微波技术与天线考察报告

合集下载

微波技术与天线实验三

微波技术与天线实验三

微波技术与天线实验报告图1.新建HFSS工程图2. 设置求解类型2.创建微带天线模型2.1设置默认的长度单位为mm图3. 设置默认的长度单位为mm 2.2建模相关选项设置图4. 建模相关选项设置2.3 创建参考地在Z=0的XOY面上创建一个顶点位于(-45mm, -45mm),大小为90mm×90mm 的矩形面作为参考地,命名为GND,并为其分配为理想导体边界条件。

2.4 创建介质板模型创建一个长、宽、高为80mm×80mm×5mm的长方体作为介质板层,介质板层的底部位于参考地上,其顶点坐标为(-40,-40, 0),介质板的材料为R04003,介质板层命名为Substrate2.5 创建微带贴片在Z=5的XOY面上创建一个顶点坐标为(-15.5mm,-20.7mm,5mm),大小为30.0mm×41.4mm的矩形面作为微带贴片,命名为Patch,并为其分配理想导体边界条件。

2.6 创建同轴馈线的内芯创建一个圆柱体作为同轴馈线的内芯,圆柱体的半径为0.5mm,长度为5mm,圆柱体底部圆心坐标为(9.5mm,0,0),材质为理想导体,同轴馈线命名为Feed。

2.7 创建信号传输端口面同轴馈线需要穿过参考地面,传输信号能量,因此需要在参考地面GND上开一个圆孔允许能量传输。

圆孔的半径为 1.5mm,圆心坐标为(9.5mm,0,0),并将其命名为port.2.8 创辐射边界表面创建一个长方体,其顶点坐标为(-80,-80,-35),长方体的长宽高为160mm ×160mm×75mm,长方体模拟自由空间,因此材质为真空,长方体命名为Air,创建好这样一个长方体之后,设置其四周表面为辐射边界条件。

、图5 微带贴片天线模型3.设置激励端口设置同轴信号端口面的激励方式为集总端口激励。

4.添加和使用变量添加设计变量Length,初始值为30.0mm,用以表示微带贴片天线的长度,添加设计变量Width,初始值为41.4mm, 用以表示微带贴片天线的宽度,添加设计变量Xf, 用以表示同轴馈线的圆心点的X轴坐标。

微波与天线实验报告.

微波与天线实验报告.

实验一基本辐射单元方向图一、实验目的基本辐射单元,指的是基本电振子(电偶极子),基本磁振子(磁偶极子),基本缝隙,惠更斯面元等。

它们是构成实际天线的基本单元。

通过本次实验了解这些基本辐射单元在空间产生的辐射场。

二、实验指导实验界面有三个显示区:立体方向图、E面方向图、H面方向图,分别用来显示基本辐射单元在空间产生的辐射场的立体方向图、E面方向图和H面方向图。

界面下端有六个按钮:基本电振子、基本磁振子、基本缝隙、惠更斯面元、Return、Help。

点击按钮基本电振子,则基本电振子的方向图在显示区内显示出来,由显示图形可见基本电振子所辐射的电磁场强度不仅与r有关,而且与观察方向θ有关。

在振子的轴线方向,场强为零;在垂直于振子轴的方向上,场强最大;在其它方向上,场强正比于sinθ。

点击按钮基本磁振子,则基本磁振子的方向图在显示区内显示出来,由显示图形可见基本磁振子所辐射的电磁场的空间图形与基本电振子一样,这是因为基本电振子的辐射是振子上电流产生的辐射与基本磁振子的辐射是振子表面切向磁场产生的磁场是等效的。

点击按钮基本缝隙,则基本缝隙的方向图在显示区内显示出来,由显示图形可见基本缝隙所辐射的电磁场与基本磁振子完全相同,基本缝隙与基本磁振子是等效的。

点击按钮惠更斯面元,则惠更斯面元的方向图在显示区内显示出来,由显示图形可见惠更斯面元所辐射的电磁场在空间是一个对称于面元法线的心脏形方向图。

点击按钮Return,返回天线实验总界面。

实验二对称阵子方向图分析一、实验目的:通过MATLAB编程,熟悉电基本阵子和对称阵子的辐射特性,了解影响对称阵子辐射的因素及其变化对辐射造成的影响二、实验原理:1.电基本振子的辐射电基本振子(Electric Short Dipole)又称电流元,它是指一段理想的高频电流直导线,其长度l远小于波长λ,其半径a远小于l,同时振子沿线的电流I处处等幅同相。

用这样的电流元可以构成实际的更复杂的天线,因而电基本振子的辐射特性是研究更复杂天线辐射特性的基础。

微波与天线实验报告

微波与天线实验报告

微波与天线实验报告微波与天线实验报告引言:微波与天线是无线通信领域中非常重要的技术。

微波是指频率范围在1GHz至300GHz之间的电磁波,它在通信、雷达、卫星通信等领域得到广泛应用。

天线是将电磁波转换为电信号或将电信号转换为电磁波的装置,它在无线通信中起到传输和接收信号的关键作用。

本实验旨在通过实际操作,深入了解微波与天线的原理和应用。

一、实验目的本实验的目的是通过实际操作,掌握微波与天线的基本原理和实验方法,了解它们在无线通信中的应用。

二、实验设备与材料1. 微波信号发生器2. 微波天线3. 微波功率计4. 微波频谱仪5. 微波衰减器6. 微波衰减器控制器7. 微波衰减器电源8. 射频线缆9. 各种连接线缆10. 计算机三、实验步骤与结果1. 实验一:微波信号发生器的调试与测量a. 将微波信号发生器与微波功率计通过射频线缆连接。

b. 打开微波信号发生器和微波功率计,调节微波信号发生器的频率和功率,观察微波功率计的读数变化。

c. 记录不同频率和功率下的微波功率计读数,并绘制频率与功率的关系曲线。

2. 实验二:微波天线的特性测量a. 将微波天线与微波信号发生器通过射频线缆连接。

b. 调节微波信号发生器的频率和功率,观察微波天线的辐射特性。

c. 测量不同频率和功率下微波天线的增益、方向性等参数,并绘制相应的特性曲线。

3. 实验三:微波天线的阻抗匹配a. 将微波天线与微波信号发生器通过射频线缆连接。

b. 调节微波信号发生器的频率和功率,观察微波天线的阻抗匹配情况。

c. 根据实验结果,调整微波天线的结构和参数,实现最佳的阻抗匹配效果。

四、实验结果分析通过实验一,我们可以得到微波信号发生器的频率与功率的关系曲线,从而了解微波信号发生器的工作特性。

实验二则帮助我们了解微波天线的辐射特性,如增益、方向性等参数,这对于无线通信系统的设计和优化至关重要。

实验三则是为了实现微波天线的阻抗匹配,阻抗匹配的好坏直接影响到系统的传输效率和性能。

微波与天线考查报告任务书

微波与天线考查报告任务书

《微波与天线技术》课程考查报告任务书
考查目的:开课专业为通信工程专业,课程要求对微波与天线技术有全面的了解,并对微波通信系统中的涉及的主要技术了解
和熟悉。

考查要求:报告要求分两部分。

第一部分为课程内容总结,对该课程所讲授部分进行总结,列出知识点和基本技术以及基本系
统,至少4页;第二部分为课程心得体会,写出对该课程
的讲授方法的感受,所学内容的程度情况,本学期的收获
的内容,可1页。

排版要求:采用小四号、宋体字体,1.5倍间距。

要求有封皮,左侧装订。

可打印,也可以手写。

评分标准:(1)优秀。

态度认真,排版清晰,课程总结内容条理清晰,逻辑顺畅,对所学内容有清晰的了解,熟悉现代通信相关
技术和专业名词。

(2)良好。

态度认真,排版清晰,课程总结内容条理较清
晰,逻辑顺畅,对所学内容有比较清晰的了解,比较熟悉
现代通信相关技术和专业名词。

(3)中等。

态度认真,排版比较清晰,课程总结内容条理
较清晰,逻辑顺畅,对所学内容有比较的了解,比较熟悉
现代通信相关技术和专业名词。

(4)及格。

态度尚可,内容量稍显不足,对所学知识点总
结不全,基本达到任务书要求。

(5)不及格。

内容严重不足,态度不认真,报告内容不符
合任务书要求。

微波天线与技术报告书

微波天线与技术报告书

︽微波技术与天线︾课程考查报告姓名:范依依班级:通信0904班学号:310909020401成绩:评语:《微波与天线技术》课程考查报告任务书第一部分:课程内容总结绪论:微波是电磁波谱介于超短波和红外线之间的波段,属于无线电波中波长最短的波段,其频率范围从300MHz 至3000GHz 。

微波具有以下特性:似光性、穿透性、频带宽特性、热效应特性、散射特性、抗低频干扰特性、视距传播特性、分布参数的不确定性、电磁兼容与电磁环境污染等。

第一章:均匀传输线理论微波传输线分为:双导体传输线、均匀填充介质的金属波导管、介质传输线。

1.1均匀传输线方程及其解t t z i L t z Ri z t z u ∂∂+=∂∂),(),(),( ○1 tt z u C t z Gu z t z i ∂∂+=∂∂),(),(),( ○2 ○1、○2是均匀传输线方程 传输线的工作特性参数:1)将传输线上导行波的电压与电流的比定义为特性阻抗:Z o =Cj G Lj R ωω++2)传输常数γβαωωγj C j G L j R +=++=))(( ()),(21LC GZ RY O O ωβα=+=对于无耗传输线,R=G=0,则0=α,此时LC j ωββγ==, 3)相速p ν与波长λβων=p r o p f v ελλ==1.2传输线阻抗与状态参数三个重要的物理量:输入阻抗、反射系数与驻波比1、输入阻抗:)tan()tan()sin()cos()sin()cos()()()(111111z jZ Z z jZ Z Z z Z U j z I z Z jI z U z I z U z Z o o o oo in ββββββ++=++==Z 1为终端负载阻抗。

无耗传输线上任意相距2λ处的阻抗相等,一般称之为2λ的重复性 2、反射系数:任意点反射系数)2(11)(z j e z βφ-Γ=Γ其中ooZ Z Z Z +-=Γ111称为终端反射系数,对于均匀无线传输线来说,任意点反射系数)(z Γ大小均相等,沿线只有相位按周期变化,其周期为2λ,即反射系数也具有2λ重复性。

微波技术与天线实验报告

微波技术与天线实验报告

�����
=
2.65代入式子,可以计算出微带天线矩形
贴片的宽度,即
w = 46.26mm
(2)、有效介电常数ε������ 把h = 3mm w = 46.26mm ε������ = 2.65代入,可计算出有效介电常数,即
ε������ = 2.444 (3)、辐射缝隙的长度∆L
把h = 3mm w = 46.26mm ε������ = 2.444代入式子,可以计算出微带天线辐射 缝隙的长度,即
五、HFSS 的实验结果 根据之前的参数设计得出的 HFSS 模型如图.2,进行仿真后的结果如图.3。查
看天线信号端口回波损耗(即 S11)的扫频分析结果,给出天线的谐振点。生成 如图所示的 S11 在 1.8~3.2GHz 频段内的扫频曲线报告。从图中可以看出,当 S11 最小时,频率是 2.36GHz。
������
=
0.412ℎ
(������������ (������������
+ −
0.3)(���ℎ��� + 0.264) 0.258)(���ℎ��� + 0.8)
对于同轴线馈电的微带贴片天线,在确定了贴片长度L和宽度������之后,还需要确
定同轴线馈电点的位置,馈电点的位置会影响天线的输入阻抗,在微波应用中通
算结果就可以达到足够的准确,因此设计中参考地的长度������������������������和宽度������������������������只需 满足以下两式即可
������������������������ > L + 6h ������������������������ > w + 6h
标(������������, ������������),即

微波技术与天线 实验报告

微波技术与天线 实验报告

微波技术与天线实验报告微波技术与天线实验报告引言:微波技术和天线是现代通信领域中不可或缺的重要组成部分。

微波技术的应用范围广泛,包括无线通信、雷达、卫星通信等领域。

而天线作为微波信号的收发器,起到了关键的作用。

本实验旨在通过实际操作和测量,探索微波技术与天线的基本原理和应用。

实验一:微波信号的传输特性测量在本实验中,我们使用了一对微波发射器和接收器,通过测量微波信号的传输特性,来了解微波信号在传输过程中的衰减和干扰情况。

首先,我们将发射器和接收器分别连接到示波器上,并设置合适的频率和功率。

然后,将发射器放置在一个固定位置,接收器在不同距离上进行测量。

通过记录示波器上的信号强度,并计算出衰减值,我们可以得到微波信号在传输过程中的衰减情况。

实验结果表明,在传输距离增加的情况下,微波信号的强度逐渐减弱,呈指数衰减的趋势。

同时,我们还观察到在某些距离上,微波信号受到了干扰,出现了明显的波动和噪声。

这些干扰可能来自于周围的电磁辐射或其他无线设备的干扰。

实验二:天线的性能测量在本实验中,我们选择了不同类型的天线,并通过测量其增益、方向性和波束宽度等参数,来评估天线的性能。

首先,我们使用一个定位器来确定天线的指向性。

通过调整定位器的方向,观察信号强度的变化,我们可以确定天线的主瓣方向。

然后,我们通过改变接收器的位置和角度,测量不同方向上的信号强度,从而计算出天线的增益。

实验结果表明,不同类型的天线具有不同的性能特点。

某些天线具有较高的增益和较窄的波束宽度,适用于需要远距离传输和精确定位的应用。

而其他天线则具有较宽的波束宽度,适用于覆盖范围广泛的通信需求。

实验三:微波技术在通信领域的应用微波技术在通信领域有着广泛的应用。

其中,微波通信是最为常见和重要的应用之一。

通过使用微波信号进行通信,可以实现高速、稳定的数据传输。

微波通信广泛应用于无线网络、卫星通信和移动通信等领域。

此外,微波雷达也是微波技术的重要应用之一。

微波技术与天线实验报告书

微波技术与天线实验报告书

微波技术与天线实验报告书实验目的:本实验旨在使学生了解微波技术的基本理论,掌握微波天线的工作原理和设计方法,并通过实验操作加深对微波天线性能测试的理解和应用。

实验原理:微波技术是利用波长在1毫米至1米之间的电磁波进行通信的技术。

微波天线作为微波通信系统中的关键部件,其设计和性能直接影响到通信系统的整体性能。

微波天线通常分为线极化天线和圆极化天线,它们在不同的应用场景中有着不同的优势。

实验设备和材料:1. 微波信号源2. 微波天线测试系统3. 标准天线4. 待测天线5. 测量仪器(如频率计、功率计等)6. 连接电缆及相关配件实验步骤:1. 连接微波信号源和测试系统,确保信号源输出稳定。

2. 将标准天线与待测天线分别连接到测试系统,并记录其性能参数。

3. 调整待测天线的位置和角度,观察其对信号接收的影响。

4. 记录不同条件下的测试数据,包括增益、波束宽度、方向性等。

5. 分析测试数据,评估天线性能,并与理论值进行比较。

实验结果:通过本次实验,我们得到了以下结果:- 待测天线在特定频率下的增益为XX dBi。

- 波束宽度为XX度。

- 方向性比为XX。

- 与标准天线相比,待测天线在XX条件下性能更优。

实验分析:根据实验数据,我们可以分析待测天线的性能特点。

例如,增益的高低直接影响到天线的信号接收能力,波束宽度则决定了天线的覆盖范围。

通过与标准天线的对比,我们可以更清晰地了解待测天线的优势和不足。

实验结论:本次实验成功地完成了微波天线的性能测试,加深了学生对微波技术与天线工作原理的理解。

通过对实验数据的分析,我们认识到了天线设计的重要性以及在实际应用中需要考虑的因素。

实验结果表明,合理的天线设计可以显著提高通信系统的性能。

注意事项:1. 实验过程中应确保所有设备连接正确,避免信号干扰。

2. 在调整天线位置和角度时,应小心操作,避免损坏设备。

3. 实验结束后,应整理实验设备,确保实验室的整洁和安全。

实验日期:[填写实验日期]实验人员:[填写实验人员姓名]指导教师:[填写指导教师姓名]。

打印2微波技术与天线实验报告-2(DOC)

打印2微波技术与天线实验报告-2(DOC)

实验报告实验课程:微波技术与天线学生姓名:学号:61专业班级:班20年月日目录实验一微波测量系统的认识及功率测量实验二微波波导波长、频率的测量、分析和计算实验三微波驻波比、反射系数及阻抗特性测量、分析和计算实验四微波网络参数的测量、分析和计算实验一微波测量系统的认识及功率测量一、实验目的1.熟悉基本微波测量仪器;2.了解各种常用微波元器件;3.学会功率的测量。

二、实验原理1.基本微波测量仪器(1)微波测量技术主要包括微波信号特性测量和微波网络参数测量:①微波信号特性参量包括微波信号的频率与波长、电平与功率、波形与频谱等;②微波网络参数包括反射参量(如反射系数、驻波比)和传输参量(如[S]参数)。

(2)微波测量方法包括点频测量、扫频测量和时域测量三大类:①点频测量:信号只能工作在单一频点逐一进行测量;②扫频测量:在较宽的频带内测得被测量的频响特性,如加上自动网络分析仪,则可实现微波参数的自动测量与分析;③时域测量:利用超高速脉冲发生器、采样示波器、时域自动网络分析仪等在时域进行测量,从而得到瞬态电磁特性。

(3)微波测量系统由微波信号源、调配器/ 衰减器/隔离器、波长/频率计、测量线、终端负载、选频放大器及小功率计等组成。

图1微波测量系统2.常用微波元器件实验室里常见的几种元器件:(1)E-T接头(2)可变短路器(3)波导弯曲(4)波导开关三、实验数据及处理1、实验数据如下表:衰减器位置(mm)功率计读数(μw)2、衰减器指示与功率指示的关系曲线四、思考题简述微波小功率计探头的工作原理。

微波小功率计功率探头的主体是一个铋、锑热电堆,这是将金属铋和锑用真空喷镀法镀在介质片上(介质基片可用云母、涤纶、聚烯亚胺等材料)形成热电堆后,放在波导或同轴电场最强处,它即是终端吸收负载,又是热电转换元件。

所以作为终端负载,它的阻值必须与传输线的等效阻抗相匹配。

当微波功率输出时,热电耦吸收微波功率使热电堆的热节点温度升高,这就与冷节点产生温差而形成温差电动势,它产生的直流电动势与输入微波功率是成正比的。

微波技术与天线实验报告单

微波技术与天线实验报告单

微波技术与天线实验报告单实验目的:本实验旨在使学生了解微波的基本特性,掌握微波天线的工作原理和设计方法,并通过实际操作加深对微波传输和天线理论的理解。

实验原理:微波是一种频率在300MHz至300GHz之间的电磁波。

它具有波长短、穿透力强、传播速度快等特点。

微波天线是用于发射和接收微波信号的设备,常见的有抛物面天线、喇叭天线等。

微波天线的设计需要考虑频率、增益、波束宽度等多个因素。

实验设备:1. 微波信号发生器2. 微波功率计3. 微波天线(抛物面天线、喇叭天线等)4. 测量尺5. 频谱分析仪6. 连接线和适配器实验步骤:1. 连接微波信号发生器至微波天线,确保连接正确无误。

2. 调整微波信号发生器的频率,选择适合的微波频率进行实验。

3. 使用频谱分析仪监测天线接收到的信号,记录信号的频率和强度。

4. 改变天线的位置和方向,观察信号强度的变化,记录不同位置和方向下的信号接收情况。

5. 使用微波功率计测量天线的发射功率,确保发射功率在安全范围内。

6. 根据实验数据,分析天线的增益、波束宽度等参数。

实验结果:通过本次实验,我们得到了以下结果:- 微波天线在不同频率下接收信号的强度有所差异,这与天线的频率响应特性有关。

- 改变天线的位置和方向,可以观察到信号强度的显著变化,这表明天线的波束宽度和方向性对信号接收有重要影响。

- 微波天线的发射功率在安全范围内,符合实验要求。

实验结论:通过本次微波技术与天线实验,我们验证了微波天线的基本工作原理和性能参数。

实验结果表明,天线的设计和使用需要综合考虑频率、增益、波束宽度等多个因素,以达到最佳的通信效果。

此外,实验也加深了我们对微波传输理论的认识,为进一步的学习和研究打下了基础。

实验心得:在本次实验中,我深刻体会到了理论与实践相结合的重要性。

通过亲自操作和观察,我对微波天线的工作原理有了更加直观的理解。

同时,实验过程中遇到的问题和挑战也锻炼了我的解决问题的能力。

微波技术与天线实验报告

微波技术与天线实验报告

篇一:微波技术与天线实验报告微波技术与天线实验报告专业:班级:姓名:学号:微波技术与天线实验fai=meshgrid(eps:2*pi/180:2*pi); f=abs(sin(sita)); fmax=max(max(f)); a=linspace(0,2*pi); f=sin(a);subplot(1,1,1),polar(a,abs(f)); title(电基本振子e平面);图1-1电基本振子e平面2、绘制电基本振子空间立体方向图: 程序:sita=meshgrid(eps:pi/180:pi);fai=meshgrid(eps:2*pi/180:2*pi); f=abs(sin(sita)); fmax=max(max(f));[x,y,z]=sph2cart(fai,pi/2-sita,f/fmax);subplot(1,1,1),mesh(x,y,z);axis([-1 1 -1 1 -1 1]);title(电基本振子空间主体方向图);图1-2电基本振子空间立体方向图程序:lamda=input(enter the value of wave length= ); %输入波长 l=input(enter your dipole length l= ); %输入偶极子天线长度2l(注意不是单个振子长度l) ratio=l/lamda; b=(2*pi/lamda);theta=pi/100:pi/100:2*pi;if ratio<= 0.1 %分析是否是短偶极子天线 e=sin(theta); en=abs(e);polar(theta,en) %天线在方向图中水平放置 elsef1=cos(b*l/2.*cos(theta)); %不是短偶极子天线则可用公式(2-8)进行计算f2=cos(b*l/2); f3=sin(theta); e=(f1-f2)./f3; en=abs(e);polar(theta,en) %天线在方向图中水平放置 end1)输入波长λ=10,天线长度2l=2,画出天线方向图:图2-1 天线长度为2时的方向图2)输入波长λ=10,振子长度2l=4,画出天线方向图:图2-2 天线长度为4时的方向图3)输入波长λ=10,振子长度2l=13,画出天线方向图:图2-3 天线长度为13时的方向图4)输入波长λ=10,振子长度2l=15,画出天线方向图:图2-4 天线长度为15时的方向图5)输入波长λ=10,振子长度2l=20,画出天线方向图:图2-5 天线长度为20时的方向图6)输入波长λ=10,振子长度2l=30,画出天线方向图:篇二:微波技术与天线实验《微波技术与天线》实验一、实验目的:1. 特性阻抗为z0=150?的均匀无耗传输,终端接有负载zl?350?j100?,用?/4阻抗变换器实现阻抗匹配(如图所示),试计算?/4阻抗变换器的特性阻抗z01及2.利用matlab分别绘出对于无耗传输线阻抗zin(z)?z0zl?jz0tan?zz0?jzltan?z的实部、?2???41?81???81?z0?ln?1????????6.27?? (2–83)??r??m??m??m?????30式中 m?w?w?b?tb?t???x?2?0.0796x?n ???wx????????? (2–84) ?1?0.5ln??b?t?(1?x)????2?x??w/b?1.1x??????n?2t; x? 画出z02x/3b1?1?x4.利用matlab软件编程:求下图网络的[a]矩阵和[s]矩阵,设《微波技术》实验报告学院:电子与信息工程学院专业:通信工程班级:_______姓名:_______学号:_______实验一阻抗匹配实验一、实验目的:学会利用matlab软件进行微波技术方面的仿真。

微波技术与天线实验报告

微波技术与天线实验报告

微波技术与天线实验报告一、实验名称:测量微波通信系统各模块的特性参数二、实验目的与要求◆了解矢量网络分析仪的工作原理◆理解模块的频率特性、驻波比、反射系数、插损、S参数等概念◆测量并分析微波通信系统各模块的S参数三、实验设备:矢量网络分析仪、PNA 天线实验测量仪四、实验原理(共同部分)1.矢量网络分析仪的工作原理矢量网络分析仪器是一种电磁波能量的测试设备。

矢量网络分析仪的原理与使用力直接取决于系统的动态范围指标。

相位波动参数的测试是利用矢量网络分析仪的电子延迟(Electrical Delay)功能来实现的。

直接观察插入相移通常不是很有用,这是因为器件的电长度相移相对于频率呈现负斜率(器件越长,斜率越大)。

由于只有偏离线性相移才会引起失真,因此希望移去相位响应的线性部分。

利用网络分析仪的电子延迟功能,能够抵消被测器件的电长度,结果得到与线性相移的偏差,即相位波动(失真)。

矢量网络分析仪既能测量单端口网络或两端口网络的各种参数幅值,又能测相位,矢量网络分析仪能用史密斯圆图显示测试数据。

2.几个重要的概念频率特性:系统频率响应与输入信号的复数比称为频率特性,频率特性表征了系统输入输出之间的关系,故可由频率特性来分析系统性能。

驻波比:驻波比全称为电压驻波比,又名VSWR和SWR,为英文Voltage Standing Wave Ratio的简写。

在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波节。

其它各点的振幅值则介于波腹与波节之间。

这种合成波称为行驻波。

驻波比是驻波波腹处的电压幅值Vmax与波节处的电压幅值Vmin之比。

驻波比就是一个数值,用来表示天线和电波发射台是否匹配。

如果 SWR 的值等于1,则表示发射传输给天线的电波没有任何反射,全部发射出去,这是最理想的情况。

如果SWR 值大于1,则表示有一部分电波被反射回来,最终变成热量,使得馈线升温。

微波技术与天线实验报告

微波技术与天线实验报告

微波技术与天线实验报告微波技术与天线实验报告引言:微波技术是一门应用广泛的技术,涉及到通信、雷达、无线电等多个领域。

天线作为微波技术中的重要组成部分,对于信号的发射和接收起着至关重要的作用。

本实验旨在通过对微波技术和天线的实验研究,探索其原理和应用。

一、微波技术的基本原理微波技术是指在射频范围内工作的电磁波技术,其频率范围一般为300MHz至300GHz。

微波技术的基本原理是利用微波信号的特性进行信息的传输和处理。

微波信号具有高频率、高速度和较小的传播损耗等特点,因此在通信和雷达等领域得到广泛应用。

二、微波技术的实验装置本实验使用了微波发生器、微波信号源、微波功率计等实验装置。

微波发生器用于产生微波信号,微波信号源用于提供稳定的微波信号,微波功率计用于测量微波信号的功率。

这些实验装置是进行微波技术实验的基础设备。

三、微波技术的实验内容1. 微波信号的产生和调制实验在实验中,我们使用微波发生器产生微波信号,并通过调制器对信号进行调制。

通过改变调制器的参数,可以实现不同调制方式的微波信号产生。

2. 微波信号的传输和接收实验在实验中,我们使用微波信号源产生微波信号,并通过传输线将信号传输到接收端。

通过改变传输线的长度和材料等参数,可以观察到微波信号的传输特性。

3. 微波信号的功率测量实验在实验中,我们使用微波功率计对微波信号的功率进行测量。

通过改变微波发生器的输出功率和微波信号源的衰减器等参数,可以观察到微波信号的功率变化规律。

四、天线的基本原理天线是将电磁波信号转换为电流或电压信号的装置,具有发射和接收信号的功能。

天线的基本原理是利用电磁波与导体之间的相互作用,将电磁波的能量转换为电流或电压信号。

五、天线的实验装置本实验使用了天线、信号发生器、示波器等实验装置。

信号发生器用于产生信号,天线用于发射和接收信号,示波器用于观察信号的波形和频谱。

六、天线的实验内容1. 天线的辐射特性实验在实验中,我们使用天线发射信号,并通过示波器观察信号的波形和频谱。

微波技术与天线实验报告(航大)

微波技术与天线实验报告(航大)

电磁场、微波测量实验报告姓名:学号:学院:电子信息工程学院实验1 电磁喇叭天线特性测量一、实验目的研究电磁喇叭天线方向性图的测量方法以及天线的互易性原理。

二、实验仪器及装置图1、三厘米固态信号源2、喇叭天线3、分度转台及支柱4、微分表三、实验原理由于在通信、雷达等用途中,天线都处于它的远区,所以正确的测试天线的远区场辐射特性非常重要。

天线参量是描述天线辐射特性的量,可用实验的方法测定。

天线参量的测量是设计天线和调整天线的重要手段,其中最重要的是测量其辐射场幅值分布的方向性,其表征量是天线的方向函数及方向图。

四、实验内容及步骤1、按图连接好装置。

2、整机机械调整:首先旋转工作平台使0度刻线与固定臂上只针对正,在转动活动臂使活动臂上的指针对正在工作平台180度刻线上。

3、固定被测天线,而把辅助天线沿以被测天线为中心,距离r为半径的圆周运动转动平台记录工作平台角度及微安表度数。

Y oz平面方向图的数据逆时针转动角度180 177 174 171 168 165 162 159 156 153 150 147微安100 94 80 62 46 32 20 10 6 4 2 0顺时针转动角度-180 -177 -174 -171 -168 -165 -162 -159 -156 -153 -150 -147微安100 96 92 80 60 44 26 18 10 6 4 2逆时针转动顺时针转动Xoz 平面方向图数据逆时针转动逆时针转动角度 180177174171168165162159156153150147微安 100 92 80 56 36 20 8 2 0 0 0 0顺时针转动角度 -180 -177 -174 -171 -168 -165 -162 -159 -156 -153 -150 -147微安100 96 88 70 52 30 12 4 2 0 0 0顺时针转动实验2 电磁波参量的测量一、实验目的(1)在学习均匀平面电磁波特性的基础上,观察电磁波传播特性如E、H和S 互相垂直。

微波技术与天线实验报告

微波技术与天线实验报告

百度文库 - 好好学习,天天向上微波技术与天线实验报告姓名:才正国学号:50班级:F0703002指导教师:龙沪强任课教师:袁斌实验一基本低功率微波波导测试系统的熟悉与正确调试一.实验目的:通过本次实验,基本熟悉低功率微波波导测试系统的基本构成以及正确调试的操作方法,学会四点平均法测波导波长,掌握晶体定标曲线的测定方法。

二.实验仪器与预习要求:1.实验主要仪器:(1)X波段信号源(YM1123)(2)1kHz选频放大器(YM3892)(3)驻波测量器(TC26)(4)可变衰减器(BD-20-2)(5)直读式频率计(PX16)(6)短路板2.实验预习要求:详细阅读实验指导书,初步了解低功率微波波导测试系统的基本构成,熟悉探针电路调谐的基本原理,了解四点平均法测波导波长的基本原理。

三.实验仪器与接线框图:四. 实验原理:1. 基本微波测量系统一个小功率的微波测量系统组成如图1-1 所示:图1-1 基本微波测量系统组成微波信号源测试微波元件,必须要有微波信号源提供测试信号。

常用微波信号源可以分为简易信号发生器、标准信号发生器、功率信号发生器和扫频信号发生器。

简易信号发生器通常泛称为“微波信号发生器”。

一般要求信号频率能在一定范围内连续可调;最大信号的功率至少能达到毫瓦级并能连续控制;输出波形一般为正弦波,并至少能用一种低频方波进行开关式幅度调制。

标准信号发生器指的是屏蔽良好,输出信号的频率、功率和调制系数可以在一定范围内调节(有时调制系数可以固定不变),能精确读数的信号源。

通常用于测量微波接收机的灵敏度、选择性等指标。

功率信号发生器的功率输出要求达到瓦级,常用于测试天线性能等。

扫频信号发生器是能产生随时间作线性变化的扫频信号的微波信号源,它能从所需频率范围的一端连续地“扫变”到另一端,所以能直接得到各个频率上的测量结果,在示波器或记录仪上立即显示出所需的幅频特性曲线和相频特性曲线。

●隔离器隔离器又称单向器,是一种使微波信号单向传输的非互易二端口铁氧体器件,它允许微波信号沿一个方向(正向)以很小的衰减通过,而沿另一个方向(反向)传输的波则受到很大的衰减而不能通过。

微波天线课程报告

微波天线课程报告

《微波技术与天线》课程考查报告班级:姓名:学号:成绩:Ⅰ课程内容总结: 一、 均匀传输线理论 1.1 均匀传输线方程及其解共有三个参量:1)均匀传输线方程2) 传播常数γ 3) 相速υp 与波长 λ 1.2 传输线阻抗与状态参量 1. 输入阻抗由上一节可知, 对无耗均匀传输线, 线上各点电压U (z )、 电流I (z )与终端电压U l 、终端电流I l 的关系如下:2. 反射系数定义传输线上任意一点z 处的反射波电压(或电流)与入射波电压(或电流)之比为电压(或电流)反射系数, 即:⎪⎪⎭⎪⎪⎬⎫==++)()_()()_(i u z I z I Γz U z U Γ3. 输入阻抗与反射系数的关系U(z)=U+(z)+U-(z)=A 1e j βz [1+Γ(z )]I(z)=I+(z)+I-(z) = e j βz [1-Γ(z )]1. 行波状态行波状态下传输线上的电压和电流: ⎪⎭⎪⎬⎫====++z j 01z j 1e )()(e )()(ββZ A z I z I A z U z U2. 纯驻波状态纯驻波状态就是全反射状态, 也即终端反射系数|Γl|=1。

在此状态下, 由式(1- 2- 10),负载阻抗必须满足:110101=Γ=+-Z Z Z Z3. 行驻波状态当微波传输线终端接任意复数阻抗负载时, 由信号源入射的电磁波功率一部分被终端负载吸收, 另一部分则被反射, 因此传输线上既有行波又有纯驻波, 构成混合波状态, 故称之为行驻波状态。

⎪⎭⎪⎬⎫+=+=)sin(j )cos()()sin(j )cos()(011011z Z U z I z I z Z I z U z U ββββ1.4 传输线的传输功率、 效率和损耗 1.5 阻抗匹配1) 分三种:负载阻抗匹配,源阻抗匹配,共轭阻抗匹配。

1.6 史密斯圆图及其应用传输线上任意一点的反射函数Γ(z)可表达为 :()()()11in +-=z z z z z Γin1.7 同轴线的特性阻抗同轴线是一种典型的双导体传输系统, 它由内、 外同轴的两导体柱构成。

【任务】微波与天线考查报告任务书第二版刘学观汇总

【任务】微波与天线考查报告任务书第二版刘学观汇总

【关键字】任务《微波与天线技术》课程考查报告任务书专业:通信工程班级:OX姓名:OOXX学号:XXOO二零一三年一月课程内容总结本书共分为十章,包括微波技术、天线与电波传播和微波应用系统三个部分。

第一至五章为微波技术部分,主要讨论了均匀传输线理论、规则金属波导、微波集成传输线、微波网络基础和微波元器件,其中在微波集成传输线部分主要讨论了带状线、微带线、耦合微带线及介质波导的传输特性,并对光纤的传输原理及特性做了介绍;在“微波元器件”一章中,从工程应用的角度出发,重点介绍了具有代表性的几组微波元器件,主要包括连接匹配元件、功率分配元器件、微波谐振元件和微波铁氧体器件。

第六至九章为天线与电波传播部分,主要叙述了天线辐射与接收的基本理论、电波传播概论、线天线及面天线,其中在线天线部分侧重介绍了在工程中常用的鞭天线、电视天线、移动通信基站天线、行波天线、宽频带天线、微带天线等,还对智能天线技术做了简要介绍。

微波应用系统安排在第十章,主要讨论了雷达系统、微波通信系统级微波遥感系统三个典型系统。

上述三部分既相互联系有相互独立,下面将做详细说明。

微波技术部分一、均匀传输线理论1、均匀传输方程及其解(1)均匀传输线方程对于时谐振电压和电流,可得时谐传输线方程式中,分别称为传输线单位长串联阻抗和单位长并联导纳。

(2)均匀传输线方程的解(3)传输线的工作特性参数特性阻抗;传播常数;相速与波长。

2、传输线阻抗与状态参量(1)输入阻抗: 对无耗均匀传输线, 线上各点电压U(z)、电流I(z)与终端电压U1、终端电流Il的关系如下:(2)反射系数: 传输线上任意一点z处的反射波电压(或电流)与入射波电(或电流)之比为电压(或电流)反射系数, 即:(3)输入阻抗与反射系数的关系3、无线传输线的状态分析无线传输线有以下三种工作状态:①行波状态;②纯驻波状态;③行驻波状态。

4、史密斯圆图及其应用史密斯圆图是用来分析传输线匹配问题的有效方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《微波技术与天线》课程考察报告学院:计算机科学与技术学院专业:通信工程班级:通信09-2班姓名:侯永超学号:310909020213指导老师:许焱平绪论1.微波技术是研究微波信号的产生、传输、变换、发射、接收和测量的一门学科,它的基本理论是经典的电磁场理论,研究电磁波沿传输线的传播特性有两种分析方法。

一种是“场”的分析方法,即从麦克斯韦方程出发,在特定边界条件下解电磁波动方程,求得场量的时空变化规律,分析电磁波沿线的各种传输特性;另一种是“路”的分析方法,即将传输线作为分布参数电路处理,用克希霍夫定律建立传输线方程,求得线上电压和电流的时空变化规律,分析电压和电流的各种传输特性。

2.微波的定义:把波长从1m 到0.1mm 范围内的电磁波称为微波。

微波波段对应的频率范围为: 300MHz ~3000GHz 。

在整个电磁波谱中,微波介于超短波与红外线之间,是频率最高的无线电波,它的频带宽度比所有普通无线电波波段总和宽1000倍。

一般情况下,微波又可划分为分米波、厘米波和毫米波和亚毫米四个波段。

3.微波具有如下主要特点:(1)似光性;(2)穿透性;(3)宽频带特性;(4)热效应特性;(5)散射特性;(6)抗低频干扰特性;(7)视距传输特性;(8)分布参数的不确定性;(9)电磁兼容和电磁环境污染。

4.微波技术的主要应用:(1)在雷达上的应用;(2)在通讯方面的应用;(3)在科学研究方面的应用;(4)在生物医学方面的应用;(5)微波能的应用。

f λ31081051010(m)(Hz)3103231063109-13101210-43101510-73101810-10无线电波波宇宙射线频射频波外线射线射线第一章 均匀传输线理论1.微波传输线是用以传播微波信息和能量的各种形式的传输系数的总称,它的作用是引导电磁波沿一定方向传输,因此又称为导波系统,其所引导的电磁波被成为导行波。

微波传输线可以分为三种类型,第一类是双导体传输线,第二类是均匀填充介质的金属波导管,第三类是介质传输线。

2.本章从“化场为路”的观点出发,首先建立了传输线方程,导出传输线方程的解,引入传输线的重要参量——阻抗、反射系数及驻波比;然后分析无耗传输线的特性,给出传输线的匹配、效率及功率容量的概念。

3.传输线可用来传输电磁信号能量和构成各种微波元器件。

微波传输线是一种分布参数电路,线上的电压和电流是时间和空间位置的二元函数,它们沿线的变化规律可由传输线方程来描述。

传输线方程是传输线理论中的基本方程。

4.均匀无耗传输线方程为:()()()()dUz d zUz d I z d zI z 222222-=-=ββ其解为:()()()U z A e A eI z Z A e A ej zj zj zj z=+=---120121ββββ其参量为:Z L C 000=,βπλ=2p,v v p r=ε,λλεpr=已知始端电压电流的传输线上任意点电压电流的计算方程:已知终端电压电流的传输线上任意点电压电流的计算方程:000000(z)cos sin (z)sin cos U U z jI Z z U I j z I zZ ββββ=-=-+Input Impedance :对均匀无耗线,具有周期性,即存在λ/2的重复性和λ/4的变换性。

Reflection Coefficient :VSWR :5.终端接的不同性质的负载,均匀无耗传输线有三种工作状态:(1) 当Z Z L =0时,传输线工作于行波状态。

线上只有入射波存在,电压电流振幅不变,相位沿传播方向滞后;沿线的阻抗均等于特性阻抗;电磁能量全部被负载吸收。

(2) 当Z L =0、∞和±jX 时,传输线工作于驻波状态。

线上入射波和反射波的振幅相等,驻波的波腹为入射波的两倍,波节为零;电压波腹点的阻抗为无限大,电压波节点的阻抗为零,沿线其余各点的阻抗均为纯电抗;没有电磁能量的传输,只有电磁能量的交换。

00(z')cos 'sin '(z')cos 'sin 'l l l l U U z jI Z z U I I z jz Z ββββ=+=+00in 000cos()j sin()j tan()()j tan()cos()jsin()l l l l l l U z I Z z Z Z z Z z Z U Z Z z I z z Z ββββββ++==++ll j2j200j j(2)000()eee()e ();()()zzl l l l l z l l in l l in Z Z Γz ΓZ Z ΓΓΓz ΓZ Z Z z Z ΓΓz Z Z Z z Z ββϕϕβ----==+==--==++m ax m inU Uρ=(3) 当Z R jX L L L =+时,传输线工作于行驻波状态。

行驻波的波腹小于两倍入射波,波节不为零;电压波腹点的阻抗为最大的纯电阻R Z m ax =ρ0,电压波节点的阻抗为最小的纯电阻R Z min =0ρ;电磁能量一部分被负载吸收,另一部分被负载反射回去。

6.表征传输线上反射波的大小的参量有反射系数Γ,驻波比ρ和行波系数K 。

它们之间的关系为:ρ==+-111KΓΓ7.传输线阻抗匹配方法常用λ4阻抗变换器和单支节调配器。

(1)λ4阻抗变换器:只能匹配电阻性负载:(2)串联短路单支节调配器:(3)并联短路单支节调配器:8.史密斯圆图能直观地描述了无耗传输线各种特性参数的关系,是用来分析传输线匹配问题的有效方法。

(1)阻抗圆图:在阻抗圆图的上半圆内的电抗x>0呈感性,下半圆内的电抗x<0呈容性;实轴上的点代表纯电阻点,左半轴上的点为电压波节点;在传输线上有负载向电源方向移动时,在圆图上应顺时针旋转,反之,有电源向负载方向移动时,应逆时针旋转。

(2)导纳圆图:由无耗传输线的λ4 的阻抗变换特性,将整个阻抗圆图旋210101010111tan(/4)tan(/4)in R jZ Z Z Z Z jR R βλβλ+==+12arctan 42arctan 2l l l λλφππλπ⎧=±⎪⎪⎨⎪=±⎪⎩12arctan 442arctan 42l l l λλλφππλλπ⎧=±±⎪⎪⎨⎪=±⎪⎩转1800得到导纳圆图。

第二章 规则金属波导1.本章以矩形金属波导的求解为引线,探讨了场解的基本规律,介绍了相关的公式及概念。

随后给出了圆形波导、矩形波导等结构,进行了类比讨论,最后探讨了波导的耦合和激励方法。

2.导波系统中的电磁波按纵向场分量的有无,可分为TE 波、TM 波和TEM 波三种类型。

前两种是色散波,一般只在金属波导管中传输;后一种是非色散波,一般在双导体系统中传输。

只有当电磁波的波长或频率满足条件λλ<c 或f f c >时,才能在导波系统中传输,否则被截止。

3.导波系统中场结构必须满足下列规则:电力线一定与磁力线相互垂直,两者与传播方向满足右手螺旋法则;在导波系统的金属壁上只有电场的法向分量和磁场的切向分量;电力线一定是封闭曲线。

4.本章主要讨论了矩形波导、圆波导、同轴线等常用的微波传输线以及波导的激励与耦合。

其中矩形波导传输特性及基本概念:波型指数,主模,模式兼并,驻波测量线;圆波导传输特性:波型指数,主模,模式兼并及三种常用模式特性;同轴线传输特性;波导的激励与耦合:电激励,磁激励,电流激励。

5.各类传输线内传输的主模及其截止波长和单模传输条件列表如下:第三章 微波集成传输线1.微波集成传输线的优点:体积小、重量轻、价格低廉、可靠性高、性能优越、功能的可复制性好。

2.集成微波传输系统分为四大类:(1)准TEM 波传输线,主要包括微带传输线和共面波导等。

(2)非TEM 波传输线,主要包括槽线等。

(3)开放式介质波导传输线,主要包括介质波导、镜像波导等。

(4)半开放式介质波导,主要包括H形波导、G形波导等。

3.带状线:它由两块相距为b的接地板与中间宽度为w、厚度为t的矩形截面导体构成,接地板之间填充均匀介质或空气。

4.带状线和微带线传输特性参量主要有:特性阻抗Z0、衰减常数a、相速v p和波导波长 g。

5.介质波导可以分为两大类:一类是开放式介质波导,主要包括圆形介质波导和介质镜像线等;另一类是半开放式介质波导,主要包括H形波导、G形波导等。

6.光纤按组成材料可分为石英玻璃光纤、多组分玻璃光线、朔料包层玻璃芯光纤和全朔料光纤。

按折射率分布形状可分为阶跃型光纤和渐变型光纤。

按传输模式可分为多模光纤和单模光纤。

第四章微波网络基础1.微波系统包括均匀传输线和微波元件两大部分。

均匀传输线可等效为平行双线;微波元件可等效为网络。

然后利用微波网络理论,可对任何一个复杂微波系统进行研究。

2.根据网络外接传输线的路数,来定义微波网络端口的个数。

微波网络按端口个数一般分为:二端口网络和多端口网络(如三端口网络、四端口网络等)。

本章以二端口网络为重点,介绍了二端口网络的五种网络参量:阻抗参量、导纳参量、转移参量、散射参量和传输参量,以及基本电路单元的网络参量。

3.二端口网络参量的性质有可逆网络:Z Z 1221=,Y Y 1221=,AD-BC=1 S S 1221=,T T T T 112212211-=对称网络:Z Z 1122=,Y Y 1122=,A=D ,S S 1122=,T T 1221=-无耗网络:Z jX ij ij =, Y jBij ij= ()i j ,,=12,[][][]*S S T =14.二端口微波网络的组合方式有:级联方式、串联方式和并联方式,可分别用转移矩阵、阻抗矩阵和导纳矩阵来分析;二端口网络参考面的移动对网络参量的影响,可利用转移矩阵和散射矩阵来分析。

散射矩阵的重要特性有两条:无耗网络幺正性和参考面移动散射参量具有幅值不变性。

5.微波元件的性能可用网络的工作特性参量来描述,网络的工作特性参量和网络参量之间有密切的关系,可以相互转换。

其工作特性参量与网络参量的关系为:电压传输系数:T S A A A A ==+++21111221222~~~~插入衰减: A TS ==112212()L A S ==10101212log logdB插入相移: θϕ===arg arg T S 2121输入驻波比: ρ=+-111111S S6.可逆无耗二端口网络的基本特性有:S 参量只有三个独立参量,它们的相互关系为:S S 1122=,S S 121121=-,()ϕϕϕπ12112212=+±;若网络的一个端口匹配,另一个端口一定自动匹配,即若S 110=(或S 110=),则S 110= (或S 110=);若网络完全匹配,则网络一定完全传输,即若S S 11220==,则S S 12211==。

相关文档
最新文档