2015年高考理科数学试题全国卷2及解析word完美版
2015年全国统一高考数学试卷(理科)(新课标ii)答案与解析
2015年全国统一高考数学试卷(理科)(新课标II)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()∴=35.(5分)设函数f(x)=,则f(﹣2)+f(log212)=(),=12×=66.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()B正方体切掉部分的体积为1==.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|= 2,则2.8.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()9.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥=10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f (x)的图象大致为()B时,AP==,+tanx≤≤≤≠时,PA+PB=2≤﹣x=对称,)>)时的解析式是解决本11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶B在双曲线﹣,a在双曲线=1﹣=1,==.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′=,则=====0或,二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.λ+与+2,不平行,向量λ+与+2λ++2),解得;故答案为:.,使得14.(5分)若x,y满足约束条件,则z=x+y的最大值为.);故答案为:.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=3.16.(5分)设S n是数列{a n}的前n项和,且a1=﹣1,a n+1=S n S n+1,则S n=﹣.{∴﹣=,即={∴,.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.B=C=从而得解∵=2=,∴B==,∴C=;∴=.×.∴=2由余弦定理可得:=的长为18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的频率,求C的概率.,发生的频率为,,,,,=,=×+×=0.4819.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.,根据即可求出法向量,坐标可以求出,可设直线即可求得直线∴∴,则=所成角的正弦值为20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.==+b==过点(,即,b=,=2×,﹣,或时,四边形21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.DM=MN=,∴AB=的面积为×××=选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.cos=2.可得直角坐标方程:,,.:(B选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.++++)由于()=a+b+2+=c+d+2>+)+++若>+,则()>()a+b+2c+d+2,+)+综上可得,++。
2015年高考新课标全国二卷数学理科(高清图文重做版)
2
2
22Βιβλιοθήκη ������ ������ 3������ 42 4
������
������ 4
������ 2
3������ 4
������
������ 4
������ 2
3������ 4
������
������ 4
������ 2
3������ 4
������
A B C D ABM (11)已知 A,B 为双曲线 E 的左,右顶点,点 M 在 E 上, 为等腰三角 形,且顶角为 120 ,则 E 的离心率为 (A) 5 (B)2 (C) 3 (D) 2
第Ⅱ卷
二、 填空题:本大题共 4 小题。每小题 5 分 (13)设向量 a,b 不平行,向量 λa+b 与 a+2b 平行,则实数 λ=________.
x y 1 0, (14)若 x,y 满足约束条件 x 2 y 0, 则 z=x+y 的最大值为_________. x 2 y 2 0,
f ( x1 )-f ( x2 ) e 1,求 m 的取值范围。
(22) (本小题满分 10 分)选秀 4-1:集合证明选就爱 那个 如图,O 为等腰三角形 ABC 内一点, O 与 ABC 的 底边 BC 交与点 M,N 两点,与底边上的高 AD 交与点 G,且与 AB,AC 分别 相切于点 E,F 两点。 (Ⅰ)证明:EF//BC; (Ⅱ)若 AG 等于 O 的半径,且 AE MN 2 3 ,求四边形 EBCF 的面积。 (23) (本小题满分 10 分)秀 4-4:坐标系与参数方程
2 ,求 BD 和 AC 的长。 2
(18) (本小题满分 12 分) 某公司为了解用户对其产品的满意度,从 A,B 两地区分别随机调查了 20 个用 户,得到用户对产品的满意度评分如下: A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79 (Ⅰ) 根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两 地区满意度评分的平绝值机分散成都(不要求计算出具体值,给出结论即可) ; A 地区 4 5 6 7 8 9 (Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级; 满意度评分 低于 70 分 70 分至 89 分 不低于 90 分 满意度等级 不满意 满意 非常满意 记事件 C:“A 地区用户的满意度等级高于 B 地区用户的满意度等级”,假设两地 区用户的评价结果相互独立, 根据所给的数据,以事件发生的频率作为相应事件 发生的概率,求 C 的概率。 (19) (本小题满分 12 分) 如图, 长方体 ABCD- A1B1C1D1 中, AB=16, BC=10, AA1=8, 点 E, F 分别在 A1B1 , B 地区
2015高考数学全国二卷[理科]完美版课件.doc
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷( 非选择题)两部分,共150 分,考试时间120 分钟.第Ⅰ卷(选择题共60 分)2014·新课标Ⅱ卷第1页一、选择题(本大题共12 小题,每小题5分,共60 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={0,1,2} ,N={ x| x2-3x+2≤0} ,则M∩N=( )A.{1} B.{2} C.{0,1} D.{1,2} 2.设复数z1,z2 在复平面内的对应点关于虚轴对称,z1=2+i ,则z1z2=( )A.-5 B .5 C .-4+i D .-4-i3.设向量a,b满足| a+b| =10,| a-b| =6,则a·b=( )A.1 B .2 C .3 D .54.钝角三角形ABC的面积是12,AB=1,BC=2,则A C=( )A.5 B. 5 C .2 D .15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75 ,连续两天为优良的概率是0.6 ,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A.0.8 B .0.75 C .0.6 D .0.456.如图,网格纸上正方形小格的边长为1( 表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A. 1727B.59C.1027D.137.执行如图所示的程序框图,如果输入的x,t 均为2,则输出的S=( )A.4 B .5 C .6 D .78.设曲线y=ax-ln( x+1) 在点(0,0)处的切线方程为y=2x,则a=( ) A.0 B .1 C .2 D .3专业技术参考资料x +y -7≤ 0, x -3y + 1≤ 0,9.设x ,y 满足约束条件则z =2x -y 的最大值为()3x -y - 5≥ 0,A .10B .8C . 3D .2210.设F 为抛物线C :y =3x 的焦点,过F 且倾斜角为30°的直线交 C 于 A ,B 两点, O 为坐标原点,则△ OAB 的面积为( )A. 3 3 4B. 9 3 8C. 63 32D. 9 411.直三棱柱 ABC -A 1B 1C 1 中,∠ BCA =90°,M ,N 分别是 A 1B 1,A 1C 1 的中点, BC = C A =C C 1, 则B M 与 AN 所成角的余弦值为( )A. 1 10B. 2 5C. 30 10D. 2 22014· 新课标Ⅱ卷第 2页12.设函数 f ( x ) = 3sinπx 2m . 若存在 f ( x ) 的极值点 x 0满足 x+[ f ( x 0)] 22<m ,则m 的取值范围是 ( )A .( -∞,- 6) ∪ (6 ,+∞ )B . ( -∞,- 4) ∪(4 ,+∞)C .( -∞,- 2) ∪ (2 ,+∞ )D . ( -∞,- 1) ∪(1 ,+∞)第Ⅱ卷 ( 非选择题共 90 分)二、填空题( 本大题共 4 小题,每小题5 分,共 20 分.把答案填在题中横线上 )13. ( x +a )10 的展开式中, x 7 的系数为15,则a =________.( 用数字填写答案 ) 14.函数 f ( x ) =sin( x +2φ) -2sin φcos( x +φ) 的最大值为________. 15.已知偶函数 f ( x ) 在[0 ,+∞)单调递减, f (2) =0. 若 f ( x -1)>0 ,则x 的取值范围是 ________.16.设点 M ( x 0, 1) ,若在圆O :x2+y 2=1 上存在点 N ,使得∠ OM =N 45°,则x的取值范围是________. 三、解答题( 解答应写出文字说明,证明过程或演算步骤) 17. ( 本小题满分 12 分) 已知数列 { a n }满足 a 1= 1,a n +1=3a n +1.(1)证明 a n + 1 2是等比数列,并求 { a n } 的通项公式;11 (2)证明 ++⋯+13 < . a n 2a1 a2参考资料专业技术2014·新课标Ⅱ卷第3页18.(本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为P D的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.19.(本小题满分12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:专业技术参考资料年份2007 2008 2009 2010 2011 2012 2013 年份代号t 1 2 3 4 5 6 7 人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9 (1) 求y 关于t 的线性回归方程;2014·新课标Ⅱ卷第4页(2) 利用(1) 中的回归方程,分析2007 年至2013 年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015 年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:n-y -i =1 t i -y∑i -t^b=n- 2i =1 t∑i-t^-,a=y^--b t .20.( 本小题满分12 分)设F1,F2 分别是椭圆C:2x2+a2y2=1( a>b>0)的左、右焦点,M是C上一b点且M F2 与x轴垂直,直线M F1 与C的另一个交点为N.3(1) 若直线M N的斜率为,求C的离心率;42014·新课标Ⅱ卷第5页(2) 若直线M N在y轴上的截距为2,且| MN| =5| F1N| ,求a,b.专业技术参考资料x -x21.( 本小题满分12 分) 已知函数 f ( x) =e -e -2x.(1) 讨论 f ( x) 的单调性;(2) 设g( x) =f (2 x) -4bf( x) ,当x>0 时,g( x)>0 ,求b 的最大值;(3) 已知1.414 2< 2<1.414 3 ,估计ln 2 的近似值( 精确到0.001) .2014·新课标Ⅱ卷第6 页请考生在第22、23、24 题中任选一题做答,如果多做,则按所做的第一题计分.作答时请写清题号.22.( 本小题满分10 分)选修4-1:几何证明选讲如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为P C的中点,AD的延长线交⊙O于点E. 证明:(1) BE=EC;专业技术参考资料2(2) AD·D E=2PB.23.( 本小题满分10 分)选修4-4:坐标系与参数方程在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cos θ,θ∈0,(1) 求C的参数方程;π2.(2)设点D在C上,C在D处的切线与直线l:y=3x+2 垂直,根据(1) 中你得到的参数方程,确定D的坐标.24.( 本小题满分10 分)选修4-5:不等式选讲设函数 f ( x) =x+1a +| x-a|( a>0) .(1)证明:f( x) ≥2;(2) 若f (3)<5 ,求a的取值范围.专业技术参考资料。
2015高考数学全国2卷试题及答案(清晰版)
2015年普通高等学校招生全国统一考试试题及答案理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4.考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合{}21012,,,,--=A ,()(){}021<+-=x x x B ,则=B A A、{}0,1-B、{}1,0C、{}101,,-D、{}210,,2、若a 为实数,且()()i i a ai 422-=-+,则=a A、-1B、0C、1D、23、根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是A、逐年比较,2008年减少二氧化硫排放量的效果最明显B、2007年我国治理二氧化硫排放显现成效C、2006年以来我国二氧化硫年排放量呈减少趋势D、2006年以来我国二氧化硫年排放量与年份正相关4、已知等比数列{}n a 满足31=a ,21531=++a a a ,则=++753a a aA、21B、42C、63D、845、设函数()()⎩⎨⎧-+=-1222log 1x x x f ,11≥<x x ,则()()=+-12log 22f f A、3B、6C、9D、126、一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与所剩部分体积的比值为A、81B、71C、61D、517、过三点()31,A ,()24,B ,()7,1-C 的圆与y 轴交于M 、N 两点,则=MN A、62B、8C、64D、108、右边程序框图的算法思路源于我国古代算术名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a ,b 分别为14,18,则输出的=a A、0B、2C、4D、149、已知A ,B 是球O 的球面上两点, 90=∠AOB ,C 为该球面上的动点。
2015年全国卷2高考理科数学试题附答案
2015年高考全国卷2理科数学试题1.已知集合{2,1,0,1,2}A =--,{|(1)(2)0}B x x x =-+<,则A B =IA .{1,0}-B .{0,1}C .{1,0,1}-D .{0,1,2}2.若a 为实数,且(2)(2)4ai a i i +-=-,则a =A .-1B .0C .1D .23.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年190020002100220023002400250026002700D.2006年以来我国二氧化硫年排放量与年份正相关4.已知等比数列{}na满足a1 = 3,a1 + a3 + a5 = 21,则a3 + a5 + a7 = A.21 B.42 C.63 D.845.设函数211log(2),1()2,1xx xf xx-+-<⎧⎪=⎨≥⎪⎩,则2(2)(log12)f f-+=A.3 B.6 C.9 D.12 6.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为A.18B.17C.16D.157.过三点(1,3)A,(4,2)B,(1,7)C-的圆交y轴于M,N两点,则||MN= A.B.8 C.D.10 8.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。
执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =A .0B .2C .4D .149.已知A ,B 是球O 的球面上两点,∠AOB = 90°,C 为该球面上的动点。
2015年普通高等学校招生全国统一考试 全国卷2 数学试卷含答案(理科)
2015年普通高等学校招生全国统一考试(课标全国卷Ⅱ)理 数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=( ) A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}2.若a 为实数,且(2+ai)(a-2i)=-4i,则a=( ) A.-1B.0C.1D.23.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A.21B.42C.63D.845.设函数f(x)={1+log 2(2-x ), x <1,2x -1,x ≥1,则f(-2)+f(log 212)=( )A.3B.6C.9D.126.一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.157.过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=( )A.2√6B.8C.4√6D.108.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=( )A.0B.2C.4D.149.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为( )A.36πB.64πC.144πD.256π10.如图,长方形ABCD的边AB=2,BC=1,O是AB的中点.点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为( )11.已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为( )A.√5B.2C.√3D.√212.设函数f'(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf'(x)-f(x)<0,则使得f(x)>0成立的x 的取值范围是( ) A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(0,1)∪(1,+∞)第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.设向量a,b 不平行,向量λa+b 与a+2b 平行,则实数λ= . 14.若x,y 满足约束条件{x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z=x+y 的最大值为 .15.(a+x)(1+x)4的展开式中x 的奇数次幂项的系数之和为32,则a= . 16.设S n 是数列{a n }的前n 项和,且a 1=-1,a n+1=S n S n+1,则S n = .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)△ABC 中,D 是BC 上的点,AD 平分∠BAC,△ABD 面积是△ADC 面积的2倍. (Ⅰ)求sin∠Bsin∠C; (Ⅱ)若AD=1,DC=√22,求BD 和AC 的长.18.(本小题满分12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区: 73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);A地区B地区456789(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.19.(本小题满分12分)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说明画法和理由);(Ⅱ)求直线AF与平面α所成角的正弦值.20.(本小题满分12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(Ⅰ)证明:直线OM的斜率与l的斜率的乘积为定值;,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此(Ⅱ)若l过点(m3时l的斜率;若不能,说明理由.21.(本小题满分12分)设函数f(x)=e mx+x2-mx.(Ⅰ)证明:f(x)在(-∞,0)单调递减,在(0,+∞)单调递增;(Ⅱ)若对于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范围.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,O为等腰三角形ABC内一点,☉O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(Ⅰ)证明:EF∥BC;(Ⅱ)若AG等于☉O的半径,且AE=MN=2√3,求四边形EBCF的面积.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线C 1:{x =tcosα,y =tsinα(t 为参数,t≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sinθ,C 3:ρ=2√3cosθ. (Ⅰ)求C 2与C 3交点的直角坐标;(Ⅱ)若C 1与C 2相交于点A,C 1与C 3相交于点B,求|AB|的最大值.24.(本小题满分10分)选修4—5:不等式选讲 设a,b,c,d 均为正数,且a+b=c+d,证明: (Ⅰ)若ab>cd,则√a +√b >√c +√d ;(Ⅱ)√a +√b >√c +√d 是|a-b|<|c-d|的充要条件.2015年普通高等学校招生全国统一考试(课标全国卷Ⅱ)一、选择题1.A 因为B={x|(x-1)(x+2)<0}={x|-2<x<1},A={-2,-1,0,1,2},故A ∩B={-1,0}.选A.2.B ∵(2+ai)(a -2i)=-4i ⇒4a+(a 2-4)i=-4i, ∴{4a =0,a 2-4=-4,解得a=0. 3.D 由柱形图可知:A 、B 、C 均正确,2006年以来我国二氧化硫年排放量在逐渐减少,所以排放量与年份负相关,∴D 不正确.4.B 设{a n }的公比为q,由a 1=3,a 1+a 3+a 5=21得1+q 2+q 4=7,解得q 2=2(负值舍去).∴a 3+a 5+a 7=a 1q 2+a 3q 2+a 5q 2=(a 1+a 3+a 5)q 2=21×2=42.5.C ∵-2<1,∴f(-2)=1+log 2[2-(-2)]=3;∵log 212>1, ∴f(log 212)=2log 212-1=2log 26=6.∴f(-2)+f(log 212)=9.6.D 如图,由已知条件可知,截去部分是以△ABC 为底面且三条侧棱两两垂直的正三棱锥D-ABC.设正方体的棱长为a,则截去部分的体积为16a 3,剩余部分的体积为a 3-16a 3=56a 3.它们的体积之比为15.故选D.评析 本题主要考查几何体的三视图和体积的计算,考查空间想象能力. 7.C 设圆心为P(a,b),由点A(1,3),C(1,-7)在圆上,知b=3-72=-2.再由|PA|=|PB|,得a=1.则P(1,-2),|PA|=√(1-1)2+(3+2)2=5,于是圆P 的方程为(x-1)2+(y+2)2=25.令x=0,得y=-2±2√6,则|MN|=|(-2+2√6)-(-2-2√6)|=4√6. 8.B 开始:a=14,b=18,第一次循环:a=14,b=4; 第二次循环:a=10,b=4; 第三次循环:a=6,b=4; 第四次循环:a=2,b=4; 第五次循环:a=2,b=2. 此时,a=b,退出循环,输出a=2.评析 熟悉“更相减损术”对理解框图所确定的算法有帮助. 9.C ∵S △OAB 是定值,且V O-ABC =V C-OAB ,∴当OC ⊥平面OAB 时,V C-OAB 最大,即V O-ABC 最大.设球O 的半径为R,则(V O-ABC )max =13×12R 2×R=16R 3=36,∴R=6,∴球O 的表面积S=4πR 2=4π×62=144π.评析 点C 是动点,如果以△ABC 为底面,则底面面积与高都是变量,因此转化成以△OAB 为底面(S △OAB 为定值),这样高越大,体积越大.10.B 当点P 与C 、D 重合时,易求得PA+PB=1+√5;当点P 为DC 的中点时,有OP ⊥AB,则x=π2,易求得PA+PB=2PA=2√2.显然1+√5>2√2,故当x=π2时, f(x)没有取到最大值,则C 、D 选项错误.当x ∈[0,π4)时, f(x)=tan x+√4+tan 2x ,不是一次函数,排除A,故选B.11.D 设双曲线E 的标准方程为x 2a 2-y 2b 2=1(a>0,b>0),则A(-a,0),B(a,0),不妨设点M 在第一象限内,则易得M(2a,√3a),又M 点在双曲线E 上,于是(2a)2a 2-(√3a)2b2=1,解得b 2=a 2,∴e=√1+b 2a 2=√2.12.A 令g(x)=f(x)x,则g'(x)=xf '(x)-f(x)x 2,由题意知,当x>0时,g'(x)<0,∴g(x)在(0,+∞)上是减函数.∵f(x)是奇函数, f(-1)=0,∴f(1)=-f(-1)=0, ∴g(1)=f(1)1=0,∴当x ∈(0,1)时,g(x)>0,从而f(x)>0; 当x ∈(1,+∞)时,g(x)<0,从而f(x)<0.又∵g(-x)=f(-x)-x=-f(x)-x=f(x)x=g(x),∴g(x)是偶函数,∴当x ∈(-∞,-1)时,g(x)<0,从而f(x)>0; 当x ∈(-1,0)时,g(x)>0,从而f(x)<0. 综上,所求x 的取值范围是(-∞,-1)∪(0,1).评析 出现xf '(x)+f(x)>0(<0)时,考虑构造函数F(x)=xf(x),出现xf '(x)-f(x)>0(<0)时,考虑构造函数g(x)=f(x)x.二、填空题 13.答案12解析 由于a,b 不平行,所以可以以a,b 作为一组基底,于是λa+b 与a +2b 平行等价于λ1=12,即λ=12.14.答案32解析 作出可行域,如图:由z=x+y 得y=-x+z,当直线y=-x+z 过点A (1,12)时,z 取得最大值,z max =1+12=32.15.答案 3解析 设f(x)=(a+x)(1+x)4,则其所有项的系数和为f(1)=(a+1)·(1+1)4=(a+1)×16,又奇数次幂项的系数和为12[f(1)-f(-1)],∴12×(a+1)×16=32,∴a=3.评析 二项展开式问题中,涉及系数和的问题,通常采用赋值法. 16.答案 -1n解析∵a n+1=S n+1-S n,∴S n+1-S n=S n+1S n,又由a1=-1,知S n≠0,∴1S n -1S n+1=1,∴{1S n}是等差数列,且公差为-1,而1S1=1a1=-1,∴1S n=-1+(n-1)×(-1)=-n,∴S n=-1n.三、解答题17.解析(Ⅰ)S△ABD=12AB·ADsin∠BAD,S△ADC=12AC·ADsin∠CAD.因为S△ABD=2S△ADC,∠BAD=∠CAD,所以AB=2AC.由正弦定理可得sin∠Bsin∠C =ACAB=12.(Ⅱ)因为S△ABD∶S△ADC=BD∶DC,所以BD=√2.在△ABD和△ADC中,由余弦定理知AB2=AD2+BD2-2AD·BDcos∠ADB,AC2=AD2+DC2-2AD·DCcos∠ADC.故AB2+2AC2=3AD2+BD2+2DC2=6.由(Ⅰ)知AB=2AC,所以AC=1.评析本题考查正弦定理,余弦定理的应用,以及三角形的面积公式.属常规题,中等偏易.18.解析(Ⅰ)两地区用户满意度评分的茎叶图如下:A地区B地区4 6 83 5 1 3 6 46 4 2 6 2 4 5 56 8 8 64 3 73 34 699 2 8 65 18 3 2 17 5 5 2 9 1 3通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散.(Ⅱ)记C A1表示事件:“A 地区用户的满意度等级为满意或非常满意”;C A2表示事件:“A 地区用户的满意度等级为非常满意”;C B1表示事件:“B 地区用户的满意度等级为不满意”;C B2表示事件:“B 地区用户的满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C=C B1C A1∪C B2C A2.P(C)=P(C B1C A1∪C B2C A2)=P(C B1C A1)+P(C B2C A2)=P(C B1)P(C A1)+P(C B2)P(C A2).由所给数据得C A1,C A2,C B1,C B2发生的频率分别为1620,420,1020,820,故P(C A1)=1620,P(C A2)=420,P(C B1)=1020,P(C B2)=820,P(C)=1020×1620+820×420=0.48.19.解析 (Ⅰ)交线围成的正方形EHGF 如图:(Ⅱ)作EM ⊥AB,垂足为M,则AM=A 1E=4,EM=AA 1=8.因为EHGF 为正方形,所以EH=EF=BC=10.于是MH=√EH 2-EM 2=6,所以AH=10.以D 为坐标原点,DA ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系D-xyz,则A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8),FE ⃗⃗⃗⃗⃗ =(10,0,0),HE⃗⃗⃗⃗⃗⃗ =(0,-6,8). 设n =(x,y,z)是平面EHGF 的法向量,则{n ·FE ⃗⃗⃗⃗ =0,n ·HE⃗⃗⃗⃗⃗ =0,即{10x =0,-6y +8z =0, 所以可取n =(0,4,3).又AF ⃗⃗⃗⃗⃗ =(-10,4,8),故|cos<n ,AF ⃗⃗⃗⃗⃗ >|=|n ·AF ⃗⃗⃗⃗⃗||n||AF ⃗⃗⃗⃗⃗ |=4√515. 所以AF 与平面EHGF 所成角的正弦值为4√515. 评析 本题背景常规,设问新颖,鼓励动手试验、创新尝试、独立思考.对空间想象力有较高要求.20.解析 (Ⅰ)设直线l:y=kx+b(k ≠0,b ≠0),A(x 1,y 1),B(x 2,y 2),M(x M ,y M ).将y=kx+b 代入9x 2+y 2=m 2得(k 2+9)x 2+2kbx+b 2-m 2=0,故x M =x 1+x 22=-kb k 2+9,y M =kx M +b=9b k 2+9.于是直线OM 的斜率k OM =y M x M =-9k ,即k OM ·k=-9.所以直线OM 的斜率与l 的斜率的乘积为定值.(Ⅱ)四边形OAPB 能为平行四边形.因为直线l 过点(m 3,m),所以l 不过原点且与C 有两个交点的充要条件是k>0,k ≠3. 由(Ⅰ)得OM 的方程为y=-9k x.设点P 的横坐标为x P .由{y =-9k x,9x 2+y 2=m 2得x P 2=k 2m 29k 2+81,即x P =3√k 2+9. 将点(m 3,m)的坐标代入l 的方程得b=m(3-k)3,因此x M =k(k -3)m 3(k 2+9). 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M .于是3√k 2+9=2×k(k -3)m3(k 2+9),解得k 1=4-√7,k 2=4+√7. 因为k i >0,k i ≠3,i=1,2,所以当l 的斜率为4-√7或4+√7时,四边形OAPB 为平行四边形.评析 本题考查直线与圆锥曲线的位置关系,设问常规,但对运算能力要求较高,考查学生的思维能力.21.解析 (Ⅰ)f '(x)=m(e mx -1)+2x.若m ≥0,则当x ∈(-∞,0)时,e mx -1≤0, f '(x)<0;当x ∈(0,+∞)时,e mx -1≥0, f '(x)>0.若m<0,则当x ∈(-∞,0)时,e mx -1>0, f '(x)<0;当x ∈(0,+∞)时,e mx -1<0, f '(x)>0.所以, f(x)在(-∞,0)单调递减,在(0,+∞)单调递增.(Ⅱ)由(Ⅰ)知,对任意的m, f(x)在[-1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f(x 1)-f(x 2)|≤e-1的充要条件是{f(1)-f(0)≤e -1,f(-1)-f(0)≤e -1,即{e m -m ≤e -1,e -m +m ≤e -1.① 设函数g(t)=e t -t-e+1,则g'(t)=e t -1.当t<0时,g'(t)<0;当t>0时,g'(t)>0.故g(t)在(-∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(-1)=e -1+2-e<0,故当t ∈[-1,1]时,g(t)≤0.当m ∈[-1,1]时,g(m)≤0,g(-m)≤0,即①式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m -m>e-1;当m<-1时,g(-m)>0,即e -m +m>e-1.综上,m 的取值范围是[-1,1].22.解析 (Ⅰ)由于△ABC 是等腰三角形,AD ⊥BC,所以AD 是∠CAB 的平分线.又因为☉O 分别与AB,AC 相切于点E,F,所以AE=AF,故AD ⊥EF.从而EF ∥BC.(Ⅱ)由(Ⅰ)知,AE=AF,AD ⊥EF,故AD 是EF 的垂直平分线.又EF 为☉O 的弦,所以O 在AD 上. 连结OE,OM,则OE ⊥AE.由AG 等于☉O 的半径得AO=2OE,所以∠OAE=30°.因此△ABC 和△AEF 都是等边三角形.因为AE=2√3,所以AO=4,OE=2.因为OM=OE=2,DM=12MN=√3,所以OD=1.于是AD=5,AB=10√33.所以四边形EBCF 的面积为12×(10√33)2×√32-12×(2√3)2×√32=16√33.23.解析 (Ⅰ)曲线C 2的直角坐标方程为x 2+y 2-2y=0,曲线C 3的直角坐标方程为x 2+y 2-2√3x=0. 联立{x 2+y 2-2y =0,x 2+y 2-2√3x =0,解得{x =0,y =0,或{x =√32,y =32. 所以C 2与C 3交点的直角坐标为(0,0)和(√32,32). (Ⅱ)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π.因此A 的极坐标为(2sin α,α),B 的极坐标为(2√3cos α,α).所以|AB|=|2sin α-2√3cos α|=4|sin (α-π3)|.当α=5π6时,|AB|取得最大值,最大值为4.24.解析 (Ⅰ)因为(√a +√b )2=a+b+2√ab ,(√c +√d )2=c+d+2√cd ,由题设a+b=c+d,ab>cd得(√a+√b)2>(√c+√d)2. 因此√a+√b>√c+√d.(Ⅱ)(i)若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(Ⅰ)得√a+√b>√c+√d.(ii)若√a+√b>√c+√d,则(√a+√b)2>(√c+√d)2,即a+b+2√ab>c+d+2√cd.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,√a+√b>√c+√d是|a-b|<|c-d|的充要条件.。
(3)2015年(全国卷II)(含答案)高考理科数学
CA1A 2015年高考理科数学试卷全国卷Ⅱ(3)参考答案1.A【解析】由已知得{}21B x x =-<<,故{}1,0A B =-,故选A .考点:集合的运算. 2.B【解析】由已知得24(4)4a a i i +-=-,所以240,44a a =-=-,解得0a =,故选B . 考点:复数的运算. 3.D【解析】由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关,故选D . 考点:正、负相关. 4.B【解析】设等比数列公比为q ,则2411121a a q a q ++=,又因为13a =,所以4260q q +-=,解得22q =,所以2357135()42a a a a a a q ++=++=,故选B .考点:等比数列通项公式和性质. 5.C【解析】由已知得2(2)1log 43f -=+=,又2log 121>,所以22log 121log 62(log 12)226f -===,故2(2)(log 12)9f f -+=,故选C .考点:分段函数. 6.D【解析】由三视图得,在正方体1111ABCD A B C D -中,截去四面体111A A B D -,如图所示,,设正方体棱长为a ,则11133111326A AB D V a a -=⨯=,故剩余几何体体积为3331566a a a -=,所以截去部分体积与剩余部分体积的比值为51,故选D .考点:三视图. 7.C【解析】由已知得321143AB k -==--,27341CB k +==--,所以1AB CB k k =-,所以AB CB ⊥,即ABC ∆为直角三角形,其外接圆圆心为(1,2)-,半径为5,所以外接圆方程为22(1)(2)25x y -++=,令0x =,得2y =±-,所以MN =C .考点:圆的方程.8.B【解析】程序在执行过程中,a ,b 的值依次为14a =,18b =;4b =;10a =;6a =;2a =;2b =,此时2a b ==程序结束,输出a 的值为2,故选B . 考点:程序框图. 9.C【解析】如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯==,故6R =,则球O 的表面积为24144S R ππ==,故选C .考点:外接球表面积和椎体的体积.10.B【解析】由已知得,当点P 在BC 边上运动时,即04x π≤≤时,tan PA PB x +=;当点P 在CD 边上运动时,即3,442x x πππ≤≤≠时,PA PB +=,当2x π=时,PA PB +=;当点P 在AD 边上运动时,即34x ππ≤≤时,tan PA PB x +=,从点P 的运动过程可以看出,轨迹关于直线2x π=对称,且()()42f f ππ>,且轨迹非线型,故选B .考点:函数的图象和性质.【解析】设双曲线方程为22221(0,0)x y a b a b -=>>,如图所示,AB BM =,0120ABM ∠=,过点M 作MN x ⊥轴,垂足为N ,在Rt BMN ∆中,BN a =,3MN a =,故点M 的坐标为(2,3)M a a ,代入双曲线方程得2222a b a c ==-,即222c a =,所以2e =,故选D .考点:双曲线的标准方程和简单几何性质.12.A【解析】记函数()()f x g x x=,则''2()()()xf x f x g x x -=,因为当0x >时,'()()0xf x f x -<,故当0x >时,'()0g x <,所以()g x 在(0,)+∞单调递减;又因为函数()()f x x R ∈是奇函数,故函数()g x 是偶函数,所以()g x 在(,0)-∞单调递减,且(1)(1)0g g -==.当01x <<时,()0g x >,则()0f x >;当1x <-时,()0g x <,则()0f x >,综上所述,使得()0f x >成立的x 的取值范围是(,1)(0,1)-∞-,故选A .考点:导数的应用、函数的图象与性质. 13.12【解析】因为向量a b λ+与2a b +平行,所以2a b k a b λ+=+(),则12,k k λ=⎧⎨=⎩,所以12λ=.考点:向量共线. 14.32【解析】画出可行域,如图所示,将目标函数变形为y x z =-+,当z 取到最大时,直线y x z =-+的纵截距最大,故将直线尽可能地向上平移到1(1,)2D ,则z x y =+的最大值为32. 考点:线性规划.xy–1–2–3–41234–1–2–3–41234DCBO【解析】试题分析:由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =. 考点:二项式定理. 16.1n-【解析】由已知得111n n n n n a S S S S +++=-=⋅,两边同时除以1n n S S +⋅,得1111n nS S +=--,故数列1n S ⎧⎫⎨⎬⎩⎭是以1-为首项,1-为公差的等差数列,则11(1)n S n n =---=-,所以1n S n=-. 考点:等差数列和递推关系. 17.【解析】(Ⅰ)1sin 2ABD S AB AD BAD ∆=⋅∠,1sin 2ADC S AC AD CAD ∆=⋅∠,因为2ABDADC S S ∆∆=,BAD CAD ∠=∠,所以2AB AC =.由正弦定理可得sin 1sin 2B AC C AB ∠==∠.(Ⅱ)因为::ABD ADC S S BD DC ∆∆=,所以2BD =.在ABD ∆和ADC ∆中,由余弦定理得2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠. 222222326AB AC AD BD DC +=++=.由(Ⅰ)知2AB AC =,所以1AC =.18.【解析】(Ⅰ)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散. (Ⅱ)记1A C 表示事件:“A 地区用户满意度等级为满意或非常满意”;2A C 表示事件:“A 地区用户满意度等级为非常满意”; 1B C 表示事件:“B 地区用户满意度等级为不满意”; 2B C 表示事件:“B 地区用户满意度等级为满意".则1A C 与1B C 独立,2A C 与2B C 独立,1B C 与2B C 互斥,1122B A B A C C C C C =.1122()()B A B A PC P C C C C =1122()()B A B A P C C P C C =+1122()()()()B A B A P C P C P C P C =+.由所给数据得1A C ,2A C ,1B C ,2B C 发生的概率分别为1620,420,1020,820.故1()A P C 16=20, 2()=A P C 420,1()=B P C 1020,2()B P C 8=20,故101684()=+0.4820202020P C ⨯⨯=.19.【解析】(Ⅰ)交线围成的正方形EHGF 如图:(Ⅱ)作EM AB ⊥,垂足为M ,则14AM A E ==,18EM AA ==,因为EHGF 为正方形,所以10EH EF BC ===.于是6MH ==,所以10AH =.以D 为坐标原点,DA 的方向为x 轴的正方向,建立如图所示的空间直角坐标系D xyz -,则(10,0,0)A ,(10,10,0)H ,(10,4,8)E ,(0,4,8)F ,(10,0,0)FE =,(0,6,8)HE =-.设(,,)n x y z =是平面EHGF 的法向量,则0,0,n FE n HE ⎧⋅=⎪⎨⋅=⎪⎩即100,680,x y z =⎧⎨-+=⎩所以可取(0,4,3)n =.又(10,4,8)AF =-,故45cos ,15n AF n AF n AF⋅<>==⋅.所以直线AF 与平面α A 1AB 1BD 1DC 1CFE HGM20.【解析】(Ⅰ)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y . 将y kx b =+代入2229x y m +=得2222(9)20k x kbx b m +++-=,故12229M x x kbx k +==-+, 299M M by kx b k =+=+.于是直线OM 的斜率9M OM M y k x k ==-,即9OM k k ⋅=-.所以直线OM 的斜率与l 的斜率的乘积为定值.(Ⅱ)四边形OAPB 能为平行四边形. 因为直线l 过点(,)3mm ,所以l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠. 由(Ⅰ)得OM 的方程为9y x k =-.设点P 的横坐标为P x .由2229,9,y x kx y m ⎧=-⎪⎨⎪+=⎩得2222981Pk m x k =+,即P x =.将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x ==2(3)23(9)mk k k -⨯+.解得14k =24k =因为0,3i i k k >≠,1i =,2,所以当l 的斜率为4-4+OAPB 为平行四边形.21.【解析】(Ⅰ)'()(e 1)2mxf x m x =-+.若0m ≥,则当(,0)x ∈-∞时,e 10mx -≤,'()0f x <;当(0,)x ∈+∞时,e 10mx -≥,'()0f x >.若0m <,则当(,0)x ∈-∞时,e 10mx ->,'()0f x <;当(0,)x ∈+∞时,e 10mx -<,'()0f x >.所以,()f x 在(,0)-∞单调递减,在(0,)+∞单调递增.(Ⅱ)由(Ⅰ)知,对任意的m ,()f x 在[1,0]-单调递减,在[0,1]单调递增,故()f x 在0x =处取得最小值.所以对于任意12,[1,1]x x ∈-,12()()e 1f x f x -≤-的充要条件是:(1)(0)e 1,(1)(0)e 1,f f f f -≤-⎧⎨--≤-⎩即e e 1,e e 1,m mm m -⎧-≤-⎪⎨+≤-⎪⎩①,设函数()e e 1t g t t =--+,则'()e 1t g t =-.当0t <时,'()0g t <;当0t >时,'()0g t >.故()g t 在(,0)-∞单调递减,在(0,)+∞单调递增.又(1)0g =,1(1)e 2e 0g --=+-<,故当[1,1]t ∈-时,()0g t ≤.当[1,1]m ∈-时,()0g m ≤,()0g m -≤,即①式成立.当1m >时,由()g t 的单调性,()0g m >,即e e 1m m ->-;当1m <-时,()0g m ->,即e e 1m m -+>-.综上,m 的取值范围是[1,1]-.22.【解析】(Ⅰ)由于ABC ∆是等腰三角形,AD BC ⊥,所以AD 是CAB ∠的平分线.又因为O 分别与AB 、AC 相切于E 、F 两点,所以AE AF =,故AD EF ⊥.从而//EF BC .(Ⅱ)由(Ⅰ)知,AE AF =,AD EF ⊥,故AD 是EF 的垂直平分线,又EF 是O 的弦,所以O 在AD 上.连接OE ,OM ,则OE AE ⊥.由AG 等于O 的半径得2AO OE =,所以030OAE ∠=.所以ABC ∆和AEF ∆都是等边三角形.因为23AE =,所以4AO =,2OE =.因为2OM OE ==,132DM MN ==,所以1OD =.于是5AD =,1033AB =.所以四边形EBCF 的面积221103313163()(23)232223⨯⨯-⨯⨯=.23.【解析】(Ⅰ)曲线2C 的直角坐标方程为2220x y y +-=,曲线3C 的直角坐标方程为2230x y x +-=.联立222220,230,x y y x y x ⎧+-=⎪⎨+-=⎪⎩解得0,0,x y =⎧⎨=⎩或33,2x y ⎧=⎪⎪⎨⎪=⎪⎩所以2C 与1C 交点的直角坐标为(0,0)和3)2. (Ⅱ)曲线1C 的极坐标方程为(,0)R θαρρ=∈≠,其中0απ≤<.因此A 得到极坐标为(2sin ,)αα,B 的极坐标为,)αα.所以2sin AB αα=-4in()3s πα=-,当56πα=时,AB 取得最大值,最大值为4.24.【解析】(Ⅰ)因为2a b =++,2c d =++a b c d +=+,ab cd >,得22>>(Ⅱ)(ⅰ)若a b c d -<-,则22()()a b c d -<-.即22()4()4a b ab c d cd +-<+-.因为a b c d +=+,所以ab cd >>(ⅱ)若>,则22>,即a b ++>c d ++.因为a b c d +=+,所以ab cd >,于是22()()4a b a b ab -=+-2()4c d cd <+-2()c d =-.因此a b c d -<-,综上,>a b c d -<-的充要条件.。
2015全国卷2理科数学试题及答案解析
2014年普通高等学校招生全国统一考试理科(新课标卷二H)第I 卷一. 选择题:本大题共 12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要 求的.1.设集合 M={0,1,2 }, N= x|x 2 3x 2<0,则 M N =() A. {1}B. {2}C. {0, 1}D. { 1, 2}【答案】D 【解析】把M= {0,1,2}中的数,代入不等式x2-3x+ 2 <0,经检验x=1,2满足。
所以选 D.A. - 5B. 5C. - 4+【答案】B 【解析】乙=2+匕乙与z 2关于虚轴对称,^z 2= -2+ i, •••砂2 = -1- 4= -5,故选 B.3.设向量 a,b 满足 | a+b |= , 10 , | a-b |= . 6,贝U a b =() A. 1B. 2C. 3D. 5【答案】A 【解析】2 2 2 2| a + b |= -J 10, | a - b =6,, - - a + b + 2ab = 10,a + b - 2ab = 6, 联立方程解得ab = 1,故选A.【答案】B2.设复数乙,z 在复平面内的对应点关于虚轴对称, Z 1 2 i ,贝V g ()iD. - 4 - i4.钝角三角形 ABC 的面积是, AB=1, BC=_ 2 ,则 AC=()A. 5 C. 2 D. 1【解】1 1S A ABC = acsin B = —? 2 ?1 ?sin B =2 2B=丄,或匕.当B=丄时,经计算A ABC 为等腰直角三角形,不 符合题意,舍去 4 4 4 B= 3n ,使用余弦定理,b 2 = a 2 + c 2-2accosB,解得 b= V5.故选B. 4A17B.5C.10 D.1 279273【答案】 C【解析】加工前的零件半径为 3,高6, •••体积v 1= 9 n ?6= 54 n加工后的零件,左半部 为小圆柱,半径2,高4,右半部为大圆柱,半 径为3,高为2. 二体积 v 2 = 4冗?4+ 9n ?2= 34 n..••削掉部分的体积与原体 积之比二54 n-34n= 10故选C. 54 n 277.执行右图程序框图,如果输入的x,t 均为2,则输出的S=(A. 4B. 5C. 6D. 7【答案】 C【解析】sinB=^2工 /输入Ji. t / 工壯心3H E*1/输出宮/TJ-k 二k ・L5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是6.如图,网格纸上正方形小格的边长为 1 (表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为 3cm,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的 比值为( )x= 2,t= 2,变量变化情况如下: M S K1 3 12 5 22 73 故选C.8.设曲线y=a x-ln( x+1) 在点(0,0)处的切线方程为y=2x,则a=A. 0B. 1C.2D. 3【答案】D【解析】f(x)=ax-ln(x+1),二f'(x)=a- x+ 1二f⑼二0,且f(0) = 2•联立解得a = 3故选D.x y 7W 09.设x,y 满足约束条件x 3y 1< 0,则z 2x y的最大值为()3x y 5> 0A.10 B. 8 C. 3 D. 2【答案】 B【解析】画出区域,可知区域为三角形,经比较斜率,可知目标函数z= 2x- y在两条直线x-3y+1 = 0与x+ y-7= C的交点(5,2)处,取得最大值z= 8.故选B.10.设F为抛物线C: y23x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则A OAB的面积为()A.建B. 9方C63 D. 94 8 . 32 4D【答案】【解析】设点A 、B 分别在第一和第四象限,AF = 2m,BF=2n ,则由抛物线的定义和 直角三角形知识可得, 2m= 2?3+ 3m,2n = 2?3 - 3n ,解得 m= 3(2+ 一 3),n =号(2- 3), /-m+ n= 6. /•S A °AB = 2?3?(m+n )= 9.故选 D.△2 4 42 【答案】 C【解析】如图,分别以GB, GA, C 1C 为X,Y,Z 轴,建立坐标系。
2015年高考理科数学全国卷2-答案
2015年普通高等学校招生全国统一考试(全国新课标卷2)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】由已知得{|21}B x x =-<<,故,}10{AB -=,故选A .【提示】解一元二次不等式,求出集合B ,然后进行交集的运算即可. 【考点】集合的交集运算和一元二次方程求根. 2.【答案】B【解析】由已知得24+(4)i 4i a -=-,所以40a =,244a -=-,解得0a =,故选B .【提示】首先将坐标展开,然后利用复数相等解之. 【考点】复数的四则运算. 3.【答案】D【解析】解:A .从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A 正确;B .2004~2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B 正确;C .从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C 正确;D .2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D 错误. 故选:D【提示】A .从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A 正确; B .从2007年开始二氧化硫排放量变少,故B 正确;C .从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C 正确;D .2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D 错误. 【考点】柱形图信息的获得. 4.【答案】B【解析】设等比数列公比为q ,则24111++21a a q a q =,又因为13a =,所以42+60q q -=,解得22q =,所以2357135++(++)42a a a a a a q ==,故选B .【提示】由已知,13a =,135++21a a a =,利用等比数列的通项公式可求q ,然后在代入等比数列通项公式53261)(0,1),故选())f x x=为减函数,,0)(0,+)∞上的偶函数,根据函数0等价于x g【解析】(Ⅰ)两地区用户满意度评分的茎叶图如下:122B A C C ,12212))+()B A A B C C P C 1,2A C ,C 108【解析】(Ⅰ)交线围成的正方形EHGF 如图:uuu r 即可求出法向量n,AF。
2015年高考理科数学全国卷2及答案
数学试卷 第1页(共21页)数学试卷 第2页(共21页)数学试卷 第3页(共21页)绝密★启用前2015年普通高等学校招生全国统一考试(全国新课标卷2)数学(理科)使用地区:海南、宁夏、黑龙江、吉林、辽宁、新疆、云南、内蒙古、青海、贵州、甘肃、广西、西藏本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共24题,共150分,共6页.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{2,1,0,1,2}A =--,{|(1)(2)0}B x x x =-+<,则AB =( )A .{1,0}A =-B .{0,1}C .{1,0,1}-D .{0,1,2} 2.若a 为实数,且(2i)(2i)4i a a +-=-,则a =( )A .1-B .0C .1D .23.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关4.已知等比数列{}n a 满足13a =,135a a a ++=21,则357a a a ++=( )A .21B .42C .63D .845.设函数211log (2),1,()2, 1,x x x f x x -+-⎧=⎨⎩<≥则2(2)(log 12)f f -+=( )A .3B .6C .9D .126.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A.18B .17C .16D .157.过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( )A .26B .8C .46D .108.如图所示的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =( )A .0B .2C .4D .149.已知A ,B 是球O 的球面上两点,∠AOB =90°, C 为该球面上的动点.若三棱锥O-ABC 体积的 最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π10.如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则()y f x =的图象大致为( )ABCD11.已知A ,B 为双曲线E 的左、右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A .5B .2C .3D .2 12.设函数'()f x 是奇函数()()f x x ∈R 的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围( )A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(,1)(1,0)-∞--D .(0,1)(1,)+∞--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共21页)数学试卷 第5页(共21页)数学试卷 第6页(共21页)第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.14.若x ,y 满足约束条件10,20,220,x y x y x y -+⎧⎪-⎨⎪+-⎩≥≤≤则z x y =+的最大值为________.15.4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =________. 16.设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________. 三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)ABC △中,D 是BC 上的点,AD 平分BAC ∠,ABD △面积是ADC △面积的2倍.(Ⅰ)求sin sin BC∠∠;(Ⅱ)若1AD =,22DC =,求BD 和AC 的长. 18.(本小题满分12分)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79 (Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分 低于70分 70分到89分 不低于90分 满意度等级 不满意 满意 非常满意记事件C :“A 地区用户的满意度等级高于B 地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.19.(本小题满分12分)如图,长方体1111ABCD A B C D -中,=16AB ,=10BC ,18AA =,点E ,F 分别在11A B ,11D C 上,114A E D F ==.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说明画法和理由); (Ⅱ)求直线AF 与平面α所成角的正弦值.20.(本小题满分12分)已知椭圆222 9(0)C x y m m +=>:,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,请说明理由.21.(本小题满分12分)设函数2()mx f x e x mx =+-.(Ⅰ)证明:()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增;(Ⅱ)若对于任意12,[1,1]x x ∈-,都有12()()1f x f x e --≤,求m 的取值范围.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,O 为等腰三角形ABC 内一点,⊙O 与ABC △的底边BC 交于M ,N 两点,与底边上的高AD 交于点G ,且与AB ,AC 分别相切于E ,F 两点. (Ⅰ)证明:EF BC ∥;(Ⅱ)若AG 等于⊙O 的半径,且23AE MN ==,求四边形EBCF 的面积.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,0t ≠),其中0πα≤<.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2:2sin C ρθ=,3:23cos C ρθ=. (Ⅰ)求2C 与3C 交点的直角坐标;(Ⅱ)若1C 与2C 相交于点A ,1C 与3C 相交于点B ,求||AB 最大值.24.(本小题满分10分)选修4—5:不等式选讲设a ,b ,c ,d 均为正数,且a b c d +=+,证明: (Ⅰ)若ab cd >,则a b c d +>+; (Ⅱ)a b c d +>+是||||a b c d -<-的充要条件.数学试卷 第7页(共21页)数学试卷 第8页(共21页)数学试卷 第9页(共21页)2015年普通高等学校招生全国统一考试(全国新课标卷2)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】由已知得{|21}B x x =-<<,故,}10{AB -=,故选A .【提示】解一元二次不等式,求出集合B ,然后进行交集的运算即可. 【考点】集合的交集运算和一元二次方程求根. 2.【答案】B【解析】由已知得24+(4)i 4i a -=-,所以40a =,244a -=-,解得0a =,故选B .【提示】首先将坐标展开,然后利用复数相等解之. 【考点】复数的四则运算. 3.【答案】D【解析】解:A .从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A 正确;B .2004~2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B 正确;C .从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C 正确;D .2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D 错误. 故选:D【提示】A .从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A 正确;B .从2007年开始二氧化硫排放量变少,故B 正确;C .从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C 正确;D .2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D 错误. 【考点】柱形图信息的获得. 4.【答案】B51AB CB k =-,所以径为5,所以面积为:4π144πS R ==,选C .。
2015年全国卷2(理科数学)含答案
绝密★启用前2015年普通高等学校招生全国统一考试理科数学(全国Ⅱ卷)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 已知集合A={-2,-1,0,2},B={x|(x-1)(x+2)<0},则A∩B=【A】(A){-1,0}(B){0,1}(C){-1,0,1}(D){0,1,2}(2) 若a为实数且(2+ai)(a-2i)=-4i,则a=【B】(A)-1 (B)0 (C)1 (D)2(3) 根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是【D】(A)逐年比较,2008年减少二氧化硫排放量的效果最显著.(B)2007年我国治理二氧化硫排放显现成效.(C)2006年以来我国二氧化硫年排放量呈减少趋势.(D)2006年以来我国二氧化硫年排放量与年份正相关.(4)等比数列{a n }满足a 1=3,a 1+ a 3+ a 5=21,则a 3+ a 5+ a 7 =【B 】(A )21 (B )42 (C )63 (D )84(5)设函数则【C 】(A )3 (B )6 (C )9 (D )12(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为【D 】 (A )(B ) (C ) (D ) (7)过三点A (1,3),B (4,2),C (1,-7)的圆交于y 轴于M 、N 两点,则=【C 】(A )2 (B )8 (C )4 (D )10(8)右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a ,b 分别为14,18,则输出的a =【B 】(A )0 (B )2 (C )4(D )14(9)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O的表面积为【C 】A .36πB .64πC .144πD .256π211log (2),1(),2,1x x x f x x -+-⎧=⎨≥⎩2(2)(og 12)f f l -+=81716151MN 66(10).如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,∠BOP =x.将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为【B 】(11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为【D 】AB .2C D (12)设函数是奇函数的导函数,,当x >0时,<0,则使得f (x ) >0成立的x 的取值范围是【A 】 A . B . C .D .第Ⅱ卷二、填空题本大题共四个小题,每小题5分。
2015理科数学全国2卷(可编辑修改word版)
⎩2015 年高考理科数学试卷全国卷Ⅱ一、选择题:本大题共 12 道小题,每小题 5 分1.已知集合 A ={- 2,-1, 0,1, 2}, B = {x (x-1)(x + 2 < 0},则 A B = ()A . A = {-1, 0}B .{0,1}C .{-1, 0,1}D .{0,1, 2}2.若a 为实数且(2 + ai )(a - 2i ) = -4i ,则a = ()A. -1B. 0 C .1 D . 2 3. 根据下面给出的 2004 年至 2013 年我国二氧化硫排放量(单位:万吨)柱形图。
以下结论不正确的是( )A .逐年比较,2008 年减少二氧化硫排放量的效果最显著B .2007 年我国治理二氧化硫排放显现C .2006 年以来我国二氧化硫年排放量呈减少趋势D .2006 年以来我国二氧化硫年排放量与年份正相关4. 已知等比数列{a n } 满足 a 1=3,a 1 + a 3 + a 5 =21,则 a 3 + a 5 + a 7 = ()A .21B .42C .63D .845.设函数 f (x ) = ⎧1+ log 2 (2 - x ), x < 1,, f (-2) + f (log 12) = ()⎨2x -1, x ≥ 1, 2 A .3 B .6 C .9 D .126.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )1 1 1 1 A .B .C .D .87656653 7.过三点 A (1, 3) , B (4, 2) , C (1, -7) 的圆交 y 轴于 M ,N 两点,则| MN |= ( )A .2B .8C .4D .108. 右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入 a , b 分别为 14,18,则输出的a = ()A .0B .2C .4D .149. 已知 A , B 是球 O 的球面上两点, ∠AOB = 90 , C 为该球面上的动点,若三棱锥O - ABC 体积的最大值为 36,则球O 的表面积为( )A . 36 B. 64 C.144 D. 25610. 如图,长方形 ABCD 的边 AB = 2 , BC = 1, O 是 AB 的中点,点 P 沿着边 BC ,CD 与 DA 运动,记∠BOP = x .将动 P 到 A 、 B 两点距离之和表示为 x 的函数 f (x ) ,则 y = ()f (x ) 的图像大致为11. 已知 A ,B 为双曲线E 的左,右顶点,点 M 在E 上,∆ABM 为等腰三角形,且顶角为 120°,则 E 的离心率为()A .B . 2C .D .12. 设函数 f' (x ) 是奇函数f (x )(x ∈ R ) 的导函数, f (-1) = 0 , 当 x > 0 时,xf ' (x ) - f (x ) < 0 ,则使得 f (x ) > 0成立的x 的取值范围是()2⎨ ⎩ A. (-∞, -1) (0,1) C . (-∞, -1) (-1, 0)B. (-1, 0) (1, +∞) D . (0,1) (1, +∞)二、填空题:本大题共 4 小题,每小题 5 分,共 20 分13.设向量a , b 不平行,向量a + b 与 a + 2b 平行,则实数=.⎧x - y +1 ≥ 0,14.若 x ,y 满足约束条件⎪x - 2 y ≤ 0, ,则 z = x + y 的最大值为.⎪x + 2 y - 2 ≤ 0,15. (a + x )(1+ x )4 的展开式中 x 的奇数次幂项的系数之和为 32,则a =. 16. 设S n 是数列{a n } 的前n 项和,且 a 1 = -1 , a n +1 = S n S n +1 ,则 S n = .三、解答题17.(本题满分 12 分) ∆ABC 中, D 是 BC 上的点, AD 平分∠BAC , ∆ABD 面积是 ∆ADC 面积的 2 倍. sin ∠B(Ⅰ) 求;sin ∠C(Ⅱ)若 AD = 1 , DC =2 ,求 BD 和 AC 的长.218.(本题满分 12 分)某公司为了解用户对其产品的满意度,从 A , B 两地区分别随机调查了 20 个用户,得到用户对产品的满意度评分如下: A 地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89 B 地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);E B 1D(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级: 满意度评分 低于 70 分 70 分到 89 分 不低于 90 分 满意度等级不满意满意非常满意记时间 C :“A 地区用户的满意度等级高于 B 地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率, 求 C 的概率.19.(本题满分 12 分)如图,长方体 ABCD - A 1B 1C 1D 1 中, AB =16 , BC =10 , AA 1 = 8 ,点 E , F 分别在 A 1B 1 , C 1D 1 上, A 1E = D 1F = 4 .过点 E , F 的平面与此长方体的面相交,交线围成一个正方形.D 1F C 1A 1CAB(Ⅰ)在图中画出这个正方形(不必说出画法和理由); (Ⅱ)求直线 AF 与平面所成角的正弦值.20.(本题满分 12 分)已知椭圆C : 9x 2 + y 2 = m 2 (m > 0) ,直线l 不过原点O 且不平行于坐标轴, l 与C 有两个交点 A , B ,线段 AB 的中点为 M . (Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值;(Ⅱ)若l 过点 m( , m ) 3,延长线段OM 与C 交于点 P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.21.(本题满分 12 分)设函数 f (x ) = e mx + x 2 - mx .(Ⅰ)证明: f (x ) 在(-∞, 0) 单调递减,在(0, +∞) 单调递增;(Ⅱ)若对于任意 x 1 , x 2 ∈[-1,1] ,都有 f (x 1 ) - f (x 2 ) ≤ e -1,求m 的取值范围.22.(本小题满分 10 分)选修 4—1:几何证明选讲如图, O 为等腰三角形 ABC 内一点,圆O 与∆ABC 的底边 BC 交于 M 、 N 两点与底边上的高 AD 交于点G ,与 AB 、 AC 分别相切于 E 、 F 两点.a b c d b c ⎨y = t sin ,AGEFOB MD NC(Ⅰ)证明: EF / / BC ;(Ⅱ) 若 AG 等于 O 的半径,且 AE = MN =2,求四边形 EBCF 的面积.23.(本小题满分 10 分)选修 4-4:坐标系与参数方程在直角坐标系 xoy 中,曲线C 1 : ⎧x = t cos ,( t 为参数, t ≠ 0 ),其中0 ≤< ,在 ⎩以 O 为极点, x 轴正半轴为极轴的极坐标系中, 曲线 C 2 : = 2 sin , 曲线C 3 : = 2 3 cos.(Ⅰ).求C 2 与C 1 交点的直角坐标;(Ⅱ).若C 2 与C 1 相交于点 A , C 3 与C 1 相交于点 B ,求 AB 的最大值.24.(本小题满分 10 分)选修 4-5 不等式选讲设a ,b ,c ,d 均为正数,且 a + b = c + d ,证明:(Ⅰ)若 ab > cd ,则 + > + ;(Ⅱ) + > + 是 a - b < c - d 的充要条件.3 a d2 2参考答案1.A【解析】由已知得 B = {x - 2 < x < 1},故 A B = {-1, 0} ,故选 A . 考点:集合的运算. 2.B【解析】由已知得4a + (a 2 - 4)i = -4i ,所以4a = 0, a 2 - 4 = -4 ,解得 a = 0 ,故选 B .考点:复数的运算. 3.D【解析】由柱形图得,从 2006 年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关,故选 D . 考点:正、负相关. 4.B【解析】设等比数列公比为q ,则 a + a q 2 + a q 4 = 21,又因为 a = 3,所以 q 4 + q 2 - 6 = 0 ,1111解得 q 2 = 2 ,所以 a + a + a = (a + a + a )q 2 = 42 ,故选 B .357135考点:等比数列通项公式和性质. 5.C【 解 析 】 由 已 知 得f (-2) = 1+ log 2 4 = 3 , 又 log 2 12 > 1, 所 以f (log 12) = 2log 2 12-1= 2log 2 6 = 6 ,故 f (-2) + f (log 12) = 9 ,故选 C . 考点:分段函数. 6.D【解析】由三视图得,在正方体 ABCD - A 1B 1C 1D 1 中,截去四面体 A - A 1B 1D 1 ,如图所示,,设正方体棱长为aD 1C 1,则VA - A 1B 1D 1= 1 ⨯ 1 a 3 = 1 a 3,故剩余几何体体积为 A 1B 13 2 6Da 3 - 1 a 3 = 5 a 3 ,所以截去部分体积与剩余部分体积C6 61的比值为 ,故选 D .5考点:三视图.AB7.C【解析】由已知得 k3 - 21 = = - , k= 2 + 7 = -3 ,所以 k k = -1 ,所以 AB ⊥ CB AB 1- 4 3 CB 4 -1AB CB, 即 ∆ABC 为直角三角形, 其外接圆圆心为 (1, -2) , 半径为 5 , 所以外接圆方程为(x -1)2 + ( y + 2)2 = 25 ,令 x = 0 ,得 y = ±2 - 2 ,所以 MN = 4 ,故选 C .6 6( 1 tan x -1)2 +1 , x - = > > 考点:圆的方程. 8.B【解析】程序在执行过程中, a , b 的值依次为 a = 14 , b = 18 ; b = 4 ; a = 10 ; a = 6 ; a = 2 ; b = 2 ,此时 a = b = 2 程序结束,输出a 的值为 2,故选 B . 考点:程序框图. 9.C【解析】如图所示,当点 C 位于垂直于面 AOB 的直径端点时,三棱锥O - ABC 的体积最大, 设球O 的半径为 R ,此时V= V= 1 ⨯ 1 R 2 ⨯ R = 1R 3 = 36 ,故 R = 6 ,则球O O - ABCC - AOB的表面积为 S = 4R 2 = 144,故选 C .3 2 6考点:外接球表面积和椎体的体积.C10.B【 解 析 】 由 已 知 得 , 当 点 P 在 BC 边 上 运 动 时 , 即0 ≤ x ≤ 时 ,4PA + PB = + tan x ;当点 P 在 CD 边上运动时,即 ≤ x ≤ 3≠ 时,4 4 2PA + PB = + ,当 x = 时, PA + PB = 2 2;当点 P在 AD 边上运动时,即 3≤ x ≤ 时, PA + PB = 4- tan x ,从点 P 的运动过程可以看出,轨迹关于直线 x = 对称,且 f ( ) > f ( ) ,且轨迹非线型,故选 B .2 4 2考点:函数的图象和性质.11.Dx 2 【解析】设双曲线方程为 a 2 y 2b 21(a 0, b 0) ,如图所示, AB = BM , ∠ABM = 1200 ,过点 M 作MN ⊥ x 轴,垂足为 N ,在 Rt ∆BMN 中, BN = a ,OABtan 2 x + 4 ( 1tan x +1)2 +1 2 tan 2 x + 4MN = 3 a ,故点 M 的坐标为 M (2a , 3a ) ,代入双曲线方程得 a 2 = b 2 = a 2 - c 2 ,即c 2 = 2a 2 ,所以e = ,故选 D .考点:双曲线的标准方程和简单几何性质.12.A【 解 析 】 记 函 数g (x ) =f (x ), 则 xg '(x ) =xf ' (x ) - f (x ) x 2, 因 为 当x > 0 时 ,xf ' (x ) - f (x ) < 0 ,故当 x > 0 时, g ' (x ) < 0,所以 g (x ) 在(0, +∞) 单调递减;又因为函数f (x )(x ∈ R ) 是奇函数, 故函数g (x ) 是偶函数, 所以 g (x ) 在 (-∞, 0) 单调递减, 且g (-1) = g (1) = 0 .当0 < x < 1时, g (x ) > 0 ,则 f (x ) > 0 ;当 x < -1时, g (x ) < 0 ,则 f (x ) > 0 ,综上所述,使得 f (x ) > 0 成立的 x 的取值范围是(-∞, -1) (0,1) ,故选A . 考点:导数的应用、函数的图象与性质. 1 13.2⎧= k ,1【解析】因为向量考点:向量共线. 3 14.2a +b 与 a + 2b 平行,所以a + b = (k a + 2b ),则⎨ ⎩1 = 2k , 所以= .2【解析】画出可行域,如图所示,将目标函数变形为 y = -x + z , 当 z 取到最大时, 直线y = -x + z 的纵截距最大,故将直线尽可能地向上平移到1D (1, ) 2 ,则 z = x + y 的最大值为 3 . 2考点:线性规划.15. 3 【解析】试题分析:由已知得(1+ x )4 = 1+ 4x + 6x 2 + 4x 3 + x 4 ,故(a + x )(1+ x )4 的展开式中 x 的奇数次幂项分别为 4ax , 4ax 3 , x , 6x 3 , x 5 ,其系数之和为 4a + 4a +1+6+1=32 ,解得2 4 y 32 B1Dx–4–3–2–1O–1 1234C–2–3–4a = 3 .考点:二项式定理.1 16. -n11 【解析】由已知得 a n +1 = S n +1 - S n = S n +1 ⋅ S n ,两边同时除以 S n +1 ⋅ S n ,得 S-n +1S n= -1,⎧ 1 ⎫ 1故数列 ⎨ ⎩ 1 ⎬ 是以 -1为首项, -1为公差的等差数列, 则 n ⎭= -1- (n -1) = -n , 所以n S n = - n.考点:等差数列和递推关系.1 117. 【解析】(Ⅰ) S ∆ABD = 2 AB ⋅ AD sin ∠BAD , S ∆ADC = 2AC ⋅ AD sin ∠CAD ,因为S = 2S, ∠BAD = ∠CAD ,所以 AB = 2 A C .由正弦定理可得 sin ∠B = AC = 1∆ABD.∆ADCsin ∠C AB 2(Ⅱ)因为 S ∆ABD : S ∆ADC = BD : DC ,所以 BD = 理得.在∆ABD 和∆ADC 中,由余弦定AB 2 = AD 2 + BD 2 - 2 AD ⋅ BD cos ∠ADB , AC 2 = AD 2 + DC 2 - 2 AD ⋅ DC cos ∠ADC.AB 2 + 2 AC 2 = 3AD 2 + BD 2 + 2DC 2 = 6 .由(Ⅰ)知 AB = 2 AC ,所以 AC = 1 .18. 【解析】(Ⅰ)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A 地区用户满意度评分的平均值高于 B 地区用户满意度评分的平均值; A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散.2 S SEH 2 - EM 2 A 2 B 1 B 2⨯ ⨯ = DA = ⎩ ⋅(Ⅱ)记C A 1 表示事件:“A 地区用户满意度等级为满意或非常满意”;C A 2 表示事件:“A 地区用户满意度等级为非常满意”;C B 1 表示事件:“B 地区用户满意度等级为不满意”;C B 2 表示事件:“B 地区用户满意度等级为满意”.则C A 1 与C B 1 独立, C A 2 与C B 2 独立, C B 1 与C B 2 互斥, C = C B 1C A 1 C B 2C A 2 .P (C ) = P (C B 1C A 1 C B 2C A 2 ) = P (C B 1C A 1 ) + P (C B 2C A 2 )= P (C B 1 )P (C A 1 ) + P (C B 2 )P (C A 2 ) .由所给数据得C A 1 , C A 2 , C B 1 , C B 2 发生的概164 10 8 率分别为20,20,20,20.故 P (C A 1 )16 = , 20P (C )= 4 , P (C )= 10 , P (C ) = 820 20 20 10 16 8 4,故 P (C )= + 0.48 .20 20 20 2019. 【解析】(Ⅰ)交线围成的正方形 EHGF如图:( Ⅱ ) 作 EM ⊥ AB , 垂 足 为 M , 则AM = A 1E = 4 , EM = AA 1 = 8 , 因 为EHGF 为正方形, 所以 EH = EF = BC = 10 . 于是 MH = = 6 , 所以AH = 10 .以 D 为坐标原点,的方向为 x 轴的正方向,建立如图所示的空间直角坐标系D - xyz , 则 A (10, 0, 0) ,H (10,10, 0) , E (10, 4,8) ,F (0, 4,8) , ⎧FE (10, 0, 0) ,HE = (0, -6,8) .设 n = (x , y , z ) 是平面 EHGF 的法向量,则⎪n ⋅ FE = 0, 即⎧10x = 0,⎨ ⎪⎩n ⋅ HE = 0,⎨-6 y + 8z = 0, n ⋅ AF 4 5所以可取 n = (0, 4, 3) .又 AF = (-10, 4,8) ,故 cos < n , AF > =线 AF 与平面所成角的正弦值为4 5 .15= n AF .所以直D 1 F C 1A 1E B 1 CAM HBG D157 7 9 OM20.【解析】(Ⅰ)设直线l : y = kx + b (k ≠ 0, b ≠ 0) , A (x 1 , y 1 ) , B (x 2 , y 2 ) , M (x M , y M ) .将 y = kx + b 代 入9x 2 + y 2 = m 2 得 (k 2 + 9)x 2 + 2kbx + b 2 - m 2 = 0 , 故x =x 1 + x 2= - M2kb,k 2+ 9y = kx + b =9b .于是直线OM 的斜率 k= y M= - ,即 k⋅ k = -9 .所以直MMk 2+ 9x k M线OM 的斜率与l 的斜率的乘积为定值.(Ⅱ)四边形OAPB 能为平行四边形.因为直线l 过点 m( , m ) 3,所以l 不过原点且与C 有两个交点的充要条件是 k > 0 , k ≠ 3 .9 ⎧ y = - 9 x , 由( Ⅰ ) 得 OM 的方程为 y = - k x . 设点 P 的横坐标为 x P ⎪. 由 ⎨ k得2k 2m2±km m ⎪⎩9x 2 + y 2 = m 2 ,m (3 - k ) x P= 9k 2 + 81 , 即 x P = .将点( , m ) 的坐标代入直线l 的方程得b = ,3 k 2 + 93 3 因此 x M =mk (k - 3) .四边形OAPB 为平行四边形当且仅当线段 AB 与线段OP 互相平分,3(k 2 + 9)±km即 x P = 2x M .于是=3 k 2+ 92 ⨯ mk (k - 3) .解得 k = 4 - , k = 4 + .因为 k > 0, k ≠3 , i = 1 , 2 ,所以当l3(k 2 + 9) 1 2 i i的斜率为4 - 或4 + 时,四边形OAPB 为平行四边形.21.【解析】(Ⅰ) f ' (x ) = m (e mx -1) + 2x .若 m ≥ 0 ,则当 x ∈(-∞, 0) 时, e mx -1 ≤ 0 , f ' (x ) < 0;当 x ∈(0, +∞) 时, e mx-1 ≥ 0 ,f ' (x ) > 0 .若 m < 0 ,则当 x ∈(-∞, 0) 时, e mx -1 > 0 , f ' (x ) < 0;当 x ∈(0, +∞) 时, e mx-1 < 0 ,f ' (x ) > 0 .所以, f (x ) 在(-∞, 0) 单调递减,在(0, +∞) 单调递增.(Ⅱ)由(Ⅰ)知,对任意的m , f (x ) 在[-1, 0] 单调递减,在[0,1] 单调递增,故 f (x ) 在7 7 OM3 3 16 3⎩ ⎩10 3 2 1 22 3⎩x = 0 处取得最小值.所以对于任意x1, x2∈[-1,1] ,f (x1) -f (x2) ≤ e -1的充要条件是:⎧f (1) -f (0) ≤ e -1,⎨f (-1) -f (0) ≤ e -1,⎧⎪e m-m ≤ e -1,即⎨⎪e-m+m ≤ e -1,①,设函数g(t) = e t-t - e +1 ,则g ' (t) = e t-1 .当t < 0 时,g ' (t) <0;当t >0 时,g ' (t) >0.故g(t) 在(-∞,0) 单调递减,在(0,+∞)单调递增.又g(1) = 0 ,g(-1) = e-1+ 2 -e < 0 ,故当t ∈[-1,1] 时,g(t) ≤ 0 .当m ∈[-1,1] 时,g(m) ≤ 0 ,g(-m) ≤ 0 ,即①式成立.当m > 1时,由g(t) 的单调性,g(m) > 0 ,即e m-m > e -1 ;当m <-1时,g(-m) > 0 ,即e-m+m > e -1.综上,m 的取值范围是[-1,1] .2.【解析】(Ⅰ)由于∆ABC 是等腰三角形,AD ⊥BC ,所以AD 是∠CAB 的平分线.又因为 O 分别与AB 、AC 相切于E 、F 两点,所以AE =AF ,故AD ⊥EF .从而EF / / BC .(Ⅱ)由(Ⅰ)知,AE =AF , AD ⊥EF ,故AD 是EF 的垂直平分线,又EF 是 O 的弦,所以O 在AD 上.连接OE ,OM ,则OE ⊥AE .由AG 等于 O 的半径得AO = 2OE ,所以∠OAE = 300.所以∆ABC 和∆AEF 都是等边三角形.因为AE = 2,OE = 2 .,所以AO = 4 因为OM =OE = 2 ,DM =1MN =2,所以OD = 1 .于是AD = 5 ,AB =10 33 .所以四边形EBCF 的面积1⨯( ) ⨯-⨯(2 3) ⨯=.2 3 2 2 2 323.【解析】(Ⅰ)曲线C 的直角坐标方程为x2+y2- 2 y = 0 ,曲线C 的直角坐标方程为⎧⎧⎪x2+y2- 2 y = 0,x2+y2- 2 3x = 0 .联立⎨ ⎪⎩x2+y2- 2 3x = 0,⎧x = 0,解得⎨y = 0,⎪x =或⎨⎪ 3,所以C2与C1 交⎪⎩y =2,33323 cb c d a b c d b c ab b c d3点的直角坐标为(0, 0) 和( , ) .2 2(Ⅱ)曲线C 1 的极坐标方程为=(∈ R ,≠ 0) ,其中0 ≤< .因此 A 得到极坐标为(2 s in ,) , B 的 极 坐 标 为 (2 3 cos,) . 所 以 AB = 2 sin - 2 3 cos= 4 s in(- 3,当=5时, AB 取得最大值,最大值为4 .624.【解析】(Ⅰ)因为(+ b )2 = a + b + 2, (+ d )2 = c + d + 2 ,由题设a +b =c +d , ab > cd ,得( + b )2 > ( + d )2 .因此 + > + .(Ⅱ)(ⅰ)若 a - b < c - d ,则(a - b )2 < (c - d )2 .即(a + b )2 - 4ab < (c + d )2 - 4cd.因为 a + b = c + d ,所以 ab > cd ,由(Ⅰ)得 + > + .( ⅱ ) 若 + > + , 则 ( + b )2 > (+ d )2 , 即 a + b + 2 >c +d + 2 . 因 为 a + b = c + d , 所 以 ab > cd , 于 是 (a - b )2 = (a + b )2 - 4ab< (c + d )2 - 4cd = (c - d )2 . 因 此 a - b < c - d , 综 上 , + > + 是a -b <c -d 的充要条件.a abcda c a a d a c cd a )。
2015全国II理解析.docx
2015年普通高等学校招生全国统一考试全国Ⅱ卷理科数学解析一、 选择题1. 解析 对于B 集合,由已知得,{}21B x x =-<<,由数轴可得{}1,0A B =-I . 故选A .评注 常规考题,比较容易.考查不等式解集和集合的交运算,注意A 集合中的元素是数,B 集合是数的范围,用数轴较直观.2. 解析 由复数的运算律将左边直接展开可得.因为24(4)i 4i a a +-=-, 所以240,44a a =-=-,解得0a =.故选B .评注 考察复数的基本运算及复数相等的概念,本题也可在等式两边乘以“i ”, 得2(2i)4a -=-快速求解.3. 解析 由柱形图可以看出,2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份是负相关关系,依题意,需选不正确的.故选D .评注 本题考查统计的基本知识,要注意读懂题意和图表,理解相关性有正相关和负相关. 4. 解析 由题意可设等比数列的公比为q ,则由13521a a a ++=得,2411121a a q a q ++=.又因为13a =,所以4260q q +-=.解得22q =或23q =-(舍去),所以()235713521242a a a a a a q ++=++=⨯=.故选B .评注 等差数列与等比数列的基本概念和性质是考查的重点.本题考查了等比数列的通项公式及一元二次方程的解法,注意最后一步要能将“357a a a ++”写成“222135a q a q a q ++”的形式,再提出“2q ”.5. 解析 由题意可得,2(2)1log 4123f -=+=+=.又由22log 12log 21>=, 故有2222212log log 121log 12log 2log 622(log 12)22226f --=====,所以有2(2)(log 12)369f f -+=+=.故选C .评注 本题是一个涉及指数、对数和分段函数的综合题,考察面很广,但运算难度不大, 需要考生熟知基本的概念、性质和运算.6. 解析 由三视图得,在正方体中,截去四面体,1111ABCD A B C D -111A A B D -如图所示,设正方体棱长为,则,故剩余几何体体积为,所以截去部分体积与剩余部分体积的比值为.故选D .评注 三视图是新课标的增加内容,也是高考的必考知识,主要考察空间想象能力.本题在读懂题意基础上画图,然后进行体积的计算,难度不大. 7. 解析 由题意得321143AB k -==--, 27341CB k +==-,所以1AB CB k k =-,所以AB CB ⊥,即ABC △为直角三角形,则外接圆的圆心为AC 的中点(1,2)-,半径为5,所以外接圆方程为22(1)(2)25x y -++=,令0x =,则有2y =±,所以MN =C .评注 直线、圆及距离是基本的命题点.该题几个知识点综合在一起考查学生应用基本知识解决问题的能力.要求中等,体现多想少算的思想.8. 解析 根据程序框图可知,在执行程序过程中,a ,b 的值依次为14a =,18b =;4b =;10a =;6a =;2a =;2b =,到此有2a b ==,程序运行结束,输出a 的值为2,故选B .评注 算法中的程序框图是高考必考内容,也是新课标的新增内容.在命题中,多以框图与其它知识综合,本题就是将古代数学中的“更相减损术”用程序框图来展现. 9. 解析 根据题意,可得图如右,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,则可设球O 的半径为R ,此时2311136326O ABC C AOBV V R R R --==⨯⨯==,故6R =,则球O 的表面积为24π144πS R ==,故选C .评注 立体几何中对球的考查是命题的热点,要求能根据题意和球的特殊性来找基本量.解答中抓住球心及半径,结合圆的特点,用球的体积及表面积来求解. 10. 解析 由已知可得,当P 点在BC 边上运动时,a 11133111326A A B D V a a -=⨯=3331566a a a -=51A C 1A即π04x 剟时,tan PA PB x +; 当P 点在CD 边上运动时,即π3π44x 剎?,π2x ≠时,PA PB +=;当π2x =时,PA PB +=;当P 点在AD 边上运动时,即3ππ4x 剎?时,tan PA PB x +=. 从点P 的运动过程可以看出,轨迹关于直线π2x =对称,ππ42f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭, 且轨迹非直线型,故由此知选B.评注 本题以几何图形为背景考查了函数图像的识别与作法,特别是体现了分类讨论和数形结合的思想.11. 解析 设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,由2AB BM a ==,120ABM ︒∠=,则过点M 作MN x ⊥轴,垂足为N ,在Rt BMN △中,BN a =,MN =, 故点M的坐标为(2)M a ,代入双曲线方程可得2222431,a a a b-=所以2222a b c a ==-,即有222c a =,所以ce a==D . 评注 在圆锥曲线的考查中,双曲线经常以选择或填空题的形式出现.一般抓住其定义和性质便可以求解.本题中要充分利用顶角为120︒的等腰三角形的性质来求解.12. 解析 由题意,设函数()()f x g x x =,则''2()()()xf x f x g x x -=,因为当0x >时,'()()0xf x f x -<,故当0x >时,'()0g x <,所以()g x 在(0,)+∞单调递减;又因为函数()()f x x ∈R 是奇函数,故函数()g x 是偶函数,所以()g x 在(,0)-∞上单调递增,且有(1)(1)0g g -==.当01x <<时,()0g x >,则()0f x >;当1x <-时,()0g x <,则()0f x >. 综上所述,使得()0f x >成立的x 的取值范围是(,1)(0,1)-∞-U ,故选A . 评注 本题用导数来研究函数的性质,注意构造函数()g x ,然后用其对称性和奇偶性对单调性的影响,必要时可以用图像来辅助说明.二、 填空题13. 解析 根据向量平行的条件,因为向量λ+a b 与2+a b 平行,所以()2=k λ++a b a b ,则有12,k k λ=⎧⎨=⎩,解得1212k λ⎧=⎪⎪⎨⎪=⎪⎩,所以12λ=.评注 本题考查了平面向量平行的充要条件,内容单一,计算简单,知识也比较明确.在向量的考查中,平行与垂直、数量积是命题的热点.14. 解析 根据题意,画出可行域,如图所示,将目标函数z x y =+变形为y x z =-+,当z 取到最大值时,直线y x z =-+的纵截距最大,故将直线尽可能地向上平移到点1(1,)2C 处,则z x y =+有最大值32.评注 线性规划的考查是历年考查的重点,主要体现了不等式组在生活中的应用,并融合了数形结合这一重要的数学思想方法.本题立意简单,能用通性通法直接求解,也可先求出交点,代入检验.15. 解析 由题意知,4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂分别为4ax ,34ax ,x ,36x ,5x 这五项,其系数之和为441+6+1=32a a ++,解得3a =.评注 二项式定理的考查主要体现在展开式的项及系数上.本题要注意是两项积,展开列举可求.x +2=016. 解析 根据题意,由数列的项与前n 项和关系得,11n n n a S S ++=-, 由已知得111n n n n n a S S S S +++=-=⋅,由题意知,0n S ≠,则有1111n nS S +=--, 故数列1n S ⎧⎫⎨⎬⎩⎭是以1-为首项,1-为公差的等差数列, 则11(1)n S n n =---=-,所以1n S n=-. 评注 数列的项与前n 项和之间存在着固定关系1n n n S S a --=.本题隐含0n S ≠,可用反证法说明.然后两边同除1n n S S +⋅即可得等差数列的形式,然后进一步求解. 三、 解答题17. 分析 (1)用正弦定理求面积的方法写出面积,然后根据已知条件中面积为2倍关系、角相等进行代换;(2)由(1)的结论得高相同,面积比等于边长比,再由余弦定理建立等式来求解.解析 (1)根据题意可得右图,由正弦定理得,1sin ,2ABD S AB AD BAD =⋅∠△ 1sin ,2ADCS AC AD CAD =⋅∠△又因为2ABD ADC S S =△△, ,BAD CAD ∠=∠ 所以得2AB AC =. 由正弦定理得sin 1sin 2B AC C AB ==. (2)由题意知,21ABD ADC S BD S DC ==△△,所以2BD DC =.又因为2DC =,所以BD =在ABD △和ADC △中,由余弦定理得,2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠.故222222326AB AC AD BD DC +=++=.由(Ⅰ)知2AB AC =,所以1AC =.即所求为BD =1AC =.评注 考查了解三角形的相关知识,应用了正弦定理和余弦定理.注意三角形面积的计算方法的应用.ACD B18. 分析(1)根据题意直接列出茎叶图,写出结论即可;(2)根据事件的互斥及独立,用列举法写出符合条件的事件个数,计算概率即可.解析 (1)由题意知,两地区用户满意度评分的茎叶图如下.通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散. (2)记1A C 为事件:“A 地区用户的满意度等级为满意或非常满意”;记2A C 为事件:“A 地区用户的满意度等级为非常满意”; 记1B C 为事件:“B 地区用户的满意度等级为不满意”; 记2B C 为事件:“B 地区用户的满意度等级为满意”.则可得1A C 与1B C 相互独立,2A C 与2B C 相互独立,1B C 与2B C 互斥, 则可得1122B A B A C C C C C =U .所以1122()()B A B A P C P C C C C =U 1122()()B A B A PC C P C C =+1122()()()()B A B A P C P C P C P C =+.由题意及所给数据可得1A C ,2A C ,1B C ,2B C 发生的频率分别为1620,420,1020,820. 故可得1()A P C 16=20,2()=A P C 420,1()=B P C 1020,2()B P C 8=20,故101684()=+0.4820202020P C ⨯⨯=.即C 的概率为0.48.评注 对数据的阅读、理解和分析是数学的一项重要任务.在解题中,关键在于对众多数据的理解分析,并用统计与概率的思想方法进行分析求解.19. 分析(1)根据题意要求,直接在图中作图即可;(2)空间中角的问题,若方便建立空间直角坐标系,则用空间向量法来解. 将几何问题算法化,用代数计算的方法解决几何问题. 解析 (1)根据题意,交线围成的正方形EHGF 如图(1)所示:(2)如图(2)所示,过点E 作EM AB ⊥,垂足为M ,则14AM A E ==,18EM AA ==,因为EHGF 为正方形,所以10EH EF BC ===.于是有6MH ==,所以10AH =.以D 为坐标原点,1,,DA DC DD u u u r u u u r u u u u r的方向为x 轴,y 轴,z 轴的正方向,建立如图(2)所示的空间直角坐标系D xyz -,则(10,0,0)A ,(10,10,0)H ,(10,4,8)E ,(0,4,8)F ,则(10,0,0)FE =u u u r ,(0,6,8)HE =-u u u r.设(,,)x y z =n 是平面EHGF 的法向量,则有0,0,FE HE ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rn n 即100,680,x y z =⎧⎨-+=⎩所以可取(0,4,3)=n . 又(10,4,8)AF =-u u u r,故cos ,AF AF AF⋅<>==⋅u u u r u u u r u u u r n n n 所以直线AF 与平面EHGF图(1) 图(2)评注 立体几何的命题主要是考查学生的空间观念和空间想象能力.并结合对空间关系、空间角的计算,特别是应用空间坐标和向量这一工具来进行求解,并注意与推理论证相结合. 20. 分析(1)求解斜率的有关问题时,要注意斜率是否存在,然后用斜率的求解方法及直线与圆锥曲线的关系来进行求解.(2)存在性探究问题的解答不妨设存在,然后进行计算求解.注意分类讨论思想的应用和计AB 1C 1D 1A 1BCDE FGH算的正确性.解析 (1)根据题意,因为直线不平行于坐标轴,则斜率k 必然存在,故设直线l 为y kx b=+(0,0)k b ≠≠,则11(,)A x y ,22(,)B x y ,(,)M M M x y .将y kx b =+代入2229x y m +=得,2222(9)20k x kbx b m +++-=,故12229M x x kb x k +==-+,299M M by kx b k =+=+. 于是直线OM 的斜率9M OM M y k x k==-,即9OM k k ⋅=-. 所以直线OM 的斜率与l 的斜率的乘积为定值. (2)不妨设四边形OAPB 能为平行四边形.因为直线l 过点(,)3mm ,所以l 不过原点且与C 有两个交点的充要条件是0k >,且3k ≠. 由(1)得OM 的方程为9y x k=-.设点P 的横坐标为P x .由2229,9,y x k x y m ⎧=-⎪⎨⎪+=⎩得2222981P k m x k =+,即P x =. 将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M k k m x k -=+. 四边形OAPB 为平行四边形,当且仅当线段AB 与线段OP 互相平分,即2P M x x =.=2(3)23(9)k k mk -⨯+.解得14k =24k =.因为0,3i i k k >≠,1i =,2,所以当l的斜率为44OAPB 为平行四边形.评注 解析几何的考查的方向主要体现在对直线和圆锥曲线方程的计算上,特别是对存在性问题的探究和计算能力的考查,在方法上相对固定,计算难度比较大.21. 分析(1)先对函数进行求导,然后再应用单调性和函数的导数的关系进行求解; (2)注意构造新函数的思想及恒成立问题的解决方法,理解最值的含义. 解析(1)证明:因为()2e mxf x x mx =+-,则求导得,()'e2mxf x m x m =+-()e 12mx m x =-+.若0m …,则当(),0x ∈-∞时,e 10mx-„,()'0f x <;当()0,x ∈+∞时,e10mx-…,()'0f x >.若0m <,则当(),0x ∈-∞时,e 10mx ->>,()'0f x <; 当()0,x ∈+∞时,e 10mx -<<,()'0f x >.所以()f x 在(),0-∞上单调递减,在()0,+∞上单调递增.(2)由(1)知,对任意的m ,()f x 在[]1,0-上单调递减,在[]0,1上单调递增, 故()f x 在0x =处取得最小值.所以对于任意的[]12,1,1x x ∈-,()()12e 1f x f x --„的充要条件为()()()()10e 110e 1f f f f ⎧--⎪⎨---⎪⎩„„,即e e 1e e 1m mm m -⎧--⎪⎨+-⎪⎩-?-?①. 设函数()e e 1tg t t =--+,则()'e 1tg t =-.当0t <时,()'0g t <;当0t >时,()'0g t >. 故()g t 在(),0-∞上单调递减,在()0,+∞上单调递增.又()10g =,()11e 2e<0g --=+-,故当[]1,1t ∈-时,()0g t „.当[]1,1m ∈-时,()()0,0,g m g m -剟,即上式①成立; 当1m >时,由()g t 的单调性,()0g m >>,即有e e 1m m ->-. 当1m <-<时,()0,g m ->>,即e e 1m m -+>-. 综上所述,m 的取值范围是[]1,1-.评注 函数与导数是高考的必考内容,也是高等数学在初等数学中的一个应用的体现. 导数是数学的基础,用数学分析的思想来体现数学的应用,在命题中特别重视分类讨论思想的应用.22. 分析(1)根据等腰三角形的性质可快速求解;.(2)由(1)的结论可得AD EF ⊥和ABC △及AEF △都是等边三角形,则所求四边形面积为两个三角形面积之差.解析 (1)证明:由于ABC △是等腰三角形,AD BC ⊥,所以AD 是CAB ∠的平分线.又因为O e 分别与AB ,AC 相切于E ,F 两点,所以AE AF =,故AD EF ⊥. 从而//EF BC .(2)由(1)知,AE AF =,AD EF ⊥,故AD 是EF 的垂直平分线.又EF 是O e 的弦,所以O 在AD 上.连接OE ,OM ,则OE AE ⊥.由AG 等于O e 的半径得2AO OE =,所以30OAE ∠=︒.所以ABC △和AEF △都是等边三角形.因为AE =4AO =,2OE =.因为2OM OE ==,12DM MN ==所以1OD =.于是5AD =,3AB =. 所以四边形EBCF 的面积为221122⨯-⨯=. 评注 几何证明选讲的考查主要是有关圆与直线、圆与三角形、圆与多边形的推理与计算,解题中特别要注意特殊图形的性质.23. 分析(1)将参数方程和极坐标方程化为直角坐标方程,联立即可求解;.(2)先确定曲线1C 的极坐标方程()0θαρρ=∈≠R,,进一步求出点A 的极坐标为()2sin ,αα,点B的极坐标为(),αα,由此可得2sin AB αα=-π4sin 43α⎛⎫=- ⎪⎝⎭„.解析 (1)曲线2C 的直角坐标方程为2220x y y +-=,曲线3C的直角坐标方程为220x y +-=.联立222220,0,x y y x y ⎧+-=⎪⎨+-=⎪⎩解得0,0,x y =⎧⎨=⎩或232x y ⎧=⎪⎪⎨⎪=⎪⎩. 所以2C 与1C 交点的直角坐标为(0,0)和3)2. (2)曲线1C 的极坐标方程为(,0)θαρρ=∈≠R ,其中0πα<„.因此A 的极坐标为(2sin ,)αα,B的极坐标为,)αα.所以2sin AB αα=-π4sin()43α=-…. 当5π6α=时,AB 取得最大值,最大值为4. 评注 考查了参数方程、极坐标方程和直角坐标方程的互化,并能求出距离的最值.24. 分析(1)由a b c d +=+,及ab cd > ,可证明22> ,两边开>+(2)由第(1)问的结论来证明.在证明中要注意分别证明充分性和必要性.解析(1)证明:因为2a b =++2c d =++由题设a b c d +=+,ab cd >,得22>,> (2)证明:( i)若a b c d -<-,则()()22a b c d -<-,即()()2244a b ab c d cd +-<+-.因为a b c d +=+,所以ab cd >>( ii)>22>,即a b ++c d >++因为a b c d +=+,所以ab cd >, 于是()()()()222244a b a b ab c d cd c d -=+-<+-=-,因此a b c d -<-.>a b c d -<-的充要条件.评注 不等式的证明要紧抓不等式的性质,结合其正负性来证明.充要条件的证明体现了数学推理的严谨性,要分充分性和必要性两个方面来证明.。
(3)2015年(全国卷II)(含答案)高考理科数学
2015 年高考理科数学试卷全国卷 Ⅱ(3)参考答案1. A【解析】由已知得 B x 2 x 1 ,故 A B 1,0 ,故选 A .考点:集合的运算. 2. B【解析】由已知得4a (a 2 4)i 4i ,所以 4a 0,a 2 44 ,解得 a 0 ,故选 B .考点:复数的运算. 3. D【解析】由柱形图得,从 2006 年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关,故选 D . 考点:正、负相关. 4. B【解析】设等比数列公比为q ,则2 4,又因为 a 13,所以 q4q260 ,a 1 qa 1q21a解得 q 22 ,所以 a a5a(aa a ) q 2 42 ,故选 B .37135考点:等比数列通项公式和性质.5. C【 解析 】 由 已 知 得f ( 2) 1 log 2 4 3 , 又l o 2 g1 ,2 所1以f (log 2 12)2log 212 1 2log266,故D 1C 1f (f 2 2 ) ,故选 C .(lo g12 )9考点:分段函数.6. DA 1【解析】由三视图得, 在正方体 ABCDA 1B 1C 1D 1 中,B 1D截去四面体 AA 1B 1 D 1 ,如图所示,,设正方体棱长为Ca ,则VA A 1B 1D 11 1 a 3 1a 3 ,故剩余几何体体积3 2 6为 a31a 3 5 a 3,所以截去部分体积与剩余部分体66积的比值为1,故选D .AB5考点:三视图.7. C【解析】由已知得 k AB3 2 1,k CB2 7 3,所以k AB k CB 1 ,所以 AB CB , 1 43 4 1即 ABC 为直角三角形,其外接圆圆心为 (1, 2) ,半径为 5,所以外接圆方程为( x 1)2 ( y 2)2 25,令 x0 ,得 y 2 6 2 ,所以 MN 4 6 ,故选 C .考点:圆的方程. 8. B【解析】程序在执行过程中,a ,b 的值依次为 a 14 , b 18 ; b 4 ; a 10 ; a 6 ; a 2; b 2 ,此时 a b2 程序结束,输出 a 的值为 2,故选 B .考点:程序框图.9. C【解析】如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥 O ABC 的体积最大,设球 O 的半径为 R ,此时 V O ABC V C AOB1 1 R2 R 1 R3 36,故 R6 ,则3 26球 O 的表面积为 S 4 R 2144 ,故选 C .考点:外接球表面积和椎体的体积.COAB10. B【解析】由已知得,当点P 在BC 边上运动时,即0x时 ,3 4P AP B t a 2nx 4t ;a 当nx 点 P 在 CD 边上运动时,即 x, x 时,442PA PB(11)21(11)2 1 ,当 x时, PAPB2 2;当点 P 在tan xtan x2AD 边上运动时,即3x时, PA PBtan 24x 4 tan x ,从点 P 的运动过程可以看出,轨迹关于直线x对称,且 f () f ( ) ,且轨迹非线型,故选 B .24 2考点:函数的图象和性质.11. D【 解 析 】 设 双 曲 线 方 程 为x 2y 2 1(a 0, b 0) , 如 图 所 示 , AB BM ,a 2b 2 ABM1200,过点 M 作 MNx 轴 , 垂 足 为 N , 在 R tBMN 中, BNa ,MN3a ,故点 M 的坐标为 M (2a, 3a) ,代入双曲线方程得a 2b 2a 2 c 2 ,即c 22a 2 ,所以e 2,故选.D考点:双曲线的标准方程和简单几何性质.12. A【 解 析 】 记 函 数 g( x)f ( x) , 则 'xf ' ( x ) f x( )0 时 ,xg (x), 因 为 当 xx 2'( x)f( x) ,故当 x 0 时,g '( x) 0 ,所以 g( x) 在 (0,) 单调递减;又因为函数x f 0f ( x)( x R) 是 奇 函 数 , 故函 数 g( x) 是 偶 函 数 , 所 以 g( x) 在 ( ,0) 单调递减,且g( 1) g(1) 0 .当 0 x 1时, g( x)0 ,则 f (x) 0 ;当 x1时, g(x) 0,则f ( x)0 ,综上所述,使得f ( x) 0 成立的 x 的取值范围是 (, 1)(0,1) ,故选 A .考点:导数的应用、函数的图象与性质.13.14y23a b 与 a 2b【解析】因为向量平行,所以2,B1a b (ka 2b ),则k1D所以.x1 2k,2–4 –3 –2 –1O123 4考点:向量共线.C–114.32【解析】 画出可行域, 如图所示, 将目标函数变 形 为 y x z , 当 z 取 到 最 大 时 , 直 线y x z 的纵截距最大,故将直线尽可能地向上平移到 D (1,1) ,则 z x y 的最大值为3 . 22考点:线性规划.–2–3–415.3【解析】试题分析:由已知得 (1x) 414x6x24x3x4,故 (a x)(1x)4的展开式中 x 的奇数次幂项分别为4ax ,4ax3,x,6x3,x5,其系数之和为 4a4a1+6+1=32 ,解得 a 3 .考点:二项式定理.16.1 n【解析】由已知得a n1S n1S n Sn 1S n,两边同时除以Sn 1S n,得111,Sn 1S n故数列11 为首项, 1 为公差的等差数列,则11(n1)n ,所以是以S nS nS n 1.n考点:等差数列和递推关系.17.【解析】(Ⅰ)S ABD 1AB AD sin BAD , S ADC1AC AD sin CAD ,因为22SABD2S ADC,BAD CAD ,所以 AB 2 AC .由正弦定理可得sin B AC 1 .sin C AB2(Ⅱ)因为 S ABD : S ADC BD : DC ,所以 BD 2 .在ABD 和ADC 中,由余弦定理得AB2AD 2BD 22AD BD cos ADB ,AC 2AD 2DC 22AD DC cos ADC .AB22AC 23AD 2BD 22DC 26.由(Ⅰ)知 AB2AC ,所以 AC1.18.【解析】(Ⅰ)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出, A 地区用户满意度评分的平均值高于 B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散.(Ⅱ)记 C A1 表示事件:“ A 地区用户满意度等级为满意或非常满意” ;C A 2 表示事件:“ A 地区用户满意度等级为非常满意” ; C B1 表示事件:“ B 地区用户满意度等级为不满意” ; C B 2 表示事件:“ B 地区用户满意度等级为满意” .则 C A1 与 C B1 独立, C A2 与 C B2 独立, C B1 与 C B 2 互斥, CC B1CA1C B 2CA2.P(C) P(C B1C A1 C B 2C A2 ) P(C B1C A1 ) P(C B 2C A2 )P(C B1 )P(C A1 ) P(C B2 )P(C A2 ) .由所给数据得 C A1 , C A2 , C B1 , C B 2 发生的概D 1 FC 1率分别为16 ,4 ,10 ,8.故 P(C A1) =16 ,20 2020 2020P(C A2 )=4,P(C B1)=10, P(C B2) = 8,A 1E B1 2020 20D10 16+840.48 .C故 P(C)=20 20 20G20EHGF 如19.【解析】(Ⅰ)交线围成的正方形图:AM HB(Ⅱ)作EMAB,垂足为M ,则AM 1A E4,EMAA 18 ,因为 EHGF为正方形, 所以 EHEFBC 10 .于是 MHEH 2 EM 2 6,所以 AH10 .以D 为坐标原点, DA 的方向为 x 轴的正方向,建立如图所示的空间直角坐标系 Dxyz ,则A(10,0,0) , H (10,10,0) , E (10,4,8) , F (0,4,8) , FE (10,0,0) , HE (0, 6,8) .设n(x, y,z)是平面 EHGF 的法向量,则n FE 0, 10x 0, n HE0, 即6 y 8z 所以可取0,n (0,4,3) .又 AF( 10,4,8) ,故 cos n, AFn AF 4 5.所以直线 AF 与 n AF15平面所成角的正弦值为 4 5 .1520.【解析】(Ⅰ) 设直线 l : y kx b ( k 0, b 0) , A( x 1 , y 1) , B(x 2 , y 2 ) , M ( x M , y M ) .将代入222222ykxb9xy得(k9)x2kbx b m, 故mx Mx 1 x 2 kb ,2 k 2 9y Mkx Mb9b.于是直线 OM 的斜率y M9 k 9 .所以直2kOM,即 kk 9x MOMk线 OM 的斜率与 l 的斜率的乘积为定值.(Ⅱ)四边形 OAPB 能为平行四边形. 因为直线 l 过点 (m,m) ,所以 l 不过原点且与 C 有两个交点的充要条件是k 0 , k3 .3OMy9x .设点 P 的横坐标为x P .由 y9x,由(Ⅰ)得的方程为k得k9x 2y 2 m 2,2k 2 m 2km.将点mm(3 k)x P,即 x P(ml 的方程得b,9k 2 k 2813 933因此 x Mmk( k3).四边形 OAPB 为平行四边形当且仅当线段 AB 与线段 OP 互相平分,3(k 2 9)即 x P2 x M .于是km3 k 292 mk (k3).解得k14 7 , k 247 .因为 k i 0,k i 3 , i 1 , 2 ,所以当 l3( k 29)的斜率为4 7 或 4 7 时,四边形 OAPB 为平行四边形.21.【解析】(Ⅰ) f ' (x) m(e mx 1) 2x .若 m0 ,则当 x (,0) 时, e mx1 0 , f ' (x) 0 ;当 x (0,) 时, e mx1 0 ,f ' (x) 0 .若 m0 ,则当 x (,0) 时, e mx1 0 , f ' (x) 0 ;当 x (0,) 时, e mx1 0 ,f ' (x) 0 .所以, f ( x) 在 (,0) 单调递减,在 (0, ) 单调递增.(Ⅱ)由(Ⅰ)知,对任意的m , f ( x)在 [1,0] 单调递减,在[0,1] 单调递增,故 f (x) 在x0 处取得最小值.所以对于任意x1, x2[ 1,1] , f (x1) f (x2 ) e 1的充要条件是:f (1) f (0)e1,即e m m e 1,tt e 1 ,则f (1) f (0)e1, e m m e①,设函数 g(t )e 1,' (t)te.当 t0 时,'(t )0;当 t0 时,'(t)0.故 g(t ) 在 (,0) 单调递减,g1g g在 (0,) 单调递增.又 g 1)(0, g(1) e 1 2e0 ,故当t[ 1,1]时, g (t)0 .当m[ 1,1]时, g( m)0, g (m)0 ,即①式成立.当m1时,由 g(t ) 的单调性,g( m)0,即 e m m e 1 ;当 m1时, g ( m)0 ,即 e m m e 1 .综上,m的取值范围是 [1,1].22.【解析】(Ⅰ)由于ABC 是等腰三角形, AD BC ,所以AD是CAB 的平分线.又因为O 分别与AB、 AC 相切于E、F两点,所以AE AF ,故 AD EF .从而EF//BC.O 的(Ⅱ)由(Ⅰ)知, AE AF , AD EF ,故 AD 是 EF 的垂直平分线,又EF 是弦,所以 O 在AD上.连接 OE ,OM ,则 OE AE.由 AG 等于O 的半径得 AO2OE ,所以OAE300.所以ABC 和AEF 都是等边三角形.因为AE23,所以AO 4,OE2.因为 OM OE2, DM 1MN 3 ,所以 OD1.于是 AD5, AB103.所23以四边形 EBCF 的面积1(10 3 )231(23) 2316 3.23222323.【解析】(Ⅰ)曲线C2的直角坐标方程为x2y2 2 y0,曲线 C3的直角坐标方程为x 2y22y0,x0,x 3 ,x2y2 2 3x 0 .联立22解得或2所以 C2与C1交x y 2 3x 0,y0,y 3 ,2点的直角坐标为(0,0) 和 (3,3).22(Ⅱ)曲线 C1的极坐标方程为(R,0) ,其中 0.因此 A 得到极坐标为(2sin,),B的极坐标为(23 cos , ) .所以AB2s i n24 s 3i cn o,(当s 5时, AB 取得最大值,最大值为)364.24.【解析】(Ⅰ)因为(a b )2a b 2 ab , ( c d )2c d 2 cd ,由题设a b c d , ab cd ,得(a b )2(c d ) 2.因此a b c d .(Ⅱ)(ⅰ)若 a b c d ,则 (a b)2(c d )2.即 (a b)24ab(c d) 24cd .因为 a b c d ,所以 ab cd ,由(Ⅰ)得a b c d .(ⅱ)若a b c, d 则( a b ) 2( c d )2,即a b2 a cb d2.c 因d 为a b c ,d 所以 a b c ,d 于是(a b) 2(a b)24ab(c d )24cd(c d)2.因此 a b c d ,综上,a b c d 是 a b c d 的充要条件.。
(3)2015年(全国卷II)(含答案)高考理科数学(推荐完整)
(Ⅱ)曲线 的极坐标方程为 ,其中 .因此 得到极坐标为 , 的极坐标为 .所以 ,当 时, 取得最大值,最大值为 .
24.【解析】(Ⅰ)因为 , ,由题设 , ,得 .因此 .
考点:圆的方程.
8.B
【解析】程序在执行过程中, , 的值依次为 , ; ; ; ; ; ,此时 程序结束,输出 的值为2,故选B.
考点:程序框图.
9.C
【解析】如图所示,当点C位于垂直于面 的直径端点时,三棱锥 的体积最大,设球 的半径为 ,此时 ,故 ,则球 的表面积为 ,故选C.
考点:外接球表面积和椎体的体积.
则 与 独立, 与 独立, 与 互斥, .
.
由所给数据得 , , , 发生的概率分别为 , , , .故 ,
, , ,故 .
19.【解析】(Ⅰ)交线围成的正方形 如图:
(Ⅱ)作 ,垂足为 ,则 , ,因为 为正方形,所以 .于是 ,所以 .以 为坐标原点, 的方向为 轴的正方向,建立如图所示的空间直角坐标系 ,则 , , , , , .设 是平面 的法向量,则 即 所以可取 .又 ,故 .所以直线 与平面 所成角的正弦值为 .
考点:二项式定理.
16.
【解析】由已知得 ,两边同时除以 ,得 ,故数列 是以 为首项, 为公差的等差数列,则 ,所以 .
考点:等差数列和递推关系.
17.【解析】(Ⅰ) , ,因为 , ,所以 .由正弦定理可得 .
(Ⅱ)因为 ,所以 .在 和 中,由余弦定理得
, .
.由(Ⅰ)知 ,所以 .
18.【解析】(Ⅰ)两地区用户满意度评分的茎叶图如下
2015年高考理科数学(全国二卷)真题版
2015年普通高等学校招生全国统一考试理科数学(全国卷Ⅱ)(青海、西藏、甘肃、贵州、内蒙古、新疆、宁夏、吉林、黑龙江、云南、辽宁、广西、海南等)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={-2,-1,0,1,2},B={X|(X-1)(X+2)<0},则A B=()A.{-1,0} B.{0,1} C.{-1,0,1}D.{0,1,2}2.若a为实数,且(2+ai)(a-2i)= - 4i,则a=()A.-1 B.0 C.1 D.23.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫排放量呈减少趋势D.2006年以来我国二氧化硫排放量与年份正相关4.已知等比数列{错误!未找到引用源。
} 满足错误!未找到引用源。
=3,错误!未找到引用源。
+错误!未找到引用源。
=21,则错误!未找到引用源。
+错误!未找到引用源。
+错误!未找到引用源。
=()A.21 B.42 C.63 D.845.设函数f(x)=错误!未找到引用源。
则f(-2)+f(错误!未找到引用源。
)=()A.3 B.6 C.9 D.126.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
7.过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则IMNI=()A.2错误!未找到引用源。
2015年高考理科数学试题全国卷2及解析word完美版
2015年高考全国新课标卷Ⅱ理科数学真题一、选择题1、已知集合A={–2,–1,0,1,2},B={x|(x –1)(x+2)<0},则A∩B=() A .{–1,0} B .{0,1} C .{–1,0,1} D .{0,1,2}2、若a 为实数,且(2+ai)(a –2i)=–4i ,则a=() A .–1 B .0 C .1 D .23、根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图,以下结论中不正确的是()A .逐年比较,2008年减少二氧化硫排放量的效果最显着B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫排放量呈减少趋势D .20064、已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则A .21 B .42 C .63 D .84 5、设函数f(x)=,则f(–2)+f(log 212)=() A .3 B .6 C .9 D .12 6.一个正方体被一个平面截去一部分后,分体积的比值为()A .B .C .D .7、过三点A .2 8、如上左2a=() A .0 9、已知A ,C 为该球上的动点,若三棱锥O –ABC 的体积最大值为36A .36π.256π10、如上左O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP=x x 的函数,则y=f(x)的图像大致为()A .B .C .D . 11、已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为()A .B .2C .D .12、设函数f’(x)是奇函数f(x)(x R)的导函数,f(–1)=0,当x>0时,xf’(x)–f(x)<0,则使得f(x)>0成立的x 的取值范围是() A .(–∞,–1)∪(0,1) B .(,0)∪(1,+∞)C .(–∞,–1)∪(–1,0) D .(,1)∪(1,+∞) 二、填空题13、设向量a,b 不平行,向量λa+b 与a+2b 平行,则实数λ=. 14、若x ,y 满足约束条件,则z=x+y 的最大值为.15、(a+x)(1+x)4的展开式中x 的奇数次幂项的系数之和为32,则a=.16、设S n 是数列{a n }的前n 项和,且a 1=–1,a n+1=S n S n+1,则S n =________________. 三、解答题17、△ABC 中,D 是BC 上的点,AD 平分∠BAC,△ABD 面积是△ADC 面积的2倍. (1)求.(2)若AD=1,DC=,求BD 和AC 的长.18.某公司为了了解用户对其产品的满意度,从A ,B 两地区分别随机抽查了20个用户,得到用户对产品的满意度评分如下: A 地区:62738192958574645376 78869566977888827689B 地区:73836251914653736482 93486581745654766579(1)均值及分散程度(记事件C :“A 地区用户的满意等级高于B 19、如图,长方形ABCD –A 1B 1C 1D 1中,AB=16,BC=101F=4.过点E ,F 的平面α(1)在途中画出这个正方形(不必说明画法和理由(2)求直线AF 与α平面所成角的正弦值.20、已知椭圆C :9x 2+y 2=M 2(m>0).直线l A ,B ,线段AB 的中点为M .(1)(2)若l l 的21、设函数(1)证明:(2)2)|≤e –1,求m 的取值范围.22、[选修4ABC 内一点,⊙O 与△ABC 的底边BC 交于M ,N E ,F 两点. (1)(2)若AG EBCF 的面积. 23、[选修4xOy 中,曲线C 1:(t 为参数,t≠0),其中0≤α<π. 在以O C 2:ρ=2sinθ,C 3:ρ=2cosθ. (1)求C 2与C (2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB|的最大值24、[选修4–5:不等式选讲]设a ,b ,c ,d 均为正数,且a+b=c+d ,证明: (1)若ab>cd ,则+>+;(2)+>+是|a –b|<|c –d|的充要条件. 2015年高考全国新课标卷Ⅱ理科数学真题 一、选择题1、答案:A .∵(x–1)(x+2)<0,解得–2<x<1,∴B={x|–2<x<1},∴A∩B={–1,0}.2、答案:B .∵(2+ai)(a–2i)=(2a+2a)+(a 2–4)i=–4i ,∴a 2–4=–4,解得a=0.3、答案:D .由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关.4、答案:B .∵a 1+a 3+a 5=a 1+a 1q 2+a1q 4=3(1+q 2+q 4)=21,∴1+q 2+q 4=7,整理得(q 2+3)(q 2–2)=0.解得q 2=2,∴a 3+a 5+a 7=a 1q 2+a 1q 4+a 1q 6=a 1q 2(1+q 2+q 4)=3×2×7=42. 5、答案:C .∵f(–2)=1+log 2(2+2)=3,()222log 121log 3log 412log 1222f -+-==222log 3log 2log 6226+===,∴f(–2)+f(log 212)=9.6、答案:D .如图所示截面为ABC ,设边长为a ,则截取部分体积为S △ADC ·|DB|=a 3, 所以截去部分体积与剩余部分体积的比值为=.7、答案:C .由题可得,解得,所以圆方程为x 2+y 2–2x+4y –20=0,令x=0,解得y=–2±2, 所以|MN|=|–2+2–(–2–2)|=4. 8、答案:B .输入a=14,b=18.第一步a≠b 成立,执行a>b ,不成立执行b=b –a=18–14=4; 第二步a≠b第三步a≠b 第四步a≠b 第四步a≠b 第五步a≠b 9、答案:C 点C 到平面10、答案:当点P 在CD 当x=时,从点P B . 11、答案:过点M 作, 12、答案:因为当x>0 又因为函数且g(–, 二、填空题131415、答案:所以Ca+Ca+C+C+C=32,解得a=3.16、答案:–.∵a n+1=S n+1–S n =S n S n+1,∴–=1.即–=–1,∴{}是等差数列, ∴=–(n –1)=–1–n+1=–n ,即S n =–. 三、解答题17、答案:(1);(2)|BD|=,|AC|=1.(1)如图,由题意可得S △ABD =|AB||AD|sin ∠BAD,S △ADC =|AC||AD|sin ∠CAD, ∵S △ABD =2S △ADC ,∠BAD=∠DAC,∴|AB |=2|AC|,∴==. (2)设BC 边上的高为h ,则S △ABD =|BD|·h=2S △ADC =2××h ,解得|BD|=,设|AC|=x ,|AB|=2x ,则cos ∠BAD=,cos ∠DAC=.∵cos∠DAC=cos ∠BAD ,∴=,解得x=1或x=–1(舍去).∴|AC|=1. 18、(1)如图所示.通过茎叶图可知A 地区的平均值比B 地区的高,A地区的分散程度大于B地区.(2)记事件不满意为事件A1,B1,满意为事件A2,B2,非常满意为事件A3,B3.则由题意可得P(A1)=,P(A2)=,P(A3)=,P(B1)=,P(B2)=,P(B3)=,则P(C)=P(A2)P(B1)+P(A3)(P(B1)+P(B2))=×+×(+)=.19、(1)如图所示(2)建立空间直角坐标系.由题意和(1)可得A(10,0,0),F(0,4,8),E(10,4,8),G(10,10,0),则向量AF=(–10,4,8),EF=(–10,0,0),EG=(0,6,–8).设平面EFHG的一个法向量为n=(x,y,z),则,即,解得x=0,令y=4,z=3,则n=(0,4,3).所以直线AF与α平面所成角的正弦值为sinθ=|cos<AF,n>|===.20、(1)设直线l的方程为y=kx+b(k≠0),点A(x1,y1),B(x2,y2),则M(,),联立方程,消去y整理得(9+k2)x2+2kbx+b2–m2=0(*),∴x1+x2=–,y1+y2=k(–)+2b=,∴kOM ·kAB=·k=·(–)·k=–9.k=4±,有21∴∴,所以此时当令e–m–2m 在而.当当22则∵.在在Rt△AEO中,sin∠OAE===.∴∠OAE=60°,∵∠OAE=∠OAF=∠EAF,AE=AF,∴∠EAF=2∠OAE=60°,∴△AEF、△ABC是等边三角形.连接OM,∴OM=2.∵OD⊥MN,∴MD=ND=MN=.在Rt△ODM中,OD===1,∴AD=OA+AD=4+1=5.在Rt△ADB中,AB===.∴四边形EBCF的面积为S△ABC –S△AEF=×()2–×(2)2=.23、(1)将曲线C2,C3化为直角坐标系方程C2:x2+y2–2y=0,C3:x2+y2–2x=0.联立,解得或.所以交点坐标为(0,0),(,).(2)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.∵A的极坐标为(2sinα,α),B的极坐标为(2cosα,α).∴|AB|=|2sinα–2 cosα|=4|sin(α–)|.当α=时,|AB|取得最大值,最大值为4.24、(1)由题意可得(+)2=a+b+2,(+)2=c+d+2,∵ab>cd,∴>,而a+b=c+d,∴(+)2>(+)2,即+>+.(2)+>+,即a+b+2>c+d+2,∴>,∴ab>cd,∴–4ab<–4cd,∴(a+b)2–4ab<(c+d)2–4cd,∴(a–b)2<(c–d)2,∴|a–b|<|c–d|.。
2015年全国2卷数学试卷完美版
2015年高考理科数学全国2卷一、选择题:本大题共12个小题,每小题5分。
在每小题给出的四个选项中,只有一项符合题目要求。
(1)已知集合}2,1,0,1,2{-=A ,}0)2)(1/({<+-=x x x B ,则=⋂B A}0,1){(-A }1,0){(B }1,0,1){(-C }2,1,0){(D(2)若a 为实数且i i a ai 4)2)(2(-=-+则a =)(A -1 )(B 0 )(C 1 )(D 2(3)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。
以下结论不正确的是)(A 逐年比较,2008年减少二氧化硫排放量的效果最显著 )(B 2007年我国治理二氧化硫排放显现)(C 2006年以来我国二氧化硫年排放量呈减少趋势)(D 2006年以来我国二氧化硫年排放量与年份正相关(4)等比数列}{n a 满足,21,35311=++=a a a a ,则=++753a a a)(A 21 )(B 42 )(C 63 )(D 84(5)设函数⎩⎨⎧≥<-+=-1,2,1),2(log 1)(12x x x x f x 则=+-)12(log )2(2f f)(A 3 )(B 6 )(C 9 )(D 12(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为)(A 81 )(B 71)(C 61 )(D 51(7)过三点A (1,3),B (4,2),C (1,7)的圆交于y 轴于M 、N 两点,则MN =)(A 26 )(B 8 )(C 46 )(D 10(8)右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。
执行该程序框图,若输入b a ,分别为14,18)(A 0 )(B 2 )(C 4 )(D 14(9)已知B A ,是球O 的球面上两点,C AOB ,90︒=∠为该球面上的动点,若三棱锥ABC O -体积的最大值为36,则球O 的表面积为)(A 36π )(B B.64π )(C 144π )(D 256π(10)如图,长方形ABCD 的边1,2==BC AB ,O 是AB 的中点,点P 沿着边CD BC ,与DA 运动,x BOP =∠,将动点P 到AB 两点距离之和表示为x 的函数)(x f ,则)(x f 的图像大致为Ox D C BA(D)(C)(B)(A)2xyO424π2xyO424π2xyO424ππ424Oyx2(11)已知B A ,为双曲线E 的左,右顶点,点M 在E 上,ABM ∆为等腰三角形,且顶角为120°,则E 的离心率为)(A 5 )(B 2 )(C 3 )(D 2(12)设函数)('x f 是奇函数))((R x x f ∈的导函数,0)1(=-f ,当0>x 时,0)()(,<-x f x xf ,则使得0)(>x f 成立的x 的取值范围是)(A )1,0()1,(⋃--∞ )(B ),1()0,1(+∞⋃- )(C )0,1()1,(-⋃--∞ )(D ),1()1,0(+∞⋃二、填空题(13)设向量b a ,不平行,向量b a +λ与b a 2+平行,则实数=λ___________.(14)若y x ,满足约束条件⎪⎩⎪⎨⎧≤-+≤-≥+-,022,02,01y x y x y x ,则y x z +=的最大值为____________.(15)4)1)((x x a ++的展开式中x 的奇数次幂项的系数之和为32,则=a __________. (16)n S 是数列}{n a 的前n 项和,且11-=a ,11+=+n n n S S a ,则n S =__________. 三.解答题(17)(本小题满分12分)ABC ∆中,D 是BC 上的点,AD 平分BAC ∠,ABD ∆是ADC ∆面积的2倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年高考全国新课标卷Ⅱ理科数学真题一、选择题1、已知集合A={–2,–1,0,1,2},B={x|(x –1)(x+2)<0},则A∩B=( ) A .{–1,0} B .{0,1} C .{–1,0,1} D .{0,1,2}2、若a 为实数,且(2+ai)(a –2i)= – 4i ,则a=( ) A .–1 B .0 C .1 D .23、根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫排放量呈减少趋势D .2006年以来我国二氧化硫排放量与年份正相关4、已知等比数列{a n } 满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A .21 B .42 C .63 D .845、设函数f(x)=⎩⎨⎧1+log 2(2–x)(x<1)2x –1(x≥1),则f(–2)+f(log 212)=( )A .3B .6C .9D .126.一个正方体被一个平面截去一部分后,剩余部分的三视图如下左1图,则截去部分体积与剩余部分体积的比值为( )A .B .C .D .7、过三点A(1,3),B(4,2),C(1,–7)的圆交y 轴于M ,N 两点,则IMNI=( ) A .2 6 B .8 C .4 6 D .108、如上左2程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a=( ) A .0 B .2 C .4 D .149、已知A ,B 是球O 的球面上两点,∠AOB=90°,C 为该球上的动点,若三棱锥O –ABC 的体积最大值为36,则球O 的表面积为( ) A .36π B .64π C .144π D .256π10、如上左3图,长方形ABCD 的边AB=2,BC=1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP=x ,将动点P 到A ,B 两点距离之和表示为x 的函数,则y=f(x)的图像大致为( )A .B .C .D . 11、已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A . 5B .2C . 3D .212、设函数f’(x)是奇函数f(x)(x R)的导函数,f(–1)=0,当x>0时,x f’(x)– f(x)<0,则使得f(x)>0成立的x 的取值范围是( )A .(–∞,–1)∪(0,1)B .(,0)∪(1,+∞)C .(–∞,–1)∪(–1,0)D .(,1)∪(1,+∞) 二、填空题13、设向量a,b 不平行,向量λ a+b 与a+2b 平行,则实数 λ = .14、若x ,y 满足约束条件⎩⎨⎧x –y+1≥0x –2y≤0x+2y –2≤0,则z=x+y 的最大值为 .15、(a+x)(1+x)4的展开式中x 的奇数次幂项的系数之和为32,则a= .16、设S n 是数列{a n }的前n 项和,且a 1=–1,a n+1=S n S n+1,则S n =________________. 三、解答题17、△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍.(1)求sinB sinC .(2)若AD=1,DC=22,求BD 和AC 的长.18.某公司为了了解用户对其产品的满意度,从A ,B 两地区分别随机抽查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C :“A 地区用户的满意等级高于B 地区用户的满意度等级”.假设两地区用户的评价结果互相独立.根据所给的数据,以事件发生的频率作为响应事件的概率,求C 的概率19、如图,长方形ABCD –A 1B 1C 1D 1中,AB=16,BC=10,AA 1=8,点E ,F 分别在A 1B 1、D 1C 1上,A 1E=D 1F=4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在途中画出这个正方形(不必说明画法和理由); (2)求直线AF 与α平面所成角的正弦值.20、已知椭圆C :9x 2+y 2=M 2(m>0).直线l 不过圆点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点(m3,m),延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由.21、设函数f(x)=e mx +x 2–mx .(1)证明:f(c)在(–∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2 [–1,1],都有|f(x 1)–(x 2)|≤e –1,求m 的取值范围.22、[选修4—1:几何证明选讲]如图,O 为等腰三角形ABC 内一点,⊙O 与△ABC 的底边BC 交于M ,N 两点,与底边的高AD 交于点G ,切与AB ,AC 分别相切与E ,F 两点. (1)证明:EF ∥BC ;(2)若AG 等于⊙O 的半径,且AE=MN=23,求四边形EBCF 的面积.23、[选修4—4:坐标系与参数方程]在直角坐标系xOy 中,曲线C 1:⎩⎨⎧x=tcosαy=tsinα(t 为参数,t≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sinθ,C 3:ρ=23cosθ. (1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB|的最大值24、[选修4–5:不等式选讲]设a ,b ,c ,d 均为正数,且a+b=c+d ,证明: (1)若ab>cd ,则a+b>c+d ;(2)a+b>c+d 是|a –b|<|c –d|的充要条件.2015年高考全国新课标卷Ⅱ理科数学真题 一、选择题1、答案:A .∵(x –1)(x+2)<0,解得–2<x<1,∴B={x|–2<x<1},∴A∩B={–1,0}.2、答案:B .∵(2+ai)(a –2i)=(2a+2a)+(a 2–4)i=–4i ,∴a 2–4=–4,解得a=0.3、答案:D .由柱形图得,从2006年以来,我国二氧化硫排放量呈下降趋势,故年排放量与年份负相关.4、答案:B .∵a 1+a 3+a 5=a 1+a 1q 2+a1q 4=3(1+q 2+q 4)=21,∴1+q 2+q 4=7,整理得(q 2+3)(q 2–2)=0.解得q 2=2,∴a 3+a 5+a 7=a 1q 2+a 1q 4+a 1q 6=a 1q 2(1+q 2+q 4)=3×2×7=42. 5、答案:C .∵f(–2)=1+log 2(2+2)=3,()222log 121log 3log 412log 1222f -+-==222log3log 2log 6226+===,∴f(–2)+f(log 212)=9.6、答案:D .如图所示截面为ABC ,设边长为a ,则截取部分体积为13S △ADC ·|DB|=16a 3, 所以截去部分体积与剩余部分体积的比值为16a 3a 3–16a 3=15.7、答案:C .由题可得⎩⎨⎧1+9+D+3E+F=010+4+4D+2E+F=01+49+D –7E+F=0,解得⎩⎨⎧D=–2E=4F=–20,所以圆方程为x 2+y 2–2x+4y –20=0,令x=0,解得y=–2±26 所以|MN|=|–2+26–(–2–26)|=46. 8、答案:B .输入a=14,b=18.第一步a≠b 成立,执行a>b ,不成立执行b=b –a=18–14=4; 第二步a≠b 成立,执行a>b ,成立执行a=a –b=14–a=10; 第三步a≠b 成立,执行a>b ,成立执行a=a –b=10–4=6; 第四步a≠b 成立,执行a>b ,成立执行a=a –b=6–4=2; 第四步a≠b 成立,执行a>b ,不成立执行b=b –a=4–a=2. 第五步a≠b 不成立,输出a=2.选B .9、答案:C .设球的半径为r ,三棱锥O –ABC 的体积为V=13S △ABO ·h=13×12r 2h=16r 2h ,点C 到平面ABO 的最大距离为r ,∴16r 3=36,解得r=6,球表面积为4πr 2=144π.10、答案:B .由已知得,当点P 在BC 边上运动时,即0≤x≤π4时,PA+PB=tan 2x+4+tanx ; 当点P 在CD 边上运动时,即π4≤x≤3π4,x≠π2时,PA+PB=(1tan 2x –1)2+1+(1tan 2x +1)2+1,当x=π2时,PA+PB=22;当点P 在边DA 上运动时,即3π4≤x≤π时,PA+PB=tan 2x+4–tanx , 从点P 的运动过程可以看出,轨迹关于直线x=π2对称,且f(π4)>f(π2),且轨迹非线性,故选B . 11、答案:D .设双曲线方程为x 2a 2–y 2b 2=1(a>0,b>0),如图所示,|AB|=|BM|,∠ABM=120°,过点M 作MD ⊥x 轴,垂足为D .在Rt △BMD 中,|BD|=a ,|MD|=3a ,故点M 的坐标为M(2a,3a),代入双曲线方程得4a 2a 2–3a 2b 2=1,化简得a 2=b 2,∴e=c 2a 2=a 2+b 2a 2=2.故选D .12、答案:A .记函数g(x)=f(x)x ,则g'(x)=xf' (x)–f(x)x 2, 因为当x>0时,f'(x)–f(x)<0,故当x>0时,g'(x)<0,所以g(x)在(0,+∞)单调递减; 又因为函数f(x)是奇函数,故函数g(x)是偶函数,所以g(x)在(–∞,0)单调递减, 且g(–1)=g(1)=0.当0<x<1时,g(x)>0,则f(x)>0;当x<–1时,g(x)<0,则f(x)>0, 综上所述,使得f(x)>0成立的x 的取值范围是(–∞,–1)∪(0,1),故选A . 二、填空题13、答案:12.设λa +b =x(a +2b ),可得⎩⎨⎧λ=x 1=2x ,解得λ=x=12.14、答案:32.如图所示,可行域为△ABC ,直线y=–x+z 经过点B 时,z 最大.联立⎩⎨⎧x –2y=0x+2y –2=0,解得⎩⎪⎨⎪⎧x=1y=12,所以z max =1+12=32.15、答案:3.(a+x)(1+x)4=(C 04a+C 14ax+C 24ax 2+C 34ax 3+C 44ax 4)+ (C 04x+C 14x 2+C 24x 3+C 34x 4+C 44x 5),所以C 14a+C 34a+C 04+C 24+C 44=32,解得a=3.16、答案:–1n .∵a n+1=S n+1–S n =S n S n+1,∴1S n –1S n+1=1.即1S n+1–1S n =–1,∴{1S n}是等差数列,∴1S n =1S 1–(n –1)=–1–n+1=–n ,即S n =–1n .三、解答题17、答案:(1)12;(2)|BD|=2,|AC|=1.(1)如图,由题意可得S △ABD =12|AB||AD|sin ∠BAD ,S △ADC =12|AC||AD|sin ∠CAD , ∵S △ABD =2S △ADC ,∠BAD=∠DAC ,∴|AB|=2|AC|,∴sin ∠B sin ∠C =|AC||AB|=12. (2)设BC 边上的高为h ,则S △ABD =12|BD|·h=2S △ADC =2×12×22h ,解得|BD|=2,设|AC|=x ,|AB|=2x ,则cos ∠BAD=4x 2+1–24x ,cos ∠DAC=x 2+1–122x . ∵cos ∠DAC=cos ∠BAD ,∴4x 2+1–24x =x 2+1–122x ,解得x=1或x=–1 (舍去).∴|AC|=1.18、(1)如图所示.通过茎叶图可知A 地区的平均值比B 地区的高, A 地区的分散程度大于B 地区.(2)记事件不满意为事件A 1,B 1,满意为事件A 2,B 2,非常满意为事件A 3,B 3.则由题意可得P(A 1)=420,P(A 2)=1220,P(A 3)=420,P(B 1)=1020,P(B 2)=820,P(B 3)=220,则P(C)=P(A 2)P(B 1)+P(A 3)(P(B 1)+P(B 2))=1220×1020+420×(1020+820)=1225. 19、(1)如图所示(2)建立空间直角坐标系.由题意和(1)可得A(10,0,0),F(0,4,8),E(10,4,8),G(10,10,0),则向量AF =(–10,4,8),EF =(–10,0,0),EG =(0,6,–8).设平面EFHG 的一个法向量为n =(x,y,z),则⎩⎨⎧n ·EF =0n ·EG =0,即⎩⎨⎧–10x=06y –8z=0,解得x=0,令y=4,z=3,则n=(0,4,3).所以直线AF 与α平面所成角的正弦值为sinθ=|cos<AF ,n >|=AF·n |AF||n|=16+24100+16+8416+9=225.20、(1)设直线l 的方程为y=kx+b(k ≠0),点A(x 1,y 1),B(x 2,y 2),则M(x 1+x 22,y 1+y 22),联立方程⎩⎨⎧y=kx+b9x 2+y 2=m 2,消去y 整理得(9+k 2)x 2+2kbx+b 2–m 2=0(*),∴x 1+x 2=–2kb 9+k 2,y 1+y 2=k(–2kb 9+k 2)+2b=18b9+k 2, ∴k OM ·k AB =y 1+y 22x 1+x 22·k=18b 9+k 2·(–9+k 22kb )·k=–9.(2)假设直线l 存在,直线方程为y=kx+m(1–k)3,b=m(3–k)3.设点P(x P ,y P ),则由题意和(1)可得x P =x 1+x 2=–2kb 9+k 2,y P =y 1+y 2=18b9+k 2,因为点P 在椭圆上,所以9(–2kb 9+k 2)2+(18b 9+k 2)2=m 2,整理得36b 2=m 2(9+k 2),即36(m(3–k)3)2=m 2(9+k 2),化简得k 2–8k+9=0,解得k=4±7, 有(*)知△=4k 2b 2–4(9+k 2)(b 2–m 2)>0,验证可知k=4±7都满足.21、(1)∵f(x)=e mx +x 2–mx ,∴f'(x)=me mx +2x –m ,f''(x)=m2e mx +2≥0在R 上恒成立, ∴f'(x)=me mx +2x –m 在R 上单调递增.又∵f'(0)=0,∴x>0时,f'(x)>0;∴x<0时,f'(x)<0. ∴f(x)在(–∞,0)单调递减,在(0,+∞)单调递增.(2)有(1)知f min (x)=f(0)=1,当m=0时,f(x)=1+x 2,此时f(x)在[–1,1]上的最大值是2,所以此时|f(x 1)–f(x 2)|≤e–1. 当m≠0时,f(–1)=e –m +1+m ,f(1)=e m +1–m .令g(m)=f(1)–f(–1)=e m –e –m –2m ,∵g'(m)=e m +e –m –2≥0,∴g(m)=f(1)–f(–1)=e m –e –m –2m 在R 上单调递增. 而g(0)=0,所以m>0时,g(m)>0,即f(1)<f(–1).∴m<0时,g(m)<0,即f(1)<f(–1). 当m>0时,|f(x 1)–f(x 2)|≤f(1)–1=e m –m≤e–1,∴m≤1;当m<0时,|f(x 1)–f(x 2)|≤f(–1)–1=e –m +m≤e –m –(–m)≤e–1,∴–m≤1,∴–1≤m≤0. 所以,综上所述m 的取值范围是[–1,1]. 22、(1)如图所示,连接OE ,OF ,则OE ⊥AB ,OF ⊥AC ,即∠AEO=∠AFO=90°.∵OE=OF ,∴∠OEF=∠OFE ,∴∠AEF=90°–∠OEF ,∠AFE=90°–∠OFE ,即∠AEF=∠AFE .∵∠AEF+∠AFE+∠EAF=180°,∴∠AEF=∠AFE=12(180°–∠EAF).∵△ABC 是等腰三角形,∴∠B=∠C=12(180°–∠BAC),∴∠AEF=∠AFE=∠B=∠C ,∴EF ∥BC . (2)设⊙O 的半径为r ,∴AG=r ,OA=2r .在Rt △AEO 中,∴AE 2+EO 2=AO 2.∴(23)2+r 2=(2r)2,解得r=2.在Rt △AEO 中,sin ∠OAE=OE OA =r 2r =12.∴∠OAE=60°,∵∠OAE=∠OAF=12∠EAF ,AE=AF ,∴∠EAF=2∠OAE=60°,∴△AEF 、△ABC 是等边三角形.连接OM ,∴OM=2.∵OD ⊥MN ,∴MD=ND=12MN=3.在Rt △ODM 中,OD=OM 2–MD 2=22–(3)2=1,∴AD=OA+AD=4+1=5.在Rt △ADB 中,AB=AD cos ∠BAD =5cos30°=1033.∴四边形EBCF 的面积为S △ABC –S △AEF =34×(1033)2–34×(23)2=1633.23、(1)将曲线C 2,C 3化为直角坐标系方程C 2:x 2+y 2–2y=0,C 3:x 2+y 2–23x=0.联立⎩⎨⎧x=0y=0或(0,0),(32,32).(2)曲线C 1的极坐标方程为θ=α(ρ,其中0≤α<π.∵A 的极坐标为(2sinα,α),B 的极坐标为(23cosα,α).∴|AB|=|2sinα–23cosα|=4|sin(α–π3)|. 当α=5π6时,|AB|取得最大值,最大值为4.24、(1)由题意可得(a+b)2=a+b+2ab ,(c+d)2=c+d+2cd ,∵ab>cd ,∴ab>cd ,而a+b=c+d , ∴(a+b)2>(c+d)2,即a+b>c+d .(2)a+b>c+d ,即a+b+2ab>c+d+2cd ,∴ab>cd ,∴ab>cd ,∴–4ab<–4cd ,∴(a+b)2–4ab<(c+d)2–4cd ,∴(a –b)2<(c –d)2,∴|a –b|<|c –d|.。