高考数学复习:基本不等式
高考数学复习第7讲基本不等式-

应用数学思想
思想:方程与函数思想 数形结合思想 等价转换思想 分类讨论思想等
基础知识回想
1、算术平均数:如果a,b R ,那么
正数的算术平均数。
ab 2
叫做这两个
2、几何平均数:如果 a,b R ,那么 ab 叫做这两个
2 2a b
2
( 2 1)(b a ) 1 ( 4b a 4) 4
a b 2 2a b
(当且仅当a=2b即a=4,b=2时取=)
3)由 2 1 1 ab
则
2
1
(
2 a
1 b
)2
1
ab
2
4
(当且仅当a=2b即a=4,b=2时取=)
2 1 ab 4
即ab 8 S
1 ab 4 2
法二 : 设直线方程:y 1 k(x 2) (k 0)
题“p 或 q”为真命题,命题“p 且 q”为假命题, 求实数 a 的取值范围.
2、解:命题 p 为真命题 函数 f (x) lg(ax2 x 1 a) 16
的定义域为 R ax2 x 1 a 0 对任意的 x 均成立 16
a 0 时, x >0 解集非 R ,即 a≠0;
a 0
1
,
x2 1
令u 2 x2 1 1 , x2 1
则 u 2v 1 (v x2 1) ,由函数的单调性知 u 的最小值为 3, v
故 a 3 。 答案选 C。
例 2.命题 p:函数 f (x) lg(ax2 x 1 a) 的定义域为 R ; 16
命题 q:不等式 2x 1 1 ax 对一切正实数均成立.如果命
高考数学复习专题 基本不等式 (文 精讲)

专题7.3 基本不等式【核心素养分析】1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题. 【知识梳理】知识点一 基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 知识点二 几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +ab ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b22(a ,b ∈R); (5)2ab a +b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0). 知识点三 算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.知识点四 利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大). 【特别提醒】1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.2.连续使用基本不等式时,牢记等号要同时成立. 【典例剖析】 高频考点一 利用基本不等式求最值【例1】【2020·江苏卷】已知22451(,)x y y x y +=∈R ,则22x y +的最小值是 ▲ .【举一反三】(2020·江苏省南京模拟)函数y =x 2+2x -1(x >1)的最小值为________【方法技巧】利用基本不等式解决条件最值的关键是构造和为定值或积为定值,主要有三种思路: (1)对条件使用基本不等式直接求解.(直接法)(2)针对待求最值的式子,通过拆项(添项)、分离常数、变系数、凑因子等方法配凑出和或积为常数的两项,然后用基本不等式求解.(配凑法)(3)已知条件中有值为1的式子,把待求最值的式子和值为1的式子相乘,再用基本不等式求解.(常数代换法)【变式探究】(2019·天津卷)设x >0,y >0,x +2y =4,则(x +1)(2y +1)xy 的最小值为 .【变式探究】(2020·辽宁省葫芦岛模拟)已知a >0,b >0,且2a +b =ab -1,则a +2b 的最小值为( ) A .5+2 6B .8 2C .5D .9高频考点二 利用基本不等式解决实际问题【例2】【2019·北京卷】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.,,,,,,,,【方法技巧】利用基本不等式解决实际问题的三个注意点 (1)设变量时,一般要把求最大值或最小值的变量定义为函数. (2)解应用题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.【变式探究】(2020·山西省大同模拟)经测算,某型号汽车在匀速行驶过程中每小时耗油量y (L)与速度x (km /h )(50≤x ≤120)的关系可近似表示为y =⎩⎨⎧175(x 2-130x +4 900),x ∈[50,80),12-x60,x ∈[80,120].(1)该型号汽车的速度为多少时,可使得每小时耗油量最少?(2)已知A ,B 两地相距120 km ,假定该型号汽车匀速从A 地驶向B 地,则汽车速度为多少时总耗油量最少?专题7.3 基本不等式【核心素养分析】1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题. 【知识梳理】知识点一 基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 知识点二 几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +ab ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b22(a ,b ∈R); (5)2ab a +b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0). 知识点三 算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.知识点四 利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大). 【特别提醒】1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.2.连续使用基本不等式时,牢记等号要同时成立. 【典例剖析】高频考点一 利用基本不等式求最值【例1】【2020·江苏卷】已知22451(,)x y y x y +=∈R ,则22x y +的最小值是 ▲ . 【答案】45【解析】∵22451x y y +=∴0y ≠且42215y x y -=∴422222222114144+2555555y y y x y y y y y-+=+=≥⋅=,当且仅当221455y y =,即2231,102x y ==时取等号. ∴22xy +的最小值为45. 【举一反三】(2020·江苏省南京模拟)函数y =x 2+2x -1(x >1)的最小值为________【答案】23+2【解析】∵x >1,∴x -1>0,∴y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2.当且仅当x -1=3x -1,即x =3+1时,等号成立.【方法技巧】利用基本不等式解决条件最值的关键是构造和为定值或积为定值,主要有三种思路: (1)对条件使用基本不等式直接求解.(直接法)(2)针对待求最值的式子,通过拆项(添项)、分离常数、变系数、凑因子等方法配凑出和或积为常数的两项,然后用基本不等式求解.(配凑法)(3)已知条件中有值为1的式子,把待求最值的式子和值为1的式子相乘,再用基本不等式求解.(常数代换法)【变式探究】(2019·天津卷)设x >0,y >0,x +2y =4,则(x +1)(2y +1)xy 的最小值为 .【答案】92【解析】(x +1)(2y +1)xy =2xy +x +2y +1xy =2xy +5xy =2+5xy ,∵x >0,y >0且x +2y =4, ∴4=x +2y ≥22xy ,∴xy ≤2,∴1xy ≥12,∴2+5xy ≥2+52=92.【变式探究】(2020·辽宁省葫芦岛模拟)已知a >0,b >0,且2a +b =ab -1,则a +2b 的最小值为( ) A .5+2 6 B .8 2 C .5 D .9【答案】A【答案】∵a >0,b >0,且2a +b =ab -1, ∴a =b +1b -2>0,∴b >2,∴a +2b =b +1b -2+2b =2(b -2)+3b -2+5≥5+22(b -2)·3b -2=5+2 6.当且仅当2(b -2)=3b -2,即b =2+62时取等号.∴a +2b 的最小值为5+26,故选A 。
基本不等式-高考数学复习

2 +2.
2 +2,当且仅当 x
(2)已知正实数 a , b 满足 a +4 b =1,则 ab 的最大值为
1
16
.
1
1
+4 2
1
正实数 a , b 满足 a +4 b =1,则 ab = × a ·4 b ≤ ×
= ,当且
4
4
2
16
1
1
仅当 a = , b = 时等号成立.
2
8
方法总结
配凑法求最值的实质及关键点
∵ a >0, b >0,4 a +3 b =6,
1
1 3++3
∴ a ( a +3 b )= ·3 a ( a +3 b )≤
3
3
2
2
1
6 2
= ×
=3,当且仅当3
3
2
2
a = a +3 b ,即 a =1, b = 时, a ( a +3 b )的最大值是3.
3
2.
8
(2024·山西忻州模拟)已知 a >2,则2 a +
(200-1.5 y )2+ y 2+(200-1.5 y ) y =1.75 y 2-400 y +40 000=1.75 ቀ −
800 2
120 000
400
ቁ +
0 < <
,
7
7
3
800
200 21
200
当y=
时, PQ 有最小值
,此时 x =
.
7
7
7
200
800
即 AP 长为
米, AQ 长为
∴2 x + y =(2 x + y )
2
(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用一.基本不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
基本不等式 高考数学满分秘诀

高考数学秘诀-基本不等式【知识梳理】12a b +≤(1)基本不等式成立的条件:0,0a b ≥≥.(2)等号成立的条件:当且仅当a b =时取等号.(3)其中2a b+称为正数a ,b a ,b 的几何平均数.2、几个重要的不等式(1)222222a b a b ab ab ++≥⇒≤,当且仅当a =b 时取等号.(2)2()2a b a b ab ++≥≤,当且仅当a =b 时取等号.(3)222()22a b a b ++≤.(4)熟悉一个重要的不等式链:211a b+2a b+≤≤≤222b a +总结:基本不等式重点就是体现一个“定”的思想,所以在学习过程中要感悟配凑技巧。
拓展:若+∈R c b a ,,,3a b c ++≥c b a ==时等号成立;【技巧大全】技巧1:直接法技巧2:“添项”配凑法技巧3:“系数”配凑法技巧4:常数代换法技巧5:待定系数法技巧6:涉及a b +和ab 的处理方法技巧7:一次、二次问题处理方法技巧8:齐次化法技巧9:化为单变量法技巧10:整体配凑法【典例分析】--部分摘录技巧1:直接法例1、已知,x y R +∈,且满足134x y+=,则xy 的最大值为________。
【答案】3【解析】因为x >0,y>0,所以34x y +≥(当且仅当34x y =,即x=6,y=8时取等号),于1≤, 3.xy ∴≤,故xy 的最大值3.例2、已知+∈R y x ,若16=xy ,求11x y+的最小值.并求y x 、的值【答案】12【解析】1112x y +≥=,当且仅当4==y x 时等号成立例3、若实数,a b 满足221ab+=,则a b +的最大值是.【答案】-2当1a b ==-时取等号。
例4、若实数a ,b满足12a b+=,则ab 的最小值为__________.【答案】由题意可知可以利用基本不等式,12a b =+≥=,当且仅当122b a a b =⇒=时取等号,化简后可得:ab =145422a b ⎧=⎪⎨⎪=⎩技巧2:“添项”配凑法例1、已知函数1(0)y x x x=+>,求y 的最小值.【答案】2例2、已知函数3(2)2y x x x =+>-,求y 的最小值.【答案】2+例3、已知54x <,求函数14245y x x =-+-的最大值。
高中数学基础之基本不等式及应用

当acb取得最大值时,3a+1b-1c2的最大值为( C )
A.3
B.94
C.1
D.0
[思路引导] (1)2x-1>0,y-1>0→构建与2x-1,y-1相关的基本不等式. (2)三元变成二元→确定acb取得最大值时a,b,c的关系→求出结果.
[解析]
(1)依题意得2x-1>0,y-1>0,则
4x2 y-1
(1)在该时段内,当汽车的平均速度为多少时,车流量最大?最大车流量为多 少?(保留分数形式)
(2)若要求在该时段内车流量超过10千辆/时,则汽车的平均速度应在什么范 围内?
[解]
(1)依题意得,y=
920v v2+3v+1600
=
920 3+v+16v00
≤
920 83
,当且仅当v=
16v00,即v=40时,等号成立,
3-
k m+1
(k为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知
2021年生产该产品的固定投入为8万元.每生产1万件该产品需要再投入16万元,
厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定
投入和再投入两部分资金).
(1)将2021年该产品的利润y万元表示为年促销费用m万元的函数;
+
y2 2x-1
=
[2x-1+1]2 y-1
+
[y-1+1]2 2x-1
≥
42x-1 y-1
+
4y-1 2x-1
≥4×2
2yx--11×2yx--11
=8,即
4x2 y-1
+
y2 2x-1
2x-1=1,
≥8,当且仅当
y-1=1, 2yx--11=2yx--11,
高三数学复习(理):第4讲 基本不等式

第4讲 基本不等式[学生用书P132]1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +ab ≥2(a ,b 同号). (3)ab ≤⎛⎪⎫a +b 22(a ,b ∈R ). (4)a 2+b 22≥⎛⎪⎫a +b 22(a ,b ∈R ). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正实数的算术平均数不小于它们的几何平均数.常用结论已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)函数y =x +1x 的最小值是2.( ) (2)ab ≤⎝⎛⎭⎪⎫a +b 22成立的条件是ab >0.( ) (3)“x >0且y >0”是“x y +yx ≥2”的充要条件.( ) (4)若a >0,则a 3+1a 2的最小值是2a .( ) 答案:(1)× (2)× (3)× (4)× 二、易错纠偏 常见误区|K(1)忽视不等式成立的条件a >0且b >0;(2)忽视等号成立的条件. 1.若x <0,则x +1x ( ) A .有最小值,且最小值为2 B .有最大值,且最大值为2 C .有最小值,且最小值为-2 D .有最大值,且最大值为-2 解析:选D.因为x <0,所以-x >0, -x +1-x≥21=2,当且仅当x =-1时,等号成立, 所以x +1x ≤-2.2.若x ≥2,则x +4x +2的最小值为________.解析:设x+2=t,则x+4x+2=t+4t-2.又由x≥2,得t≥4,而函数y=t+4t-2在[2,+∞)上是增函数,因此当t=4时,t+4t -2取得最小值4+44-2=3.答案:3[学生用书P133]利用基本不等式求最值(多维探究)角度一通过拼凑法利用基本不等式求最值(1)已知0<x<1,则x(4-3x)取得最大值时x的值为________.(2)已知x<54,则f(x)=4x-2+14x-5的最大值为________.【解析】(1)x(4-3x)=13·(3x)(4-3x)≤13·⎣⎢⎡⎦⎥⎤3x+(4-3x)22=43,当且仅当3x=4-3x,即x=23时,取等号.(2)因为x<54,所以5-4x>0,则f(x)=4x-2+14x-5=-⎝⎛⎭⎪⎫5-4x+15-4x+3≤-2 (5-4x)15-4x+3≤-2+3=1.当且仅当5-4x=15-4x,即x=1时,等号成立.故f (x )=4x -2+14x -5的最大值为1.【答案】 (1)23 (2)1通过拼凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标; (3)拆项、添项应注意检验利用基本不等式的前提. 角度二 通过常数代换法求最值已知a >0,b >0,a +b =1,则⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b 的最小值为________.【解析】 ⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =⎝ ⎛⎭⎪⎫1+a +b a ⎝ ⎛⎭⎪⎫1+a +b b = ⎝ ⎛⎭⎪⎫2+b a ·⎝ ⎛⎭⎪⎫2+a b =5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+4=9.当且仅当a =b =12时,取等号.【答案】 9【迁移探究1】 (变问法)若本例中的条件不变,则1a +1b 的最小值为________.解析:因为a >0,b >0,a +b =1, 所以1a +1b =a +b a +a +b b =2+b a +ab ≥2+2b a ·a b =4,即1a +1b 的最小值为4,当且仅当a =b =12时等号成立.答案:4【迁移探究2】 (变条件)若本例条件变为已知a >0,b >0,4a +b =4,则⎝ ⎛⎭⎪⎫1+1a⎝ ⎛⎭⎪⎫1+1b 的最小值为________. 解析:由4a +b =4得a +b4=1,⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =⎝⎛⎭⎪⎪⎫1+a +b 4a ⎝ ⎛⎭⎪⎪⎫1+a +b 4b =⎝ ⎛⎭⎪⎫2+b 4a ⎝ ⎛⎭⎪⎫54+a b =52+2a b +5b 16a +14≥114+258=114+102.当且仅当42a =5b 时取等号.答案:114+102常数代换法求最值的步骤(1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式; (4)利用基本不等式求解最值. 角度三 通过消元法求最值若正数x ,y 满足x 2+6xy -1=0,则x +2y 的最小值是( ) A.223B .23 C.33D.233【解析】 因为正数x ,y 满足x 2+6xy -1=0,所以y =1-x 26x .由⎩⎨⎧x >0,y >0,即⎩⎨⎧x >0,1-x 26x >0,解得0<x <1.所以x +2y =x +1-x 23x =2x 3+13x ≥22x 3·13x =223,当且仅当2x 3=13x ,即x =22,y =212时取等号.故x +2y 的最小值为223.【答案】 A通过消元法求最值的方法消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解.但应注意保留元的范围.角度四 多次利用基本不等式求最值若a ,b ∈R ,ab >0,则a 4+4b 4+1ab的最小值为________.【解析】 因为ab >0,所以a 4+4b 4+1ab ≥24a 4b 4+1ab =4a 2b 2+1ab =4ab +1ab≥24ab ·1ab =4,当且仅当⎩⎨⎧a 2=2b 2,ab =12时取等号,故a 4+4b 4+1ab的最小值是4.【答案】 4当连续多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且注意取等号的条件的一致性,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,也是检验转换是否有误的一种方法.1.(2021·湖北八校第一次联考)已知x >0,y >0,且1x +9y =1,则x +y 的最小值为( )A .12B .16C .20D .24解析:选B.方法一:由题意x +y =⎝ ⎛⎭⎪⎫1x +9y (x +y )=1+y x +9x y +9≥1+2y x ×9xy+9=16,当且仅当⎩⎪⎨⎪⎧x >0,y >0,1x +9y =1,y x =9x y ,即⎩⎪⎨⎪⎧x =4,y =12时取等号,故选B.方法二:由1x +9y =1得9x +y -xy =0,即(x -1)(y -9)=9,可知x >1,y >9,所以x +y =(x -1)+(y -9)+10≥2(x -1)(y -9)+10=16,当且仅当⎩⎪⎨⎪⎧x >1,y >9,1x +9y=1,x -1=y -9=3,即⎩⎪⎨⎪⎧x =4,y =12时取等号,故选B. 2.(2021·贵阳市四校联考)已知a +b =2,且a >-1,b >0,则1a +1+1b的最小值为( )A.23 B .1 C.43D.32解析:选C.由a +b =2,得a +1+b =3.因为a >-1,所以a +1>0,所以1a +1+1b =13(a +1+b )⎝ ⎛⎭⎪⎫1a +1+1b =13⎝ ⎛⎭⎪⎪⎫2+b a +1+a +1b ≥13·⎝⎛⎭⎪⎪⎫2+2ba +1·a +1b =43,当且仅当b a +1=a +1b ,即a =12,b =32时等号成立,所以1a +1+1b 的最小值为43,故选C.3.已知x ,y 为正实数,则4x x +3y+3y x 的最小值为( )A.53 B .103 C.32 D .3解析:选 D.由题意得x >0,y >0,4x x +3y +3y x =4x x +3y +x +3y x -1≥24x x +3y ·x +3yx-1=4-1=3(当且仅当x =3y 时等号成立).基本不等式的实际应用(师生共研)某车间分批生产某种产品,每批产品的生产准备费用为800元,若每批生产x件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,则每批应生产产品() A.60件B.80件C.100件D.120件【解析】若每批生产x件产品,则每件产品的生产准备费用是800x元,仓储费用是x8元,总的费用是800x+x8≥2800x·x8=20,当且仅当800x=x8,即x=80时取等号,故选B.【答案】 B利用基本不等式求解实际问题的注意事项(1)根据实际问题抽象出目标函数的表达式,再利用基本不等式求得函数的最值.(2)设变量时一般要把求最大值或最小值的变量定义为函数.(3)解应用题时,一定要注意变量的实际意义及其取值范围.(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.(2021·安徽安庆大观模拟)如图所示,矩形ABCD的边AB靠在墙PQ上,另外三边是由篱笆围成的.若该矩形的面积为4,则围成矩形ABCD 所需要篱笆的()A .最小长度为8B .最小长度为4 2C .最大长度为8D .最大长度为4 2解析:选B.设BC =a ,a >0,CD =b ,b >0,则ab =4,所以围成矩形ABCD 所需要的篱笆长度为2a +b =2a +4a ≥22a ·4a =42,当且仅当2a =4a ,即a =2时取等号,此时长度取得最小值4 2.故选B.基本不等式的综合应用(多维探究) 角度一 与其他知识的交汇问题(2021·吉林通钢一中等三校第五次联考)在Rt △ABC 中,已知∠C =90°,CA =3,CB =4,P 为线段AB 上的一点,且CP →=x ·CA →|CA →|+y ·CB →|CB →|,则1x +1y 的最小值为( )A.76 B .712C.712+33D.76+33【解析】 因为CA =3,CB =4,即|CA →|=3,|CB →|=4, 所以CP →=x CA →|CA →|+y CB →|CB →|=x 3CA →+y 4CB →,因为P 为线段AB 上的一点,即P ,A ,B 三点共线, 所以x 3+y4=1(x >0,y >0),所以1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·⎝ ⎛⎭⎪⎫x 3+y 4=712+x 3y +y 4x ≥712+2112=712+33, 当且仅当x 3y =y 4x 时等号成立,所以1x +1y 的最小值为712+33,故选C. 【答案】 C角度二 求参数的值或取值范围已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意的正实数x ,y 恒成立,则正实数a 的最小值为________.【解析】 (x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y ≥1+a +2a =(a +1)2(x ,y ,a >0),当且仅当y =ax 时取等号,所以(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值为(a +1)2,所以(a +1)2≥9恒成立. 所以a ≥4. 【答案】 4(1)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解.(2)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解. (3)求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围.1.已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y 的最小值是( ) A .2 B .2 2 C .4D .2 3解析:选C.因为lg 2x +lg 8y =lg 2,所以lg(2x ·8y )=lg 2,所以2x +3y =2,所以x +3y =1.因为x >0,y >0,所以1x +13y =(x +3y )⎝ ⎛⎭⎪⎫1x +13y =2+3y x +x 3y ≥2+23y x ·x 3y =4,当且仅当x =3y =12时取等号,所以1x +13y 的最小值为4.故选C.2.设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是________.解析:a n =a 1+(n -1)d =n ,S n =n (1+n )2,所以S n +8a n =n (1+n )2+8n =12(n +16n +1) ≥12⎝⎛⎭⎪⎫2n ·16n +1=92,当且仅当n =4时取等号.所以S n +8a n 的最小值是92.答案:923.已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a 的取值范围是________.解析:对任意x ∈N *,f (x )≥3恒成立, 即x 2+ax +11x +1≥3恒成立,即a ≥-⎝ ⎛⎭⎪⎫x +8x +3.设g (x )=x +8x ,当x =8x ,即x =22时,g (x )取得最小值,又x ∈N *,则g (2)=6,g (3)=173.因为g (2)>g (3),所以g (x )min =173,所以-⎝ ⎛⎭⎪⎫x +8x +3≤-83,所以a ≥-83,故a 的取值范围是⎣⎢⎡⎭⎪⎫-83,+∞.答案:⎣⎢⎡⎭⎪⎫-83,+∞[学生用书P135]核心素养系列12 逻辑推理——利用基本不等式连续放缩求最值已知a >b >0,那么a 2+1b (a -b )的最小值为________.【解析】 因为a >b >0,所以a -b >0,所以b (a -b )≤⎝⎛⎭⎪⎫b +a -b 22=a 24,所以a 2+1b (a -b )≥a 2+4a 2≥2a 2·4a 2=4,当且仅当b =a -b 且a 2=4a 2,即a =2且b =22时取等号,所以a 2+1b (a -b )的最小值为4.【答案】 4设a >b >0,则a 2+1ab +1a (a -b )的最小值是________.【解析】 因为a >b >0,所以a -b >0,所以a 2+1ab +1a (a -b )=(a 2-ab )+1(a 2-ab )+1ab+ab ≥2(a 2-ab )·1(a 2-ab )+21ab ×ab =4(当且仅当a 2-ab =1a 2-ab且1ab =ab ,即a =2,b =22时取等号).【答案】 4利用基本不等式求函数或代数式的最值时一定要注意验证等号是否成立,特别是当连续多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且注意取等号的条件的一致性,因此在利用基本不等式处理问题时,列出等号成立的条件不仅是解题的必要步骤,也是检验转换是否有误的一种方法.已知正实数a ,b ,c ,d 满足a +b =1,c +d =1,则1abc +1d 的最小值是( )A .10B .9C .42D.3 3解析:选B.因为a +b =1,a >0,b >0,所以ab ≤⎝⎛⎭⎪⎫a +b 22=14,所以1ab ≥4,当且仅当a =b =12时取等号.又因为c +d =1,c >0,d >0,所以1abc +1d ≥4·1c +1d =(c +d )·⎝ ⎛⎭⎪⎫4c +1d =5+4d c +c d ≥5+24d c ·c d =9,当且仅当a =b =12,且c =23,d =13时取等号,即1abc +1d 的最小值为9,故选B.[学生用书P393(单独成册)][A 级 基础练]1.若正实数x ,y 满足x +y =2,则1xy 的最小值为( ) A .1 B .2 C .3D .4解析:选A.因为正实数x ,y 满足x +y =2, 所以xy ≤(x +y )24=224=1,所以1xy ≥1.2.若a >0,b >0,a +b =ab ,则a +b 的最小值为( ) A .2 B .4 C .6D .8解析:选B.方法一:由于a +b =ab ≤(a +b )24,因此a +b ≥4或a +b ≤0(舍去),当且仅当a =b =2时取等号,故选B.方法二:由题意,得1a +1b =1,所以a +b =(a +b )(1a +1b )=2+a b +ba ≥2+2=4,当且仅当a =b =2时取等号,故选B.方法三:由题意知a =b b -1(b >1),所以a +b =b b -1+b =2+b -1+1b -1≥2+2=4,当且仅当a =b =2时取等号,故选B.3.已知f (x )=x 2-2x +1x ,则f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为( )A.12 B .43 C .-1D .0解析:选D.f (x )=x 2-2x +1x =x +1x -2≥2-2=0,当且仅当x =1x ,即x =1时取等号.又1∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值是0.4.若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A. 2 B .2 C .2 2D .4解析:选C.因为1a +2b =ab ,所以a >0,b >0, 由ab =1a +2b ≥21a ×2b =22ab ,所以ab ≥22(当且仅当b =2a 时取等号), 所以ab 的最小值为2 2. 5.设x >0,则函数y =x +22x +1-32的最小值为( ) A .0 B .12 C .1D.32解析:选A.y =x +22x +1-32=⎝ ⎛⎭⎪⎫x +12+1x +12-2≥2⎝ ⎛⎭⎪⎫x +12·1x +12-2=0,当且仅当x +12=1x +12,即x =12时等号成立.所以函数的最小值为0.故选A.6.(2021·四省八校第二次质量检测)已知a =(1,x ),b =(y ,1),x >0,y >0.若a ∥b ,则xyx +y的最大值为( ) A.12 B .1 C. 2D .2解析:选 A.方法一:a ∥b ⇒xy =1,所以y =1x ,所以xy x +y =1x +y =1x +1x≤12x ×1x =12(当且仅当x =1x ,即x =1时取等号),所以xy x +y的最大值为12,故选A.方法二:a ∥b ⇒xy =1,又x >0,y >0,所以xy x +y =1x +y ≤12xy=12(当且仅当x =y =1时取等号),所以xy x +y的最大值为12,故选A.7.(2020·高考天津卷)已知a >0,b >0,且ab =1,则12a +12b +8a +b 的最小值为________.解析:依题意得12a +12b +8a +b =a +b 2ab +8a +b =a +b 2+8a +b≥2a +b 2×8a +b =4,当且仅当⎩⎪⎨⎪⎧a >0,b >0,ab =1,a +b 2=8a +b ,即⎩⎪⎨⎪⎧ab =1,a +b =4时取等号.因此,12a +12b +8a +b 的最小值为4.答案:48.(2020·高考江苏卷)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是__________.解析:方法一:由5x 2y 2+y 4=1得x 2=15y 2-y 25,则x 2+y 2=15y 2+4y 25≥215y 2·4y 25=45,当且仅当15y 2=4y 25,即y 2=12时取等号,则x 2+y 2的最小值是45.方法二:4=(5x 2+y 2)·4y 2≤⎣⎢⎡⎦⎥⎤(5x 2+y 2)+4y 222=254·(x 2+y 2)2,则x 2+y 2≥45,当且仅当5x 2+y 2 =4y 2=2,即x 2=310,y 2=12时取等号,则x 2+y 2的最小值是45.答案:459.(1)当x <32时,求函数y =x +82x -3的最大值;(2)设0<x <2,求函数y =x (4-2x )的最大值. 解:(1)y =12(2x -3)+82x -3+32=-⎝ ⎛⎭⎪⎪⎫3-2x 2+83-2x +32. 当x <32时,有3-2x >0, 所以3-2x 2+83-2x ≥23-2x 2·83-2x=4,当且仅当3-2x 2=83-2x ,即x =-12(x =72舍去)时取等号. 于是y ≤-4+32=-52, 故函数的最大值为-52. (2)因为0<x <2,所以2-x >0, 所以y =x (4-2x )=2·x (2-x )≤2·x +2-x2=2,当且仅当x =2-x ,即x =1时取等号, 所以当x =1时,函数y =x (4-2x )取最大值,为 2.10.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值.解:(1)由2x +8y -xy =0,得8x +2y =1,又x >0,y >0, 则1=8x +2y ≥2 8x ·2y =8xy. 得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y=1,则x +y =⎝ ⎛⎭⎪⎫8x +2y ·(x +y )=10+2x y +8y x ≥10+22x y ·8yx =18. 当且仅当x =12,y =6时等号成立, 所以x +y 的最小值为18.[B 级 综合练]11.已知a >0,b >0,若不等式3a +1b ≥ma +3b 恒成立,则m 的最大值为( )A .9B .12C .18D .24解析:选B.由3a +1b ≥ma +3b,得m ≤(a +3b )⎝ ⎛⎭⎪⎫3a +1b =9b a +ab +6.又9b a +ab +6≥29+6=12,当且仅当9b a =ab ,即a =3b 时等号成立, 所以m ≤12,所以m 的最大值为12. 12.(2020·福建龙岩一模)已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( )A .3B .5C.7 D.9解析:选C.因为x>0,y>0.且1x+1+1y=12,所以x+1+y=2⎝⎛⎭⎪⎫1x+1+1y(x+1+y)=2(1+1+yx+1+x+1y)≥2⎝⎛⎭⎪⎪⎫2+2yx+1·x+1y=8,当且仅当yx+1=x+1y,即x=3,y=4时取等号,所以x+y≥7,故x+y的最小值为7,故选C.13.若a+b≠0,则a2+b2+1(a+b)2的最小值为________.解析:a2+b2+1(a+b)2≥(a+b)22+1(a+b)2≥212=2,当且仅当a=b=2-34时,a2+b2+1(a+b)2取得最小值 2.答案: 214.某厂家拟定在2021年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x万件与年促销费用m(m≥0)万元满足x=3-km+1(k为常数).如果不搞促销活动,那么该产品的年销量只能是1万件.已知2021年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的 1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2021年该产品的利润y万元表示为年促销费用m万元的函数;(2)该厂家2021年的促销费用投入多少万元时,厂家利润最大?解:(1)由题意知,当m=0时,x=1(万件),所以1=3-k⇒k=2,所以x=3-2m+1(m≥0),每件产品的销售价格为1.5×8+16xx(元),所以2021年的利润y=1.5x×8+16xx-8-16x-m=-⎣⎢⎡⎦⎥⎤16m +1+(m +1)+29(m ≥0). (2)因为m ≥0时,16m +1+(m +1)≥216=8, 所以y ≤-8+29=21,当且仅当16m +1=m +1⇒m =3时,y max =21.故该厂家2021年的促销费用投入3万元时,厂家的利润最大,为21万元.[C 级 提升练]15.已知角α,β的顶点都为坐标原点,始边都与x 轴的非负半轴重合,且都为第一象限的角,α,β终边上分别有点A (1,a ),B (2,b ),且α=2β,则1a +b 的最小值为( )A .1B . 2 C. 3D .2解析:选C.由已知得,a >0,b >0,tan α=a ,tan β=b2,因为α=2β,所以tan α=tan 2β,所以a =2·b 21-⎝ ⎛⎭⎪⎫b 22=4b 4-b 2,所以1a +b =4-b 24b +b =1b +3b 4≥21b ·3b4=3,当且仅当1b =3b 4,即b =233时,取等号.故1a +b 的最小值为 3.16.(2021·江西吉安期末)已知函数f (x )=sin 2xsin x +2,则f (x ) 的最大值为________.解析:设t =sin x +2,则t ∈[1,3],则sin 2x =(t -2)2,则g (t )=(t -2)2t =t +4t -4(1≤t ≤3),由“对勾函数”的性质可得g (t )在[1,2)上为减函数,在(2,3]上为增函数,又g (1)=1,g (3)=13,所以g (t )max =g (1)=1.即f (x )的最大值为1.答案:1。
第2节 基本不等式--2025年高考数学复习讲义及练习解析

第二节基本不等式1.基本不等式:ab ≤a +b 2.(1)基本不等式成立的条件:01a >0,b >0.(2)等号成立的条件:当且仅当02a =b 时,等号成立.(3)其中03a +b2叫做正数a ,b 的算术平均数,04ab 叫做正数a ,b 的几何平均数.2.几个重要的不等式(1)a 2+b 205≥2ab (a ,b ∈R ).(2)b a +ab 06≥2(a ,b同号).(3)(a ,b ∈R ).(a ,b ∈R ).以上不等式等号成立的条件均为09a =b .3.利用基本不等式求最值(1)已知x ,y 都是正数,如果积xy 等于定值P ,那么当10x =y 时,和x +y 有最小值112P .(简记:积定和最小)(2)已知x ,y 都是正数,如果和x +y 等于定值S ,那么当12x =y 时,积xy 有最大值1314S 2.(简记:和定积最大)注意:(1)利用基本不等式求最值应满足三个条件“一正、二定、三相等”,其中“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指满足等号成立的条件.(2)形如y =x +ax (a >0)的函数求最值时,首先考虑用基本不等式,若等号取不到,再利用该函数的单调性求解.1.连续使用基本不等式求最值要求每次等号成立的条件要一致.2.若a >0,b >0,则21a +1b ≤ab ≤a +b2≤a 2+b 22,当且仅当a =b 时,等号成立.3.常见求最值的模型模型一:mx +nx≥2mn (m >0,n >0,x >0),当且仅当x =nm时,等号成立;模型二:mx +n x -a =m (x -a )+nx -a +ma ≥2mn +ma (m >0,n >0,x >a ),当且仅当x -a =n m时,等号成立;模型三:xax 2+bx +c =1ax +b +c x ≤12ac +b(a >0,c >0,x >0),当且仅当x =ca时,等号成立;模型四:x (n -mx )=mx (n -mx )m ≤1m ·>0,n >0,0<x 当且仅当x =n 2m时,等号成立.4.三个正数的均值不等式:若a ,b ,c >0,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.1.概念辨析(正确的打“√”,错误的打“×”)(1)y =x +1x 的最小值是2.()(2)|b a +a b |≥2.()(3)已知0<x <12,则x (1-2x )的最大值为18.()(4)函数f (x )=sin x +4sin x 的最小值为4.()答案(1)×(2)√(3)√(4)×2.小题热身(1)设a >0,则9a +1a 的最小值为()A .4B .5C .6D .7答案C 解析9a +1a≥29a ·1a =6,当且仅当9a =1a ,即a =13时,等号成立.(2)矩形两边长分别为a ,b ,且a +2b =6,则矩形面积的最大值是()A .4 B.92C.322D .2答案B解析依题意,可得a >0,b >0,则6=a +2b ≥2a ·2b =22·ab ,当且仅当a =2b 时取等号,所以ab ≤628=92,即矩形面积的最大值为92.故选B.(3)(2024·河南郑州高三模拟)已知实数a >0,b >0,a +b =2,则1a +ab 的最小值为________.答案12+2解析1a +a b =12×a +b a +a b =12+b 2a +a b ≥12+2b 2a ·a b =12+2,当且仅当b 2a =ab,即a =22-2,b =4-22时,等号成立.(4)(人教A 必修第一册习题2.2T1(2)改编)函数y =x (3-2x )(0≤x ≤1)的最大值是________.答案98解析因为0≤x ≤1,所以3-2x >0,所以y =12·2x ·(3-2x )≤122x +(3-2x )22=98,当且仅当2x =3-2x ,即x =34时取等号.(5)(人教A 必修第一册复习参考题2T5改编)已知a ,b >0,且ab =a +b +3,则ab 的取值范围为________.答案[9,+∞)解析因为a,b>0,所以ab-3=a+b≥2ab,于是ab-2ab-3≥0,解得ab≤-1(舍去)或ab≥3,所以ab≥9,当且仅当a=b=3时,等号成立,所以ab的取值范围是[9,+∞).考点探究——提素养考点一利用基本不等式求最值(多考向探究)考向1配凑法求最值例1(1)(2024·福建福州四校高三期中联考)已知0<x<2,则y=x4-x2的最大值为() A.2B.4C.5D.6答案A解析因为0<x<2,所以y=x4-x2=x2(4-x2)≤x2+(4-x2)2=2,当且仅当x2=4-x2,即x=2时,等号成立,即y=x4-x2的最大值为2.故选A.(2)函数y=x2+3x+3x+1(x<-1)的最大值为()A.3B.2C.1D.-1答案D解析y=x2+3x+3x+1=(x+1)2+(x+1)+1x+1=--(x+1)+1-(x+1)+1≤-1=-1,当且仅当x+1=1x+1=-1,即x=-2时,等号成立.故选D.【通性通法】配凑法求最值的关键点【巩固迁移】1.函数y =3x ()A .8B .7C .6D .5答案D解析因为x >13,所以3x -1>0,所以y =3x +43x -1=(3x -1)+43x -1+1≥2(3x -1)·43x -1+1=5,当且仅当3x -1=43x -1,即x =1时,等号成立,故函数y =3x 值为5.故选D.2.(2023·浙江杭州高三教学质量检测)已知a >1,b >1,且log 2a =log b 4,则ab 的最小值为()A .4B .8C .16D .32答案C解析∵log 2a =log b 4,∴12log 2a =log b 4,即log 2a =2log 24log 2b ,∴log 2a ·log 2b =4.∵a >1,b >1,∴log 2a >0,log 2b >0,∴log 2(ab )=log 2a +log 2b ≥2log 2a ·log 2b =4,当且仅当log 2a =log 2b =2,即a =b =4时取等号,所以ab ≥24=16,当且仅当a =b =4时取等号,故ab 的最小值为16.故选C.考向2常数代换法求最值例2(1)已知0<x <1,则9x +161-x 的最小值为()A .50B .49C .25D .7答案B解析因为0<x <1,所以9x +161-x =(x +1-x )25+9(1-x )x+16x 1-x ≥25+29(1-x )x ·16x 1-x =49,当且仅当9(1-x )x=16x 1-x ,即x =37时,等号成立,所以9x +161-x 的最小值为49.故选B.(2)已知a >0,b >0,a +2b =3,则1a +1b 的最小值为()A.223B.233C .1+223D .1+233答案C解析因为a +2b =3,所以13a +23b =1,+23b =13+23+a 3b +2b 3a≥1+2a 3b ·2b3a=1+223,当且仅当a 3b =2b3a ,即a =3(2-1),b =3(2-2)2时,等号成立.故选C.【通性通法】常数代换法求最值的基本步骤【巩固迁移】3.若正实数x ,y 满足2x +y =9,则-1x -4y 的最大值是()A.6+429B .-6+429C .6+42D .-6-42答案B解析因为1x +4y =19x +y )+y x +8x y+6+429,当且仅当y x =8xy ,即x =9(2-1)2,y =9(2-2)时,等号成立,所以-1x -4y ≤-6+429.故选B.4.(2024·湖北荆门三校高三联考)已知实数a ,b 满足lg a +lg b =lg (a +2b ),则2a +b 的最小值是()A .5B .9C .13D .18答案B解析由lg a +lg b =lg (a +2b ),可得lg (ab )=lg (a +2b ),所以ab =a +2b ,即2a +1b =1,且a >0,b >0,则2a +b =(2a +b 5+2b a +2ab ≥5+22b a ·2a b =9,当且仅当2b a =2ab,即a =b =3时,等号成立,所以2a +b 的最小值为9.故选B.考向3消元法、换元法求最值例3(1)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是()A.14B.45C.255D .2答案B解析因为5x 2y 2+y 4=1,所以x 2=1-y 45y 2,又x 2≥0,所以y 2∈(0,1],所以x 2+y 2=y 2+1-y 45y2=4y 4+15y 2=y 2≥15×24y 2·1y 2=45,当且仅当4y 2=1y 2,即y 2=12,x 2=310时取等号,所以x 2+y 2的最小值是45.故选B.(2)(2024·浙江嘉兴第一中学高三期中)若x >0,y >0,且1x +1+1x +2y=1,则2x +y 的最小值为()A .2B .23C.12+3D .4+23答案C解析设x +1=a ,x +2y =b ,则x =a -1,y =b -a +12,且a >0,b >0,则1a +1b =1,2x +y=2(a -1)+b -a +12=3a +b 2-32,而3a +b =(3a +b 4+3a b +ba ≥4+23a b ·ba=4+23,当且仅当3a b =ba ,即a =3+33,b =3+1时,等号成立,则2x +y ≥4+232-32=12+ 3.故选C.【通性通法】当所求最值的代数式中变量比较多时,通常考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”的形式,最后利用基本不等式求最值.【巩固迁移】5.(2023·江苏南京高三调研)设a ≥0,b ≥0,且2a +b =1,则ab 的最小值为__________.答案解析因为2a +b =1,所以a =(b -1)24,所以a b =(b -1)24b=b 4+14b -12≥2b 4·14b-12=0,当且仅当a =0,b =1时取等号.6.(2024·湖北襄阳五中高三质量检测)若正数a ,b 满足2a +b =1,则a 2-2a +b2-b的最小值是________.答案223-12解析设u =2-2a ,v =2-b ,则a =2-u 2,b =2-v ,则u +v =3(u >0,v >0),所以a 2-2a +b2-b=1-12u u+2-v v =1u +2v -32=13(u +v 32+v u +-32+321+223-32=223-12,当且仅当v =6-32,u =32-3时,等号成立,所以a 2-2a +b 2-b 的最小值为223-12.考向4“和”“积”互化求最值例4(多选)设a >1,b >1,且ab -(a +b )=1,那么()A .a +b 有最小值22+2B .a +b 有最大值22-2C .ab 有最大值3-22D .ab 有最小值3+22答案AD解析∵a >1,b >1,∴ab -1=a +b ≥2ab ,当a =b 时取等号,即ab -2ab -1≥0,解得ab ≥2+1,∴ab ≥(2+1)2=3+22,∴ab 有最小值3+2 2.又ab ,当a =b 时取等号,∴1=ab -(a +b )-(a +b ),即(a +b )2-4(a +b )≥4,则[(a +b )-2]2≥8,解得a +b -2≥22,即a +b ≥22+2,∴a +b 有最小值22+2.故选AD.【通性通法】“和”“积”互化求最值的方法(1)基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值.(2)如果条件中含有两个变量的和与积的形式,可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解,或者通过构造一元二次方程,利用根的分布解决问题.【巩固迁移】7.正实数x ,y 满足4x 2+y 2+xy =1,则xy 的最大值为________,2x +y 的最大值为________.答案152105解析∵1-xy =4x 2+y 2≥4xy ,∴5xy ≤1,∴xy ≤15,当且仅当y =2x ,即x =1010,y =105时取等号.∵4x 2+y 2+xy =1,∴(2x +y )2-3xy =1,∴(2x +y )2-1=3xy =32·2x ·y,即(2x +y )2-1≤38(2x +y )2,∴(2x +y )2≤85,∴2x +y ≤2105,当且仅当2x =y ,即x =1010,y=105时取等号.考点二基本不等式的综合应用例5(2024·河南濮阳外国语学校模拟)若对任意正数x ,不等式2x 2+4≤2a +1x恒成立,则实数a 的取值范围为()A .[0,+∞) B.-14,+∞C.14,+∞ D.12,+∞答案B解析依题意得,当x >0时,2a +1≥2x x 2+4=2x +4x恒成立,又x +4x ≥4,当且仅当x =2时取等号,所以2x +4x 的最大值为12,所以2a +1≥12,解得实数a 的取值范围为-14,+故选B.【通性通法】1.利用基本不等式求参数的值或范围时,要观察题目的特点,先确定是恒成立问题还是有解问题,再利用基本不等式确定等号成立的条件,最后通过解不等式(组)得到参数的值或范围.2.当基本不等式与其他知识相结合时,往往是为其他知识提供一个应用基本不等式的条件,然后利用常数代换法求最值.【巩固迁移】8.在等腰三角形ABC 中,AB =AC ,若AC 边上的中线BD 的长为3,则△ABC 面积的最大值是()A .6B .12C .18D .24答案A解析设AB =AC =2m ,BC =2n ,因为∠ADB =π-∠CDB ,所以m 2+9-4m 26m =-m 2+9-4n 26m,整理得m 2=9-2n 2.设△ABC 的面积为S ,则S =12BC =12×2n ×4m 2-n 2=3n 4-n 2=3n 2(4-n 2)≤3×n 2+4-n 22=6,当且仅当n =2时,等号成立.故选A.考点三基本不等式的实际应用例6网店和实体店各有利弊,两者的结合将在未来一段时期内成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2022年10月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x (万件)与投入实体店体验安装的费用t (万元)之间满足函数关系式x =3-2t +1.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是________万元.答案37.5解析由题意知t =23-x-1(1<x <3),设该公司的月利润为y 万元,则y -32x -3-t =16x -t 2-3=16x -13-x +12-3=45.5-16(3-x )+13-x ≤45.5-216=37.5,当且仅当x =114时取等号,即最大月利润为37.5万元.【通性通法】利用基本不等式解决实际应用问题的技巧【巩固迁移】9.一家商店使用一架两臂不等长的天平称黄金.一位顾客到店里购买10g 黄金,售货员先将5g 的砝码放在天平左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5g 的砝码放在天平右盘中,再取出一些黄金放在天平左盘中使天平平衡;最后将两次称得的黄金交给顾客.若顾客实际购得的黄金为m g ,则()A .m >10B .m =10C .m <10D .以上都有可能答案A解析由于天平两臂不等长,可设天平左臂长为a ,右臂长为b ,则a ≠b ,设先称得黄金为xg ,后称得黄金为y g ,则bx =5a ,ay =5b ,∴x =5a b ,y =5b a ,∴x +y =5a b +5ba=5×2a b ·b a =10,当且仅当a b =ba,即a =b 时,等号成立,但a ≠b ,等号不成立,即x +y >10.因此顾客实际购得的黄金克数m >10.故选A.课时作业一、单项选择题1.当x <0时,函数y =x +4x ()A .有最大值-4B .有最小值-4C .有最大值4D .有最小值4答案A解析y =x +4x=-(-x )-4,当且仅当x =-2时,等号成立.故选A.2.(2023·陕西咸阳高三模拟)已知x >0,y >0,若2x +y =8xy ,则xy 的最小值是()A.18B.14C.24D.22答案A解析因为2x +y ≥22xy ,所以8xy ≥22xy ,解得xy ≥18,当且仅当2x =y ,即x =14,y =12时,等号成立.故选A.3.已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为()A .13B .12C .9D .6答案C解析由椭圆的定义可知,|MF 1|+|MF 2|=2a =6.由基本不等式可得|MF 1|·|MF 2|=9,当且仅当|MF 1|=|MF 2|=3时,等号成立.故选C.4.(2024·浙江绍兴第一中学高三期中)已知直线ax +by -1=0(ab >0)过圆(x -1)2+(y -2)2=2024的圆心,则1a +1b 的最小值为()A .3+22B .3-22C .6D .9答案A解析由圆的方程知,圆心为(1,2).∵直线ax +by -1=0(ab >0)过圆的圆心,∴a +2b =1(ab >0),∴1a +1b =(a +2b )=3+a b +2ba≥3+2a b ·2b a=3+当且仅当a b =2ba,即a =2b ,∴1a +1b的最小值为3+2 2.故选A.5.(2023·湖南五市十校联考)原油作为“工业血液”“黑色黄金”,其价格的波动牵动着整个化工产业甚至世界经济.小李在某段时间内共加油两次,这段时间燃油价格有升有降,现小李有两种加油方案:第一种方案是每次加油40升,第二种方案是每次加油200元,则下列说法正确的是()A .第一种方案更划算B .第二种方案更划算C .两种方案一样D .无法确定答案B解析设小李这两次加油的油价分别为x 元/升、y 元/升(x ≠y ),则第一种方案:两次加油的平均价格为40x +40y 80=x +y 2>xy ,第二种方案:两次加油的平均价格为400200x +200y =2xyx +y <xy ,故无论油价如何起伏,第二种方案都比第一种方案更划算.故选B.6.(2023·浙江杭州调研)对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,则实数a 的最大值为()A .4 B.92C.2D .22答案D 解析由m 2-amn +2n 2≥0得m 2+2n 2≥amn ,即a ≤m 2+2n 2mn=m n +2n m 恒成立,因为m n +2nm≥2m n ·2n m =22,当且仅当m n =2nm,即m =2n 时取等号,所以a ≤22,故实数a 的最大值为2 2.故选D.7.(2024·浙江名校协作体高三模拟)设x ,y 为正实数,若2x +y +2xy =54,则2x +y 的最小值是()A .4B .3C .2D .1答案D解析因为x ,y 为正实数,且54=2x +y +2xy =(2x +1)(y +1)-1,令m =2x +1,n =y +1,则mn =94,所以2x +y =m +n -2≥2mn -2=1,当且仅当m =n ,即y =12,x =14时取等号.故选D.8.(2024·湖北襄阳第四中学高三适应性考试)若a ,b ,c 均为正数,且满足a 2+2ab +3ac +6bc =1,则2a +2b +3c 的最小值是()A .2B .1C.2D .22答案A解析因为a 2+2ab +3ac +6bc =1,所以a (a +2b )+3c (a +2b )=(a +2b )(a +3c )=1,又a ,b ,c 均为正数,(a +2b )(a +3c )=(2a +2b +3c )24,当且仅当a +2b =a +3c =1时取等号,所以(2a+2b+3c)24≥1,即2a+2b+3c≥2.故选A.二、多项选择题9.下列四个函数中,最小值为2的是()A.y=sin xxB.y=ln x+1ln x(x>0,x≠1)C.y=x2+6 x2+5D.y=4x+4-x 答案AD解析对于A,因为0<x≤π2,所以0<sin x≤1,则y=sin x+1sin x≥2,当且仅当sin x=1sin x,即sin x=1时取等号,故y=sin x x2,符合题意;对于B,当0<x<1时,ln x<0,此时y=ln x+1ln x为负值,无最小值,不符合题意;对于C,y=x2+6x2+5=x2+5+1x2+5,设t=x2+5,则t≥5,则y≥5+15=655,其最小值不是2,不符合题意;对于D,y=4x+4-x=4x+14x≥24x·14x=2,当且仅当x=0时取等号,故y=4x+4-x的最小值为2,符合题意.故选AD.10.(2024·湖北部分名校高三适应性考试)已知正实数a,b满足ab+a+b=8,下列说法正确的是()A.ab的最大值为2B.a+b的最小值为4C.a+2b的最小值为62-3D.1a(b+1)+1b的最小值为12答案BCD解析对于A,因为ab+a+b=8≥ab+2ab,即(ab)2+2ab-8≤0,解得0<ab≤2,则ab≤4,当且仅当a=b=2时取等号,故A错误;对于B,ab+a+b=8≤(a+b)24+(a+b),即(a+b)2+4(a+b)-32≥0,解得a+b≤-8(舍去),a+b≥4,当且仅当a=b=2时取等号,故B正确;对于C,由题意可得b(a+1)=8-a,所以b=8-aa+1>0,解得0<a<8,a+2b=a+2·8-a a +1=a +18a +1-2=a +1+18a +1-3≥2(a +1)·18a +1-3=62-3,当且仅当a +1=18a +1,即a =32-1时取等号,故C 正确;对于D ,因为1a (b +1)+1b =181a (b +1)+1b [a (b +1)+b ]=182+b a (b +1)+a (b +1)b ≥18+2)=12,当且仅当b a (b +1)=a (b +1)b ,即b =4,a =45时取等号,故D 正确,故选BCD.11.已知a >0,b >0,且a +b =1,则()A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D.a +b ≤2答案ABD解析对于A ,a 2+b 2=a 2+(1-a )2=2a 2-2a +1=+12≥12,当且仅当a =b =12时,等号成立,故A 正确;对于B ,a -b =2a -1>-1,所以2a -b >2-1=12,故B 正确;对于C ,log 2a +log 2b =log 2ab ≤log=log 214=-2,当且仅当a =b =12时,等号成立,故C 不正确;对于D ,因为(a +b )2=1+2ab ≤1+a +b =2,所以a +b ≤2,当且仅当a =b =12时,等号成立,故D 正确.故选ABD.三、填空题12.(2023·山东滨州三校联考)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =________.答案3解析当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)·1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3.13.(2024·河北衡水中学高三第三次综合素养评价)已知实数a >b >1,满足a +1a -1≥b +1b -1,则a +4b 的最小值是________.答案9解析由已知条件,得a -b ≥1b -1-1a -1=(a -1)-(b -1)(b -1)(a -1)=a -b (b -1)(a -1),∵a -b >0,∴1≥1(b -1)(a -1),又a -1>0,b -1>0,∴(b -1)(a -1)≥1,∴a +4b =(a -1)+4(b -1)+5≥2(a -1)·4(b -1)+5=9,-1=4(b -1),-1)(a -1)=1,=3,=32时,等号成立.14.(2023·湖北荆宜三校高三模拟)已知正数a ,b 满足a +3b +3a +4b =18,则a +3b 的最大值是________.答案9+36解析设t =a +3b ,则3a +4b =18-t ,所以t (18-t )=(a +3b 15+9b a +4ab≥15+29b a ·4ab=27,当且仅当2a =3b 时取等号.所以t 2-18t +27≤0,解得9-36≤t ≤9+36,即a +3b 的最大值是9+36,当且仅当2a =3b ,即a =3+6,b =2+263时取等号.15.(2024·浙江名校联盟高三上学期第一次联考)已知正实数x ,y 满足1x +4y +4=x +y ,则x+y 的最小值为()A.13-2B .2C .2+13D .2+14答案C解析因为正实数x ,y 满足1x +4y+4=x +y ,等式两边同乘以x +y ,可得(x +y )2=4(x +y )+5+y x +4xy≥4(x +y )+5+2y x ·4xy =4(x +y )+9,所以(x +y )2-4(x +y )-9≥0,因为x +y >0,所以x +y ≥2+13,当且仅当y =2x 时,等号成立.因此x +y 的最小值为2+13.故选C.16.已知点E 是△ABC 的中线BD 上的一点(不包括端点),若AE →=xAB →+yAC →,则2x +1y 的最小值为()A .4B .6C .8D .9答案C解析设BE →=λBD →(0<λ<1),∵AE →=AB →+BE →=AB →+λBD →=AB →+λ(AD →-AB →)=(1-λ)AB →+λ2AC →,∴x =1-λ,y =λ2(x >0,y >0),∴2x +1y =21-λ+2λ=-λ)+λ]=4+2λ1-λ+2(1-λ)λ≥4+22λ1-λ·2(1-λ)λ=8,当且仅当2λ1-λ=2(1-λ)λ,即λ=12时取等号,故2x +1y 的最小值为8.故选C.17.(多选)(2022·新高考Ⅱ卷)若x ,y 满足x 2+y 2-xy =1,则()A .x +y ≤1B .x +y ≥-2C .x 2+y 2≤2D .x 2+y 2≥1答案BC解析由x 2+y 2-xy =1得(x +y )2-1=3xy ≤,解得-2≤x +y ≤2,当且仅当x =y =-1时,x +y =-2,当且仅当x =y =1时,x +y =2,所以A 错误,B 正确;由x 2+y 2-xy =1得x 2+y 2-1=xy ,又x 2+y 2≥2x 2·y2=2|xy |,所以|x 2+y 2-1|≤x2+y 22即-x 2+y 22≤x 2+y 2-1≤x 2+y 22,所以23≤x 2+y 2≤2,当且仅当x =y =±1时,x 2+y 2=2,当x =33,y =-33或x =-33,y =33时,x 2+y 2=23,所以C 正确,D 错误.故选BC.18.(多选)(2024·湖北襄阳第五中学高三月考)若a >b >0,且a +b =1,则()A .2a +2b ≥22B .2a +ab ≥2+22C .(a 2+1)(b 2+1)<32D .a 2a +2+b 2b +1≥14答案BD解析因为a >b >0,且a +b =1,所以0<b <12,12<a <1.对于A ,因为2a +2b ≥22a ·2b =22a +b=22,当且仅当a =b =12时取等号,但a >b >0,所以等号取不到,故A 错误;对于B ,因为b a >0,a b >0,由基本不等式,得2a +a b =2a +2b a +a b =2+2b a +a b ≥2+22b a ·ab=2+22,当且仅当2b a =a b ,即a =2-2,b =2-1时,等号成立,所以2a +ab≥2+22,故B 正确;对于C ,因为a +b =1,所以(a 2+1)(b 2+1)=a 2b 2+a 2+b 2+1=a 2b 2+(a +b )2-2ab +1=a 2b 2-2ab +2=(ab -1)2+1,其中ab ≤(a +b )24=14,当且仅当a =b 时取等号,但a >b >0,所以等号取不到,所以0<ab <14,(a 2+1)(b 2+1)=(ab -1)2+1故C 错误;对于D ,a 2a +2+b 2b +1=[(a +2)-2]2a +2+[(b +1)-1]2b +1=(a +2)+4a +2-4+(b +1)+1b +1-2=4a +2+1b +1-2,因为a +b=1,所以a +2+b +1=4,故a +24+b +14=1,所以4a +2+1b +1==1+14+b +1a +2+a +24(b +1)≥54+2b +1a +2·a +24(b +1)=94,当且仅当b +1a +2=a +24(b +1),即a =23,b =13时,等号成立,所以a 2a +2+b 2b +1=4a +2+1b +1-2≥94-2=14,故D 正确.故选BD.19.(2024·湖北百校高三联考)已知正数x ,y 满足3x +4y =4,则y是________.答案1解析因为x ,y 是正数,所以=y xy +3+y 2xy +1=1x +3y +12x +1y,且x +3y +2x +1y =3x +4y =4,所以y=14+3y +2x·=+2x +1y x +3y +≥14×(2+2)=1,当且仅当2x +1y x +3y =x +3y 2x +1y,即x =45,y =52,等号成立,所以y 1.20.(2023·广东深圳高三二模)足球是一项很受欢迎的体育运动.如图,某标准足球场的底线宽AB =72码,球门宽EF =8码,球门位于底线的正中位置.在比赛过程中,攻方球员带球运动时,往往需要找到一点P ,使得∠EPF 最大,这时候点P 就是最佳射门位置.当攻方球员甲位于边线上的点O 处(OA =AB ,OA ⊥AB )时,根据场上形势判断,有OA →,OB →两条进攻线路可供选择.若选择线路OA →,则甲带球________码时,到达最佳射门位置;若选择线路OB →,则甲带球________码时,到达最佳射门位置.答案72-165722-165解析若选择线路OA →,设AP =t ,其中0<t ≤72,AE =32,AF =32+8=40,则tan ∠APE =AEAP=32t ,tan ∠APF =AF AP =40t ,所以tan ∠EPF =tan(∠APF -∠APE )=tan ∠APF -tan ∠APE 1+tan ∠APF tan ∠APE=40t -32t 1+1280t 2=8t 1+1280t2=8t +1280t ≤82t ·1280t =520,当且仅当t =1280t ,即t =165时,等号成立,此时OP =OA -AP =72-165,所以若选择线路OA →,则甲带球72-165码时,到达最佳射门位置;若选择线路OB →,以线段EF 的中点N 为坐标原点,BA →,AO →的方向分别为x ,y 轴正方向建立如图所示的空间直角坐标系,则B (-36,0),O (36,72),F (-4,0),E (4,0),k OB =7236+36=1,直线OB 的方程为y =x +36,设点P (x ,x +36),其中-36<x ≤36,tan ∠AFP =k PF =x +36x +4,tan ∠AEP =k PE =x +36x -4,所以tan ∠EPF =tan(∠AEP -∠AFP )=tan ∠AEP -tan ∠AFP1+tan ∠AEP tan ∠AFP=x +36x -4-x +36x +41+x +36x -4·x +36x +4=8(x +36)x 2-161+(x +36)2x 2-16=8(x +36)+x 2-16x +36,令m =x +36∈(0,72],则x =m -36,所以x +36+x 2-16x +36=m +(m -36)2-16m =2m +1280m -72≥22m ·1280m72=3210-72,当且仅当2m =1280m,即m =810,即x =810-36时,等号成立,所以tan ∠EPF =82m+1280m-72≤83210-72=1410-9,当且仅当x=810-36时,等号成立,此时|OP|=2·|36-(810-36)|=722-165,所以若选择线路OB→,则甲带球722-165码时,到达最佳射门位置.。
基本不等式-高考数学复习

链教材·夯基固本 聚焦知识
2.利用基本不等式求最值问题
若x>0,y>0,则: (1)如果积xy是定值p,那么当且仅当___x_=__y__时,x+y有最小值__2__p___;(简记:积 定和最小)
p2 (2)如果和x+y是定值p,那么当且仅当___x_=__y__时,xy有最大值___4___.(简记:和 定积最大)
总结 提炼
(1)前提:“一正”“二定”“三相等”; (2)要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等 式求最值.
研题型·通法悟道 举题说法
变式 (1)已知 a>1,b>0,且a-2 1+1b=1,则 2a+b 的最小值为___1_1__.
【解析】 因为 a>1,b>0,a-1>0,所以 2a+b=2(a-1)+b+2=[2(a-1)+b]
研题型·通法悟道 举题说法
目标 3 基本不等式的实际应用
3 某小区要建一座八边形的休闲公园,它的主体造型的平 面图是由两个相同的矩形ABCD和EFGH构成的面积为200 m2的 十字形地域,计划在正方形MNPQ上建一座花坛,造价为4 200 元/m2,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造 价为210元/m2,再在四个空角(图中四个三角形)上铺草坪,造 价为80元/m2.设总造价为S(单位:元),AD长为x(单位:m), 则S的最小值是___1_1_8__0_0_0___,此时x的值是___1_0__.
【解析】 设矩形菜园的相邻两条边的长分别为 x m,y m,由已知得 2(x+y)=36,矩 形菜园的面积为 xy m2.由 xy≤x+2 y=9,可得 xy≤81,当且仅当 x=y=9 时等号成 立. 因此,当这个矩形菜园是边长为9 m的正方形时,菜园的面积最大,最大面积是81 m2.
高考数学复习课件_基本不等式

§7.4
a+b 基本不等式: 基本不等式: ab ≤ (a > 0, b > 0) 2
基础知识 自主学习
要点梳理
1.基本不等式 1.基本不等式 ab ≤ a + b (1)基本不等式成立的条件:____________. (1)基本不等式成立的条件:____________. 基本不等式成立的条件 a>0,b>0 >0,b (2)等号成立的条件:当且仅当______时取等号. a=b (2)等号成立的条件:当且仅当______时取等号. 等号成立的条件 ______时取等号
a +b >0,b>0, 设a>0,b>0,则a,b的算术平均数为 ,几何平均 2 数为______ 基本不等式可叙述为: 两个正数的算 ______, 数为______,基本不等式可叙述为:_____________ ab 术平均数不小于它们的几何平均数 ________________________________.
8 yz • xz • xy ≥ = 8. xyz 当且仅当x 时等号成立. 当且仅当x=y=z时等号成立.
1 9 知能迁移2 已知x>0,y>0, 知能迁移2 (1)已知x>0,y>0,且 + = 1, 求x+y x y 的最小值; 的最小值; 5 1 已知x 的最大值; (2)已知x< , 求函数 y = 4 x − 2 + 的最大值; 4 4x − 5 ∈(0,+∞)且 +8y xy=0, =0,求 的最小值. (3)若x,y∈(0,+∞)且2x+8y-xy=0,求x+y的最小值.
y x
z x x y
高考数学复习3-4基本不等式

=800x+259x200+16000≥2 800x·259x200+1600 =2×800×18+1600=44800 当且仅当 800x=259x200,即 x=18 米时,y 取得最小值. ∴当污水池的长为 18 米,宽为1090米时总造价最低为 44800 元.
谢谢!
上为增函数,所以当 x=4 时,f(x)取得最小值为 1.
单击此处编辑母版文本样式
1x+1y
号又有[解第]x•y二第≤1x–+级三x第+1y2级≥四y=2级2,当x1y,且x仅,当y∈x=R+y当时且取仅等当号,x=y 时取等 ∴ 1xy≥12,»第五级 ∴1x+1y≥2 1xy≥2×12=1,∴只需 m≤1 就能使不等式1x
单击此处编辑母版文本样式
第二级
[解] • ∵第–0三第<级四x≤级16,0<20x0≤16,12.5≤x≤16,x≠18 ∴不能用基本不等式,
»第五级 但我们可以证明函数
y=800x+259x200+16000
在区间
[12.5,16]上是减函数,所以当 x=16 米时, y 取得最小值
为 45000 元
答:当污水池的长为 16 米,宽为 12.5 米时总造价最低,
最低造价为 45000 元.
1.在应用均值定理求最值时,要把握定理成立的三个 条件,就是“一正——各项均为正;二定——积或和为定值; 三相等——等号能否取得”,若忽略了某个条件,就会出现 错误.
对于公式 a+b≥2 ab,ab≤(a+2 b)2,要弄清它们的作 用和使用条件及内在联系,两个公式也体现了 ab 和 a+b 的 转化关系.
a2+2 b2,
单击此处编辑母版文本样式
高考数学复习专题 基本不等式

高考数学复习专题基本不等式全国名校高考数学复优质学案、专题汇编(附详解)高考数学复专题:基本不等式一、基本不等式1.基本不等式:对于任意非负实数 $a$ 和 $b$,有 $a+b \geq 2\sqrt{ab}$,等号成立当且仅当 $a=b$。
2.算术平均数与几何平均数:设 $a>0$,$b>0$,则$a$ 和 $b$ 的算术平均数不小于它们的几何平均数。
3.利用基本不等式求最值问题:1)如果积 $xy$ 是定值 $P$,那么当且仅当 $x=y$ 时,$x+y$ 有最小值 $2\sqrt{P}$。
2)如果和 $x+y$ 是定值 $P$,那么当且仅当 $x=y$ 时,$xy$ 有最大值 $\frac{P}{4}$。
4.常用结论:1)$a+b \geq 2ab$($a$,$b$ 为任意实数)。
2)$\frac{b^2}{a}+\frac{a^2}{b} \geq 2(a+b)$($a$,$b$ 为同号实数)。
3)$ab \leq \frac{a^2+b^2}{2} \leq (\frac{a+b}{2})^2$($a$,$b$ 为任意实数)。
4)$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq\frac{3}{2}$($a$,$b$,$c$ 为正实数)。
5)$2(a+b) \geq \sqrt{2}(a+b)$($a$,$b$ 为任意实数)。
6)$\frac{a^2+b^2}{a+b} \geq \frac{a+b}{2}$($a$,$b$ 为任意实数)。
7)$a^2+b^2 \geq ab$($a>0$,$b>0$)。
二、基本不等式在实际中的应用1.问题的背景是人们关心的社会热点问题,如物价、销售、税收等。
题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解。
2.经常建立的函数模型有正(反)比例函数、一次函数、二次函数、分段函数以及 $y=ax+b$($a>0$,$b>0$)等。
2025版新高考版高考总复习数学基本不等式

2025版新高考版高考总复习数学2.2基本不等式五年高考考点基本不等式1.(多选)(2022新高考Ⅱ,12,5分,中)若x,y满足x2+y2-xy=1,则()A.x+y≤1B.x+y≥-2C.x2+y2≤2D.x2+y2≥1答案BC2.(多选)(2020新高考Ⅰ,11,5分,中)已知a>0,b>0,且a+b=1,则()A.a2+b2≥12 B.2a−b>12C.log2a+log2b≥-2D.√a+√b≤√2答案ABD3.(2020江苏,12,5分,中)已知5x2y2+y4=1(x,y∈R),则x2+y2的最小值是.答案454.(2019天津理,13,5分,中)设x>0,y>0,x+2y=5,则√xy的最小值为.答案4√35.(2019江苏,10,5分,中)在平面直角坐标系xOy中,P是曲线y=x+4x(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是.答案 46.(2017天津,12,5分,中)若a,b∈R,ab>0,则a 4+4b4+1ab的最小值为.答案 4三年模拟综合基础练1.(2024届湖北宜荆荆随联考,6)已知a,b均为正数,且a+2b=1,则2a +4a+bb的最小值为()A.11B.13C.10D.12答案A2.(2024届黑龙江联考(二),6)已知a、b均为正数,则不等式4a+2b≥8成立是不等式ab≥2成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B3.(2024届吉林吉大附中实验学校第一次摸底,6)设实数x,y满足x+y=1,y>0,x≠0,则1|x|+2|x|y的最小值为()A.2√2−1B.2√2+1C.√2−1D.√2+1答案A4.(2023山西太原一模,14)已知x>0,y>0,1x +y=2,则xy的最小值为.答案 1综合拔高练1.(2024届河北邢台第一中学月考,7)已知正实数a,b满足ab=3-a-b,若3a+2b≥m恒成立,则m的最大值为() A.4√6−5 B.5 C.√95−5 D.3√7答案A2.(多选)(2024届河南顶级名校月考,12)已知a>0,b>0,a+b-12a −2b=32,则以下正确的是()A.若a<b,则a<1B.若a<1,则b>2C.a+b的最小值为3D.ab的最大值为2答案BC3.(多选)(2023福建厦门、福州等市质检(一),10)已知正实数x,y满足x+y=1,则()A.x2+y的最小值为34B.1x +4y的最小值为8C.√x+√y的最大值为√2D.log2x+log4y没有最大值答案AC4.(2024届吉林吉大附中实验学校第一次摸底,14)若a,b,c>0,且a2+ab+ac+bc=4,则2a+b+c 的最小值为.答案4。
2022年新高考数学总复习:基本不等式

2022年新高考数学总复习:基本不等式知识点一重要不等式a 2+b 2≥__2ab __(a ,b ∈R )(当且仅当__a =b __时等号成立).知识点二基本不等式ab ≤a +b2(均值定理)(1)基本不等式成立的条件:__a >0,b >0__;(2)等号成立的条件:当且仅当__a =b __时等号成立;(3)其中a +b2叫做正数a ,b 的__算术平均数__,ab 叫做正数a ,b 的__几何平均数__.知识点三利用基本不等式求最大、最小值问题(1)如果x ,y ∈(0,+∞),且xy =P (定值),那么当__x =y __时,x +y 有最小值2P .(简记:“积定和最小”)(2)如果x ,y ∈(0,+∞),且x +y =S (定值),那么当x =y 时,xy 有最大值S 24.(简记:“和定积最大”)归纳拓展常用的几个重要不等式(1)a +b ≥2ab (a >0,b >0).(当且仅当a =b 时取等号)(2)ab (a ,b ∈R ).(当且仅当a =b 时取等号)≤a 2+b 22(a ,b ∈R ).(当且仅当a =b 时取等号)(4)b a +ab ≥2(a ,b 同号).(当且仅当a =b 时取等号).(5)21a +1b≤ab ≤a +b2≤a 2+b 22(a ,b >0当且仅当a =b 时取等号).双基自测题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数f (x )=cos x +4cos x ,x 4.(×)(2)“x >0且y >0”是“x y +yx ≥2”的充要条件.(×)(3)(a +b )2≥4ab (a ,b ∈R ).(√)(4)若a >0,则a 3+1a 2的最小值为2a .(×)(5)不等式a 2+b 2≥2ab 与a +b2≥ab 有相同的成立条件.(×)(6)两个正数的等差中项不小于它们的等比中项.(√)题组二走进教材2.(必修5P 100练习T1改编)若x <0,则x +1x (D)A .有最小值,且最小值为2B .有最大值,且最大值为2C .有最小值,且最小值为-2D .有最大值,且最大值为-2[解析]因为x <0,所以-x >0,-x +1-x≥2,当且仅当x =-1时,等号成立,所以x+1x≤-2.3.(必修5P 100练习T3改编)设0<a <b ,则下列不等式中正确的是(B )A .a <b <ab <a +b2B .a <ab <a +b2<bC .a <ab <b <a +b 2D .ab <a <a +b2<b[解析]解法一(特值法):代入a =1,b =2,则有0<a =1<ab =2<a +b2=1.5<b =2.解法二(直接法):我们知道算术平均数a +b2与几何平均数ab 的大小关系,其余各式作差(作商)比较即可,答案为B .4.(必修5P 100A 组T2改编)若把总长为20m 的篱笆围成一个矩形场地,则矩形场地的最大面积是__25__m 2.[解析]设矩形的一边为x m ,面积为y m 2,则另一边为12×(20-2x )=(10-x )m ,其中0<x <10,∴y =x (10-x )≤x +(10-x )22=25,当且仅当x =10-x ,即x =5时,y max =25.题组三走向高考5.(2020·江苏,12,5分)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是__45__.[解析]由5x 2y 2+y 4=1知y ≠0,∴x 2=1-y 45y 2,∴x 2+y 2=1-y 45y 2y 2=1+4y 45y 2=15y 2+4y 25≥2425=45,当且仅当15y 2=4y 25,即y 2=12,x 2=310时取“=”.故x 2+y 2的最小值为45.6.(2019·天津,13)设x >0,y >0,x +2y =4,则(x +1)(2y +1)xy的最小值为__92__.[解析](x +1)(2y +1)xy =2xy +x +2y +1xy =2xy +5xy=2+5xy .∵x >0,y >0,∴4=x +2y ≥2x ·2y ,解得0<xy ≤2,当且仅当x =2y =2,即x =2且y =1时“=”成立.此时1xy ≥12,∴2+5xy ≥2+52=92,故(x +1)(2y +1)xy的最小值为92.考点突破·互动探究考点一利用基本不等式求最值——多维探究角度1拼凑法求最值例1(1)(2020·天津,14,5分)已知a >0,b >0,且ab =1,则12a +12b +8a +b的最小值为__4__.(2)(2021·吉林模拟)已知x >2,若f (x )=x +1x -2在x =n 处取得最小值,则n =(B )A .52B .3C .72D .4(3)(2021·重庆南开中学质检)已知实数a ,b >1,且满足ab -a -b =5,则2a +3b 的最小值为__17__.[解析](1)12a +12b +8a +b =a +b 2ab +8a +b =a +b 2+8a +b≥2a +b 2×8a +b=4,当且仅当a +b 2=8a +b ,即(a +b )2=16,也即a +b =4时取等号.又∵ab =1=2+3,=2-3或=2-3,=2+3时取等号,∴12a +12b +8a +b的最小值为4.(2)由f (x )=x +1x -2=(x -2)+1x -2+2≥4,当且仅当x -2=1x -2>0,即x =3时,取得等号,故选B .(3)由ab-a-b=5⇒6=(a-1)(b-1)⇒36=(2a-2)(3b-3)则2a+3b≥17,当且仅当a=4,b=3取最小值.[引申]f(x)=x+1x-2的值域为__(-∞,0]∪[4,+∞)__.[解析]f(x)=(x-2)+1x-2+2,∵|(x-2)+1x-2|=|x-2|+1|x-2|≥2(当且仅当|x-2|=1即x=3或1时取等号)∴(x-2)+1x-2≥2或x-2+1x-2≤-2,∴f(x)≥4或f(x)≤0,即f(x)的值域为(-∞,0]∪[4,+∞).名师点拨拼凑法求最值的技巧(1)用均值定理求最值要注意三个条件:一正、二定、三相等.“一正”不满足时,需提负号或加以讨论,“二定”不满足时,需变形,“三相等”不满足时,可利用函数单调性.(2)求乘积的最值.同样要检验“一正、二定、三相等”,如例(2)的关键是变形,凑出积为常数.角度2换元法求最值例2(1)已知x>54,求函数y=16x2-28x+114x-5的最小值;(2)(2021·百校联盟尖子生联考)已知a,b∈R+,且a+2b=ab-16,则ab的最小值为(B)A.16B.32C.64D.128[思路](1)通过换元转化为形如Ax+Bx+C形式的函数.[解析](1)设4x-5=t,则x=t+54.∵x>54,∴t>0.∴y=-28·t+54+11t=t2+3t+1t=t +1t+3≥2+3=5.当且仅当t =1即x =32时,上式取“=”号.∴x =32时,y min =5.(2)ab -16=a +2b ≥22ab ,令ab =t ,则t 2-22t -16≥0⇒t ≥22+722=42,故ab ≥32,即ab 最小值为32.(当且仅当a =8,b =4时取等号)故选B .[答案](1)5角度3常数代换法求最值例3(1)已知正数x ,y 满足x +2y =4,则2x +1y最小值为__2__;(2)已知正数x ,y 满足8x +1y =1,则x +2y 的最小值为__18__.[思路](2)先利用乘常数法或消元法,再利用基本不等式求解最值.[解析](1)2x +1y =x +2y )×14=+x y ++ 2.当且仅当x y =4yx ,即y 2=x 2,+2y =4=2,=1时取等号.(2)解法一:x +2y x +2y )=10+x y +16yx ≥10+2x y ·16yx =18,当且仅当+1y =1,=16y x=12,=3时“=”成立,故x +2y 的最小值是18.解法二(消元法):由8x +1y =1,得y =x x -8,由y >0⇒x x -8>0,又x >0⇒x >8,则x +2y =x+2x x -8=x +2(x -8)+16x -8=x +2+16x -8=(x -8)+16x -8+10≥2(x -8)·16x -8+10=18,当且仅当x -8=16x -8,即x =12(x =4舍去),y =3时,“=”成立,故x +2y 的最小值为18.名师点拨常数代换法的技巧(1)常数代换法就是利用常数的变形以及代数式与“1”的积、商都是自身的性质,通过代数式的变形构造和式或积式为定值,然后利用基本不等式求最值.(2)利用常数代换法求解最值应注意:①条件的灵活变形,常数化成1是代数式等价变形的基础;②利用基本不等式求最值时“一正、二定、三相等”的检验,否则容易出现错解.〔变式训练1〕(1)(角度1)(2021·宁夏银川一中月考)已知正数x 、y 满足x +y =1,则1x +41+y 的最小值为(B)A .2B .92C .143D .5(2)(角度2)(2021·山东师大附中模拟)若正数x ,y 满足x +5y =3xy ,则5x +y 的最小值为__12__;(3)(角度3)(2020·天津七校期中联考)已知a >0,b >0,且1a +1+1b =1,求a +b 的最小值__3__.[解析](1)∵x +y =1,所以x +(1+y )=2,则[x+(1+y =4x 1+y +1+y x +5≥24x 1+y ·1+y x+5=9,所以1x +41+y ≥92,=1+yx 1=23=13时取等号∴1x +41+y 的最小值为92,故选B .(2)∵x >0,y >0,x +5y =3xy ,即5x +1y =3,∵5x +yx +y )+5y x ++12,(当且仅当x =y =2时取等号)∴5x +y 的最小值为12,另解:∵x >0,y >0,x +5y =3xy ,即x =5y3y -1,令3y -1=t ,则y =t +13,(t >0),∴5x +y =25y 3y -1+y+t +13=263+≥263+2325t·t =12.(当且仅当t =5,即x =y =2时取等号)∴5x +y 的最小值为12.(3)∵a >0,b >0,且1a +1+1b=1,∴a +b =[(a +1)+b ]-1a +1)+b ]-1=b a +1+a +1b+1≥2b a +1·a +1b+1=3,当且仅当a +1=b ,即a =1,b =2时取等号,∴a +b 的最小值为3,另解:(换元法)由1a +1+1b =1得b =1+1a ,(a >0),∴a +b =a +1a+1≥2a ·1a+1=3,当且仅当a =1,b =2时取等号,∴a +b 的最小值为3.考点二利用基本不等式求参数的范围——师生共研例4若正数a ,b 满足ab =a +b +3,则(1)ab 的取值范围是__[9,+∞)__;(2)a +b 的取值范围是__[6,+∞)__.[解析](1)∵ab =a +b +3≥2ab +3,令t =ab >0,∴t 2-2t -3≥0,∴(t -3)(t +1)≥0.∴t ≥3即ab ≥3,∴ab ≥9,当且仅当a =b =3时取等号.(2)∵ab =a +b +3,∴a +b +3.今t =a +b >0,∴t 2-4t -12≥0,∴(t -6)(t +2)≥0.∴t ≥6即a +b ≥6,当且仅当a =b =3时取等号.名师点拨利用方程的思想是解决此类问题的常规解法.另外,本例第二问也可用如下方法求解:由已知b=a+3a-1>0,∴a-1>0,∴a+b=a+a+3a-1=a+a-1+4a-1=a+1+4a-1=(a-1)+4a-1+2≥6.当且仅当a=b=3时取等号.〔变式训练2〕(2020·黑龙江哈尔滨三中期中)已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是__4__. [解析]解法一:∵x>0,y>0,x+2y+2xy=8.∴(2y+1)(x+1)=9且x+1>0,2y+1>0∴x+2y=(2y+1)+(x+1)-2≥2(2y+1)·(x+1)-2=4.(当且仅当x=2,y=1时取等号)∴x+2y的最小值为4.解法二:∵x>0,y>0,∴2xy=(2y+x)42(当且仅当x=2,y=1时取等号)又x+2y+2xy=8,∴x+2y+(x+2y)42≥8,∴(x+2y-4)(x+2y+8)≥0,∴x+2y-4≥0,即x+2y≥4(当且仅当x=2,y=1时取等号)∴x+2y的最小值为4.解法三:∵x>0,y>0,x+2y+2xy=8,∴x=8-2y1+2y=92y+1-1,∴x+2y=92y+1+(2y+1)-2≥292y+1·(2y+1)-2=4(当且仅当y=1时取等号)∴x+2y的最小值为4.秒杀解法:x+2y+2xy=8,即x+2y+x·2y=8.由条件及结论关于x、2y的对称性知当x =2y=2时x+2y取最小值为4.考点三利用基本不等式解决实际问题——师生共研例5某人准备在一块占地面积为1800m2的矩形地块中间建三个矩形温室大棚,大棚周围均是宽为1m的小路(如图所示),大棚总占地面积为S m2,其中a∶b=1∶2,则S 的最大值为__1568__.[解析]由题意可得xy=1800,b=2a,x>3,y>3,则y=a+b+3=3a+3,所以S=(x-2)a+(x-3)b=(3x-8)a=(3x-8)y-33=1808-3x-83y=1808-3x-83×1800x=18083x+4800x1808-23x×4800x=1808-240=1568,当且仅当3x=4800x,即x=40,y=45时等号成立,S取得最大值,所以当x=40,y=45时,S取得最大值为1568.名师点拨应用基本不等式解决实际问题的步骤:①仔细阅读题目,深刻理解题意;②找出题目中的数量关系,并设出未知数,并用它表示其它的量,把要求最值的量设为函数;③利用基本不等式求出最值;④再还原成实际问题,作出解答.〔变式训练3〕某工厂建造一个无盖的长方体贮水池,其容积为4800m3,深度为3m.如果池底每1m2的造价为150元,池壁每1m2的造价为120元,要使水池总造价最低,那么水池底部的周长为__160__m.[解析]设水池底面一边的长度为x m,则另一边的长度为48003xm,由题意可得水池总造价f(x)=150×48003+1202×3x+2×3×48003x=240000+720x+1600x(x>0),则f(x)=720x+1600x240000≥720×2x ·1600x+240000=720×2×40+240000=297600,当且仅当x =1600x,即x =40时,f (x )有最小值297600,此时另一边的长度为48003x=40(m),因此,要使水池的总造价最低,水池底部的周长应为160m.名师讲坛·素养提升基本不等式的综合应用角度1基本不等式与其他知识交汇的最值问题例6设等差数列{a n }的公差为d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是__92__.[解析]a n =a 1+(n -1)d =n ,S n =n (1+n )2,所以S n +8a n=n (1+n )2+8n =+16n+2n ·16n+=92,当且仅当n =4时取等号,所以S n +8a n 的最小值是92.角度2求参数值或取值范围例7已知不等式(x +y 9对任意正实数x ,y 恒成立,则正实数a 的最小值为(B)A .2B .4C .6D .8[解析]已知不等式(x +y 9对任意正实数x ,y 恒成立,只要求(x +y 最小值大于或等于9,∵1+a +y x +axy ≥a +2a +1,当且仅当y =ax 时,等号成立,∴a +2a +1≥9,第11页共11页∴a ≥2或a ≤-4(舍去),∴a ≥4,即正实数a的最小值为4,故选B .名师点拨求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围.〔变式训练4〕(1)(角度1)已知函数f (x )=ax 2+bx (a >0,b >0)的图象在点(1,f (1))处的切线的斜率为2,则8a +b ab的最小值是(B )A .10B .9C .8D .32(2)设x >0,y >0,不等式1x +1y +m x +y≥0恒成立,则实数m 的最小值是__-4__.[解析](1)由函数f (x )=ax 2+bx ,得f ′(x )=2ax +b ,由函数f (x )的图象在点(1,f (1))处的切线斜率为2,所以f ′(1)=2a +b =2,所以8a +b ab=1a +8b =a+b )+b a ++=12(10+8)=9,当且仅当b a =16a b ,即a =13,b =43时等号成立,所以8a +b ab 的最小值为9,故选B .(2)原问题等价于m x +y≥∵x >0,y >0,∴等价于m ≥x +y )的最大值.x +y )=-2-2-2=-4,当且仅当x =y 时取“=”,故m ≥-4.。
高考数学复习知识点讲解教案第4讲 基本不等式

− 2 = 3 ≤
2
3 + 2
,
4
2
≤ 8,即 + ≤ 2 2,故C正确;对于D,由 > 0, > 0, + − = 2,
(当且仅当 =
2
时,等号成立),得
≤ 4,故D错误.故选BC.
+
2
− 2 = ≤
2
2
+
2
,
探究点二 变形用基本不等式求最值
微点1 配凑法
4
(简记:和定积最大)
常用结论
1.若 > 0, > 0,则1
2
1
+
≤ ≤
2.当 > 0时,函数 = +
数 = +
+
2
≤
2 +2
,当且仅当
2
= 时,等号成立.
> 0 在 = 处取得最小值2 ;当 < 0时,函
> 0 在 = − 处取得最大值−2 .
=
2
2
⋅ 2 2 1 − 2 2 ,再利用基本不等式求解.
> 0,
2
2
⋅
2
2
1−
2
2
1
时等号成立,故
2
1−
≤
2
2
⋅
2
2
2 +1−2
2
=
2
2
2 的最大值为 .
4
2
,
4
[总结反思]
基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,利用
高考数学第7章不等式推理与证明第四节基本不等式及其应用课件理

[方法归纳] 有关函数最值的实际问题的解题技巧 (1)根据实际问题抽象出函数的解析式,再利用基本不等式求 得函数的最值;(2)设变量时一般要把求最大值或最小值的变 量定义为函数;(3)解应用题时,一定要注意变量的实际意义 及其取值范围;(4)在应用基本不等式求函数最值时,若等号 取不到,可利用函数的单调性求解.
函数单调性求最值]函数 f(x)=x+1x在[2,+∞)上的最小值为 ________.
解析 若 x=1x,则 x=1∉[2,+∞),函数 f(x)在[2,+∞)上
单调递增,所以最小值为 f(2)=2+12=52.
答案
5 2
[当在分母中使用基本不等式或式子前有负号时,注意不等号
方向的改变]
(2)若 x>0,则 y=x2+xx+4有最______值为________.
1≥0恒成立,则实数a的取值范围是( )
A.(-∞,-2)
B.[-2,+∞)
C.[-2,2]
D.[0,+∞)
解析 (1)作出不等式组表示的可行域如图阴影部分所示, 由图可知,当目标函数 z=ax+by(a>0,b>0) 过点 A(1,1)时,z 取得最大值, ∴a+b=4, ∴ab≤a+2 b2=4.(当且仅当 a=b=2 时取等号), 又∵a>0,b>0, ∴ab∈(0,4],故选 B.
答案 大 -1
突破利用基本不等式求最值的方法
(1)利用基本不等式解决条件最值的关键是构造和为定值或乘 积为定值,主要有两种思路: ①对条件使用基本不等式,建立所求目标函数的不等式求解. ②条件变形,进行“1”的代换求目标函数最值. (2)有些题目虽然不具备直接用基本不等式求最值的条件,但 可以通过添项、分离常数、平方等手段使之能运用基本不等 式.常用的方法还有:拆项法、变系数法、凑因子法、分离常 数法、换元法、整体代换法等.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=-1, 当且仅当3-4 x=3-x, 即 x=1 时,等号成立. 故 f(x)的最大值为-1.
(3)易知函数 y=ax+3-2(a>0,a≠1)恒过定点(-3,-1),
所以 A(-3,-1).又因为点 A 在直线mx +ny=-1 上,所
当 x≥8 时,L(x)=35-x+10x0≤35-2 x·10x0=35-
20=15, 此时,当且仅当 x=1x00时,即 x=10 时,L(x)取得最大值 15 万元. ∵9<15,所以当年产量为 10 万件时,小王在这一商品的生 产中所获利润最大,最大利润为 15 万元.
[规律方法] 应用基本不等式解实际问题的步骤:①理解题 意,设变量;②建立相应的函数关系式,把实际问题抽象 成求函数的最大值或最小值问题;③在定义域内,求出函 数的最大值或最小值;④写出正确答案.
三式相加,得 2bac+cba+acb≥2(a+b+c),即bac+cba+acb≥
a+b+c,当且仅当 a=b=c 时等号成立.
考点二 利用基本不等式求最值
1 (1)当 0<x<12时,函数 y=12x(1-2x)的最大值为 _____1_6__.
(2)若 log4(3a+4b)=log2 ab,则 a+b 的最小值是( )
2.(1) 当
x>0
时
,
f(x)
=
2x x2+1
的
最
大
值
为
_____1_____.
(2)若 x<3,则函数 f(x)=x-4 3+x 的最大值为__-__1____.
(3)已知函数 y=ax+3-2(a>0,a≠1)的图象恒过定点 A,若
点 A 在直线mx +ny=-1 上,且 m,n>0,则 3m+n 的最小
+a1b=4ab+a1b,令 t=ab,所以 f(t)=4t+1t .因为 f(t)在0,18 上单调递减,所以 f(t)min=f18=127,此时 a=2b=12.
考点三 利用基本不等式解决实际问题
小王大学毕业后,决定利用所学专业进行自主创 业.经过市场调查,生产某小型电子产品需投入年固定成 本为 3 万元,每生产 x 万件,需另投入流动成本为 W(x)万 元,在年产量不足 8 万件时,W(x)=13x2+x(万元).在年产 量不小于 8 万件时,W(x)=6x+1x00-38(万元).每件产品 售价为 5 元.通过市场分析,小王生产的商品能当年全部 售完.
以m3 +n1=1.
所以
3m
+
n
=
(3m
+
n)·m3 +n1
=
10
+
3m n
+
3·3mn=16,当且仅当 m=n 时,等号成立,所以 3m +n 的最小值为 16.
(4)因为 a>0,b>0,1=a+2b≥2 2ab,所以 ab≤18,当且 仅当 a=2b=12时等号成立.又因为 a2+4b2+a1b≥2a·(2b)
(1)写出年利润 L(x)(万元)关于年产量 x(万件)的函数解析 式;(注:年利润=年销售收入-固定成本-流动成本)
(2)年产量为多少万件时,小王在这一商品的生产中所获利
润最大?最大利润是多少? [解] (1)因为每件商品售价为 5 元,则 x 万件商品销售收 入为 5x 万元,依题意得,当 0<x<8 时,
[规律方法] 利用基本不等式求最值时,要注意其必须满足 的三个条件:一正二定三相等. (1)“一正”就是各项必须为正数; (2)“二定”就是要求和的最小值,必须把构成和的二项之 积转化成定值;要求积的最大值,必须把构成积的因式的 和转化成定值;
(3)“三相等”即检验等号成立的条件,判断等号能否取到, 只有等号能成立,才能利用基本不等式求最值.
A.6+2 3D
B.7+2 3
C.6+4 3
D.7+4 3
(3)若两个正实数 x,y 满足2x+1y=1,并且 x+2y>m2+2m
恒成立,则实数 m 的取值范围是( )
A.(-∞,-2)∪[4,+∞) B.(-∞,-4]∪[2,+D∞)
C.(-2,4
D.(-4,2)
[解析] (1)∵0<x<12,∴1-2x>0,
“=”.
∴1+1a1+1b≥9,当且仅当 a=b=12时等号成立. 法二:1+1a1+1b=1+1a+1b+a1b=1+aa+bb+a1b=1+a2b,
∵a,b 为正数,a+b=1,
∴ab≤a+2 b2=14,当且仅当 a=b=12时取“=”.
于是a1b≥4,a2b≥8,当且仅当 a=b=12时取“=”.
1.设 a,b,c 都是正数,求证:bac+abc+acb≥a +b+c. 证明:∵a,b,c 都是正数,∴bac,cba,acb都是正数. ∴bac+cba≥2c,当且仅当 a=b 时等号成立,cba+acb≥2a, 当且仅当 b=c 时等号成立,acb+bac≥2b,当且仅当 a=c 时等号成立.
的算术平均数不小于它们的几何平均数.
3.利用基本不等式求最值问题
已知 x>0,y>0,则 (1)如果积 xy 是定值 p,那么当且仅当__x_=__y_____时,x+y 有___最__小_____值是___2___p____.(简记:积定和最小)
(2)如果和 x+y 是定值 p,那么当且仅当__x_=__y_____时,xy 有___最__大_____值是____p4_2_____.(简记:和定积最大)
所以 3a+4b=ab,故4a+3b=1.
所以 a+b=(a+b)4a+3b=7+4ab+3ba≥7+2
+4 3,当且仅当4ab=3ba时取等号.故选 D.
4ab·3ba=7
(3)x+2y=(x+2y)2x+1y=2+4xy+xy+2≥8,当且仅当4xy=
xy,即 x=2y 时等号成立.由 x+2y>m2+2m 恒成立,可知 m2+2m<8,m2+2m-8<0,解得-4<m<2.
则 y=14·2x(1-2x)≤142x+21-2x2=116,
当且仅当 2x=1-2x,即 x=14时取到等号,∴ymax=116.
ab>0, (2)由题意得ab≥0,
所以a>0,
3a+4b>0, b>0.
又 log4(3a+4b)=log2 ab,
所以 log4(3a+4b)=log4(ab),
3.某化工企业 2014 年年底投入 100 万元,购入 一套污水处理设备.该设备每年的运转费用是 0.5 万元,此 外每年都要花费一定的维护费,第一年的维护费为 2 万元, 由于设备老化,以后每年的维护费都比上一年增加 2 万 元.设该企业使用该设备 x 年的年平均污水处理费用为 y(单 位:万元). (1)用 x 表示 y;
∴1+1a1+1b≥1+8=9,
当且仅当 a=b=12时等号成立.
在本例条件下,求证1a+1b≥4. 证明:∵a>0,b>0,a+b=1, ∴1a+1b=a+a b+a+b b=2+ba+ab≥2+2 ba·ab=4, 当且仅当 a=b=12时等号成立.
∴1a+1b≥4.
[规律方法] 利用基本不等式证明不等式的方法技巧 利用基本不等式证明不等式是综合法证明不等式的一种情 况,要从整体上把握运用基本不等式,对不满足使用基本 不等式条件的可通过“变形”来转换,常见的变形技巧有: 拆项,并项,也可乘上一个数或加上一个数,“1”的代换 法等.
考点一 利用基本不等式证明不等式
已知 a>0,b>0,a+b=1,
求证:1+1a1+1b≥9.
[证明] 法一:∵a>0,b>0,a+b=1, ∴1+1a=1+a+a b=2+ba.同理,1+1b=2+ab.
∴1+1a1+1b=2+ba2+ab =5+2ba+ab≥5+4=9,当且仅当ba=ab,即 a=b 时取
L(x)=5x-13x2+x-3=-13x2+4x-3; 当 x≥8 时,L(x)=5x-6x+1x00-38-3=35-x+10x0.
-13x2+4x-3,0<x<8. 所以 L(x)=
35-x+1x00,x≥8.
(2)当 0<x<8 时,L(x)=-13(x-6)2+9. 此时,当 x=6 时,L(x)取得最大值 L(6)=9 万元,
(2)当该企业的年平均污水处理费用最低时,企业需重新更
换新的污水处理设备,则该企业几年后需要重新更换新的
污水处理设备.
解:(1)由题意得,y=100+0.5x+(2+x 4+6+…+2x), 即 y=x+1x00+1.5(x∈N*). (2)由基本不等式得:
y=x+1x00+1.5≥2 x·10x0+1.5=21.5,当且仅当 x=1x00,即 x=10 时取等号. 故该企业 10 年后需要重新更换新的污水处理设备.
值为___1_6____.
(4)已知正实数 17
a,b
满足
a+2b=1,则
a2+4b2+a1b的最小
值为___2_____.
解析:(1)∵x>0,∴f(x)=x22+x 1=x+2 1x≤22=1, 当且仅当 x=1x,即 x=1 时取等号. (2)∵x<3,∴x-3<0, ∴3-x>0, ∴f(x)=x-4 3+x=x-4 3+(x-3)+3
基本不等式
1.基本不等式 ab≤a+2 b (1)基本不等式成立的条件:_a_>_0_,__b_>__0_. (2)等号成立的条件:当且仅当__a_=___b____时取等号.
2.算术平均数与几何平均数
a+b
设 a>0,b>0,则 a,b 的算术平均数为____2______,几何
平均数为_____a_b____,基本不等式可叙述为:两个正实数