数学中考一模试卷含答案

2020年北京市数学中考一模试卷含答案一、选择题1.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70° 2.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点的坐标为( )A .(,)a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b --+3.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是( )A .中位数B .平均数C .众数D .方差4.如图,A ,B ,P 是半径为2的⊙O 上的三点,∠APB =45°,则弦AB 的长为( )A .2B .4C .22D 2 5.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60° 6.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是( )A .19B .16C .13D .237.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,如果使草坪部分的总面积为112m 2,设小路的宽为xm ,那么x 满足的方程是( )A .2x 2-25x+16=0B .x 2-25x+32=0C .x 2-17x+16=0D .x 2-17x-16=08.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED 度数为( )A .110°B .125°C .135°D .140°9.如图,在矩形ABCD 中,AD=3,M 是CD 上的一点,将△ADM 沿直线AM 对折得到△ANM ,若AN 平分∠MAB ,则折痕AM 的长为( )A .3B .23C .32D .610.如图,正比例函数1y=k x 与反比例函数2k y=x的图象相交于点A 、B 两点,若点A 的坐标为(2,1),则点B 的坐标是( )A .(1,2)B .(-2,1)C .(-1,-2)D .(-2,-1) 11.若正比例函数y=mx (m≠0),y 随x 的增大而减小,则它和二次函数y=mx 2+m 的图象大致是( ) A . B .C .D .12.cos45°的值等于( )A .2B .1C .32D .22二、填空题13.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22k y x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.14.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF 的长为______.15.如图,在平面直角坐标系中,点O 为原点,菱形OABC 的对角线OB 在x 轴上,顶点A 在反比例函数y=2x的图像上,则菱形的面积为_______.16.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为_____.17.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为_____.18.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是.19.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC=________.20.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是三、解答题21.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.22.如图,抛物线y=ax2+bx﹣2与x轴交于两点A(﹣1,0)和B(4,0),与Y轴交于点C,连接AC、BC、AB,(1)求抛物线的解析式;(2)点D 是抛物线上一点,连接BD 、CD ,满足ABC 35DBC S S ∆=,求点D 的坐标; (3)点E 在线段AB 上(与A 、B 不重合),点F 在线段BC 上(与B 、C 不重合),是否存在以C 、E 、F 为顶点的三角形与△ABC 相似,若存在,请直接写出点F 的坐标,若不存在,请说明理由.23.小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o 33711sin 37tan37s 48tan48541010in ,,,≈≈≈≈) 24.如图1,菱形ABCD 中,120ABC ∠=︒,P 是对角线BD 上的一点,点E 在AD 的延长线上,且PA PE =,PE 交CD 于F ,连接CE .△≌△;(1)证明:ADP CDP△的形状,并说明理由.(2)判断CEP(3)如图2,把菱形ABCD改为正方形ABCD,其他条件不变,直接..写出线段AP与线段CE的数量关系.25.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.D解析:D【解析】试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则 0122a xb y ++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,.故选D . 考点:坐标与图形变化-旋转.3.A解析:A【解析】【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【详解】去掉一个最高分和一个最低分对中位数没有影响,故选A .【点睛】考查了统计量的选择,解题的关键是了解中位数的定义.4.C解析:C【解析】【分析】由A 、B 、P 是半径为2的⊙O 上的三点,∠APB=45°,可得△OAB 是等腰直角三角形,继而求得答案.【详解】解:连接OA ,OB .∵∠APB =45°,∴∠AOB =2∠APB =90°.∵OA =OB =2,∴AB =22OA OB +=22.故选C .5.C【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.6.C解析:C【解析】【分析】画出树状图即可求解.【详解】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率=13;故选:C.【点睛】本题考查的是概率,熟练掌握树状图是解题的关键.7.C解析:C【解析】解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16-2x)m,(9-x)m;根据题意即可得出方程为:(16-2x)(9-x)=112,整理得:x2-17x+16=0.故选C.点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关键.解析:B【解析】【分析】由AB∥CD,根据两直线平行,同旁内角互补可得∠CAB=110°,再由角平分线的定义可得∠CAE=55°,最后根据三角形外角的性质即可求得答案.【详解】∵AB∥CD,∴∠BAC+∠C=180°,∵∠C=70°,∴∠CAB=180°-70°=110°,又∵AE平分∠BAC,∴∠CAE=55°,∴∠AED=∠C+∠CAE=125°,故选B.【点睛】本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握相关知识是解题的关键.9.B解析:B【解析】【分析】根据折叠的性质可得∠MAN=∠DAM,再由AN平分∠MAB,得出∠DAM=∠MAN=∠NAB,最后利用三角函数解答即可.【详解】由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,==∴故选:B.【点睛】本题考查了矩形的性质及折叠的性质,解题的关键是利用折叠的性质求得∠MAN=∠DAM, 10.D解析:D【分析】【详解】解:根据正比例函数与反比例函数关于原点对称的性质,正比例函数1y=k x 与反比例函数2k y=x的图象的两交点A 、B 关于原点对称; 由A 的坐标为(2,1),根据关于原点对称的点的坐标是横、纵坐标都互为相反数的坐标特征,得点B 的坐标是(-2,-1).故选:D11.A解析:A【解析】【分析】【详解】∵正比例函数y=mx (m≠0),y 随x 的增大而减小,∴该正比例函数图象经过第一、三象限,且m <0,∴二次函数y=mx 2+m 的图象开口方向向下,且与y 轴交于负半轴,综上所述,符合题意的只有A 选项,故选A.12.D解析:D【解析】【分析】将特殊角的三角函数值代入求解.【详解】解:cos45°= 2. 故选D .【点睛】本题考查特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值. 二、填空题13.【解析】【分析】根据反比例函数的几何意义可知:的面积为的面积为然后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义可知:的面积为的面积为∴的面积为∴∴故答案为8【点睛】本题考查反比 解析:【解析】【分析】根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k ,然后两个三角形面积作差即可求出结果.【详解】 解:根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k , ∴AOB ∆的面积为121122k k -,∴1211422k k -=,∴128k k -=. 故答案为8.【点睛】 本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于基础题型.14.5【解析】【分析】【详解】试题解析:∵∠AFB=90°D 为AB 的中点∴DF=AB=25∵DE 为△ABC 的中位线∴DE=BC=4∴EF=DE -DF=15故答案为15【点睛】直角三角形斜边上的中线性质:解析:5【解析】【分析】【详解】试题解析:∵∠AFB=90°,D 为AB 的中点,∴DF=12AB=2.5, ∵DE 为△ABC 的中位线,∴DE=12BC=4, ∴EF=DE-DF=1.5,故答案为1.5.【点睛】直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.15.4【解析】【分析】【详解】解:连接AC 交OB 于D∵四边形OABC 是菱形∴AC⊥OB∵点A 在反比例函数y=的图象上∴△AOD 的面积=×2=1∴菱形OABC 的面积=4×△AOD 的面积=4故答案为:4解析:4【解析】【分析】【详解】解:连接AC 交OB 于D .∵四边形OABC是菱形,∴AC⊥OB.∵点A在反比例函数y=2x的图象上,∴△AOD的面积=12×2=1,∴菱形OABC的面积=4×△AOD的面积=4故答案为:416.6【解析】试题解析:∵DE是BC边上的垂直平分线∴BE=CE∵△EDC的周长为24∴ED+DC+EC=24①∵△ABC与四边形AEDC的周长之差为12∴(AB+AC+BC)-(AE+ED+DC+AC解析:6【解析】试题解析:∵DE是BC边上的垂直平分线,∴BE=CE.∵△EDC的周长为24,∴ED+DC+EC=24,①∵△ABC与四边形AEDC的周长之差为12,∴(AB+AC+BC)-(AE+ED+DC+AC)=(AB+AC+BC)-(AE+DC+AC)-DE=12,∴BE+BD-DE=12,②∵BE=CE,BD=DC,∴①-②得,DE=6.考点:线段垂直平分线的性质.17.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣40解析:13201320304060x x-=-.【解析】【分析】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x千米/时,则原来列车的速度为(x﹣40)千米/时,根据题意得:13201320304060x x-=-.故答案为:13201320304060x x-=-.【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.18.【解析】试题分析:要求PE+PC的最小值PEPC不能直接求可考虑通过作辅助线转化PEPC的值从而找出其最小值求解试题解析:如图连接AE∵点C关于BD的对称点为点A∴PE+PC=PE+AP根据两点之间解析:5.【解析】试题分析:要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC 的值,从而找出其最小值求解.试题解析:如图,连接AE,∵点C关于BD的对称点为点A,∴PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为2,E是BC边的中点,∴BE=1,∴22125+考点:1.轴对称-最短路线问题;2.正方形的性质.19.【解析】【分析】连接BD根据中位线的性质得出EFBD且EF=BD进而根据勾股定理的逆定理得到△BDC是直角三角形求解即可【详解】连接BD分别是ABAD的中点EFBD且EF=BD又△BDC是直角三角形解析:4 3【解析】【分析】连接BD,根据中位线的性质得出EF//BD,且EF=12BD,进而根据勾股定理的逆定理得到△BDC 是直角三角形,求解即可.【详解】连接BD,E F 分别是AB 、AD 的中点∴EF //BD ,且EF=12BD 4EF =8BD ∴=又8106BD BC CD ===,,∴△BDC 是直角三角形,且=90BDC ∠︒∴tanC=BD DC =86=43. 故答案为:43.20.k≥-13且k≠0【解析】试题解析:∵a=kb=2(k+1)c=k-1∴△=4(k+1)2-4×k×(k-1)=3k+1≥0解得:k≥-13∵原方程是一元二次方程∴k≠0考点:根的判别式解析:k≥,且k≠0【解析】试题解析:∵a=k ,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥0,解得:k≥-,∵原方程是一元二次方程,∴k ≠0.考点:根的判别式. 三、解答题21.(1)DE=3;(2)ADB S 15∆=.【解析】【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可;(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵CD=3,∴DE=3;(2)在Rt △ABC 中,由勾股定理得:AB 10===,∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=.22.(1)213y x x 222=--;(2)D 的坐标为2⎛ ⎝⎭,2⎛ ⎝⎭,(1,﹣3)或(3,﹣2).(3)存在,F 的坐标为48,55⎛⎫-⎪⎝⎭,(2,﹣1)或53,24⎛⎫- ⎪⎝⎭. 【解析】【分析】(1)根据点A ,B 的坐标,利用待定系数法可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可求出点C 的坐标,结合点A ,B 的坐标可得出AB ,AC ,BC 的长度,由AC 2+BC 2=25=AB 2可得出∠ACB=90°,过点D 作DM∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,由D 1M 1∥BC 可得出△AD 1M 1∽△ACB,利用相似三角形的性质结合S △DBC =35S ABC ∆ ,可得出AM 1的长度,进而可得出点M 1的坐标,由BM 1=BM 2可得出点M 2的坐标,由点B ,C 的坐标利用待定系数法可求出直线BC 的解析式,进而可得出直线D 1M 1,D 2M 2的解析式,联立直线DM 和抛物线的解析式成方程组,通过解方程组即可求出点D 的坐标;(3)分点E 与点O 重合及点E 与点O 不重合两种情况考虑:①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC,由点A ,C 的坐标利用待定系数法可求出直线AC 的解析式,进而可得出直线OF 1的解析式,联立直线OF 1和直线BC 的解析式成方程组,通过解方程组可求出点F 1的坐标;②当点E 不和点O 重合时,在线段AB 上取点E ,使得EB =EC ,过点E 作EF 2⊥BC 于点F 2,过点E 作EF 3⊥CE,交直线BC 于点F 3,则△CEF 2∽△BAC∽△CF 3E .由EC =EB 利用等腰三角形的性质可得出点F 2为线段BC 的中点,进而可得出点F 2的坐标;利用相似三角形的性质可求出CF 3的长度,设点F 3的坐标为(x ,12x ﹣2),结合点C 的坐标可得出关于x 的方程,解之即可得出x 的值,将其正值代入点F 3的坐标中即可得出结论.综上,此题得解.【详解】(1)将A (﹣1,0),B (4,0)代入y =ax 2+bx ﹣2,得:2016420a b a b --=⎧⎨+-=⎩ ,解得:1232a b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴抛物线的解析式为y =12 x 2﹣32x ﹣2. (2)当x =0时,y =12x 2﹣32x ﹣2=﹣2, ∴点C 的坐标为(0,﹣2).∵点A 的坐标为(﹣1,0),点B 的坐标为(4,0),,BC=AB =5.∵AC 2+BC 2=25=AB 2,∴∠ACB=90°.过点D 作DM∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,如图1所示. ∵D 1M 1∥BC,∴△AD 1M 1∽△ACB.∵S △DBC =35S ABC ∆, ∴125AM AB =, ∴AM 1=2,∴点M 1的坐标为(1,0),∴BM 1=BM 2=3,∴点M 2的坐标为(7,0).设直线BC 的解析式为y =kx+c (k≠0),将B (4,0),C (0,﹣2)代入y =kx+c ,得:402k c c +=⎧⎨=-⎩ ,解得:122k c ⎧=⎪⎨⎪=-⎩ , ∴直线BC 的解析式为y =12x ﹣2. ∵D 1M 1∥BC∥D 2M 2,点M 1的坐标为(1,0),点M 2的坐标为(7,0), ∴直线D 1M 1的解析式为y =12 x ﹣12 ,直线D 2M 2的解析式为y =12x ﹣72. 联立直线DM 和抛物线的解析式成方程组,得:2112213222y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩或2172213222y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,解得:112x y ⎧=⎪⎨=⎪⎩,222x y ⎧=⎪⎨=⎪⎩3313x y =⎧⎨=-⎩ ,4432x y =⎧⎨=-⎩,∴点D 的坐标为(2,2),(,2),(1,﹣3)或(3,﹣2). (3)分两种情况考虑,如图2所示.①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC,设直线AC 的解析设为y =mx+n (m≠0),将A (﹣1,0),C (0,﹣2)代入y =mx+n ,得:-02m n n +=⎧⎨=-⎩ ,解得:22m n =-⎧⎨=-⎩ , ∴直线AC 的解析式为y =﹣2x ﹣2.∵AC⊥BC,OF 1⊥BC,∴直线OF 1的解析式为y =﹣2x .连接直线OF 1和直线BC 的解析式成方程组,得:2122y x y x =-⎧⎪⎨=-⎪⎩ , 解得:4585x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴点F 1的坐标为(45,﹣85 ); ②当点E 不和点O 重合时,在线段AB 上取点E ,使得EB =EC ,过点E 作EF 2⊥BC 于点F 2,过点E 作EF 3⊥CE,交直线BC 于点F 3,则△CEF 2∽△BAC∽△CF 3E .∵EC=EB ,EF 2⊥BC 于点F 2,∴点F 2为线段BC 的中点,∴点F 2的坐标为(2,﹣1);∵BC=,∴CF 2=12 BC,EF 2=12 CF 2=2 ,F 2F 3=12 EF 2, ∴CF 3=4 . 设点F 3的坐标为(x ,12 x ﹣2), ∵CF 3=4,点C 的坐标为(0,﹣2), ∴x 2+[12x ﹣2﹣(﹣2)]2=12516, 解得:x 1=﹣52 (舍去),x 2=52,∴点F3的坐标为(52,﹣34).综上所述:存在以C、E、F为顶点的三角形与△ABC相似,点F的坐标为(45,﹣8 5),(2,﹣1)或(52,﹣34).【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、勾股定理的逆定理、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、平行线的性质、相似三角形的性质以及两点间的距离公式,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)找出过点D且与直线BC平行的直线的解析式;(3)分点E与点O重合及点E与点O不重合两种情况,利用相似三角形的性质及等腰三角形的性质求出点F的坐标.23.43米【解析】【分析】【详解】解:设CD = x.在Rt△ACD中,tan37AD CD︒=,则34ADx =,∴34AD x =. 在Rt △BCD 中,tan48° =BD CD, 则1110BD x=, ∴1110BD x = ∵AD +BD = AB , ∴31180410x x +=. 解得:x≈43. 答:小明家所在居民楼与大厦的距离CD 大约是43米.24.(1)证明见解析;(2)CEP ∆是等边三角形,理由见解析;(3)CE =. 【解析】【分析】(1)由菱形ABCD 性质可知,AD CD =,ADP CDP ∠=∠,即可证明; (2)由△PDA ≌△PDC ,推出PA=PC ,由PA=PE ,推出DCP DEP ∠=∠,可知60CPF EDF ∠=∠=︒,由PA═PE=PC ,即可证明△PEC 是等边三角形;(3)由△PDA ≌△PDC ,推出PA=PC ,∠3=∠1,由PA=PE ,推出∠2=∠3,推出∠1=∠2,由∠EDF=90°,∠DFE=∠PFC ,推出∠FPC=EDF=90°,推出△PEC 是等腰直角三角形即可解答;【详解】(1)证明:在菱形ABCD 中,AD CD =,ADP CDP ∠=∠,在ADP ∆和CDP ∆AD CD ADP CDP DP DP =⎧⎪∠=∠⎨⎪=⎩,∴()ADP CDP SAS ∆≅∆.(2)CEP ∆是等边三角形,由(1)知,ADP CDP ∆≅∆,∴DAP DCP ∠=∠,AP CP =,∵PA PE =,∴DAP DEP ∠=∠,∴DCP DEP ∠=∠,∵CFP EFD ∠=∠(对顶角相等),∴180180PFC PCF DFE DEP ︒-∠-∠=︒-∠-∠,即60CPF EDF ∠=∠=︒,又∵PA PE =,AP CP =;∴PE PC =,∴CEP ∆是等边三角形.(3)2CE AP =.过程如下:证明:如图1中,∵四边形ABCD 是正方形,∴AD=DC ,∠ADB=∠CDB=45°,∠ADC=90°,在△PDA 和△PDC 中,PD PD PDA PDC DA DC ⎧⎪∠∠⎨⎪⎩===,,∴△PDA ≌△PDC ,∴PA=PC ,∠3=∠1,∵PA=PE ,∴∠2=∠3,∴∠1=∠2,∵∠EDF=90°,∠DFE=∠PFC ,∴∠FPC=EDF=90°, ∴△PEC 是等腰直角三角形.∴2PC 2AP .【点睛】本题考查正方形的性质、菱形的性质、全等三角形的判定和性质、等边三角形判定、等腰直角三角形性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(1)见解析3【解析】【分析】(1)根据平行四边形的和菱形的判定证明即可;(2)根据含30°的直角三角形的性质和勾股定理以及菱形的面积解答即可.【详解】证明:(1)∵DE ∥BC ,DF ∥AB ,∴四边形BFDE 是平行四边形,∵BD 是△ABC 的角平分线,∴∠EBD=∠DBF , ∵DE ∥BC ,∴∠EDB=∠DBF , ∴∠EBD=∠EDB , ∴BE=ED ,∴平行四边形BFDE 是菱形; (2)连接EF ,交BD 于O ,∵∠BAC=90°,∠C=30°, ∴∠ABC=60°,∵BD 平分∠ABC , ∴∠DBC=30°,∴BD=DC=12,∵DF ∥AB ,∴∠FDC=∠A=90°,∴4333== 在Rt △DOF 中,()222243623DF OD -=-= ∴菱形BFDE 的面积=12×EF •BD =12×12×33 【点评】 此题考查了菱形的判定和性质,熟练掌握菱形的判定和性质是解题的关键.。

北京市2020学年中考数学一模试卷(含解析)

北京市2020学年中考数学一模试卷(含解析)

中考数学一模试卷一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个是符合题意的.1.2017年北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌.综合实力稳步提升.全市地区生产总值达到280000亿元,将280000用科学记数法表示为()A.280×103 B.28×104 C.2.8×105 D.0.28×1062.下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是()A.晴B.浮尘C.大雨D.大雪3.实数a,b在数轴上对应的点的位置如图所示,则正确的结论是()A.a+b<0 B.a>|﹣2| C.b>πD.4.下列四个几何体中,左视图为圆的是()A.B.C.D.5.如图,AB∥CD,DB⊥BC,∠2=50°,则∠1的度数是()A.40° B.50° C.60° D.140°6.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,AC=8,BC=6,则∠ACD的正切值是()A.B.C.D.7.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是()用水量x(吨)3 4 5 6 7频数 1 2 5 4﹣x xA.平均数、中位数B.众数、中位数C.平均数、方差 D.众数、方差8.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人的车离开A城的距离y(千米)与行驶的时间t(小时)之间的函数关系如图所示.有下列结论;①A.B两城相距300千米;②小路的车比小带的车晚出发1小时,却早到1小时;③小路的车出发后2.5小时追上小带的车;④当小带和小路的车相距50千米时,t=或t=.其中正确的结论有()A.①②③④ B.①②④C.①② D.②③④二、填空题(本题共16分,每小题2分)9.如果分式的值是0,那么x的值是_________10.在平面直角坐标系xOy中,点A(4,3)为⊙O上一点,B为⊙O内一点,请写出一个符合条件要求的点B的坐标_________.11.当a=3时,代数式的值是12.写出经过点(0,0),(﹣2,0)的一个二次函数的解析式_____(写一个即可)13.二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是_____.14.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为________.15.如图,一等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第________个.16.在数学课上,老师提出如下问题:尺规作图:确定图1中所在圆的圆心.已知:.求作:所在圆的圆心O.曈曈的作法如下:如图2,(1)在上任意取一点M,分别连接CM,DM;(2)分别作弦CM,DM的垂直平分线,两条垂直平分线交于点O.点O就是所在圆的圆心.老师说:“曈曈的作法正确.”请你回答:曈曈的作图依据是三、解答题(本题共68分,第17~24题,每小题5分,第25题6分,第26题7分,第27题7分,第28题8分,)解答应写出文字说明,演算步骤或证明过程.17.计算:4cos30°﹣+20180+|1﹣|18.解不等式组:19.文艺复兴时期,意大利艺术大师达.芬奇研究过用圆弧围成的部分图形的面积问题.已知正方形的边长是2,就能求出图中阴影部分的面积.证明:S矩形ABCD=S1+S2+S3=2,S4=______,S5=_______,S6=_______+_________,S阴影=S1+S6=S1+S2+S3=_________.20.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD,求证:AE=FB.21.已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)当方程有一个根为1时,求k的值.22.豆豆妈妈用小米运动手环记录每天的运动情况,下面是她6天的数据记录(不完整):日期4月1日4月2日4月3日4月4日4月5日4月6日步行数(步)10672 4927 5543 6648 步行距离(公里)6.8 3.1 3.4 4.3卡路里消耗(千卡)157 79 91 127燃烧脂肪(克)20 10 12 16(1)4月5日,4月6日,豆豆妈妈没来得及作记录,只有手机图片,请你根据图片数据,帮她补全表格.(2)豆豆利用自己学习的统计知识,把妈妈步行距离与燃烧脂肪情况用如下统计图表示出来,请你根据图中提供的信息写出结论:____________.(写一条即可)(3)豆豆还帮妈妈分析出步行距离和卡路里消耗数近似成正比例关系,豆豆妈妈想使自己的卡路里消耗数达到250千卡,预估她一天步行距离为_______公里.(直接写出结果,精确到个位)23.如图,在△ABC中,D.E分别是AB.AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.24.如图,在平面直角坐标系中,直线l:y=kx+k(k≠0)与x轴,y轴分别交于A,B两点,且点B(0,2),点P在y轴正半轴上运动,过点P作平行于x轴的直线y=t.(1)求k的值和点A的坐标;(2)当t=4时,直线y=t与直线l交于点M,反比例函数(n≠0)的图象经过点M,求反比例函数的解析式;(3)当t<4时,若直线y=t与直线l和(2)反比例函数的图象分别交于点C,D,当CD间距离大于等于2时,求t的取值范围.25.如图,在△ABC中,AB=AC,AE是BC边上的高线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB为⊙O的直径.(1)求证:AM是⊙O的切线;(2)当BE=3,cosC=时,求⊙O的半径.26.已知y是x的函数,自变量x的取值范围是x≠0的全体实数,如表是y与x的几组对应值.1 2 3 …x …﹣3 ﹣2 ﹣1﹣﹣m …y …﹣﹣﹣小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是________;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出x=2时所对应的点,并写出m=_________.(4)结合函数的图象,写出该函数的一条性质:_________.27.如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M 称为碟顶.(1)由定义知,取AB中点N,连结MN,MN与AB的关系是__________.(2)抛物线y=对应的准蝶形必经过B(m,m),则m=________,对应的碟宽AB是_____.(3)抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x 轴上,且AB=6.①求抛物线的解析式;②在此抛物线的对称轴上是否有这样的点P(xp,yp),使得∠APB为锐角,若有,请求出yp的取值范围.若没有,请说明理由.28.在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连结CD,点P在射线CB上(与B,C不重合)(1)如果∠A=30°①如图1,∠DCB=°②如图2,点P在线段CB上,连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;(2)如图3,若点P在线段CB 的延长线上,且∠A=α(0°<α<90°),连结DP,将线段DP绕点逆时针旋转 2α得到线段DF,连结BF,请直接写出DE.BF、BP三者的数量关系(不需证明)参考答案一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个是符合题意的.1.2017年北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌.综合实力稳步提升.全市地区生产总值达到280000亿元,将280000用科学记数法表示为()A.280×103 B.28×104 C.2.8×105 D.0.28×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将280000用科学记数法表示为2.8×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是()A.晴B.浮尘C.大雨D.大雪【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A.是轴对称图形,也是中心对称图形,故此选项正确;B.是轴对称图形,不是中心对称图形,故此选项错误;C.不是轴对称图形,也不是中心对称图形,故此选项错误;D.不是轴对称图形,也不是中心对称图形,故此选项错误.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.实数a,b在数轴上对应的点的位置如图所示,则正确的结论是()A.a+b<0 B.a>|﹣2| C.b>πD.【分析】根据数轴上点的位置,可得a,b,根据有理数的运算,可得答案.【解答】解:a=﹣2,2<b<3.A.a+b>0,故A不符合题意;B.a<|﹣2|,故B不符合题意;C.b<3<π,故C不符合题意;D.<0,故D符合题意;故选:D.【点评】本题考查了实数与数轴,利用有理数的运算是解题关键.4.下列四个几何体中,左视图为圆的是()A.B.C.D.【分析】四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形,由此可确定答案.【解答】解:因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是圆的几何体是球.故选:B.【点评】此题主要考查了立体图形的左视图,关键根据圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形解答.5.如图,AB∥CD,DB⊥BC,∠2=50°,则∠1的度数是()A.40° B.50° C.60° D.140°【分析】根据直角三角形两锐角互余求出∠3,再根据两直线平行,同位角相等解答.【解答】解:∵DB⊥BC,∠2=50°,∴∠3=90°﹣∠2=90°﹣50°=40°,∵AB∥CD,∴∠1=∠3=40°.故选:A.【点评】本题考查了平行线的性质,直角三角形两锐角互余的性质,熟记性质是解题的关键.6.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,AC=8,BC=6,则∠ACD的正切值是()A.B.C.D.【分析】根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,再根据等边对等角的性质可得∠A=∠ACD,然后根据正切函数的定义列式求出∠A的正切值,即为tan∠ACD的值.【解答】解:∵CD是AB边上的中线,∴CD=AD,∴∠A=∠ACD,∵∠ACB=90°,BC=6,AC=8,∴tan∠A=,∴tan∠ACD的值.故选:D.【点评】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出∠A=∠ACD是解本题的关键.7.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是()用水量x(吨)3 4 5 6 7频数 1 2 5 4﹣x xA.平均数、中位数B.众数、中位数C.平均数、方差 D.众数、方差【分析】由频数分布表可知后两组的频数和为4,即可得知频数之和,结合前两组的频数知第 6.7个数据的平均数,可得答案.【解答】解:∵6吨和7吨的频数之和为4﹣x+x=4,∴频数之和为1+2+5+4=12,则这组数据的中位数为第6.7个数据的平均数,即=5,∴对于不同的正整数x,中位数不会发生改变,故选:B.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.8.小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人的车离开A城的距离y(千米)与行驶的时间t(小时)之间的函数关系如图所示.有下列结论;①A.B两城相距300千米;②小路的车比小带的车晚出发1小时,却早到1小时;③小路的车出发后2.5小时追上小带的车;④当小带和小路的车相距50千米时,t=或t=.其中正确的结论有()A.①②③④ B.①②④C.①② D.②③④【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A.B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得:,∴y乙=100t﹣100,令y甲=y乙,可得:60t=100t﹣100,解得:t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或时,两车相距50千米,∴④不正确;故选:C.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.二、填空题(本题共16分,每小题2分)9.如果分式的值是0,那么x的值是0【分析】根据分式为0的条件得到方程,解方程得到答案.【解答】解:由题意得,x=0,故答案是:0.【点评】本题若分式的值为零的条件,分式为0需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.10.在平面直角坐标系xOy中,点A(4,3)为⊙O上一点,B为⊙O内一点,请写出一个符合条件要求的点B的坐标(2,2).【分析】连结OA,根据勾股定理可求OA,再根据点与圆的位置关系可得一个符合要求的点B的坐标.【解答】解:如图,连结OA,OA==5,∵B为⊙O内一点,∴符合要求的点B的坐标(2,2)答案不唯一.故答案为:(2,2).【点评】考查了点与圆的位置关系,坐标与图形性质,关键是根据勾股定理得到OA的长.11.当a=3时,代数式的值是 2【分析】先根据分式混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:原式=÷=•=,当a=3时,原式==2,故答案为:2.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.12.写出经过点(0,0),(﹣2,0)的一个二次函数的解析式y=x2+2x(答案不唯一)(写一个即可)【分析】设此二次函数的解析式为y=ax(x+2),令a=1即可.【解答】解:∵抛物线过点(0,0),(﹣2,0),∴可设此二次函数的解析式为y=ax(x+2),把a=1代入,得y=x2+2x.故答案为y=x2+2x(答案不唯一).【点评】本题考查的是待定系数法求二次函数解析式,此题属开放性题目,答案不唯一.13.二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是.【分析】首先由图可得此转盘被平分成了24等份,其中惊蛰、春分、清明区域有3份,然后利用概率公式求解即可求得答案.【解答】解:∵如图,此转盘被平分成了24等份,其中惊蛰、春分、清明有3份,∴指针落在惊蛰、春分、清明的概率是:.故答案为:【点评】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.14.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为.【分析】根据图示可得:长方形的长可以表示为x+2y,长又是75厘米,故x+2y=75,长方形的宽可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.【解答】解:根据图示可得,故答案是:.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.15.如图,一等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第 5 个.【分析】根据相似三角形的相似比求得顶点到这个正方形的长,再根据矩形的宽求得是第几张.【解答】解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是3,所以根据相似三角形的性质可设从顶点到这个正方形的线段为x,则,解得x=3,所以另一段长为18﹣3=15,因为15÷3=5,所以是第5张.故答案为:5【点评】本题主要考查了相相似三角形的判定和性质,关键是根据似三角形的性质及等腰三角形的性质的综合运用解答.16.在数学课上,老师提出如下问题:尺规作图:确定图1中所在圆的圆心.已知:.求作:所在圆的圆心O.曈曈的作法如下:如图2,(1)在上任意取一点M,分别连接CM,DM;(2)分别作弦CM,DM的垂直平分线,两条垂直平分线交于点O.点O就是所在圆的圆心.老师说:“曈曈的作法正确.”请你回答:曈曈的作图依据是①线段垂直平分线上的点到线段两端点的距离相等②圆的定义(到定点的距离等于定长的点的轨迹是圆)【分析】(1)在上任意取一点M,分别连接CM,DM;(2)分别作弦CM,DM的垂直平分线,两条垂直平分线交于点O.点O就是所在圆的圆心.【解答】解:根据线段的垂直平分线的性质定理可知:OC=OM=OD,所以点O是所在圆的圆心O(理由①线段垂直平分线上的点到线段两端点的距离相等②圆的定义(到定点的距离等于定长的点的轨迹是圆):)故答案为①线段垂直平分线上的点到线段两端点的距离相等②圆的定义(到定点的距离等于定长的点的轨迹是圆)【点评】本题考查作图﹣复杂作图、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(本题共68分,第17~24题,每小题5分,第25题6分,第26题7分,第27题7分,第28题8分,)解答应写出文字说明,演算步骤或证明过程.17.计算:4cos30°﹣+20180+|1﹣|【分析】先代入三角函数值、化简二次根式、计算零指数幂、取绝对值符号,再计算乘法,最后计算加减可得.【解答】解:原式==2﹣2+1+﹣1=.【点评】本题主要考查实数的混合运算,解题的关键是熟练掌握实数的混合运算顺序和运算法则及零指数幂、绝对值和二次根式的性质.18.解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①,得x<5,解不等式②,得x≥﹣3,∴不等式组的解是﹣3≤x<5.【点评】本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.19.文艺复兴时期,意大利艺术大师达.芬奇研究过用圆弧围成的部分图形的面积问题.已知正方形的边长是2,就能求出图中阴影部分的面积.证明:S矩形ABCD=S1+S2+S3=2,S4=S2 ,S5=,S6=S4 + S5 ,S阴影=S1+S6=S1+S2+S3= 2 .【分析】利用图形的拼割,正方形的性质,寻找等面积的图形,即可解决问题;【解答】证明:由题意:S矩形ABCD=S1+S2+S3=2,S4=S2,S5=S3,S6=S4+S5,S阴影面积=S1+S6=S1+S2+S3=2.故答案为:S2,S3,S4,S5,2.【点评】本题考查正方形的性质、矩形的性质、扇形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD,求证:AE=FB.【分析】根据CE∥DF,可得∠ECA=∠FDB,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.【解答】证明:∵CE∥DF∴∠ECA=∠FDB,在△ECA和△FDB 中,∴△ECA≌△FDB,∴AE=FB.【点评】此题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.21.已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)当方程有一个根为1时,求k的值.【分析】(1)套入数据求出△=b2﹣4ac的值,再与0作比较,由于△=1>0,从而证出方程有两个不相等的实数根;(2)将x=1代入原方程,得出关于k的一元二次方程,解方程即可求出k的值.【解答】(1)证明:△=b2﹣4ac,=[﹣(2k+1)]2﹣4(k2+k),=4k2+4k+1﹣4k2﹣4k,=1>0.∴方程有两个不相等的实数根;(2)∵方程有一个根为1,∴12﹣(2k+1)+k2+k=0,即k2﹣k=0,解得:k1=0,k2=1.【点评】本题考查了根的判别式以及解一元二次方程,解题的关键是:(1)求出△=b2﹣4ac的值;(2)代入x=1得出关于k的一元二次方程.本题属于基础题,难度不大,解决该题型题目时,由根的判别式来判断实数根的个数是关键.22.豆豆妈妈用小米运动手环记录每天的运动情况,下面是她6天的数据记录(不完整):日期4月1日4月2日4月3日4月4日4月5日4月6日步行数(步)10672 4927 5543 6648 7689156386.8 3.1 3.4 4.3 5.0 10.0步行距离(公里)157 79 91 127 142 234卡路里消耗(千卡)20 10 12 16 18 30燃烧脂肪(克)(1)4月5日,4月6日,豆豆妈妈没来得及作记录,只有手机图片,请你根据图片数据,帮她补全表格.(2)豆豆利用自己学习的统计知识,把妈妈步行距离与燃烧脂肪情况用如下统计图表示出来,请你根据图中提供的信息写出结论:步行距离越大,燃烧脂肪越多.(写一条即可)(3)豆豆还帮妈妈分析出步行距离和卡路里消耗数近似成正比例关系,豆豆妈妈想使自己的卡路里消耗数达到250千卡,预估她一天步行距离为10 公里.(直接写出结果,精确到个位)【分析】(1)依据手机图片的中的数据,即可补全表格;(2)依据步行距离与燃烧脂肪情况,即可得出步行距离越大,燃烧脂肪越多;(3)步行距离和卡路里消耗数近似成正比例关系,即可预估她一天步行距离.【解答】解:(1)由图可得,4月5日的步行数为7689,步行距离为5.0公里,卡路里消耗为142千卡,燃烧脂肪18克;4月6日的步行数为15638,步行距离为10.0公里,卡路里消耗为234千卡,燃烧脂肪30克;(2)由图可得,步行距离越大,燃烧脂肪越多;故答案为:步行距离越大,燃烧脂肪越多;(3)由图可得,步行时每公里约消耗卡路里25千卡,故豆豆妈妈想使自己的卡路里消耗数达到250千卡,预估她一天步行距离为10公里.故答案为:10.【点评】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.23.如图,在△ABC中,D.E分别是AB.AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.【分析】从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;∠BCF是120°,所以∠EBC为60°,所以菱形的边长也为4,求出菱形的高面积就可求.【解答】(1)证明:∵D.E分别是AB.AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=FE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为2,∴菱形的面积为4×2=8.【点评】本题考查菱形的判定和性质以及三角形中位线定理,以及菱形的面积的计算等知识点.24.如图,在平面直角坐标系中,直线l:y=kx+k(k≠0)与x轴,y轴分别交于A,B两点,且点B(0,2),点P在y轴正半轴上运动,过点P作平行于x轴的直线y=t.(1)求k的值和点A的坐标;(2)当t=4时,直线y=t与直线l交于点M,反比例函数(n≠0)的图象经过点M,求反比例函数的解析式;(3)当t<4时,若直线y=t与直线l和(2)反比例函数的图象分别交于点C,D,当CD间距离大于等于2时,求t的取值范围.【分析】(1)把(0,2)代入得出k的值,进而得出A点坐标;(2)当t=4时,将y=4代入y=2x+2,进而得出x的值,求出M点坐标得出反比例函数的解析式;(3)可得CD=2,当y=t向下运动但是不超过x轴时,符合要求,进而得出t的取值范围.【解答】解:(1)∵直线l:y=kx+k 经过点B(0,2),∴k=2∴y=2x+2∴A(﹣1,0);(2)当t=4时,将y=4代入y=2x+2,得,x=1,∴M(1,4)代入得,n=4∴;(3)当t=2时,B(0,2)即C(0,2),而D(2,2)如图,CD=2,当y=t向下运动但是不超过x轴时,符合要求,∴t 的取值范围是:0<t≤2.【点评】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.25.如图,在△ABC中,AB=AC,AE是BC边上的高线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB为⊙O的直径.(1)求证:AM是⊙O的切线;(2)当BE=3,cosC=时,求⊙O的半径.【分析】(1)连结OM,易证OM∥BC,由于AE是BC边上的高线,从而可知AM⊥OM,所以AM是⊙O 的切线.(2)由于AB=AC,从而可知EC=BE=3,由cosC==,可知:AC=EC=,易证△AOM∽。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年北京市中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共8小题,共16分)1.今年3月12日,支付宝蚂蚁森林宣布2019春种正式开启,称“春天,是种出来的”。

超过4亿人通过蚂蚁森林在地球上种下了超过5500万棵真树,总面积超76万亩,大约相当于7.6万个足球场.数据“5500万”用科学记数法表示为()A. B. C. D.2.下面四个图形中,可以看作是轴对称图形的是()A. B. C. D.3.若正n边形的一个外角为60°,则n的值为()A. 4B. 5C. 6D. 84.数轴上与表示-1的点距离10个单位的数是()A.10 B. ±10 C. 9 D. 9或-115.如图,∠CAB=∠DBA,AC=BD,则下列结论中,不正确的是()A. BC=ADB. CO=DOC. ∠C=∠DD.∠AOB=∠C+∠D6.如果a-b=5,那么代数式(-2)•的值是()A. -B.C. -5D. 57.给出下列命题:①若-3a>2a,则a<0;②若a<b,则a-c<b-c;③若a>b,则ac2>bc2;④若ab>c,则,其中正确命题的序号是()A. ①②B. ①③C. ③④D. ②④8.已知一组数据:6,2,8,x,7,它们的平均数是6,则这组数据的中位数是()A. 7B. 6C. 5D. 4二、填空题(本大题共8小题,共16分)9.若分式的值为零,则x的取值为______ .10.如图,点D是△ABC的边BC上任意一点,点E、F分别是线段AD、CE的中点,且△ABC的面积为16cm2,则△BEF的面积:______ cm2.11.请写出三种视图都相同的两种几何体_________、_________.12.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为______13.点A(x1,y1),点B(x2,y2)是双曲线上的两点,若x1<x2<0,则y1______y2(填“=”、“>”、“<”).14.如图,菱形ABCD中,∠B=60°,AB=5,则以AC为边长的正方形ACFE的周长是______.15.已知一组数据1、2、、3、4的平均数是3,则这组数据的方差是________。

16.在平行四边形中,对角线与相交于点.要使四边形是正方形,还需添加一组条件.下面给出了五组条件:①,且;②,且;③,且;④,且;⑤,且.其中正确的是 .(填写序号)三、解答题(本大题共12小题,共68分)17.计算:(-2)2-2sin45°+|1-|+(π-3.14)0.18.解不等式组:.19.已知关于x的方程mx2-mx+2=0有两个相等的实数根,求m的值.20.已知菱形ABCD中,点R是CD上的一个动点,过A,R的直线交BD于O,交BC的延长线于S.(1)若R为CD的中点,求证:AR=SR;(2)若AD=2,∠DCB=60°,BS=6,求AS的长.21.某校九年级有200名学生参加了全国初中数学联合竞赛的初赛,为了了解本次初赛的成绩情况,从中抽取了50名学生,将他们的初赛成绩.统计后得到如图所示的频数分布直方图(部分).观察图形的信息,回答下列问题:(1)第四组的频数为______ .(2)若将得分转化为等级,规定:得分低于59.5分评为D,59.5~69.5分评为C,69.5~89.5分评为B,89.5~100.5分评为A.那么这200名参加初赛的学生中,参赛成绩评为D的学生约有______ 个.22.如图,圆O是△ABC的外接圆,AE平分∠BAC交圆O于点E,交BC于点D,过点E作直线l∥BC.(1)判断直线l与圆O的关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=5,DF=3,求AF的长.23.观察下面三行数:2,-4,8,-16,…①-1,2,-4,8,…②3,-3,9,-15,…③(1)第①组数是按什么规律排列的?(2)第②③组数分别与第①组数有什么关系?(3)每组取第6个数,计算这三个数的和.24.如图,P为⊙O的直径AB上的一个动点,点C在上,连接PC,过点A作PC的垂线交⊙O于点Q.已知AB=5cm,AC=3cm.设A、P两点间的距离为xcm,A、Q两点间的距离为ycm.某同学根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.下面是该同学的探究过程,请补充完整:(1)通过取点、画图、测量及分析,得到了x与y的几组值,如下表:(说明:补全表格对的相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当AQ=2AP时,AP的长度均为______cm.25.在平面直角坐标系xOy中,已知一次函数y=-x+1的图象与x轴交于点A,与y轴交于点B.(1)求A,B两点的坐标;(2)在给定的坐标系中画出该函数的图象;(3)点M(-1,y1),N(3,y2)在该函数的图象上,比较y1与y2的大小.26.已知y=x2+bx+c的图象向右平移2个单位长度,再向下平移3个单位长度,得到的图象的解析式为y=x2-2x-3.(1)b=____________,c=______________;(2)求原函数图象的顶点坐标:(3)求两个图象顶点之间的距离.27.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线AC段于E.(1)当∠BDA=115°时,∠BAD=______°,∠DEC=______°;(2)当DC等于多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.28.如图1,在⊙O中,E为的中点,C为⊙O上的一动点(C与E在AB异侧),连接EC交AB于点F,EB=2,⊙O的半径是3.(1)D为AB延长线上一点,若DC=DF,证明:直线DC与⊙O相切;(2)求EF•EC的值;(3)如图2,当F是AB的四等分点时,求EC的值.2020年北京市中考数学模拟试卷参考答案1. C2. A3. C4. D5. D6. D7. A8. A9.10. 411. 球正方体12. 513. >14. 2015. 216. ①②③⑤17. 解:原式=4-2×+-1+1=4-+=4.18. 解:,解①得:x≥-2,解②得x<1.故不等式组的解集是:-2≤x<1.19. 解:∵有两个相等的实数根,∴,解得m=0或m=8,∵m=0不是一元二次方程,∴m=8.20. (1)证明:∵四边形ABCD是菱形,∴AD∥CS,∴∠ADR=∠SCR,∵R为CD的中点,∴DR=CR,在△ADR和△SCR中,,∴△ADR≌△SCR(ASA);(2)过A作AT⊥BC,与CB的延长线交于T,如图,∵四边形ABCD是菱形,∠DCB=60°,∴AB=AD=2,∠ABT=60°,∴BT=AB=1,AT=BT=,∵BS=6,∴TS=TB+BS=7,∴AS===2.21. 2;6422. 解:(1)直线l与⊙O相切.理由:如图1所示:连接OE.∵AE平分∠BAC,∴∠BAE=∠CAE.∴=,∴OE⊥BC.∵l∥BC,∴OE⊥l.∴直线l与⊙O相切.(2)∵BF平分∠ABC,∴∠ABF=∠CBF.又∵∠CBE=∠CAE=∠BAE,∴∠CBE+∠CBF=∠BAE+∠ABF.又∵∠EFB=∠BAE+∠ABF,∴∠EBF=∠EFB.∴BE=EF.(3)由(2)得BE=EF=DE+DF=8.∵∠DBE=∠BAE,∠DEB=∠BEA,∴△BED∽△AEB.∴=,即=,解得;AE=.∴AF=AE-EF=-8=.23. 解:(1)第①行数21,-22,23,-24,…;(2)把第①行中的各数都除以-2得到第②行中的相应的数;把第①行中的各数都加上1得到第③行中的相应的数;(3)第①行的第6个数为-26,第②行的第6个数为25,第③行的第6个数为-26+1,所以-26+25-26+1=-95.24. 2.9;2.4;3.4;4.5;3.0;2.4225. 解:(1)令y=0,则x=2,令x=0,则y=1,所以,点A的坐标为(2,0),点B的坐标为(0,1);(2)如图:;(3)∵-1<3,∴y1>y2.26. 解:(1)2;0;(2)由(1)得:原函数图象的顶点坐标为:(-1,-1);(3)由y=x2-2x-3=(x-1)2-4可知平移后的顶点(1,-4),∵原函数图象的顶点坐标为:(-1,-1),∴两个图象顶点之间的距离为.27. 25;11528. (1)证明:连接OC、OE,OE交AB于H,如图1,∵E是的中点,∴OE⊥AB,∴∠EHF=90°,∴∠HEF+∠HFE=90°,而∠HFE=∠CFD,∴∠HEF+∠CFD=90°,∵DC=DF,∴∠CFD=∠DCF,而OC=OE,∴∠OCE=∠OEC,∴∠OCE+∠DCE=∠HEF+∠CFD=90°,∴OC⊥CD,∴直线DC与⊙O相切;(2)解:如图3,连接BC,∵E是的中点,∴=,∴∠ABE=∠BCE,而∠FEB=∠BEC,∴△EBF∽△ECB,∴∴EF•EC=BE2=22=4;(3)解:如图2,连接OA,AE,BC,OE,OE交AB于H,∵=,∴AE=BE=2设OH=x,则EH=3-x,在Rt△OAH中,AH2+OH2=OA2,即AH2+x2=9,在Rt△EAH中,AH2+EH2=EA2,即AH2+(3-x)2=4,∴9-x2+(3-x)2=4,即得x=,∴HE=3-=,在Rt△OAH中,AH==,∵OE⊥AB,∴AH=BH,而F是AB的四等分点,∴HF=AH=,在Rt△EFH中,EF==,∵EF•EC=4,∴•EC=4,∴EC=2.。

相关文档
最新文档