大学物理 运动学和动力学
大学物理习题及解答(运动学、动量及能量)

1-1.质点在Oxy 平面内运动,其运动方程为j t i t r )219(22-+=。
求:(1)质点的轨迹方程;(2)s .t 01=时的速度及切向和法向加速度。
1-2.一质点具有恒定加速度j i a 46+=,在0=t 时,其速度为零,位置矢量i r 100=。
求:(1)在任意时刻的速度和位置矢量;(2)质点在oxy 平面上的轨迹方程,并画出轨迹的示意图。
1-3. 一质点在半径为m .r 100=的圆周上运动,其角位置为342t +=θ。
(1)求在s .t 02=时质点的法向加速度和切向加速度。
(2)当切向加速度的大小恰等于总加速度大小的一半时,θ值为多少?(3)t 为多少时,法向加速度和切向加速度的值相等?题3解: (1)由于342t +=θ,则角速度212t dt d ==θω,在t = 2 s 时,法向加速度和切向加速度的数值分别为 222s 2t n s m 1030.2-=⋅⨯==ωr a22s t t s m 80.4d d -=⋅==t r a ω(2)当2t 2n t 212a a a a +==时,有2n 2t 3a a=,即 22212)24(3)r t (tr = s 29.0s 321==t此时刻的角位置为 rad.t 153423=+=θ (3)要使t n a a =,则有2212)24()t (r tr =s .t 550=3-1如图所示,在水平地面上,有一横截面2m 20.0=S 的直角弯管,管中有流速为1s m 0.3-⋅=v 的水通过,求弯管所受力的大小和方向。
解:在t ∆时间内,从管一端流入(或流出)水的质量为t vS m ∆=∆ρ,弯曲部分AB 的水的动量的增量则为()()A B A B v v t vS v v m p -∆=-∆=∆ρ依据动量定理p I ∆=,得到管壁对这部分水的平均冲力()A B v v I F -=∆=Sv t ρ从而可得水流对管壁作用力的大小为N 105.2232⨯-=-=-='Sv F F ρ作用力的方向则沿直角平分线指向弯管外侧。
大学物理第一章-质点运动学和第二章-质点动力学基础

位移的大小为
2 2 2 r x y z
z
路程是质点经过实际路径的长
度。路程是标量。
注意区分 Δ r 、r
Δr
Δr r ( A)
o x
A ΔS
B
r ( B) y
rA
o
rB
Δ
r
3. 速率和速度 速度是描述质点位置随时间变化快慢和方向的物理量。
平均速度
青年牛顿1666年6月22日至1667年3月25日两度回到乡间的老家1665年获学士学位1661年考入剑桥大学三一学院牛顿简介1667年牛顿返回剑桥大学当研究生次年获得硕士学位1669年发明了二项式定理1669年由于巴洛的推荐接受了卢卡斯数学讲座的职务全面丰收的时期16421672年进行了光谱色分析试验1672年由于制造反射望远镜的成就被接纳为伦敦皇家学会会员1680年前后提出万有引力理论1687年出版了自然哲学的数学原理牛顿简介牛顿第一定律
g
v v g
v
v g 远日点 g v
g v g g g g g v
v
近日点
v
v
思考题 质点作曲线运动,判断下列说法的正误。
r r s r
r r
s r
s r
Δr
矢量的矢积(或称叉积 、叉乘)
C A B
大小:C AB sin
方向:右手螺旋
C
B
矢积性质:A B B A A C ( A B) C A C B 可以得到:i j k , j k i , k i j . k i i 0, j j 0, k k 0
运动学和动力学的基本概念及其区别

运动学和动力学的基本概念及其区别运动学和动力学是物理学中两个重要的概念,它们分别研究物体的运动和力学原理。
本文将探讨运动学和动力学的基本概念以及它们之间的区别。
一、运动学的基本概念运动学是研究物体运动状态的物理学分支,它关注物体的位置、速度、加速度等与运动相关的物理量。
运动学主要研究物体运动的几何性质和轨迹,在不考虑外部力的情况下研究物体的运动规律。
1. 位移:位移是指物体从初始位置到终止位置的位置变化,通常用Δx表示。
位移的大小和方向与路径有关,是一个矢量量。
2. 速度:速度是指物体单位时间内位移的变化率,通常用v表示。
速度可正可负,正表示正向运动,负表示反向运动。
平均速度的定义是位移与时间的比值,即v=Δx/Δt;瞬时速度则是极限过程中的速度。
3. 加速度:加速度是指物体单位时间内速度的变化率,通常用a表示。
加速度也可正可负,正表示加速运动,负表示减速运动。
平均加速度的定义是速度变化量与时间的比值,即a=Δv/Δt;瞬时加速度则是极限过程中的加速度。
二、动力学的基本概念动力学是研究物体运动中作用力和物体运动规律的物理学分支,它关注物体所受的力以及这些力对物体运动的影响。
动力学通过牛顿定律描述物体的运动规律,并研究力的产生和作用。
1. 牛顿第一定律:牛顿第一定律也被称为惯性定律,它表明物体在受力为零时保持静止或匀速直线运动的状态。
2. 牛顿第二定律:牛顿第二定律描述了物体运动时力与加速度的关系,它可以表达为F=ma,其中F是物体所受的合力,m是物体的质量,a是物体的加速度。
根据这个定律,物体的加速度与它所受的力成正比,与它的质量成反比。
3. 牛顿第三定律:牛顿第三定律表明作用力与反作用力大小相等、方向相反且作用于不同的物体上。
这个定律也被称为作用与反作用定律,它说明力是一对相互作用的力。
三、运动学和动力学的区别尽管运动学和动力学都研究物体的运动,但它们关注的角度和内容有所不同。
1. 角度不同:运动学主要从物体自身的运动状态出发,研究物体的位移、速度和加速度等几何性质;动力学则主要从力的作用和物体所受的力的影响出发,研究物体的加速度和受力情况。
运动学与动力学的联系与区别

运动学与动力学的联系与区别运动学和动力学是物理学中两个重要的分支,它们研究的是物体的运动和力的作用。
虽然它们有一定的联系,但在研究的角度和方法上存在一些区别。
一、运动学运动学是研究物体运动的学科,主要关注物体的位置、速度、加速度等运动状态的描述和分析。
运动学研究的是物体的运动规律,而不涉及物体的受力情况。
在运动学中,我们可以通过描述物体的位移、速度和加速度来了解物体的运动情况。
运动学的基本概念包括位移、速度和加速度。
位移是指物体从一个位置到另一个位置的变化量,可以用矢量来表示。
速度是指物体在单位时间内位移的变化量,可以用矢量表示。
加速度是指物体在单位时间内速度的变化量,也可以用矢量表示。
通过这些概念,我们可以描述物体的运动状态和轨迹。
二、动力学动力学是研究物体运动的原因和规律的学科,主要关注物体的受力情况和力的作用效果。
动力学研究的是物体的运动原因和力的作用,通过分析物体所受的力和力的作用效果,来推导物体的运动规律。
动力学的基本概念包括力、质量和加速度。
力是物体之间相互作用的结果,可以改变物体的运动状态。
质量是物体所具有的惯性和受力效果的度量,是物体对外力的反应程度。
加速度是物体在受力作用下速度的变化率,可以通过牛顿第二定律来描述。
三、联系与区别虽然运动学和动力学是物理学中两个不同的分支,但它们之间存在着一定的联系和区别。
首先,运动学和动力学都是研究物体运动的学科,它们都关注物体的运动状态和运动规律。
运动学描述物体的运动状态,而动力学研究物体的运动原因和力的作用效果。
其次,运动学和动力学在研究的角度上存在一定的区别。
运动学主要关注物体的位置、速度和加速度等运动状态的描述和分析,而不涉及物体的受力情况。
动力学则研究物体的受力情况和力的作用效果,通过分析物体所受的力和力的作用效果,来推导物体的运动规律。
最后,运动学和动力学在研究的方法上也有一定的区别。
运动学主要使用几何和代数的方法来描述和分析物体的运动状态,如位移、速度和加速度。
大学物理 第1-3章 经典力学部分归纳总结

运用
分
和
dv dv dx dv a= = ⋅ =v dt dx dt dx
3
知识点回顾
第二章 质点动力学
2、牛顿三定律? 、牛顿三定律?
r ∑Fi = ma
i →
—— 为什么动? 为什么动? 力?
功是能量交换或转换的一种度量
v v 2、变力作功 、 元功: 元功: dW = F ⋅ dr = Fds cosθ b b v v b W = ∫ F cosθ ds = ∫ F ⋅ dr = ∫ (Fxdx + Fy dy + Fz dz)
a( L) a( L) a( L)
3、功率 、
v v dW F ⋅ dr v v P= = = F ⋅ v = Fv cosθ dt dt
隔离木块a在水平方向绳子张力t和木块b施于的摩擦力?根据牛顿第二定律列出木块a的运动方程?同样隔离木块b分析它在水平方向受力情况列出它的运动方程为17一个质量为m的梯形物体块置于水平面上另一质量为m的小物块自斜面顶端由静止开始下滑接触面间的摩擦系数均忽略不计图中hh均为已知试求m与m分离时m相对水平面的速度及此时m相对于m的速度
15
•解:以地面为参考系。隔离木块A,在水平方向 解 以地面为参考系。隔离木块 , 绳子张力T 和木块B施于的摩擦力 绳子张力 和木块 施于的摩擦力
v t2 v v v v v 动量定理: 动量定理: I = ∫ ∑ F dt = ∑ p2 − ∑ p1 = ∑ mv2 − ∑ mv1
t1
v v v v 角动量定理: 角动量定理: M ⋅ dt = dL = d ( r × mv )
大学物理力学

因此,描述运动必须指出参照系。
注意:参考系不一定是静止的。
2、质点(particle)
在只研究物体的平动时,物体的形状和大小可以 忽略,可把物体看成一个只有质量、没有大小和 形状的理想的点,这样的点通常称为质点。
解:(1)由题意可得速度矢量为:
v d r d x (t)i d y (t)j i 1 tj
d t d t d t
2
所以t =3s时质点的速度为: v(3)i1.5j
(2)由运动方程 x(t)t和2 y(t)(1/4)t22
消去t 可得轨迹方程为: y 1 x2 x 3 4
由此可知该质点的运动轨迹为抛物线。
质点是一个物理模型,把物体看作质点是有条 件的、相对的。
应当指出,把物体视为质点的研究方法,在实 践上和理论上都是有重要意义的。当我们所研究 的物体不能视为质点时,可把整个物体看作由许 多质点组成,弄清楚这些质点的运动,就可以弄 清楚整个物体的运动。所以,研究质点的运动是 基础。
可以作为质点处理的物体的条件:大小和 形状对运动没有影响或影响可以忽略。
y
位移 r r2r1
r1 o
Pv
Q r
r2
x
三、速度 (velocity)
平均速度
v
r
t
平均速度是矢量,大小决定于位移的模与时间 间隔的比值;方向与位移矢量方向相同。
平均速度的大小和方向在很大程度上依赖于所取 时间间隔的大小。当使用平均速度来表征质点运动 时,总要指明相应的时间间隔。
瞬时速度
vlimr dr dx idy jdz k
(coordinate system) , 坐标系的原点可取在参考系
大学物理第1章-质点运动学

x2 x1 x2 = l h
(h l)x2 = hx1
h l
解题思路 1. 写出几何长度关系 写出几何长度关系; 2. 确定变量 确定变量; 两边求导: 两边求导: 3. 写出求导关系式 写出求导关系式; 4. 明确求导物理意义 明确求导物理意义;
dx2 dx1 o x1 x2 x (h l) =h dt dt dx2 dx1 hv0 其中: =v , = v0 v = dt dt h l
瞬时速率: 瞬时速率:
s ds v = lim = t dt t →0
v r
B
一般情况: 一般情况: 当t→0时: → 时
v v r ≠ s 因此 v ≠ v
v v v r → dr = ds 则 v = v
1-2-4 加速度
加速度是反映速度变化的物理量 v t1时刻,质点速为 v1 时刻, v t2时刻,质点速度为 v2 时刻, t 时间内,速度增量为: 时间内,速度增量为:
大学物理学教案
第一章
质点运动学
机械运动
一个物体相对于另一个物体的空间位置 随时间发生变化; 随时间发生变化; 或一个物体的某一部分相 对于其另一部分的位置随时间而发生变化的 运动。 运动。
力学
研究物体机械运动及其规律的学科。 研究物体机械运动及其规律的学科。
运动学: 运动学:
研究物体在空间的位置随时间的变化规 律以及运动的轨道问题, 律以及运动的轨道问题,而并不涉及物体发 生机械运动的变化原因。 生机械运动的变化原因。
v tv ∫v dr = ∫ vdt
r0 t0
v0 v r
t0
匀加速运动
dv = adt ,
∫
v
v0
dv = ∫ adt
大学物理--运动学A教材

r (t ) 0
A
B B B1B B 4 3 2 B B6 5
r r (t t )
的方向 dr
---轨道切线方向
用自然坐标表示:
v vet
讨论:
*速率:路程△s与时间△t的比值
s ds 瞬时速率:v 平均速率 :v dt t dr ds 瞬时速度的大小:v v
dv dv dv dx a( x) v dt dx dt dx
v x
vdv a ( x)dx 即 v v0 2
2 2
v0 x0
x
x0
a( x)dx
a为常数时
v v0 2a( x x0 )
2
2
(2).已知 v=v(x) ,求 x(t)
dx v( x) dx v( x)dt dt t x dx x dx dt t x v( x) 0 x0 v ( x )
直线运动:质点运动轨迹为一直线
位矢: r xi
直线运动中,用坐标 x(代数量)可表示质点 的位置 运动方程:
P2 x2 0
P 1 x1 x
x x(t )
2. 运动量为 t 的函数的两类问题
已知运动方程
速度
x x(t ) ,求速度和加速度
----微分问题
2 2
v dx dt
0
x
v (t )
r (t ) z 0
r (t t )
v
v (t t )
1.平均加速度:
v (t t ) v (t ) v a t t
2 d r v dv a lim 2 t 0 t dt 现方式做保护处理对用户上传分享的文档内容本身不做任何修改或编辑并不能对任何下载内容负责
大学物理第一册力学各章节总结

单质点
p I
d ( mv ) d p Fd t d I mv 2 mv 1 Fd t
t1 t2
(微分)
动量定理
x轴方向分量mv2 x mv1 x
质点系
d( mi v i ) Ft dt
(积分) t2 Fx d t
t1
m v m v
i i i
大小
P mi v i
i
L rp sin mrv sin
质点系
L rc mv c (ri mi vi )
L O L 轨道 L自旋
刚体定轴转动 Lz (所有质点角动量之和) 单位(SI):
2
J z
kg m / s或 J s
注意:说明质点的动量矩时必须说 明是对哪个轴的
i
i
i0
单质点
Mdt d L
i
i
Fi dt
t i t0
角动 量定 理
质点系
M 外 dt d L
t2
t2
t1
M d t L 2 L1
刚体
t1
M 外 d t d L L 2 L1 L
L1
L2
M z dt d L Jd d ( J )
2
v2 法向加速度 an wv w r r
西安建筑科技大学电子信息科学与技术08级 孙 伟
ⅴ刚体的运动
刚体:特殊的质点系,形状和体积不变化(理 想化模型)
即在力的作用下组成物体的所有质点间的距离始终保持不变。
刚 刚体的平动:可归结为质点的运动 体 刚体内的任何点都绕同一轴作圆周运 的 动各点的速度和加速度都相等 运 刚体的 动 定轴转 角坐标 f (t ) 0 t d 动 角 2 f (t ) 0 0 t 1 t 角速度 2 dt 量 2 2 角加速度
大学物理(中国农业出版社 张社奇主编)

其中 x(t ) (1m s -1 )t 2m,
y (t ) ( m s )t 2m.
1 4 2
-2
求(1) t 3 s 时的速度.(2) 作出质点的运动轨迹图. 解 (1)由题意可得速度分量分别为
dx dy 1 -1 -2 vx 1m s , v y ( m s )t dt dt 2
1.3.1
质点 有质量而无形状和大小。
质点: 可忽略形状和大小的物体 选用质点模型的条件:
物体自身线度与所研究的物体运动的空间范围相比可以忽 略;或者物体只做平动 1.3.2 质点系
: 若干质点的集合。 1.3.3 刚体
在力作用下,大小和形状都保持不变的物体称为刚体。 在力作用下,组成刚体的所有质点间的距离始终保持不变。
1.4.2
(1)位置矢量 r
描述质点运动的量 由坐标原点引向考察点的矢量,简称位矢。
其在直角坐标系中为 位矢的大小为
r xi yj zk
z
k
2 2 2 r r x y z
z cos γ r
x
位矢的方向余弦是
r
γ β
P(x,y,z)
y cos β r 质点运动时,有
讨论:
v (t t )
加速度的方向总是指向轨迹曲线凹的一面。
在三维直角坐标系中
dv y dv z d 2 x d 2 y d 2 z dv dv x a i j k 2i 2 j 2k dt dt dt dt dt dt dt a ax i a y j az k
1983年第十七届国际计量大 会通过,“米”是光在真空 中(1/299 792 458)s的时间 间隔内运行路程的长度
大学物理 马文蔚 课堂笔记

即水分子的质心在对称轴上 距氧原子中心6.8 10-12m处.
3 /14
§3.9 质心 质心运动定律
例 2 求半径为R的匀质半薄球壳的质心. 解 如图所示, 将坐标原点建在球壳的球心.
根据对称性可知, 质心的位置应该在对称轴(z轴)上. 即 xc 0 ; yc 0 由质心的计算公式可得,
化简得
m2 2 (m ) m 2mgR m'
2m' gR ; m m'
上海师范大学
m
m'
m m m m' m'
2m' gR m m'
13 /14
习 题 课
m
2m' gR ; m m'
m'
m m'
2m' gR m m'
2m' gR m m'
d rc d ri 由速度的定义式可知 是质心的运动速度; 是第i个质点的运动速度. dt dt 因此, (5)式可以写成, n n m'c mii pi pc (6)
i 1 i 1
n dr dr m' c mi i dt dt i 1
m1 2m2
2m2 ' 0 m1
10 /14
上海师范大学
习 题 课
碰撞后,摆锤在竖直平面内作圆周运动,
' 最高点处的速率为 H , 最高点处摆锤受到重力mg和绳子
' H
的拉力F的作用, 如图所示 因此 在最高点处有,
F mg Fn
m1
F mg
' ( H ) 2 由此可得 F m2 g m2 l ' ( H ) 2 F 0 m2 m2 g l
贵州大学大学物理期末简答题整理

第九章 振动一、简答题1、简述符合什么规律的运动是简谐运动答案:当质点离开平衡位置的位移x 随时间t 变化的规律,遵从余弦函数或正弦函数()ϕω+=t A x cos 时,该质点的运动便是简谐振动。
2、怎样判定一个振动是否简谐振动?写出简谐振动的运动学方程和动力学方程。
答案:物体在回复力作用下,在平衡位置附近,做周期性的线性往复振动,其动力学方程中加速度与位移成正比,且方向相反:x dtx d 222ω-= 或:运动方程中位移与时间满足余弦周期关系:)cos(φω+=t A x3、分别从运动学和动力学两个方面说明什么是简谐振动?答案:运动学方面:运动方程中位移与时间满足正弦或余弦函数关系)cos(φω+=t A x动力学方面:物体在线性回复力作用下在平衡位置做周期性往复运动,其动力学方程满足4、简谐运动的三要素是什么?答案: 振幅、周期、初相位。
5、弹簧振子所做的简谐振动的周期与什么物理量有关?答案: 仅与振动系统的本身物理性质:振子质量m 和弹簧弹性系数k 有关。
6、 一质量未知的物体挂在一劲度系数未知的弹簧上,只要测得此物体所引起的弹簧的静平衡伸长量,就可以知道此弹性系统的振动周期,为什么? 答案:因为k m T π2=,若知伸长量为l ,则有kl mg =,于是gl T π2=。
7、指出在弹簧振子中,物体处在下列位置时的位移、速度、加速度和所受的弹性力的数值和方向:(1) 正方向的端点;(2) 平衡位置且向负方向运动;(3) 平衡位置且向正方向运动;(4) 负方向的端点.答:(1)位移为A ,速度为0,加速度为2ωA -,力为kA -。
(2)位移为0,速度为ωA -,加速度为0,力为0。
(3)位移为0,速度为ωA ,加速度为0,力为0。
(4)位移为A -,速度为0,加速度为2ωA ,力为kA 。
8、 作简谐运动的弹簧振子,当物体处于下列位置时,在速度、加速度、动能、弹簧势能等物理量中,哪几个达到最大值,哪几个为零:(1) 通过平衡位置时;(2) 达到最大位移时. 答:(1)速度、动能达到最大,加速度、势能为零。
什么是运动学和动力学?

什么是运动学和动力学?
运动学和动力学是物理学中两个重要的分支,用于研究和描述物体在运动过程中的行为和相互作用。
什么是运动学和动力学:
1.运动学:运动学研究的是物体的运动状态、速度、加速度
等与时间相关的属性,而不考虑引起这些运动的原因。
它关注的是物体的几何形状和轨迹,以及描述物体位置、速度和加速度的数学关系。
运动学主要涉及到位移、速度和加速度等概念,并使用图表、方程式和向量等工具来描述和分析运动。
2.动力学:动力学研究的是物体运动背后的原因和力的作用。
它涉及到物体受到的力、质量和运动状态之间的关系。
动力学使用牛顿定律和其他力学原理,研究物体的运动如何受到力的影响。
它能够描述物体的加速度、力和质量之间的相互作用,以及描述物体受到外部力和内部力时的运动变化。
简单说,运动学描述了物体在运动中的位置、速度和加速度等属性,而动力学则研究导致物体运动变化的力和原因。
运动学关注物体的几何特征和轨迹,而动力学则关注物体运动背后的力学原理和相互作用。
这两个分支在物理学、工程学和生物学等领域都有广泛应用。
它们在描述和解释物体的运动行为、设计运动系统、预测物体的轨迹等方面都起着重要的作用。
动力学和运动学的区别

动力学和运动学的区别动力学和运动学是物理学中两个相关但又有本质差异的概念。
虽然它们都研究物体的运动,但它们关注的角度和研究方法有所不同。
接下来,我们将详细讨论动力学和运动学的区别。
1. 定义和研究对象运动学是研究物体的运动状态、位置、速度和加速度等几何特性的学科。
它主要关注物体运动的描述和分析,不考虑引起物体运动的原因。
运动学使用位移、速度和加速度等量来描述和分析物体的运动状态,利用数学公式和图形来描绘物体的运动轨迹。
动力学则是研究物体运动的原因和与之相关的力以及它们之间的关系的学科。
动力学关注物体受力的作用下的运动,研究力、质量、加速度和牛顿定律等概念之间的相互关系。
动力学旨在解释物体运动的原因,并预测物体在给定力下的运动情况。
2. 角度和研究方法运动学是从观察者的角度出发,通过观察物体的位置、速度和加速度等参数来描述和分析物体的运动状态。
运动学主要借助数学工具,如微积分和几何学来解决问题,通过建立数学模型来描述物体的运动规律。
而动力学则是从物体与其周围环境相互作用的角度,通过分析外部施加在物体上的力和物体对这些力的反应,来研究物体的运动情况。
动力学主要采用牛顿力学的基本定律和概念,如质量、力、加速度和动量等,来解释和预测物体的运动。
3. 物理量和方程运动学主要关注位移、速度和加速度等物理量的计算和描述。
位移指的是物体在某一时间间隔内从一个位置移动到另一个位置的距离;速度描述了物体在单位时间内移动的距离;加速度表示物体在单位时间内速度的变化率。
而动力学则涉及到物体受力和运动状态之间的关系。
牛顿第二定律是动力学中的基础方程,它指出物体的加速度与物体所受合力成正比,与物体的质量成反比。
牛顿第三定律描述了力的相互作用,即对于每一个力的作用,都会存在一个大小相等、方向相反的相互作用力。
综上所述,动力学和运动学在研究角度、关注重点和研究方法上存在明显差异。
运动学主要关注物体的运动状态和几何特性,而动力学关注物体运动的原因和与其相关的力学量。
大学物理((一)(二)课程描述

车辆工程专业课程描述课程名称:大学物理㈠课程编号:0911xk05课程学分: 3 学时:54前期课程:高等数学课程简介以物理学基础为内容的大学物理课程,是理工科各专业学生一门重要的通识性的必修基础课。
大学物理课程既为学生打好必要的物理基础,又在培养学生科学的世界观,增强学生分析问题和解决问题的能力,培养学生的探索精神、创新意识等方面,具有其他课程不能替代的重要作用。
教学要求1. 使学生对物理学所研究的各种物质运动形式以及它们之间的联系有比较全面和系统的认识;对大学物理课中的基本理论、基本知识能够正确地理解,并且有初步应用的能力。
2. 通过教学环节,培养学生严肃的科学态度和求实的科学作风。
根据本课程的特点,在传授知识的同时加强对学生进行能力培养,如通过对自然现象和演示实验的观察等途径,培养学生从复杂的现象中抽象出带有物理本质的内容和建立物理模型的能力、运用理想模型和适当的数学工具定性分析研究和定量计算问题的能力以及独立获取知识与进行知识更新的能力,联系工程实际应用的能力等。
3. 在理论教学中,要根据学生情况精讲基本内容,有些内容可安排学生自学或讨论,并要安排适当课时的习题课;要充分利用演示实验、录像等形象化教学手段,应尽量发挥计算机多媒体在物理教学中的作用,以提高教学效果。
在教学过程中,还要处理好与中学物理的衔接与过渡,一方面要充分利用学生已掌握的物理知识,另一方面要特别注意避免和中学物理不必要的重复。
在与后继有关课程的关系上,考虑到本课程的性质,应着重全面系统地讲授物理学的基本概念、基本规律和分析解决问题的基本方法,不宜过分强调结合专业。
教学内容(一)力学1.质点运动学2.质点动力学3.刚体的运动要求:力学是大学物理教学内容中最基本、最重要的部分,它是学习大学物理其它部分以及许多后继课程所必须具备的基础知识。
教学中要充分利用学生已有的力学基础,避免简单重复;要应用高等数学工具,在新的高度讲授力学概念和规律。
大学物理1,第2章 质点动力学

O
x
mg
tan a1 , arctan a1
g
g
l
m
a1
(2)以小球为研究对象,当小车沿斜面作匀加速运
动时,分析受力如图,建立图示坐标系。
x方向:FT2 sin(α θ) mg sin α ma2
FT 2
y方向:FT2 cos(α θ) mg cos α 0 a2
m
FT2 m 2ga22 sin α a22 g 2
• 强力(strong interaction)
在原子核内(亚微观领域)才表现出来,存在于 核子、介子和超子之间的、把原子内的一些质子和中 子紧紧束缚在一起的一种力。
其强度是电磁力的百倍,两个相邻质子之间的强 力可达104 N 。力程:<10-15 m
• 弱力(weak interaction)
亚微观领域内的另一种短程力。导致衰变放出 电子和中微子。两个相邻质子之间的弱力只有10-2 N 左右。
重力(gravity) 重力是地球表面物体所受地球引力的一个分量。
G mg
g g0 (1 0.0035cos2 φ)
地理纬度角 g0 是地球两极处的重力加速度。
重力
引力
重力与重力加速度的方向都是竖直向下。
忽略地球自转的影响物体所受的重力就等于它所受的
万有引力:
mg
G
mEm R2
弹力(elastic force)
物体受到外力作用时,它所获得的加速度的大小与合 外力的大小成正比,与物体的质量成反比;加速度的
方向与合外力F的方向相同。 F kma
比例系数k与单位制有关,在国际单位制中k=1
瞬时性:是力F的瞬m时a 作m用d规v律 dt
F
大学物理练习一

练习一 力学(质点和刚体、运动学和动力学)一、选择题:1.某质点的运动方程为6533+-=t t x (SI),则该质点作(A)匀加速直线运动,加速度沿X 轴正方向. (B)匀加速直线运动,加速度沿X 轴负方向. (C)变加速直线运动,加速度沿X 轴正方向.(D)变加速直线运动,加速度沿X 轴负方向. 2.某物体的运动规律为t kv t v 2d d -=,式中的k 为大于零的常数.当0=t 时,初速为0v ,则速度v 与时间t 的函数关系是(A)0221v kt v +=(B)0221v kt v +-= (C)021211v kt v += (D)021211v kt v +-=.3.如图所示,质量为m 的物体用细绳水平拉住,静止在倾角为θ的固定的光滑斜面上,则斜面给物体的支持力为 (A)θcos mg . (B)θsin mg . (C)θcos mg . (D) θsin mg. 4.如图,物体A 、B 质量相同,B 在光滑水平桌面上,滑轮与绳的质量以及空气阻力均不计,滑轮与其轴之间的摩擦也不计.系统无初速地释放,则物体A 下落的加速度是(A)g . (B)2/g . (C)3/g . (D)5/4g . 5.对于一个物体系来说,在下列条件中,那种情况下系统的机械能守恒?(A)合外力为0. (B)合外力不作功.(C)外力和非保守内力都不作功. (D)外力和保守内力都不作功.6.质量为m 的一艘宇宙飞船关闭发动机返回地球时,可认为该飞船只在地球的引力场中运动.已知地球质量为M ,万有引力恒量为G .则当它从距地球中心1R 处下降到2R 处时,飞船增加的动能应等于 (A)2R GMm (B)22R GMm(C)2121R R R R GMm - (D)2121R R R GMm - (E)222121R R R R GMm - 7.如图所示,有一个小块物体,置于一个光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔缓慢往下拉.则物体(A)动能不变,动量改变. (B)动量不变,动能改变. (C)角动量不变,动量不变.(D)角动量改变,动量改变. (E)角动量不变,动能、动量都改变.8.光滑的水平桌面上有长为l 2、质量为m 的匀质细杆,可绕过其中点O 且垂直于桌面的竖直固定轴自由转动。
大学物理 质点运动学动力学习题课

的直线运动的叠加(矢量加法)。
——运动的独立性原理或运动叠加原理
2
第一、二章习题课
自然坐标系中的速度和加速度
v
v
ds
dt
a
a
an
dv
dt
v2
n
a
a
an
圆周运动中的切向加速度和法向加速度
a dv v2 n
dt R
3
二、圆周运动的角量描述 t A 角位置 t t B 角位移
r
v
a
dxri
yj
dx
i
zk
dy
dt
dv
dt
dv x
i
dt
dv y
dt dt dt
j
j
dz dt
dvz dt
k
k
vxi vy j vzk
axi ay j azk
任意曲线运动都可以视为沿x,y,z轴的三个各自独立
4m/s的速率从北面驶近A船。
(1)在湖岸上看,B船的速度如何?
(2)如果A船的速度变为6m/s(方向不变),在A船上看B
船的速度又为多少?
解:(1)设B船岸的上速的度人为看v到BA船A的船速看度到为B船v的A 速度为 v
vA
vA
由伽利略速度变换,可有
v
vB
v vB vA
的速度的大小。
y
H Ox
解:建立如图坐标,t时刻头顶
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若
F i 0 ,但若某一方向的合外力零, 则该方向上
i 1 动量守恒;
(3)必须把系统内各量统一到同一惯性系中; (4)若作用时间极短,而系统又只受重力作用,则可略去重力, 运用动量守恒。
23 首 页 上 页 下 页退 出
例4:一战车置于无摩擦的铁轨上,车身质量为m1,炮弹 质量为m2,炮筒与水平面夹 角,炮弹以相对于炮口的速度 2 射出,求炮身后坐速率 1 。 [解] 水平方向的动量可看作近似守恒,有
由矢量标积定义式,有
A F r
6 首 页 上 页 下 页退 出
2.1.3 牛顿第三定律
1o作用力与反作用力是分别作用在两个物体上的,不是一对 平衡力。 2o作用力与反作用力是同一性质的力。 3o若A给B一个作用,则A受到的反作用只能是B给予的。 * :牛顿第三定律只在实物物体之间,且运动速度远小于 光速时才成立。
7 首 页 上 页 下 页退 出
t2
t1
1)峰值冲力的估算 2)当动量的变化是常量时,有
F 1 t
f 0 t t
t+△t
3) 当相互作用时间极短,相互间冲力极大,此时某些有限主 动外力(如重力等)可忽略不计。
18 首 页 上 页 下 页退 出
2.3.2 质点系的动量定理
1、内力与外力
Fi 外
i质点所受的内力
f ji
m 2 v 2 co s v1 m 1 v1 0
解出
v1
m 2v2 m1 m 2
cos
24 首 页 上 页 下 页退 出
§2-4
2.4.1 功 功率
功 动能 势能
1、恒力的功 (中学)力在位移方向上的投影与该物体位移大小的乘积。
F
F
r
A F r cos
t
1
t2
n n 1
f ji
n
dt
n 1
பைடு நூலகம்
i 1
n
m i vi 2
i 1
n
m i v i1
i 1 j 1
因为内力成对出现
f ji 0
i 1 j 1
这说明内力对系统的总动量无贡献, 但对每个质点动量的增减是有影响的。
20 首 页 上 页 下 页退 出
2.3.3 质点系的动量守恒定律 n
若系统所受的合外力 系统总动量守恒
Fi 0
i 1
i
m i v i 常矢量
一个孤立的力学系统(即无外力作用的系统)或合外力为 零的系统,系统内各质点动量可以交换,但系统的总动量保 持不变。这就是动量守恒定律。 注意:动量守恒式是矢量式 (1)守恒条件是
引力作用 两种长程作用 电磁作用
强相互作用 两种短程作用 弱相互作用
5 首 页 上 页 下 页退 出
力的概念是物质的相互作用在经典物理中的一种表述。
3 o 力的叠加原理 若一个物体同时受到几个力作用,则合力产生的加速度,等 于这些力单独存在时所产生的加速度之矢量和。 力的叠加原理的成立,不能自动地导致运动的叠加。
2.1.4 牛顿定律的应用
1、牛顿定律只适用于惯性系; 2、牛顿定律只适用于质点模型; 3、具体应用时,要写成坐标分量式。
F x ma F ma y
x y
在平面直角坐标系
在平面自然坐标系
dv F m mR dt 2 v F m mR n R
f ij
j
n 1 j 1
f ji
i
i质点所受合力
Fi 外
n 1 j 1
f ji
2、i质点动量定理
t
t2
1
F i 外 dt
t (
1
t2
n 1 j 1
f ji ) dt m i v i 2 m i v i1
19 首 页 上 页 下 页退 出
2、关于质量的概念
1o质量是物体惯性大小的量度: 2o引力质量与惯性质量的问题:
m 1惯 m 1引 m 2惯 m 2引 GM R a
2
F m惯 a
F引= GM m 引 R
2
调节引力常数G, 使m引,m惯的比值为1。
惯性质量与引力质量等价是广义相对论的出发点之一。 3、牛顿第二定律给出了力、质量、加速度三者间瞬时的定 量关系
得到 m 1 g T m 1 a 1 x ,
最后解出
a1 x a 2 x
m 2 g T m 2 a 2 x m 2 a1 x
g, T 2 m1m 2 m1 m 2 g
m1 m 2
m1 m 2
10 首 页 上 页 下 页退 出
一个有趣的例子:谁先到达?
aA
A
B
B
静止时 a
3 首 页 上 页 下 页退 出
什么是惯性系:孤立物体相对于某参照系为静止或作匀速 直线运动时,该参照系为惯性系。
如何确定惯性系──只有通过力学实验。 *1 地球是一个近似程度很好的惯性系 但
a 公 5 . 9 10
3
m s
2
a自 3 . 4 10
i 1
n
Fi 0
而不是
(
t1
t2
F i ) dt 0
22 首 页 上 页 下 页退 出
i 1
n
Fi 0
表示系统与外界无动量交换,
(
t1
t2
n
F ) dt i 0 表示系统与外界的动量交换为零。
i 1
(2)若
i 1
n
n
Fi 0
则系统无论沿那个方向的动量都守恒;
2 首 页 上 页 下 页退 出
惯性和惯性运动 惯性:任何物体都有保持其原有运动状态的特性,惯性是物 质固有的属性。 惯性运动:物体不受外力作用时所作的运动。 惯性和第一定律的发现,使人们最终把运动和力分离开来。 2、惯性系和非惯性系 问题的提出:惯性定律是否在任何参照系中都成立? 左图中,地面观 察者和车中观察者 对于惯性定律运用 的认知相同吗?
t2
t1 t2
Fx dt mv2 x mv1 x Fy dt mv2 y mv1 y Fz dt mv2 z mv1 z
17 首 页 上 页 下 页退 出
t1 t2
t1
4、动量定理的应用
平均冲力概念
F 1 t 2 t1
f
m v 2 m v1 F dt t 2 t1
2
m s
2
*2 太阳是一个精度很高的惯性系
太阳对银河系核心的加速度为
a日 银 10
10
m s
1
马赫认为:所谓惯性系,其实质应是相对于整个宇宙的平 均加速度为零的参照系──因此,惯性系只能无限逼近,而无 最终的惯性系。 相对于已知惯性系作匀速直线运动的参照系也是惯性系。 一切相对于已知惯性系作加速运动的参照系为非惯性系。
dv d (m v ) 故 F m dt dt
即
F dt d ( m v )
t
t2
1
F dt m v 2 m v1
15 首 页 上 页 下 页退 出
1)式中 m v 叫做动量,是物体运动量的量度。 指两个物体相互作用持续一段时间的过程中,在物体间 传递着的物理量。
3、质点系的动量定理(对i求和)
i 1
n
t2
t1
n n 1 n n t2 Fi 外dt f ji dt mi vi 2 mi vi1 i 1 t1 j 1 i 1 i 1
t
t2
1
n Fi 外 i 1
dt
2)动量 动量是相对量,与参照系的选择有关。 2、冲量的概念 1) 恒力的冲量 作用力F=恒量,作用时间t1t2,力对质点的冲量, 冲量的方向与力的方向相同。 2) 变力的冲量 d I F dt t 力在某一段时间间隔内的冲量 I F dt
I F ( t 2- t1 )
2
8 首 页 上 页 下 页退 出
4、要根据力函数的形式选用不同的方程形式
若F=常量 , 则
F ma
F (v ) md v dt
若F=F(v)
若F=F(r)
,
,
则
则
2 d r F (r ) m 2 dt
运用举例:
9 首 页 上 页 下 页退 出
[例题1] 阿特伍德机 可求得加速度 与物体质量以及重力加速度的关系,用 于验证牛顿定律。 [解] 由牛顿第二定律
2.1.1 惯性定律 惯性参照系
在运动的描述中,各种参考系都是等价的。但实验表明, 动力学规律并非是在任何参考系中都成立。这就引出了惯性 参考系的问题。 1、惯性定律
“孤立质点”的模型:
不受其它物体作用或离其他物体都足够远的质点。 例如,太空中一远离所有星体的飞船。 惯性定律: 一孤立质点将永远保持其原来静止或匀速直线运动状态。
4 首 页 上 页 下 页退 出
2.1.2 牛顿第二定律 惯性质量 引力质量
※牛顿第二定律:物体受到外力作用时,它所获得加速度的大 小与合外力的大小成正比;与物体的质量成反比;加速度的方
向与合外力 F 的方向相同。 其数学形式为 F km a 比例系数k与单位制有关,在国际单位制中k=1。 1、关于力的概念 1o 力是物体与物体间的相互作用,这种作用可使物体产生形 变,也可使物体获得加速度。 2o 物体之间的四种基本相互作用;arxiv:1001.0785