五年级第四届“睿达杯”数学智能竞赛一试答案
五年级第二届“睿达杯”数学智能竞赛二试 答案

可知 4、5、9 个 1005 个, (4+5+9)×1005=9×2010=18090 4.7.4×150÷890≈1.25(元) 5.这个 2011 个数中除以 7 余 1 的数有 288 个;余 2 的数有 288 个;余 3、余 4、余 5、余 6、余 0 的数各 有 287 个;满足条件最多的取法:余 1、余 2、余 3 的数取完,再取 1 个余 0 的数. 6. 7 a=15-2-6=7 7 2 2 a 6 2
1.找规律 2、3、6、8、8、4、2、8、6、8、8… (2011-2)÷6=334……5 这列数的第 2011 个数是 2 2. A E B G C D 40×40÷5=320( cm 2 )
F
3. 原式 0505 05 999 9 0505 05 00 0 - 0505 05 5050 50 4949 49 5
17.
睿 达 杯 数 + 学 竞 赛 2 0 1 1 +
数 杯 达 睿 赛 竞 学 5 9 8 0
③睿+达+杯+数+学+竞+赛=31
①睿=1
②数+赛=11;杯+竞=10 ;达+学=9
18.1876 (2984 1876) 768 (元) 19.由题意可知,细蜡烛烧掉的长度是粗蜡烛的 3 倍
第 3 页 共 3 页
(6 2) (3 1) 3+2=8 (cm)
(8-2) 8= 3 4 3 40 =30 (分) 4
五年级睿达杯100题电子版(含答案)

五年级睿达杯100题1、587÷26.8×19×2.68÷5.87×1.9=()2、1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)÷…÷(2008÷2009)=()3、2005-2004+2003-2002…3-2+1=()4.在如图所示的竖式中,不同的汉字代表不同的数字相同的汉字代表相同的数字那么,“运”所表示的数字是()北北京北京奥+北京奥运2 0 0 85、如图相同的汉字代表相同的数字不同的汉字代表不同的数字当数字,当竖式成立时,我+爱+希+望+杯=()我爱希望杯× 4杯望希爱我6.在下面的方框中填上适当的数字使下列等式成立,框内数字相同。
7□×□7+□×□×□×□×□×□=20087、在3.1415926的小数部分的某一个或两个数位上加表示循环节的点,将它变成循环小数,则得到的循环小数中,最大的是()最小的是()。
8、若则循环小数A的每个循环节有()位数字,循环节的首位数字和末位数字分别是()和()。
9、5个数它们由小到大排列的顺序为()<()<()<()<()10、三种图形,○□△的排列规律如下,那么,从左到右排列第2011个图形是()2011的图形中。
共有○()个○□□△△△○□□△△△……11.将奇数1、3、5、7、9,按图所示的规律排列,例如,数19排在第3第3列,数37排在第5行第4列,那么数2011排在第()行第()列。
第几行第几列?1 3 5 715 13 11 917 19 21 23......12.一张长方形纸片上有2011个点,加上四个顶点,共有2015个点,并且这2015个点中任意3个点都不在同一直线上。
现以这2015个点为顶点,将长方形纸片剪开,最多能剪出()个三角形(任意两个三角形没有重叠)。
五年级睿达杯试题题

1.把循环小数化成分数:??? ???????.2.将下列二进制数化为十进制数:(1)101010(2)=? ? ?.(2)100001(2)=? ? ?.3.将下列十进制数化为二进制数:(1)31(10)=? ???????????? ??.? ? ? ? ? ? ??(2)74(10)=???? ???????????.4.将50表示为两个质数之和,不同的表示方法共有? ???????种.(只要两个质数分别相同就认为是同一种表示方法)5.三位小朋友每人隔不同的天数到图书馆一次:甲隔2天去一次,乙隔3天去一次,丙隔4天去一次.上次他们在星期二在图书馆相遇,还要? ? ?天他们才能再在图书馆相遇;相遇时是星期? ? ??.6.三个连续自然数的乘积等于39270.这三个连续自然数的和等于多少?7.在3.1415926的小数部分的某一个或两个数位上加表示循环节的点,将它变成循环小数,则得到的循环小数中最大的是? ???????,最小的是????????.8.若,则循环小数A的每个循环节有? ???????位数字,循环节的首位数字和末位数字分别是???????和????????.9.比较与的大小,并计算它们的差.10.三种图形○,□,△的排列规律如下:○□□△△△○□□△△△○□□△△△…那么,从左到右排列的第2016个图形是? ?,前2016个图形中○共有? ? 个.11.一个三位数,百位数与个位数字不同,它的三个数位上的数字经排列后,得到一个最大的数和一个最小的数,它们的差正好就是这个三位数本身,求这个三位数.12.一艘货船从甲地开往乙地顺水而行,每小时行28千米,到乙地后又逆水而行,回到甲地,逆水比顺13.数一数,下图中一共有? ???????????个三角形.14.一只盒内共有96个棋子,如果不一次拿出,也不一个一个地拿出,但每次拿出的个数要相等,最后一次正好拿完.那么,共有?? ???????种不同拿法.15.如图,共有??????????个正方形.16.360这个数的因数有? ????????个,这些因数的和是? ????????.17.甲、乙、丙三人绕操场竞走,他们走一圈分别需要1分、1分15秒和1分30秒.三人同时从起点出发,最少需?????????分钟才能再次在起点相会.18.一辆轿车在一次旅行中用1.5小时行了80千米,后因交通堵塞停了30分钟,然后又用了2小时行了100千米,这辆车在整个过程中的平均速度是? ?????????.19.a,b,c都是质数,并且a+b=33,b+c=44,c+d=66,那么d=? ?????????.20.设有一个四位数,它能被9整除,则a代表的数字是? ?????????.21.小王驾车在公路上匀速行走,他看到里程碑上的数是一个两位数;一小时后看到里程碑上的数恰好是第一次看到的数颠倒了顺序的两位数;再过一小时后,看到的里程碑上的数又恰好是第一次看到的两位数之间添上一个零的三位数.问:这三块里程碑上的数各是? ??????.22.甲,乙,丙,丁四人共做零件270个.如果甲多做10个,乙少做10个,丙做的个数乘以2,丁做的个数除以2,那么四人做的零件数恰好相等.问:丙实际做了多少个?23.书店以每本10.08元的价格购进某种图书,每本售价16.80元,卖到还剩10本时,除了收回全部成本外,还获利504元.这个书店购进该种图书? ?????????本.24.一个植树小组原计划在96米长的一段土地上每隔4米栽一棵树,并且已经挖好坑.后来改为每隔6米栽一棵树.求重新挖树坑时可以少挖? ?????????个.25.蓄水池有甲,乙,丙三个进水管.如果想灌满整池水,单开甲管需10小时,单开乙管需12小时,单开丙管需15小时.上午8点三个管同时打开,中间甲管因故关闭,结果到下午2点水池被灌满.问:甲管在何时被关闭?整除的六位数有27.算式28×541×1993的积除以13的余数是? ??????????.28.小刚和小强租一条小船,向上游划去,不慎把水壶掉进江中,当他们发现并调过船头时,水壶与船已经相距2千米,假定小船的速度是每小时4千米,水流速度是每小时2千米,那么他们追上水壶需要? ?????????小时.29.某厂一月份与二月份生产零件的个数之比为4:5.后来改进生产技术,三月份生产的零件个数与前两个月的总产量之比为4:3,且三月份比二月份多生产了1610个零件.请问:这家工厂第一季度共生产多少零件?30.一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔???????????分钟发一辆公共汽车.简便计算? ???????32.甲、乙两个书架原来共有书184本,若从甲书架给乙书架30本后,则乙书架比甲书架多52本书.原来两个书架各有? ???????本书.34.一个五位数,它的末三位为999.如果这个数能被23整除,那么这个五位数至少是多少?36.如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.则阴影部分的面积为? ?????????????.37.如右图,矩形?中,厘米,厘米,扇形半径厘米,扇形的半径厘米,则阴影部分的面积是???????????????.(取3)38.一个各位数字互不相同的四位数能被9整除,把它的个位数字去掉后剩下一个三位数,这个三位数能被4整除.这个四位数最大是多少?39.已知两个自然数的和为165,它们的最大公约数为15,则这两个数为???? ??.41.除以99的余数是多少?42.在两堆煤,甲堆煤有4.5吨,乙堆煤油6吨,甲堆煤每天用去0.36吨,乙堆煤每天用去0.51吨,? ???????天后两堆煤剩下吨数相等.43.在9点与10点之间的?? ?????时? ??????分,分针与时针在一条直线上.44.某海港货场不断有外洋轮船卸下货来,又不断用汽车将货物运走.如果用9辆车,12小时可以清场;如果用8辆车,16小时可以清场.该货场开始只用3辆车,10小时后增加了若干辆车,再过4小时就已45.小睿和小达在黑板上各写了一个自然数,它们的最大公约数是42,最小公倍数是168.那么这两个数的和是多少?46. 21672和11352的最小公倍数是??? ????????.47.把一片均匀生长的大草地分成三块,面积分别为5公顷,15公顷和24公顷.如果第一块草地可以供10头牛吃30天,第二块草地可以供28头牛吃45天,那么第三块草地可以供多少头牛吃80天?分数可写成的形式,则49.三个质数的乘积恰好等于它们和的5倍,这三个质数分别是多少?把循环小数化成分数:? ??????????52.王叔叔爬山锻炼身体,上山速度为60米/分,到山顶后马上沿原路下山回到山脚,速度为90米/分,53.一片均匀生长的草地,如果有15头牛吃草,那么8天可以把草全部吃完;如果起初这15头牛在草地上吃了2天后,又来了2头牛,这总共7天就可以把草全部吃完.如果起初这15头牛吃了2天后,又来了5头牛,再过多少天可以把草吃完?54.某河有相距45千米的上、下两码头,每天定时有甲、乙两艘船速相同的客轮分别从两码头同时出发相向而行.一天甲船从上游码头出发时掉下一物,此物浮于水面顺水飘下,4分钟后,与甲船相距1千米.预55.老师在黑板上写了13个自然数,让小明计算平均数(保留两位小数),小明计算出的答数是12.43.老56.如下图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.此圆形场地的周长为??????????米.57. 用2,5,6,7,8,9,0这7个数字能组成多少个不含重复数字的三位数?其中既能被3整除,又能被5整除的有多少个?58.如图,图中的数字分别表示两个长方形与一个直角三角形的面积,则标记“?”的直角三角形的面积为????????????.59.从1,2,3,...,100这100个数中,每次取2个数,使其和大于100,共有多少种不同的取法?60.书架上有4本不同的漫画书,3本不同的故事书,全部都竖起来排成一排,如果同类的书不分开,一共有? ??????????种排法.61.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为().62.杭州市出租车的的起步价是3千米以内10元,3千米后按每千米2元计费,当里程超过15千米后,超出部分按每千米3元收费.小明,小亮两人都从游乐园分别坐出租车回家,小明比小亮多花了23元.请问:小明家距离游乐园最远是多少千米?(不足1千米按1千米计,假定两人回家一路上没有红绿灯,也没有堵车)63.在早晨6点到7点之间有一个时刻,钟面上的数字“5”恰好在时针与分针的正中间.请问这时是6点几分?64.如图,两个圆只有一个公共点A,大圆直径48厘米,小圆直径30厘米.两只甲虫同时从A出发,按箭头所指的方向以相同的速度分别爬了几圈时,两只甲虫首次相距最远?65.甲,乙两个数的最小公倍数是90,乙,丙两个数的最小公倍数是105,甲,丙两个数的最小公倍数是126.请问甲数是多少?66.新年到了,班长为班里联欢会买来了一些奖品,其中买了九本日记本.当班主任问他日记本多少钱一本时,他说:“价钱是分钱,九本共花了分钱.”其中和各代表一个四位数,且相同字母代表相同数字,不同字母代表不同数字,请你算算,日记本_______分钱一本.67.规定运算“”对任意的都满足.试求.68.在直线L上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,求S1+S2+S3+S4的值.69.证明:任意一个三位数连着写两次得到一个六位数,这个六位数一定能同时被7、11、13整除.70.把30分成两个偶数的和,共有_______种分法;分成两个奇数的和,共有______种分法.71.甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是?? ?????分钟.72.甲,乙,丙,丁四个人共有45个球,但不知道每个人各有几个球,如果变动一下,甲的球减少2个,乙的球增加2个,丙的球增加一倍,丁的球减少一半,这样四个人的球就一样多了.求原来每个人各有几个球?73.在射箭运动中,每射一箭得到的环数都是不超过10的自然数.甲,乙两名运动员各射了5箭,每人5箭得到的环数的积都是1764,但是甲的总环数比乙少4环.求甲,乙各自的总环数.74.有大,中,小三筐苹果,小筐装的苹果质量是中筐的一半,中筐比大筐少装16千克,大筐装的苹果质量是小筐的4倍.这三筐苹果共装了多少千克?75.求不定方程的全部整数解.76.如图,在三角形ABC中,BC是DC的3倍,AC是EC的3倍.三角形DEC的面积是3平方厘米.请问:三角形ABC的面积是????????????平方厘米.77.有一堆糖果,其中奶糖占,再放入16块水果糖后,奶糖就只占.这一堆糖果原来一共有多少块?78.计算:.79.观察下面的一列数,根据其中的规律指出是这列数中的第(? ???)个.?80.小睿将乘以一个数时,看丢了一个循环点,使得乘积比正确结果减少了.正确结果应该是多少?81.ABCD是正方形,边长是8厘米,CE=4厘米,其中圆弧AC的圆心是D点,那么图中阴影部分的面积是多少平方厘米?82.一堆煤,上午运走了全部的,下午运的比余下的还多6吨,最后还剩14吨没有运,这堆煤共有多少吨?83.一个有弹性的球从A点落到地面,弹起到B点后又落到高20厘米的平台上,再弹起到C点,最后落到地面.每次弹起的高度都是落下高度的80%,已知A点离地面比C点离地面高出68厘米,那么C点离地面的高度是多少厘米?84.A、B、C是三个顺次咬合的齿轮,已知齿轮A旋转7圈时,齿轮C旋转6圈.如果B旋转7圈,C旋转1圈,那么A旋转8圈时,B旋转了多少圈?85.如图,在三角形ABC中,AE=ED,D点是BC的四等分点,请问:阴影部分的面积占三角形ABC面积的几分之几?86.阴影部分面积是多少?87.360共有多少个奇约数?所有这些奇约数的和是多少?88.如图,把三角形DEF的各边向外延长1倍后得到三角形ABC,三角形ABC的面积为1,则三角形DEF 的面积为多少?89.用代表整数的字母写成等式试说明:符合条件的整数是否存在?90.把100个人分成4队,第一队人数是第二队人数的倍,是第三队人数的倍,求第四队人数?91.跑100米,甲、乙、丙三人分别用15秒、18秒、20秒,若他们同时、同向、同起点出发沿400米的环形跑道起跑,求他们同时再次又到达起点时,经过了多少分钟?92.若是42的倍数,求.94.如图,BCED是正方形,AB=3厘米,BC=5厘米,求三角形ABE的面积.95.学校组织春游,同学们下午一点出发,走了一段平坦的路,爬了一座山,然后按原路返回,下午七点回到学校.已知他们的步行速度平地为4千米/时,上山为3千米/时,下山为6千米/时.请问:同学们一共走了多少千米?96. a,b,c是三个两位数,(a,b,c可以相等),求的最小值和最大值.97.某小学在星期一到星期五的每天上午有课间加餐,品种有:包子,肉卷,三明治,面包.每天一种,相邻两天不能重复,星期五必须是包子.问:课间加餐食谱有多少种排法?98如图,在三角形ABC中,三角形AEO的面积是1,三角形ABO的面积是2,三角形BOD的面积是3,那么四边形DCEO的面积是多少?99.A、B、C三个试管中各盛有10克、20克、30克水.把某种浓度的盐水10克倒入A中,充分混合后从A中取出10克倒入B中,再充分混合后从B中取出10克倒入C中,最后得到的盐水的浓度是0.5%.一开始倒入试管A中的盐水浓度为多少?100.某商品按20%利润定价,然后8.8折出售,共获利84元,那么商品的成本是多少?。
睿达杯五年级试卷【含答案】

睿达杯五年级试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个是正确的睿达杯五年级竞赛规则?A. 比赛分为初赛和决赛两个阶段B. 每位选手只能参加一个项目的比赛C. 比赛结果由评委现场打分决定D. 参赛选手必须完成所有比赛项目2. 睿达杯五年级竞赛的宗旨是?A. 提高学生的学术成绩B. 培养学生的创新精神和实践能力C. 激发学生的学习兴趣和团队合作意识D. 提升学生的综合素质和竞争力3. 下列哪个不是睿达杯五年级竞赛的比赛项目?A. 数学B. 物理C. 化学D. 生物4. 睿达杯五年级竞赛的参赛对象是?A. 全日制小学五年级学生B. 全日制小学四年级学生C. 全日制小学六年级学生D. 全日制初中一年级学生5. 睿达杯五年级竞赛的奖项设置包括?A. 金奖、银奖、铜奖B. 一等奖、二等奖、三等奖C. 特等奖、一等奖、二等奖D. 冠军、亚军、季军二、判断题(每题1分,共5分)1. 睿达杯五年级竞赛是由中国教育学会主办。
()2. 睿达杯五年级竞赛的比赛形式包括个人赛和团体赛。
()3. 睿达杯五年级竞赛的比赛内容只涉及学科知识。
()4. 睿达杯五年级竞赛的参赛选手可以同时参加多个项目的比赛。
()5. 睿达杯五年级竞赛的获奖选手可以获得丰厚的奖金和奖品。
()三、填空题(每题1分,共5分)1. 睿达杯五年级竞赛的比赛形式包括个人赛和______。
2. 睿达杯五年级竞赛的比赛内容包括学科知识和______。
3. 睿达杯五年级竞赛的参赛选手必须具备的条件是:全日制小学五年级学生,品学兼优,热爱科学,具有______。
4. 睿达杯五年级竞赛的评委由专家、学者和______组成。
5. 睿达杯五年级竞赛的宗旨是:提高学生的学术成绩,培养学生的创新精神和实践能力,激发学生的学习兴趣和______。
四、简答题(每题2分,共10分)1. 睿达杯五年级竞赛的比赛形式有哪些?2. 睿达杯五年级竞赛的比赛内容有哪些?3. 睿达杯五年级竞赛的参赛对象是谁?4. 睿达杯五年级竞赛的奖项设置有哪些?5. 睿达杯五年级竞赛的宗旨是什么?五、应用题(每题2分,共10分)1. 如果你是睿达杯五年级竞赛的参赛选手,你会如何准备比赛?2. 如果你是睿达杯五年级竞赛的评委,你会如何评价选手的表现?3. 如果你获得了睿达杯五年级竞赛的金奖,你会如何与同学们分享你的经验和心得?4. 如果你所在的学校要组织睿达杯五年级竞赛的选拔赛,你会如何参与和组织?5. 如果你所在的学校获得了睿达杯五年级竞赛的优秀组织奖,你会如何庆祝和宣传这个荣誉?六、分析题(每题5分,共10分)1. 分析睿达杯五年级竞赛对学生的意义和价值。
睿达杯竞赛数学真题解析

睿达杯竞赛数学真题解析
睿达杯竞赛数学全年级试题及答案
花了好多功夫整合起来的
各位有需求的同学可以根据自己的情况下载
三四五六七八九,各年级段都有哦
这个是老师来了网的各位数学家教老师通过自己所带学生参加杯赛的情况,联合整理出来的试题加答案
希望对各位同学有所帮助
貌似只能放上试题答案,原题放不上去,我也很无奈啊,各位如果有需要我可以发给大家
如果下载了觉得有用,别忘记了感谢下各位整理试题答案的各位老师。
最新小学五年级奥数竞赛数学竞赛试卷及答案一图文百度文库

最新小学五年级奥数竞赛数学竞赛试卷及答案一图文百度文库一、拓展提优试题1.如图,在等腰直角三角形ABC中,斜边AB上有一点D,已知CD=5,BD 比AD长2,那么三角形ABC的面积是.2.由120个棱长为1的正方体,拼成一个长方体,表面全部涂色,只有一面染色的小正方体,最多有块3.先将从1开始的自然数排成一列:123456789101112131415…然后按一定规律分组:1,23,456,7891,01112,131415,…在分组后的数中,有一个十位数,这个十位数是.4.一个除法算式中,被除数、除数、商与余数都是自然数,并且商与余数相等.若被除数是47,则除数是,余数是.5.用长是5厘米、宽是4厘米、高是3厘米的长方体木块叠成一个正方体,至少需要这种长方体木块块.6.甲、乙两车从A城市出发驶向距离300千米远的B城市.已知甲车比乙车晚出发1小时,但提前1小时到达B城市.那么,甲车在距离B城市千米处追上乙车.7.已知一个五位回文数等于45与一个四位回文数的乘积(即=45×),那么这个五位回文数最大的可能值是59895.8.小胖和小亚两人在生日都是在五月份,而且都是星期三.小胖的生日晚,又知两人的生日日期之和是38,小胖的生日是5月日.9.某次入学考试有1000人参加,平均分是55分,录取了200人,录取者的平均分与未录取的平均分相差60分,录取分数线比录取者的平均分少4分.录取分数线是分.10.定义新运算:a&b=(a+1)÷b,求:2&(3&4)的值为.11.(1)数一数图1中有个三角形.(2)数一数图2中有个正方形.12.如图,若每个小正方形的边长是2,则图中阴影部分的面积是.13.如图,若长方形S长方形ABCD=60平方米,S长方形XYZR=4平方米,则四边形S四=平方米.边形EFGH14.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.15.(8分)有一个特殊的计算器,当输入一个数后,计算器先将这个数乘以3,然后将其结果是数字逆序排列,接着再加2后显示最后的结果,小明输入了一个四位数后,显示结果是2015,那么小明输入的四位数是 .【参考答案】一、拓展提优试题1.解:作CE ⊥AB 于E .∵CA =CB ,CE ⊥AB ,∴CE =AE =BE ,∵BD ﹣AD =2,∴BE +DE ﹣(AE ﹣DE )=2,∴DE =1, 在Rt △CDE 中,CE 2=CD 2﹣DE 2=24,∴S △ABC =•AB •CE =CE 2=24,故答案为242.64 [解答]设长方体的长、宽、高分别为,,l m n (不妨设l m n ≥≥),容易知道只有一面染色的小正方体只有每个面上可能有一些。
第三届“睿达杯”中小学数学智能竞赛一试答案

第三届“睿达杯”中小学数学智能竞赛一试四年级年级参考解答及评分标准1. 2011×2011-2012×2010=2011×2010+2011-(2011×2010+2010)=2011-2010=1.2. 35×72+6=2526,2526÷53=47……35.3. 铜牌数为(88+4) ÷4=23(块),从而得到银牌27块,金牌38块.4.(4+2)÷2×3=9(岁).5.(52-2×5)÷(2+5)=6(cm),6×6+52=88(cm2).6. 4+2×(2012-1)=4026,(4+4026)÷2=2015.7. 50×(5+2+4+1)÷(4+1+2+1)=75(千米/小时).8. 2×(104÷4+1)×2=108(面).9. 8×3+7×2+6×1+(4+3+2+1)×2=64(个);或32+20+10+2=64(个).10. 30÷3+30×2=70(度).11.(5×13+7)÷3=24.12. 180×(10-2)=1440(度).13. 井深为2×7-3×1=11(米),绳长为2×(11+7) =3×(11+1)=36(米).14. 画直线图可得.15.(30×4+3+10)÷7=19(周),2013年2月10日是周日.16. 3.5×3×2+3.5×2=28(元).17.(55+70)×[30×2÷(70-55)]= 500(米).18. 24×2÷4=12(厘米),12×12=144(平方厘米).二、解答题(本大题共2小题,每小题15分,共30分)19. 10元9张,5元6张,2元5张. (5分) 2元的张数必须是5的倍数,因此只能是5张. 5元和10元共15张,合计120元. 5元: (150-120) (10-5) =6(张);10元: 20-6-5=9(张). (10分)20. 数阵排列规律是:将自然数依次“从左下向右上”成“斜行”往复排列。
2020年五年级睿达杯试题100题

1.把循环小数化成分数:.2.将下列二进制数化为十进制数:(1)101010(2)=.(2)100001(2)=.3.将下列十进制数化为二进制数:(1)31(10)= .(2)74(10)= .4.将50表示为两个质数之和,不同的表示方法共有种.(只要两个质数分别相同就认为是同一种表示方法)5.三位小朋友每人隔不同的天数到图书馆一次:甲隔2天去一次,乙隔3天去一次,丙隔4天去一次.上次他们在星期二在图书馆相遇,还要天他们才能再在图书馆相遇;相遇时是星期.6.三个连续自然数的乘积等于39270.这三个连续自然数的和等于多少?7.在3.1415926的小数部分的某一个或两个数位上加表示循环节的点,将它变成循环小数,则得到的循环小数中最大的是,最小的是.8.若,则循环小数A的每个循环节有位数字,循环节的首位数字和末位数字分别是和.9.比较与的大小,并计算它们的差.10.三种图形○,□,△的排列规律如下:○□□△△△○□□△△△○□□△△△…那么,从左到右排列的第2016个图形是,前2016个图形中○共有个.11.一个三位数,百位数与个位数字不同,它的三个数位上的数字经排列后,得到一个最大的数和一个最小的数,它们的差正好就是这个三位数本身,求这个三位数.12.一艘货船从甲地开往乙地顺水而行,每小时行28千米,到乙地后又逆水而行,回到甲地,逆水比顺水多行1小时,已知水速每小时4千米.甲、乙两地相距千米.13.数一数,下图中一共有个三角形.14.一只盒内共有96个棋子,如果不一次拿出,也不一个一个地拿出,但每次拿出的个数要相等,最后一次正好拿完.那么,共有种不同拿法.15.如图,共有个正方形.16.360这个数的因数有个,这些因数的和是.17.甲、乙、丙三人绕操场竞走,他们走一圈分别需要1分、1分15秒和1分30秒.三人同时从起点出发,最少需分钟才能再次在起点相会.18.一辆轿车在一次旅行中用1.5小时行了80千米,后因交通堵塞停了30分钟,然后又用了2小时行了100千米,这辆车在整个过程中的平均速度是.19.a,b,c都是质数,并且a+b=33,b+c=44,c+d=66,那么d= .20.设有一个四位数,它能被9整除,则a代表的数字是.21.小王驾车在公路上匀速行走,他看到里程碑上的数是一个两位数;一小时后看到里程碑上的数恰好是第一次看到的数颠倒了顺序的两位数;再过一小时后,看到的里程碑上的数又恰好是第一次看到的两位数之间添上一个零的三位数.问:这三块里程碑上的数各是.22.甲,乙,丙,丁四人共做零件270个.如果甲多做10个,乙少做10个,丙做的个数乘以2,丁做的个数除以2,那么四人做的零件数恰好相等.问:丙实际做了多少个?23.书店以每本10.08元的价格购进某种图书,每本售价16.80元,卖到还剩10本时,除了收回全部成本外,还获利504元.这个书店购进该种图书本.24.一个植树小组原计划在96米长的一段土地上每隔4米栽一棵树,并且已经挖好坑.后来改为每隔6米栽一棵树.求重新挖树坑时可以少挖个.25.蓄水池有甲,乙,丙三个进水管.如果想灌满整池水,单开甲管需10小时,单开乙管需12小时,单开丙管需15小时.上午8点三个管同时打开,中间甲管因故关闭,结果到下午2点水池被灌满.问:甲管在何时被关闭?整除的六位数有27.算式28×541×1993的积除以13的余数是.28.小刚和小强租一条小船,向上游划去,不慎把水壶掉进江中,当他们发现并调过船头时,水壶与船已经相距2千米,假定小船的速度是每小时4千米,水流速度是每小时2千米,那么他们追上水壶需要小时.29.某厂一月份与二月份生产零件的个数之比为4:5.后来改进生产技术,三月份生产的零件个数与前两个月的总产量之比为4:3,且三月份比二月份多生产了1610个零件.请问:这家工厂第一季度共生产多少零件?30.一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔分钟发一辆公共汽车.31.简便计算.32.甲、乙两个书架原来共有书184本,若从甲书架给乙书架30本后,则乙书架比甲书架多52本书.原来两个书架各有本书.34.一个五位数,它的末三位为999.如果这个数能被23整除,那么这个五位数至少是多少?36.如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.则阴影部分的面积为.37.如右图,矩形中,厘米,厘米,扇形半径厘米,扇形的半径厘米,则阴影部分的面积是.(取3)38.一个各位数字互不相同的四位数能被9整除,把它的个位数字去掉后剩下一个三位数,这个三位数能被4整除.这个四位数最大是多少?39.已知两个自然数的和为165,它们的最大公约数为15,则这两个数为.41.除以99的余数是多少?42.在两堆煤,甲堆煤有4.5吨,乙堆煤油6吨,甲堆煤每天用去0.36吨,乙堆煤每天用去0.51吨,天后两堆煤剩下吨数相等.43.在9点与10点之间的时分,分针与时针在一条直线上.44.某海港货场不断有外洋轮船卸下货来,又不断用汽车将货物运走.如果用9辆车,12小时可以清场;如果用8辆车,16小时可以清场.该货场开始只用3辆车,10小时后增加了若干辆车,再过4小时就已场,那么后来增加的车数应是辆.45.小睿和小达在黑板上各写了一个自然数,它们的最大公约数是42,最小公倍数是168.那么这两个数的和是多少?46. 21672和11352的最小公倍数是.47.把一片均匀生长的大草地分成三块,面积分别为5公顷,15公顷和24公顷.如果第一块草地可以供10头牛吃30天,第二块草地可以供28头牛吃45天,那么第三块草地可以供多少头牛吃80天?48.分数可写成的形式,则x= ,y= ,z= .49.三个质数的乘积恰好等于它们和的5倍,这三个质数分别是多少?50.小灵翻开一本课外书,最后一页的页码是302,这些页码共需要个数字.51.把循环小数化成分数:.52.王叔叔爬山锻炼身体,上山速度为60米/分,到山顶后马上沿原路下山回到山脚,速度为90米/分,共用时30分钟.从山脚到山顶的路程是米.53.一片均匀生长的草地,如果有15头牛吃草,那么8天可以把草全部吃完;如果起初这15头牛在草地上吃了2天后,又来了2头牛,这总共7天就可以把草全部吃完.如果起初这15头牛吃了2天后,又来了5头牛,再过多少天可以把草吃完?54.某河有相距45千米的上、下两码头,每天定时有甲、乙两艘船速相同的客轮分别从两码头同时出发相向而行.一天甲船从上游码头出发时掉下一物,此物浮于水面顺水飘下,4分钟后,与甲船相距1千米.预计乙船出发后小时可以与此物相遇.55.老师在黑板上写了13个自然数,让小明计算平均数(保留两位小数),小明计算出的答数是12.43.老师说最后一位数字错了,其他的数字都对.正确答案应该是.56.如下图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.此圆形场地的周长为米.57. 用2,5,6,7,8,9,0这7个数字能组成多少个不含重复数字的三位数?其中既能被3整除,又能被5整除的有多少个?58.如图,图中的数字分别表示两个长方形与一个直角三角形的面积,则标记“?”的直角三角形的面积为.59.从1,2,3,...,100这100个数中,每次取2个数,使其和大于100,共有多少种不同的取法?60.书架上有4本不同的漫画书,3本不同的故事书,全部都竖起来排成一排,如果同类的书不分开,一共有种排法.61.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为().62.杭州市出租车的的起步价是3千米以内10元,3千米后按每千米2元计费,当里程超过15千米后,超出部分按每千米3元收费.小明,小亮两人都从游乐园分别坐出租车回家,小明比小亮多花了23元.请问:小明家距离游乐园最远是多少千米?(不足1千米按1千米计,假定两人回家一路上没有红绿灯,也没有堵车)63.在早晨6点到7点之间有一个时刻,钟面上的数字“5”恰好在时针与分针的正中间.请问这时是6点几分?64.如图,两个圆只有一个公共点A,大圆直径48厘米,小圆直径30厘米.两只甲虫同时从A出发,按箭头所指的方向以相同的速度分别爬了几圈时,两只甲虫首次相距最远?65.甲,乙两个数的最小公倍数是90,乙,丙两个数的最小公倍数是105,甲,丙两个数的最小公倍数是126.请问甲数是多少?66.新年到了,班长为班里联欢会买来了一些奖品,其中买了九本日记本.当班主任问他日记本多少钱一本时,他说:“价钱是分钱,九本共花了分钱.”其中和各代表一个四位数,且相同字母代表相同数字,不同字母代表不同数字,请你算算,日记本_______分钱一本.67.规定运算“”对任意的都满足.试求.68.在直线L上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,求S1+S2+S3+S4的值.69.证明:任意一个三位数连着写两次得到一个六位数,这个六位数一定能同时被7、11、13整除.70.把30分成两个偶数的和,共有_______种分法;分成两个奇数的和,共有______种分法.71.甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是分钟.72.甲,乙,丙,丁四个人共有45个球,但不知道每个人各有几个球,如果变动一下,甲的球减少2个,乙的球增加2个,丙的球增加一倍,丁的球减少一半,这样四个人的球就一样多了.求原来每个人各有几个球?73.在射箭运动中,每射一箭得到的环数都是不超过10的自然数.甲,乙两名运动员各射了5箭,每人5箭得到的环数的积都是1764,但是甲的总环数比乙少4环.求甲,乙各自的总环数.74.有大,中,小三筐苹果,小筐装的苹果质量是中筐的一半,中筐比大筐少装16千克,大筐装的苹果质量是小筐的4倍.这三筐苹果共装了多少千克?75.求不定方程的全部整数解.76.如图,在三角形ABC中,BC是DC的3倍,AC是EC的3倍.三角形DEC的面积是3平方厘米.请问:三角形ABC的面积是平方厘米.77.有一堆糖果,其中奶糖占,再放入16块水果糖后,奶糖就只占.这一堆糖果原来一共有多少块?78.计算:.79.观察下面的一列数,根据其中的规律指出是这列数中的第()个.80.小睿将乘以一个数时,看丢了一个循环点,使得乘积比正确结果减少了.正确结果应该是多少?81.ABCD是正方形,边长是8厘米,CE=4厘米,其中圆弧AC的圆心是D点,那么图中阴影部分的面积是多少平方厘米?82.一堆煤,上午运走了全部的,下午运的比余下的还多6吨,最后还剩14吨没有运,这堆煤共有多少吨?83.一个有弹性的球从A点落到地面,弹起到B点后又落到高20厘米的平台上,再弹起到C 点,最后落到地面.每次弹起的高度都是落下高度的80%,已知A点离地面比C点离地面高出68厘米,那么C点离地面的高度是多少厘米?84.A、B、C是三个顺次咬合的齿轮,已知齿轮A旋转7圈时,齿轮C旋转6圈.如果B旋转7圈,C旋转1圈,那么A旋转8圈时,B旋转了多少圈?85.如图,在三角形ABC中,AE=ED,D点是BC的四等分点,请问:阴影部分的面积占三角形ABC面积的几分之几?86.阴影部分面积是多少?87.360共有多少个奇约数?所有这些奇约数的和是多少?88.如图,把三角形DEF的各边向外延长1倍后得到三角形ABC,三角形ABC的面积为1,则三角形DEF的面积为多少?89.用代表整数的字母写成等式试说明:符合条件的整数是否存在?90.把100个人分成4队,第一队人数是第二队人数的倍,是第三队人数的倍,求第四队人数?91.2014年2月17日,可以记作20140217,它的各个数位上的数字之和是17,按这种记法,2014年所有日期的数字之和是17的共有多少天?92.跑100米,甲、乙、丙三人分别用15秒、18秒、20秒,若他们同时、同向、同起点出发沿400米的环形跑道起跑,求他们同时再次又到达起点时,经过了多少分钟?93.若是42的倍数,求.94.如图,BCED是正方形,AB=3厘米,BC=5厘米,求三角形ABE的面积.95.学校组织春游,同学们下午一点出发,走了一段平坦的路,爬了一座山,然后按原路返回,下午七点回到学校.已知他们的步行速度平地为4千米/时,上山为3千米/时,下山为6千米/时.请问:同学们一共走了多少千米?96. a,b,c是三个两位数,(a,b,c可以相等),求的最小值和最大值.97.某小学在星期一到星期五的每天上午有课间加餐,品种有:包子,肉卷,三明治,面包.每天一种,相邻两天不能重复,星期五必须是包子.问:课间加餐食谱有多少种排法?98如图,在三角形ABC中,三角形AEO的面积是1,三角形ABO的面积是2,三角形BOD的面积是3,那么四边形DCEO的面积是多少?99.A、B、C三个试管中各盛有10克、20克、30克水.把某种浓度的盐水10克倒入A 中,充分混合后从A中取出10克倒入B中,再充分混合后从B中取出10克倒入C中,最后得到的盐水的浓度是0.5%.一开始倒入试管A中的盐水浓度为多少?100.某商品按20%利润定价,然后8.8折出售,共获利84元,那么商品的成本是多少?11 / 11。
【精选】小学五年级数学竞赛试卷及答案word百度文库

【精选】小学五年级数学竞赛试卷及答案word百度文库一、拓展提优试题1.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是419.【分析】“0”表示“9”,0+9=9,“1”表示“8”,1+8=9,由此可知西巴巴数字,表示的数字与正常数字的和都是9;由此找出837、742表示的数字,然后相加即可.2.用长是5厘米、宽是4厘米、高是3厘米的长方体木块叠成一个正方体,至少需要这种长方体木块块.3.小胖和小亚两人在生日都是在五月份,而且都是星期三.小胖的生日晚,又知两人的生日日期之和是38,小胖的生日是5月日.4.小明从家到学校去上课,如果每分钟走60米,可提前10分钟到校;如果每分钟走50米,要迟到4分钟到校.小明家到学校相距米.5.如图:平行四边形ABCD中,OE=EF=FD.平行四边形面积是240平方厘米,阴影部分的面积是平方厘米.6.用0、1、2、3、4这五个数字可以组成个不同的三位数.7.(1)数一数图1中有个三角形.(2)数一数图2中有个正方形.8.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.若经过5小时后细胞的个数记为164.最开始的时候有个细胞.9.同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6,则朝上一面的4个数字的和有种.10.某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是.11.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是.12.从1、2、3、4、5中任取3个组成一个三位数,其中不能被3整除的三位数有个.13.观察下表中的数的规律,可知第8行中,从左向右第5个数是.14.定义新运算:θa=,则(θ3)+(θ5)+(θ7)(+θ9)+(θ11)的计算结果化成最简真分数后,分子与分母的和是.15.(7分)如图,按此规律,图4中的小方块应为个.【参考答案】一、拓展提优试题1.解:西巴巴数字8表示阿拉伯数字9﹣8=1,西巴巴数字3表示阿拉伯数字9﹣3=6,西巴巴数字7表示阿拉伯数字9﹣7=2,西巴巴数字4表示阿拉伯数字9﹣4=5,西巴巴数字2表示阿拉伯数字9﹣2=7,所以837+742表示的正常算式为:162+257=419.故答案为:419.2.解:正方体的棱长应是5,4,3的最小公倍数,5,4,3的最小公倍数是60;所以,至少需要这种长方体木块:(60×60×60)÷(5×4×3),=216000÷60,=3600(块);答:至少需要这种长方体木3600块.故答案为:3600.3.解:38=7+31=8+30=9+29=10+28=11+27=12+26=13+25=14+24=15+23=16+22,因为二人的生日都是星期三,所以他们的生日相差的天数是7的倍数;经检验,只有26﹣12=14,14是7的倍数,即小亚的生日是5月12日,小胖的生日是5月26日时它们相差14天,符合题意,答:小胖的生日是5月26日.故答案为:26.4.解:(60×10+50×4)÷(60﹣50),=(600+200)÷10,=800÷10,=80(分钟),60×(80﹣10),=60×70,=4200(米).答:小明家到学校相距4200米.故答案为:4200.5.解:因为平行四边形ABCD中,AC和BD是对角线,把平行四边形ABCD 的面积平分4份,平行四边形面积是240平方厘米,所以S△DOC=240÷4=60(平方厘米),又因为△OCE、△ECF、△FCD和△DOC等高,OE=EF=FD,所以S△ECF=S△DOC=×60=20(平方厘米),所以阴影部分的面积是 20平方厘米.故答案为:20.6.解:4×4×3,=16×3,=48(种);答:这五个数字可以组成 48个不同的三位数.故答案为:48.7.解:(1)三角形有:8+4+4=16(个);(2)正方形有:20+10+4+1=35(个),故答案为:16,35.8.解:第5小时开始时有:164÷2+2=84(个)第4小时开始时有:84÷2+2=44(个)第3小时开始时有:44÷2+2=24(个)第2小时开始时有:24÷2+2=14(个)第1小时开始时有:14÷2+2=9(个)答:最开始的时候有 9个细胞.故答案为:9.9.解:根据分析可得,朝上一面的4个数字的和最小是:1×4=4,最大是6×4=24,24﹣4+1=21(种)答:朝上一面的4个数字的和有 21种.故答案为:21.10.解:665=19×7×5,因为长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,所以长、宽、高分别是19、7、5,(19×7+19×5+7×5)×2=(133+95+35)×2=263×2=526,答:它的表面积是526.故答案为:526.11.解:3n是5的倍数,3n的个数一定是0或5又因为大于0的自然数n是3的倍数,所以3n最小是453n=45n=15所以n最小取15时,n是3的倍数,3n是5的倍数.答:n的最小值是15.故答案为:15.12.解:1+2+3=6,1+2+4=7,1+2+5=8,2+3+4=9,2+3+5=10,3+4+5=12,其中不能被3整除的数的和是7、8、10,即有三组(1、2、4),(1、2、5)(2、3、5),每一组可以组成3×2×1=6个,三组共可以组成6×3=18个,即不能被3整除的数共有18个.故答案为:18.13.解:由图可知,第1行的数为1,第2行的最后一个数为2×2=4,第3行的最后一个数为3×3=9,…所以第7行最后一个数为7×7=49,则第8行第1个数为49+1=50,第5个数为50+4=54,故答案为:54.14.解:原式=++++=++++=×(﹣+﹣+…+﹣)=×()=5+24=29故答案为:2915.解:因为图1中小方块的个数为1+2×3=7个,图2中小方块的个数为1+(1+2)+3×4=16个,图3中小方块的个数为1+(1+2)+(1+2+3)+4×5=30个,所以图4中小方块的个数为1+(1+2)+(1+2+3)+(1+2+3+4)+5×6=50个,故答案为:50.。
小学五年级数学智力竞赛试题word百度文库

小学五年级数学智力竞赛试题word百度文库一、拓展提优试题1.如图,从A到B,有条不同的路线.(不能重复经过同一个点)2.数学家维纳是控制论的创始人.在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄.维纳的回答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0﹣9这10个数字全都用上了,不重也不漏,”那么,维纳这一年岁,(注:数a的立方等于a×a×a,数a的四次方等于a×a×a×a)3.商店对某饮料推出“第二杯半价”的促销办法.那么,若购买两杯这种饮料,相当于在原价的基础上打折.4.(8分)在长方形ABCD中,BE=5,EC=4,CF=4,FD=1,如图所示,那么△AEF的面积是;5.已知一个五位回文数等于45与一个四位回文数的乘积(即=45×),那么这个五位回文数最大的可能值是59895.6.如图:平行四边形ABCD中,OE=EF=FD.平行四边形面积是240平方厘米,阴影部分的面积是平方厘米.7.(1)数一数图1中有个三角形.(2)数一数图2中有个正方形.8.小猫咪A、B、C、D、E、F排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,领完后在道队尾继续排队领,直到鱼干发完.若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是.9.对于自然数N,如果1﹣9这九个自然数中至少有六个数可以整除N,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是.10.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换多少只鸡?11.(15分)甲、乙两船顺流每小时行8千米,逆流每小时行4千米,若甲船顺流而下,然后返回;乙船逆流而上,然后返回,两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?12.(8分)彤彤和林林分别有若干张卡片:如果彤彤拿6张给林林,林林变为彤彤的3倍;如果林林给彤彤2张,则林林变为彤彤的2倍.那么,林林原有张.13.定义新运算:θa=,则(θ3)+(θ5)+(θ7)(+θ9)+(θ11)的计算结果化成最简真分数后,分子与分母的和是.14.如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的倍.15.(8分)小胖把这个月的工资都用来买了一支股票.第一天该股票价格上涨,第二天下跌,第三天上涨,第四天下跌,此时他的股票价值刚好5000元,那么小胖这个月的工资是元.【参考答案】一、拓展提优试题1.解:如图,因为,从A到B有5条直连线路,每条直连线路均有5种不同的路线可以到达B点,所以,共有不同线路:5×5=25(条),答:从A到B,有25条不同的路线,故答案为:25.2.解:先用估值的方法大概确定一下维纳的年龄范围.根据174=83521,184=104976,194=130321,根据题意可得:他的年龄大于或等于18岁;再看,183=5832,193=6859,213=9261,223=10648,说明维纳的年龄小于22岁.根据这两个范围可知可能是18、19、20、21的一个数.又因为20、21无论是三次方还是四次方,它们的尾数分别都是:0、1,与“10个数字全都用上了,不重也不漏”不符,所以不用考虑了.只剩下18、19这两个数了.一个一个试,18×18×18=5832,18×18×18×18=104976;19×19×19=6859,19×19×19×19=130321;符合要求是18.故答案为:18.3.解:设这种饮料每杯10,两杯售价是20元,实际用了:10+10×,=10+5,=15(元),15÷20=0.75=75%,所以是打七五折;故答案为:七五.4.解:根据分析,AD=BE+EC=5+4=9,AB=1+4=5,S△EFC=×EC×FC=×4×4=8;S△ABE=×AB×BE=×5×5=12.5;S△ADF=×AD×DF=×9×1=4.5;S长方形ABCD=AB×AD=5×9=45,要求的△AEF的面积等于整体长方形的面积减去三个三角形的面积.S△AEF=S长方形ABCD﹣S△EFC﹣S△ABE﹣S△ADF=45﹣8﹣12.5﹣4.5=20.故答案是:20.5.解:根据分析,得知,=45=5×9既能被5整除,又能被9整除,故a的最大值为5,b=9,45被59□95整除,则□=8,五位数最大为59895故答案为:598956.解:因为平行四边形ABCD中,AC和BD是对角线,把平行四边形ABCD 的面积平分4份,平行四边形面积是240平方厘米,所以S△DOC=240÷4=60(平方厘米),又因为△OCE、△ECF、△FCD和△DOC等高,OE=EF=FD,所以S△ECF=S△DOC=×60=20(平方厘米),所以阴影部分的面积是 20平方厘米.故答案为:20.7.解:(1)三角形有:8+4+4=16(个);(2)正方形有:20+10+4+1=35(个),故答案为:16,35.8.解:共有6只小猫咪,每发6条鱼重复出现,而278÷6=46…2,余数是2,则最后一个领到鱼干的小猫咪是B.故答案为:B.9.解:依题意可知:要满足是六合数.分为是3的倍数和不是3的倍数.如果不是3的倍数那么一定是1,2,4,8,5,7的倍数,那么他们的最小公倍数为:8×5×7=280.那么280的倍数大于2000的最小的数字是2240.如果是3的倍数.同时满足是1,2,3,6的倍数.再满足2个数字即可.大于2000的最小是2004(1,2,3,4,6倍数)不符合题意;2010是(1,2,3,5,6倍数)不符合题意;2016是(1,2,3,4,6,7,8,9倍数)满足题意.2016<2240;故答案为:201610.解:42÷2=21(只)21÷3×26=7×26=182(只)182÷2×3=91×3=273(只)273×3=819(只)答:3头牛可以换819只鸡.11.解:设3小时顺流行驶单趟用时间为x小时,则逆流行驶单趟用的时间为(3﹣x)小时,故:x:(3﹣x)=4:88x=4×(3﹣x)8x=12﹣4x12x=12x=1逆流行驶单趟用的时间:3﹣1=2(小时),两船航行方向相同的时间为:2﹣1=1(小时),答:在3个小时中,有1小时两船同向都在逆向航行.12.解:彤彤给林林6张,林林有总数的;林林给彤彤2张,林林有总数的;所以总数:(6+2)÷(﹣)=96,林林原有:96×﹣6=66,故答案为:66.13.解:原式=++++=++++=×(﹣+﹣+…+﹣)=×()=5+24=29故答案为:2914.解:根据分析,如图所示,将图进行分割成面积相等的三角形,阴影部分由18个小三角形组成,而空白部分有6个小三角形,故阴影部分面积是空白部分面积的18÷6=3倍.故答案是:3.15.解:5000÷(1﹣)÷(1+)÷(1﹣)÷(1+)=5000××××=5000(元)答:小胖这个月的工资是5000元.故答案为:5000.。