2020年甘肃省兰州市高考数学一诊试卷(一)(有答案解析)

合集下载

2020年甘肃省兰州市高考(文科)数学一诊试卷(Word解析版)

2020年甘肃省兰州市高考(文科)数学一诊试卷(Word解析版)

2020年高考(文科)数学一诊试卷一、选择题.1.已知集合A ={0,1,2,3,4,5},B ={x |x =2n ,n ∈N},则A ∩B =( ) A .{0,2,4} B .{2,4} C .{1,3,5} D .{1,2,3,4,5}2.已知复数z =5i2−i+2,则|z |=( ) A .√5B .5C .13D .√133.已知非零向量a →,b →,给定p :∃λ∈R ,使得a →=λb →,q :|a →+b →|=|a →|+|b →|,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.若2sin 5π12cos7π12=1−tan 2α2tanα2,则tan α=( )A .4B .3C .﹣4D .﹣35.已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的一条渐近线过点(2,﹣1),则它的离心率是( ) A .√52B .√3C .√5D .2√36.已知集合A ={π6,5π6,7π6,11π6,13π6},从A 中任选两个角,其正弦值相等的概率是( ) A .110B .25C .35D .3107.近五年来某草场羊只数量与草场植被指数两变量间的关系如表所示,绘制相应的散点图,如图所示:年份 1 2 3 4 5 羊只数量(万只) 1.40.90.750.60.3草地植被指数1.14.315.631.349.7根据表及图得到以下判断:①羊只数量与草场植被指数成减函数关系;②若利用这五组数据得到的两变量间的相关系数为|r1,去掉第一年数据后得到的相关系数为r2,则|r1|<|r2|;③可以利用回归直线方程,准确地得到当羊只数量为2万只时的草场植被指数;以上判断中正确的个数是()A.0B.1C.2D.38.已知函数f(x)=ln(√x2+1),且a=f(0.20.2),b=f(log34),c=f(log133),则a、b、c的大小关系为()A.a>b>c B.c>a>b C.c>b>a D.b>c>a9.已知圆锥的顶点为A,高和底面的半径相等,BE是底面圆的一条直径,点D为底面圆周上的一点,且∠ABD=60°,则异面直线AB与DE所成角的正弦值为()A.√32B.√22C.√33D.1310.已知函数f(x)=sinωx(sinωx+cosωx)(ω>0),若函数f(x)的图象与直线y=1在(0,π)上有3个不同的交点,则ω的范围是A.(12,34]B.(12,54]C.(54,32]D.(54,52]11.已知点M(﹣4,﹣2),抛物线x2=4y,F为抛物线的焦点,l为抛物线的准线,P为抛物线上一点,过P做PQ⊥l,点Q为垂足,过P作抛物线的切线l1,l1与l交于点R,则|QR|+|MR|的最小值为()A.1+2√5B.2√5C.√17D.512.已知定义在R上的函数f(x),f'(x)是f(x)的导函数,且满足xf'(x)﹣f(x)=x2e x,f(1)=e,则f(x)的最小值为()A.﹣e B.e C.1eD.−1e二、填空题:本大题共4小题,每小题5分,共20分.13.已知函数f(x)={2x ,x <12x +1,x ≥1,则f(f(log 232))= .14.已知向量a →,b →满足|b →|=√2,向量a →,b →夹角为120°,且(a →+b →)⊥b →,则向量|a →+b →|= .15.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,且c 2=a 2+b 2−√2ab ,a =8,sin A2=13,则c = .16.大自然是非常奇妙的,比如蜜蜂建造的蜂房.蜂房的结构如图所示,开口为正六边形ABCDEF ,侧棱AA '、BB '、CC '、DD '、EE '、FF '相互平行且与平面ABCDEF 垂直,蜂房底部由三个全等的菱形构成.瑞士数学家克尼格利用微积分的方法证明了蜂房的这种结构是在相同容积下所用材料最省的,因此,有人说蜜蜂比人类更明白如何用数学方法设计自己的家园.英国数学家麦克劳林通过计算得到∠B ′C ′D ′=109°28′16''.已知一个房中BB '=5√3,AB =2√6,tan54°44′08''=√2,则此蠊房的表面积是 .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.在等差数列{a n }中,a 1=﹣8,a 2=3a 4. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =4n(12+a n)(n ∈N ∗),T n 为数列{b n }的前n 项和,若T n =95,求n 的值.18.如图,在四棱锥P ﹣ABCD 中,底前ABCD 为平行四边形,点P 在面ABCD 内的射影为A ,PA =AB =1,点A 到平面PBC 的距离为√33,且直线AC 与PB 垂直.(Ⅰ)在棱PD 找点E ,使直线PB 与平面ACE 平行,并说明理由; (Ⅱ)在(Ⅰ)的条件下,求三棱锥P ﹣EAC 的体积.19.甘肃省是土地荒漠化较为严重的省份,一代代治沙人为了固沙、治沙,改善生态环境,不断地进行研究与实践,实现了沙退人进.2019年,古浪县八步沙林场“六老汉”三代入治沙群体作为优秀代表,被中宣部授予“时代楷模”称号.在治沙过程中为检测某种固沙方法的效果,治沙人在某一实验沙丘的坡顶和坡腰各布设了50个风蚀插钎,以测量风蚀值(风蚀值是测量固沙效果的指标之一,数值越小表示该插钎处被风吹走的沙层厚度越小,说明固沙效果越好,数值为0表示该插针处没有被风蚀)通过一段时间的观测,治沙人记录了坡顶和坡腰全部插钎测得的风蚀值(所测数据均不为整数),并绘制了相应的频率分布直方图.(I)根据直方图估计“坡腰处一个插钎风蚀值小于30”的概率;(Ⅱ)若一个插钎的风蚀值小于30,则该数据要标记“*”,否则不标记.根据以上直方图,完成列联表:标记不标记合计坡腰坡顶合计并判断是否有95%的把握认为数据标记“*”与沙丘上插钎所布设的位置有关?(Ⅲ)坡顶和坡腰的平均风蚀值分别为x1和x2,若|x1−x2|>20cm,则可认为此固沙方法在坡顶和坡腰的固沙效果存在差异,试根据直方图计算x1和x2(同一组中的数据用该组区间的中点值为代表),并判断该固沙方法在坡顶和坡腰的固沙效果是否存在差异. 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d). P (K 2≥k )0.050 0.010 0.001 k3.8416.63510.82820.已知点F 为椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点,点A 为椭圆的右顶点,点B 为椭圆的下顶点,椭圆上任意一点到点F 距离的最大值为3,最小值为1. (Ⅰ)求椭圆的标准方程;(Ⅱ)若M 、N 在椭圆上但不在坐标轴上,且直线AM ∥直线BN ,直线AN 、BM 的斜率分别为k 1和k 2,求证:k 1•k 2=e 2﹣1(e 为椭圆的离心率). 21.已知函数f(x)=2√3x −alnx −12x 2+12(a ∈R 且a ≠0).(Ⅰ)当a =2√3时,求曲线y =f (x )在点(1,f (1))处的切线方程; (Ⅱ)讨论函数f (x )的单调性与单调区间;(Ⅲ)若y =f (x )有两个极值点x 1,x 2,证明:f (x 1)+f (x 2)<9﹣lna .请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,直线l 的参数方程为{x =−1−√22ty =2+√22t (t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρ=2√2cos(α+π4),曲线C 2的直角坐标方程为y =√4−x 2. (Ⅰ)若直线l 与曲线C 1交于M 、N 两点,求线段MN 的长度;(Ⅱ)若直线l 与x 轴,y 轴分别交于A 、B 两点,点P 在曲线C 2上,求AB →⋅AP →的取值范围.[选修4-5:不等式选讲]23.已知函数f (x )=|x ﹣1|+|2x +2|,g (x )=|x +2|+|x ﹣2a |+a . (Ⅰ)求不等式f (x )>4的解集;(Ⅱ)对∀x 1∈R ,∃x 2∈R ,使得f (x 1)≥g (x 2)成立,求a 的取值范围.参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={0,1,2,3,4,5},B={x|x=2n,n∈N},则A∩B=()A.{0,2,4}B.{2,4}C.{1,3,5}D.{1,2,3,4,5}【分析】利用交集定义直接求解.解:∵集合A={1,2,3,4,5},B={x|x=2n,n∈N},∴A∩B={2,4}.故选:B.【点评】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2.已知复数z=5i2−i+2,则|z|=()A.√5B.5C.13D.√13【分析】利用复数的运算法则求出z,再求其模长即可.解:因为复数z=5i2−i+2=5i(2+i)(2−i)(2+i)+2=i(2+i)+2=1+2i;∴|z|=√12+22=√5;故选:A.【点评】本题考查了复数的运算法则,复数的模长,考查了推理能力与计算能力,属于基础题.3.已知非零向量a→,b→,给定p:∃λ∈R,使得a→=λb→,q:|a→+b→|=|a→|+|b→|,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】由q可得向量a→,b→同向共线,进而判断出关系.解:由q可得向量a→,b→同向共线,∴q⇒p,反之不成立.∴p 是q 的必要不充分条件. 故选:B .【点评】本题考查了向量共线定理、简易逻辑,考查了推理能力与计算能力,属于基础题. 4.若2sin 5π12cos7π12=1−tan 2α2tanα2,则tan α=( )A .4B .3C .﹣4D .﹣3【分析】由题意利用诱导公式、二倍角的正弦公式以及同角三角函数的基本关系,求得tan α的值. 解:若2sin5π12cos7π12=1−tan 2α2tanα2,即2cosπ12•(﹣sinπ12)=2•1tanα,即﹣sinπ6=2cosαsinα=−12, ∴cosαsinα=−14,故tan α=﹣4,故选:C .【点评】本题主要考查诱导公式、二倍角的正弦公式以及同角三角函数的基本关系,属于基础题. 5.已知双曲线x 2a −y 2b =1(a >0,b >0)的一条渐近线过点(2,﹣1),则它的离心率是( ) A .√52B .√3C .√5D .2√3【分析】根据题意可知(2,﹣1)在y =−bax 上,可得a 2=4b 2,即可得到离心率. 解:由题可知(2,﹣1)在双曲线的渐近线y =−bax 上,则a =2b ,即a 2=4b 2,所以e =√c 2a 2=√a 2+b 2a2=√52, 故选:A .【点评】本题考查双曲线离心率的求法,根据条件表示出a 、b 关系是关键,属于中档题. 6.已知集合A ={π6,5π6,7π6,11π6,13π6},从A 中任选两个角,其正弦值相等的概率是( )A .110B .25C .35D .310【分析】从A 中任选两个角,基本事件总数n =C 52=10,其正弦值相等包含的基本事件个数m =C 41=4,由此能求出其正弦值相等的概率. 解:∵集合A ={π6,5π6,7π6,11π6,13π6}, sinπ6=sin5π6,sinπ6=sin 13π6,sin 5π6=sin 13π6,sin 7π6=sin 11π6, 从A 中任选两个角,基本事件总数n =C 52=10, 其正弦值相等包含的基本事件个数m =C 41=4, ∴其正弦值相等的概率是p =m n =410=25. 故选:B .【点评】本题考查概率的求法,考查古典概型、排列组合、列举法等基础知识,考查运算求解能力,是基础题.7.近五年来某草场羊只数量与草场植被指数两变量间的关系如表所示,绘制相应的散点图,如图所示:年份 1 2 3 4 5 羊只数量(万只) 1.40.90.750.60.3草地植被指数1.14.315.631.349.7根据表及图得到以下判断:①羊只数量与草场植被指数成减函数关系;②若利用这五组数据得到的两变量间的相关系数为|r 1,去掉第一年数据后得到的相关系数为r 2,则|r 1|<|r 2|;③可以利用回归直线方程,准确地得到当羊只数量为2万只时的草场植被指数;以上判断中正确的个数是( )A.0B.1C.2D.3【分析】根据两组数据的相关性,对题目中的命题判断正误即可.解:对于①,羊只数量与草场植被指数成负相关关系,不是减函数关系,所以①错误;对于②,用这五组数据得到的两变量间的相关系数为|r1,因为第一组数据(1.4,1.1)是离群值,去掉后得到的相关系数为r2,其相关性更强,所以|r1|<|r2|,②正确;对于③,利用回归直线方程,不能准确地得到当羊只数量为2万只时的草场植被指数,只是预测值,所以③错误;综上知,正确的判断序号是②,共1个.故选:B.【点评】本题考查了数据分析与线性相关性的判断问题,是基础题.3),则a、8.已知函数f(x)=2+1),且a=f(0.20.2),b=f(log34),c=f(log13b、c的大小关系为()A.a>b>c B.c>a>b C.c>b>a D.b>c>a3=−1,由此能比较三个数的大小.【分析】推导出0<0.20.2<0.20=1,log34>1,log13解:∵函数f(x)=2+1)的减区间为(﹣∞,0),增区间为(0,+∞),3=−1,0<0.20.2<0.20=1,log34>1,log133),∵a=f(0.20.2),b=f(log34),c=f(log13∴b>c>a.故选:D.【点评】本题考查三个数的大小的判断,考查指数函数、对数函数的性质等基础知识,考查运算求解能力,是基础题.9.已知圆锥的顶点为A,高和底面的半径相等,BE是底面圆的一条直径,点D为底面圆周上的一点,且∠ABD =60°,则异面直线AB 与DE 所成角的正弦值为( ) A .√32B .√22C .√33D .13【分析】建立直角坐标系.不妨设OB =1.高和底面的半径相等,得OE =OB =OA ,OA ⊥底面DEB ,利用向量夹角公式即可得出. 解:如图所示,建立直角坐标系.不妨设OB =1.因为高和底面的半径相等,∴OE =OB =OA ,OA ⊥底面DEB .∵点D 为底面圆周上的一点,且∠ABD =60°, ∴AB =AD =DB ; ∴D 为BÊ的中点 则O (0,0,0),B (0,﹣1,0),D (1,0,0),A (0,0,1),E (0,1,0), ∴AB →=(0,﹣1,﹣1),DE →=(﹣1,1,0), ∴cos <AB →,DE →>=|AB →⋅DE→|AB →|⋅|DE →||=12,∴异面直线AM 与PB 所成角的大小为π3. ∴异面直线AB 与DE 所成角的正弦值为√32.故选:A .【点评】本题考查了异面直线所成的角,本题转化为向量的夹角,考查了推理能力与计算能力,属于基础题.10.已知函数f (x )=sin ωx (sin ωx +cos ωx )(ω>0),若函数f (x )的图象与直线y =1在(0,π)上有3个不同的交点,则ω的范围是 A .(12,34]B .(12,54]C .(54,32]D .(54,52]【分析】先根据两角和与差的三角函数个数化简解析式,再把问题转化为sin (2ωx −π4)=√22有三个根,借助于正弦函数的性质即可求解.解:因为函数f (x )=sin ωx (sin ωx +cos ωx )=12(1﹣cos2ωx )+12sin2ωx =√22sin(2ωx −π4)+12(ω>0),∵函数f (x )的图象与直线y =1在(0,π)上有3个不同的交点; 即√22sin (2ωx −π4)+12=1有3个根;∴sin (2ωx −π4)=√22有三个根;∵x ∈(0,π);∴2ωx −π4∈(−π4,2ωπ−π4); ∵2π+π4<2ωπ−π4≤2π+3π4⇒54<ω≤32. 故选:C .【点评】本题主要考查两角和与差的三角函数以及方程根的个数问题的求解,属于综合性题目.11.已知点M (﹣4,﹣2),抛物线x 2=4y ,F 为抛物线的焦点,l 为抛物线的准线,P 为抛物线上一点,过P 做PQ ⊥l ,点Q 为垂足,过P 作抛物线的切线l 1,l 1与l 交于点R ,则|QR |+|MR |的最小值为( ) A .1+2√5B .2√5C .√17D .5【分析】画出图形,设出P 的坐标,结合抛物线的定义,转化说明|QR |+|MR |的最小值就是MF 的距离即可. 解:设P (m ,m 24),则过P 的切线的斜率为:k =m 2,Q (m ,﹣1),k PQ =−2m ,k PQ>k =﹣1,根据抛物线的定义,|PF |=|PQ |. l 1为FQ 的垂直平分线,|RF |=|RQ |,|QR |+|MR |的最小值为|MF |=√(−4−0)2+(−2−1)2=5, 故选:D .【点评】本题考查抛物线的简单性质的应用,考查数形结合以及转化思想计算能力,是中档题.12.已知定义在R 上的函数f (x ),f '(x )是f (x )的导函数,且满足xf '(x )﹣f (x )=x 2e x ,f (1)=e ,则f (x )的最小值为( ) A .﹣eB .eC .1eD .−1e【分析】构造函数F(x)=f(x)x ,则F′(x)=xf′(x)−f(x)x2=e x ,设F (x )=e x +c ,即f (x )=xe x +cx ,又f (1)=e 得c =0,所以f (x )=xe x ,再利用导数即可求得f (x )的最小值.解:由xf '(x )﹣f (x )=x 2e x ,构造函数F(x)=f(x)x,则F′(x)=xf′(x)−f(x)x2=e x , 所以可以设F (x )=e x +c ,即f(x)x=e x +c ,f (x )=xe x +cx ,又因为f (1)=e 得c =0,所以f (x )=xe x , 由f '(x )=e x (x +1)=0得x =﹣1,所以当x <﹣1时f '(x )<0,即f (x )在(﹣∞,﹣1)上为减函数, 当x >﹣1时f '(x )>0,f (x )在(﹣1,+∞)上为增函数, 所以f(x)min =f(−1)=−1e ,故选:D .【点评】本题主要考查了构造函数,以及利用导数研究函数的最值,是中档题. 二、填空题:本大题共4小题,每小题5分,共20分. 13.已知函数f(x)={2x ,x <12x +1,x ≥1,则f(f(log 232))= 4 .【分析】先求出f (log 232)=2log 232=32,从而f(f(log 232))=f (32),由此能求出结果.解:∵函数f(x)={2x ,x <12x +1,x ≥1,∴f (log 232)=2log 232=32,∴f(f(log 232))=f (32)=2×32+1=4.故答案为:4.【点评】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.14.已知向量a →,b →满足|b →|=√2,向量a →,b →夹角为120°,且(a →+b →)⊥b →,则向量|a →+b →|= √6 .【分析】由题意利用两个向量垂直的性质,两个向量的数量积公式可得|a →|•|b →|cos <a →,b→>=−2,及|a →|的值,而|a →+b →|=√(a →+b →)2展开可求出其值. 解:因为(a →+b →)⊥b →,所以(a →+b →)•b →=0,即a →⋅b →+b →2=0,因为|b →|=√2,向量a →,b →夹角为120°,整理可得−b →2=|a →|•|b →|cos <a →,b →>=−2, 即﹣2=|a →|⋅√2•(−12),所以|a →|=2√2,所以|a →+b →|=√(a →+b →)2=√a →2+b →2+2a →⋅b →=√8+2+2⋅(−2)=√6故答案为:√6.【点评】本题主要考查两个向量垂直的性质,及和向量的模的求法,两个向量的数量积公式的应用,属于基础题.15.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,且c 2=a 2+b 2−√2ab ,a =8,sin A 2=13,则c = 9 .【分析】根据c 2=a 2+b 2−√2ab 可求出cos C ,进而求出sin C .由sin A 2=13可得sin A ,最后利用正弦定理求出c 的值.解:由c 2=a 2+b 2−√2ab 得cosC =a 2+b 2−c 22ab =√2ab 2ab =√22,∴sinC =√1−cos 2C =√22.显然A2∈(0,π2),结合sin A 2=13,∴cos A2=√1−sin2A2=2√23,∴sinA=2sin A2cos A2=4√29.∵a=8,由正弦定理得asinA =csinC,即4√29=√22,∴c=9.故答案为:9.【点评】本题考查正余弦定理的应用及二倍角公式等知识点.同时考查学生的逻辑推理、数学运算等数学核心素养.属于基础题.16.大自然是非常奇妙的,比如蜜蜂建造的蜂房.蜂房的结构如图所示,开口为正六边形ABCDEF,侧棱AA'、BB'、CC'、DD'、EE'、FF'相互平行且与平面ABCDEF垂直,蜂房底部由三个全等的菱形构成.瑞士数学家克尼格利用微积分的方法证明了蜂房的这种结构是在相同容积下所用材料最省的,因此,有人说蜜蜂比人类更明白如何用数学方法设计自己的家园.英国数学家麦克劳林通过计算得到∠B′C′D′=109°28′16''.已知一个房中BB'=5√3,AB=2√6,tan54°44′08''=√2,则此蠊房的表面积是216√2.【分析】连接BD,B′D′,则由题意BD∥B′D′,BD=B′D′=6√2,由OB′C′D′为菱形,可求OC′=2•12B′D′tan54°44′08″=6,B′C′=3√3,进而可求CC′,可求S梯形BB′CC′,即可计算得解S表面积的值.解:连接BD,B′D′,则由题意BD∥B′D′,BD=B′D′=6√2,∵OB′C′D′为菱形,∠B′C′D′=109°28′16'',tan54°44′08''=√2,∴OC′=2•12B′D′tan54°44′08″=2×3√22=6,B′C′=3√3,∴CC′=BB′−√B′C′2−BC2=4√3,∴S 梯形BB ′CC ′=2√6×(5√3+4√3)2=27√2,∴S 表面积=6×27√2+3×12×6×6√2=216√2. 故答案为:216√2.【点评】本题主要考查了勾股定理在解三角形中的应用,考查了菱形的性质,考查了数形结合思想的应用,属于中档题.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.在等差数列{a n }中,a 1=﹣8,a 2=3a 4. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =4n(12+a n)(n ∈N ∗),T n 为数列{b n }的前n 项和,若T n =95,求n 的值.【分析】(Ⅰ)先设公差为d ,由a 1=﹣8,a 2=3a 4,求出d ,进而求出a n ;(Ⅱ)先利用(1)中求出的a n 求b n ,再利用裂项相消法求T n ,从而解决n 的值得问题. 解:(Ⅰ)设等差数列{a n }的公差是d ,由a 1=﹣8,a 2=3a 4得:﹣8+d =3(﹣8+3d )解得d =2,所以a n =﹣10+2n ;(Ⅱ)由(Ⅰ)知a n =﹣10+2n ,∴b n =4n(12+a n )=4n(2n+2)=2(1n −1n+1),所以T n =2[(11−12)+(12−13)+…+(1n−1n+1)]=2nn+1, 由T n =95解得n =9.【点评】本题主要考查等差数列及裂项相消法求和,属于基础题.18.如图,在四棱锥P ﹣ABCD 中,底前ABCD 为平行四边形,点P 在面ABCD 内的射影为A ,PA =AB =1,点A 到平面PBC 的距离为√33,且直线AC 与PB 垂直.(Ⅰ)在棱PD找点E,使直线PB与平面ACE平行,并说明理由;(Ⅱ)在(Ⅰ)的条件下,求三棱锥P﹣EAC的体积.【分析】(Ⅰ)点E为PD中点时直线PB与面ACE平行.连接BD,交AC点O,说明OE∥PB,然后证明PB与平面ACE平行(Ⅱ)说明AC⊥平面PAB,则AC⊥AB,设AC=x,通过等体积法转化求解即可.解:(Ⅰ)点E为PD中点时直线PB与面ACE平行.证明:连接BD,交AC点O,则点O为BD的中点,因为点E为PD中点,故OE为△PDB的中位线,则OE∥PB,OE⊂平面ACE,PB⊄平面ACE,所以PB与平面ACE平行.(Ⅱ)根据题意AC⊥PB,PA⊥底面ABCD,AC⊂底面ABCD,则有AC⊥PA,PA∩PB =P,所以AC⊥平面PAB,则AC⊥AB设AC=x,V p−ACB=V A−PBC=13×12×x×1×1=1×12×√2×√x2+12×√33,得AC=1,3则V P−EAC=12V P−ACD=12×13×12×1×1×1=112.【点评】本题考查几何体的体积的求法,直线与平面平行的判断定理与形状的应用,是基本知识的考查.19.甘肃省是土地荒漠化较为严重的省份,一代代治沙人为了固沙、治沙,改善生态环境,不断地进行研究与实践,实现了沙退人进.2019年,古浪县八步沙林场“六老汉”三代入治沙群体作为优秀代表,被中宣部授予“时代楷模”称号.在治沙过程中为检测某种固沙方法的效果,治沙人在某一实验沙丘的坡顶和坡腰各布设了50个风蚀插钎,以测量风蚀值(风蚀值是测量固沙效果的指标之一,数值越小表示该插钎处被风吹走的沙层厚度越小,说明固沙效果越好,数值为0表示该插针处没有被风蚀)通过一段时间的观测,治沙人记录了坡顶和坡腰全部插钎测得的风蚀值(所测数据均不为整数),并绘制了相应的频率分布直方图.(I )根据直方图估计“坡腰处一个插钎风蚀值小于30”的概率;(Ⅱ)若一个插钎的风蚀值小于30,则该数据要标记“*”,否则不标记.根据以上直方图,完成列联表:标记 不标记 合计 坡腰 坡顶 合计并判断是否有95%的把握认为数据标记“*”与沙丘上插钎所布设的位置有关? (Ⅲ)坡顶和坡腰的平均风蚀值分别为x 1和x 2,若|x 1−x 2|>20cm ,则可认为此固沙方法在坡顶和坡腰的固沙效果存在差异,试根据直方图计算x 1和x 2(同一组中的数据用该组区间的中点值为代表),并判断该固沙方法在坡顶和坡腰的固沙效果是否存在差异.附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d).P (K 2≥k )0.050 0.010 0.001 k3.8416.63510.828【分析】(I )利用频率分布直方图计算“坡腰处一个插钎风蚀值小于30”的频率值; (Ⅱ)由频率分布表填写列联表,计算观测值,对照临界值得出结论;(Ⅲ)计算x 1和x 2,求出|x 1−x 2|,即可得出结论. 解:(I )设“坡腰处一个插钎风蚀值小于30”的事件为C , 则P (C )=0.08+0.16+0.36=0.6; (Ⅱ)由频率分布表,填写列联表如下:标记 不标记 合计 坡腰 30 20 50 坡顶 20 30 50 合计5050100由表中数据,计算K 2=100×(30×30−20×20)250×50×50×50=4>3.841,所以有95%的把握认为数据标记“*”与沙丘上插钎所布设的位置有关;(Ⅲ)计算x 1=0.08×5+0.16×15+0.36×25+0.24×35+0.12×45+0.04×55=25.8(cm ), x 2=0.04×5+0.12×15+0.24×25+0.32×35+0.20×45+0.08×55=32.6(cm ), 且|x 1−x 2|=4.8<20,所以判断该固沙方法在坡顶和坡腰的固沙效果没有差异.【点评】本题考查了频率分布直方图与独立性检验的应用问题,是中档题. 20.已知点F 为椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点,点A 为椭圆的右顶点,点B 为椭圆的下顶点,椭圆上任意一点到点F 距离的最大值为3,最小值为1. (Ⅰ)求椭圆的标准方程;(Ⅱ)若M 、N 在椭圆上但不在坐标轴上,且直线AM ∥直线BN ,直线AN 、BM 的斜率分别为k 1和k 2,求证:k 1•k 2=e 2﹣1(e 为椭圆的离心率).【分析】(Ⅰ)由题意可知,a +c =3,a ﹣c =1,可求出a ,c 的值,再利用b 2=a 2﹣c 2求出b 的值,即可得到椭圆的标准方程;(Ⅱ)设直线AM 的斜率为k ,则直线BN 的斜率也为k ,所以直线AM 的方程为y =k (x ﹣2),直线BN 的方程为y =kx −√3,联立直线AM 与椭圆方程求出点M 的坐标,联立直线BN 与椭圆方程求出点N 的坐标,再利用斜率公式分别求出k 1,k 2,化简k 1•k 2=−14,从而得到k 1•k 2=e 2﹣1.解:(Ⅰ)由题意可知,{a +c =3a −c =1,解得{a =2c =1,∴b 2=a 2﹣c 2=3,∴椭圆的标准方程为:x 24+y 23=1;(Ⅱ)由(Ⅰ)可知,A (2,0),B (0,−√3), 设直线AM 的斜率为k ,则直线BN 的斜率也为k ,故直线AM 的方程为y =k (x ﹣2),直线BN 的方程为y =kx −√3, 由{3x 2+4y 2=12y =k(x −2) 得:(3+4k 2)x 2﹣16k 2x +16k 2﹣12=0, ∴2x M =16k 2−123+4k2,∴x M =8k 2−63+4k2,y M =−12k 3+4k2,∴M(8k 2−63+4k2,−123+4k2),由{3x 2+4y 2=12y =kx −√3 得:(3+4k 2)x 2−8√3kx =0, ∴x N =8√3k 3+4k2,y N=4√3k 2−3√33+4k2,∴N(8√3k3+4k2,4√3k 2−3√33+4k2),∴k 1=4√3k 2−3√33+4k 283k 3+4k2=√3(4k 2−2(4k 2−43k+3), k 2=−12k 3+4k2+√38k 2−63+4k2=√3(4k 2−4√3k+3)2(4k 2−3), ∴k 1k 2=√3(4k 2−2(4k 2−4√3k+3)•√3(4k 2−4√3k+3)2(4k 2−3)=−34,又∵e =c a =12, ∴k 1•k 2=e 2﹣1.【点评】本题主要考查了椭圆方程,以及直线与椭圆的位置关系,考查了韦达定理得应用,是中档题.21.已知函数f(x)=2√3x −alnx −12x 2+12(a ∈一、选择题且a ≠0).(Ⅰ)当a =2√3时,求曲线y =f (x )在点(1,f (1))处的切线方程; (Ⅱ)讨论函数f (x )的单调性与单调区间;(Ⅲ)若y =f (x )有两个极值点x 1,x 2,证明:f (x 1)+f (x 2)<9﹣lna .【分析】(Ⅰ)因为a =2√3时,f ′(x )=2√3−2√3x−x ⇒f ′(1)=﹣1,易求f (1)=2√3,从而可得曲线y =f (x )在点(1,f (1))处的切线方程;(Ⅱ)由题意可知f ′(x )=2√3−a x −x =−x 2+2√3−a x(x >0),令﹣x 2+2√3x ﹣a =0,通过对△=12﹣4a符号的分析,即可求得函数f(x)的单调性与单调区间;(Ⅲ)依题意,f′(x)=−x2+2√3−ax=0有两个正根x1,x2,则△=12﹣4a>0,x1+x2=2√3,x1•x2=a>0,f(x1)+f(x2)=2√3(x1+x2)﹣aln(x1x2)−12(x12+x22)+1=﹣alna+a+7,利用分析法,若要f(x1)+f(x2)<9﹣lna,即要alna﹣lna﹣a+2>0,构造函数g(x)=xlnx﹣lnx﹣x+2,通过对其导数的分析,存在x0∈(1,2),使得g(x0)=0,且g(x0)为(1,2)上的最小值,g(x0)=x0lnx0﹣x0﹣lnx0+2=3﹣(x0+1x0),利用对勾函数的单调性即可证得结论成立.解:(Ⅰ)因为a=2√3时,f(x)=2√3x−2√3lnx−12x2+12,所以f′(x)=2√3−2√3x−x,那么f′(1)=﹣1,f(1)=2√3,所以曲线y=f(x)在点(1,f(1))处的切线方程为:y﹣2√3=−(x﹣1),即x+y ﹣2√3−1=0,(Ⅱ)由题意可知f(x)的定义域为(0,+∞),因为f′(x)=2√3−ax−x=−x2+2√3−ax,由﹣x2+2√3x﹣a=0可得:△=12﹣4a>0,即a<3时,有x1=√3+√3−a,x2=√3−√3−a,x1>x2,又当x∈(0,3)时,满足x1>x2>0,所以有x∈(0,x2)和(x1,+∞)时,f′(x)<0,即f(x)在区间(0,x2)和(x1,+∞)上为减函数.又x∈(x2,x1)时,f′(x)>0,即f(x)在区间(x2,x1)上为增函数.当a<0时,有x1>0,x2<0,则x∈(0,x1)时,f′(x)>0,f(x)为增函数;x∈(x1,+∞)时,f′(x)<0,f(x)为减函数;当a≥3时,△≤0,f′(x)≤0恒成立,所以f(x)在(0,+∞)为减函数,综上所述,当a<0时,在(0,3+√3−a),f(x)为增函数;在(3+√3−a,+∞),f(x)为减函数;当0<a<3时,f(x)在区间(0,3−√3−a)和(3+√3−a,+∞)上为减函数,在(3−√3−a,3+√3−a),f(x)为增函数;当a≥3时,在(0,+∞)上,f(x)为减函数.(Ⅲ)因为y=f(x)有两个极值点x1,x2,则f′(x)=−x2+2√3−ax=0有两个正根x1,x2,则△=12﹣4a>0,x1+x2=2√3,x1•x2=a>0,即a∈(0,3),所以f(x1)+f(x2)=2√3(x1+x2)﹣aln(x1x2)−12(x12+x22)+1=﹣alna+a+7,若要f(x1)+f(x2)<9﹣lna,即要alna﹣lna﹣a+2>0,构造函数g(x)=xlnx﹣lnx﹣x+2,则g′(x)=1+lnx−1x−1=lnx−1x,且在(0,3)上为增函数,又g′(1)=﹣1<0,g′(2)=ln2−12>0,所以存在x0∈(1,2),使得g(x0)=0,即lnx0=1x0,且x∈(1,x0)时,g′(x)<0,g(x)单调递减,x∈(x0,2)时,g′(x)>0,g(x)单调递增,所以g(x)在(1,2)上有最小值g(x0)=x0lnx0﹣x0﹣lnx0+2=3﹣(x0+1x0),又因为x0∈(1,2),则x0+1x0∈(2,52),所以g(x0)>0在x0∈(1,2)上恒成立,即f(x1)+f(x2)<9﹣lna成立.【点评】本题考查了利用导数研究函数的单调性与极值,考查导数的几何意义的应用,突出考查函数与方程思想、分类讨论思想及等价转化思想的综合运用,考查了逻辑推理能力与综合运算能力,属于难题.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l的参数方程为{x=−1−√22ty=2+√22t(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ= 2√2cos(α+π4),曲线C2的直角坐标方程为y=√4−x2.(Ⅰ)若直线l与曲线C1交于M、N两点,求线段MN的长度;(Ⅱ)若直线l与x轴,y轴分别交于A、B两点,点P在曲线C2上,求AB→⋅AP→的取值范围.【分析】(Ⅰ)直接利用参数方程极坐标方程和直角坐标方程之间的转换的应用求出结果.(Ⅱ)利用直线和曲线的位置关系的应用建立等量关系,进一步求出范围.解:(Ⅰ)直线l 的参数方程为{x =−1−√22t y =2+√22t(t 为参数),转换为直角坐标方程为x +y ﹣1=0,曲线C 1的极坐标方程为ρ=2√2cos(α+π4),转换为直角坐标方程为x 2+y 2﹣2x +2y =0,转换为标准式为(x ﹣1)2+(y +1)2=2,所以圆心(1,﹣1)到直线x +y ﹣1=0的距离d =2=√22, 所以弦长|MN |=2√(√2)2−(22)2=√6. (Ⅱ)线C 2的直角坐标方程为y =√4−x 2.转换为直角坐标方程为x 2+y 2=4,转换为参数方程为{x =2cosθy =2sinθ(0≤θ≤π).由于A (1,0),B (0,1),点P 在曲线C 2上,故P (2cos θ,2sin θ),所以AB →=(−1,1),AP →=(2cosθ−1,2sinθ),(0≤θ≤π),所以AB →⋅AP →=2√2sin(θ−π4)+1,故:−√22≤sin(θ−π4)≤1, 所以AB →⋅AP →∈[−1,2√2+1].【点评】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,点到直线的距离公式的应用,三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.[选修4-5:不等式选讲]23.已知函数f (x )=|x ﹣1|+|2x +2|,g (x )=|x +2|+|x ﹣2a |+a .(Ⅰ)求不等式f (x )>4的解集;(Ⅱ)对∀x 1∈R ,∃x 2∈R ,使得f (x 1)≥g (x 2)成立,求a 的取值范围.【分析】(Ⅰ)将函数化为分段函数的形式,再分类讨论分别解不等式,最后把每种情况的解集取并集即可;(Ⅱ)易知f (x )min =2,g (x )≥|2a +2|+a ,结合题意可知2≥|2a +2|+a ,由此求得实数a 的取值范围.解:(Ⅰ)f(x)={−3x −1,x ≤−1x +3,−1<x <13x +1,x ≥1,∴f (x )>4即为{x ≤−1−3x −1>4或{−1<x <1x +3>4或{x ≥13x +1>4, ∴x <−53或x ∈∅或x >1,∴不等式的解集为(−∞,−53)∪(1,+∞); (Ⅱ)由(Ⅰ)知,当x =﹣1时,f (x )min =2,g (x )=|x +2|+|x ﹣2a |+a ≥|(x +2)﹣(x ﹣2a )|+a =|2a +2|+a ,由题意,对∀x 1∈R ,∃x 2∈R ,使得f (x 1)≥g (x 2)成立,故f (x )min ≥g (x )min ,即2≥|2a +2|+a ,解得﹣4≤a ≤0,∴实数a 的取值范围为[﹣4,0].【点评】本题考查绝对值不等式的解法以及不等式的恒成立问题,同时也涉及了绝对值不等式性质的运用,属于基础题.。

甘肃省兰州市2020届高三诊断考试数学(理)试题 Word版含解析

甘肃省兰州市2020届高三诊断考试数学(理)试题 Word版含解析

2020年兰州市高三诊断考试数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有项是符合题目要求的1.已知集合{}0,1,2,3,4,5A =,{}*2,B x x n n N==∈,则A B =I ( ) A. {}0,2,4 B. {}2,4 C. {}1,3,5D. {}1,2,3,4,5【答案】B【解析】【分析】根据交集定义求解.【详解】因为集合{}0,1,2,3,4,5A =,{}*2,B x x n n N==∈, 所以{2,4}A B ⋂=,故选:B .【点睛】本题考查集合的交集运算,属于简单题.2.已知复数5i 22iz =+-,则z =( )A. 5 C. 13 【答案】B【解析】【分析】首先进行除法运算化简z ,再求模即可.【详解】因为5i 5(2)2212i 2i 5i i z +=+=+=+-,所以z =. 故选:B【点睛】本题考查复数的基本运算,复数的模,属于基础题.3.已知非零向量a r ,b r 给定:p R λ∃∈,使得λa b =r r ,:q a b a b +=+r r r r ,则p 是q 的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】B【解析】【分析】分析各个命题中向量a r ,b r 的关系,然后根据充分必要条件的定义确定.【详解】:p R λ∃∈,使得λa b =r r ,则a r ,b r共线, :q a b a b +=+r r r r 等价于a r ,b r 同向,因此p 是q 的必要不充分条件.故选:B .【点睛】本题考查充分必要条件的的判断,考查向量的共线定理及向量模的性质.判断充分必要条件时可以对两个命题分别进行化简,得出其等价的结论、范围,然后再根据充分必要条件的定义判断即可.4.若21tan 5722sin cos 1212tan 2αππα-=,则tan α=( ) A 4B. 3C. -4D. -3【答案】C【解析】【分析】 对等式两边分别化简,然后可求值. 【详解】5712sin cos 2sin()cos()2cos sin sin 1212212212121262πππππππππ=-+=-=-=-, 221tan 222tan tan 2tan 221tan 2ααααα-==-, ∴21tan 2α=-,tan 4α=-.故选:C .【点睛】本题考查诱导公式和二倍角公式,掌握二倍角公式是解题关键.5.已知双曲线()2222100x y a b a b-=>,>的一条渐近线过点(2,﹣1),则它的离心率是( )A. 2 D. 【答案】A【解析】【分析】由点(2,﹣1)在双曲线的渐近线y b a =-x 上,得到a =2b ,再根据e ==解.【详解】因为(2,﹣1)在双曲线的渐近线y b a=-x 上, 所以a =2b ,即a 2=4b 2,所以e ===, 故选:A .【点睛】本题主要考查双曲线的几何性质,还考查了运算求解的能力,属于基础题.6.已知集合46911,,,,55555A πππππ⎧⎫=⎨⎬⎩⎭,从A 中任选两个角,其正弦值相等的概率是( ) A. 110 B. 25 C. 35 D. 310【答案】B【解析】【分析】根据诱导公式确定正弦值相等的角有几对,然后可计算出概率. 【详解】455πππ=-,655πππ=+,9255πππ=-,11255πππ=+,因此 69,55ππ这一对正弦值相等,411,,555πππ这三个中任取2个共有三对,它们正弦值相等, 共有4对正弦值相等,而从5个角中任取2个有10种取法,∴概率为42105P ==. 故选:B . 【点睛】本题考查古典概型,解题关键是求出基本事件的个数,可用列举法写出基本事件.7.已知函数()f x =,且()0.20.2a f =,()3log 4b f =,13log 3c f ⎛⎫= ⎪⎝⎭,则a 、b 、c 的大小关系为( )A. a b c >>B. c a b <<C. c b a >>D. b c a >>【答案】D【解析】 【分析】先确定函数的奇偶性与单调性,然后结合中间值0和1比较幂和对数的的大小,最后可得结论.【详解】由题意知()f x 是偶函数,由复合函数单调性知在[0,)+∞上,函数单调递增, 0.200.21<<,3log 41>,13log 31=-,13(log 3)(1)(1)c f f f ==-=, 又0.2300.21log 4<<<,∴a c b <<.故选:D 【点睛】本题考查函数的奇偶性与单调性,考查幂与对数的比较大小,实质考查了指数函数与对数函数的性质,属于中档题.8.近五年来某草场羊只数量与草场植被指数两变量间的关系如表所示,绘制相应的散点图,如图所示:。

甘肃省2020年第一次高考诊断考试理科数学带答案

甘肃省2020年第一次高考诊断考试理科数学带答案

2020年甘肃省第一次高考诊断考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用像皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知{}1<=x x A ,{}12<=x x B ,则AUB=( )A .(-1,0)B .(0,1)C .(-1,+∞)D .(-∞,1)2.已知:)23(i i z -=,则z z ⋅=( )A .5B .5C .13D .133.已知平面向量,满足),3(),2,1(t -=-=,且)(+⊥=( )A .3B .10C .32D .54.已知抛物线)0(22>=p px y 经过点)22,2(M ,焦点为F .则直线MF 的斜率为( ) A .22 B .42 C .22 D .22- 5.函数22cos ln )(x x x x f +=的部分图象大致为( )A B C D6.已知双曲线)0,0(12222>>=-b a by a x C :的一条渐近线经过圆04222=-++y x y x E :的圆心,则双曲线的C 的离心率为( )A .25 B .5 C .2 D .27.5G 网络是一种先进的高频传输技术,我国的5C 技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款5G 手机,现调查得到该款5G 手机上市时间x 和市场占有率y (单位:%)的几组相关对应数据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月,……,5代表2019年12月,根据数据得出y 关于x 的线性回归方程为a x y ˆ042.0ˆ-=.若用此方程分析并预测该款手机市场占有率的变化趋势,则最早何时该款5C 手机市场占有率能超过0.5%( )(精确到月)A .2020年6月B .2020年7月C .2020年8月D .2020年9月8.设n m ,是空间两条不同的直线,βα,是空间两个不同的平面.给出下列四个命题:①若α∥m ,β∥n ,βα∥,则n m ∥;②若βα⊥,β⊥m ,α⊄m ,则α∥m ;③若n m ⊥,α⊥m ,βα∥,则β∥n ;④若βα⊥,l =βαI ,α∥m ,l m ⊥.则β⊥m .其中正确的是( )A .①②B .②③C .②④D .③④9.定义在R 上的偶函数)(x f ,对)0,(,21-∞∈∀x x .且21x x ≠,有0)()(1212>--x x x f x f 成立,已知)(ln πf a =,)(21-=e f b ,)61(log 2f c =,则a ,b ,c 的大小关系为( ) A .b >a >c B .b >c >a C .c >b >a D .c >a >b10.将函数)6sin()(π+=x x f 图象上每一点的横坐标变为原来的2倍.再将图像向左平移3π个单位长度,得到函数)(x g y =的图象,则函数)(x g y =图象的一个对称中心为( )A .)0,12(πB .)0,4(πC .)0,(πD .)0,34(π 11.若n x x )1(3+的展开式中二项式系数和为256.则二项式展开式中有理项系数之和为( )A .85B .84C .57D . 5612.若函数2)(mx e x f x -=有且只有4个不同的零点.则实数m 的取值范围是( ) A .),4[2+∞e B ),4(2+∞e C .)4,(2e -∞ D .]4,(2e -∞ 二、填空题:本题共4小题,每小题5分,共20分。

2020年甘肃省兰州市高考数学一诊试卷(文科) (含答案解析)

2020年甘肃省兰州市高考数学一诊试卷(文科) (含答案解析)

2020年甘肃省兰州市高考数学一诊试卷(文科)一、单项选择题(本大题共12小题,共60.0分)1.已知集合A={0,1,2,3},B={x|−1≤x<3}则A∩B=()A. {1,2}B. {0,1,2}C. {0,1,2,3}D. ⌀2.已知z=1−i,则|z|等于()A. 2B. √2C. 1D. 03.已知向量a⃗=(−1,3),b⃗ =(2,m),则“m=−1”是“b⃗ ⊥(a⃗+b⃗ )”的()A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件4.已知sin(α−π3)=−3cos(α−π6),则tan2α=()A. −4√3B. −√32C. 4√3 D. √325.若双曲线y2a2−x2b2=1(a>0,b>0)的一条渐近线经过点(√3,1),则该双曲线的离心率为()A. √5B. 2C. √3D. √26.已知函数f(x)=cosπx4,集合A={2,3,4,5,6},现从集合A中任取两数m,n,且m≠n,则f(m)⋅f(n)≠0的概率为()A. 310B. 715C. 35D. 7107.如图是具有相关关系的两个变量的一组数据的散点图和回归直线,若去掉一个点使得余下的5个点所对应的数据的相关系数最大,则应当去掉的点是()A. DB. EC. FD. A8. 已知函数,若f(a)=12,则a 的值为( )A. −1B. √2C. −1或√2D. −1或129. 如图,圆锥的底面直径AB =4,高OC =2√2,D 为底面圆周上的一点,且∠AOD =2π3,则直线AD 与BC 所成的角为( )A. π6B. π3C. 5π12D. π210. 已知函数f(x)=√3sinωx +cosωx 的最小正周期为π.则函数f(x)在区间[−π4,π4]上的取值范围是( )A. [−2,2]B. [−2,√3]C. [−√3,2]D. [−√3,√3]11. 过焦点为F 的抛物线y 2=12x 上一点M 向其准线作垂线,垂足为N ,若直线NF 的斜率为−√33,则|MF|=( )A. 2B. 2√3C. 4D. 4√312. 函数f(x)=xe −x ,x ∈[0,4]的最小值为( )A. 0B. 1eC. 4e 4D. 2e 2二、填空题(本大题共4小题,共20.0分)13. 已知f(x)={−e x ,x >0x 2−1,x ≤0,则f(f(ln2))=________.14. 已知向量a ⃗ =(2,3),b ⃗ =(m,−6),若a ⃗ ⊥b ⃗ ,则|2a ⃗ +b ⃗ |=______.15. 在△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,且a 2+b 2−c 2=√3ab ,则∠C = . 16. 如图所示,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB , DE ⊥AB ,E 为垂足,若DE =2√2,则cos A =________.三、解答题(本大题共7小题,共84.0分)17.已知等差数列{a n}中,a4+a5=4a2,2a3−a6=1.(1)求{a n}的通项公式;(2)设b n=1,求数列{b n}的前n项和S n.a n a n+118.如图,在四棱锥P−ABCD中,PA⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PC=2√7,E,F分别是棱PC,AB的中点.(1)证明:直线EF//平面PAD;(2)求三棱锥P−AEF的体积.19.某学校共有1500名学生,为调查该校学生每周使用手机上网时间的情况,采用分层抽样的方法,收集100名学生每周上网时间的样本数据(单位:小时).根据这100个样本数据,得到学生每周上网时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].(1)估计该校学生每周平均使用手机上网时间(每组数据以组中值为代表);(2)估计该校学生每周使用手机上网时间超过4个小时的概率;(3)将每周使用手机上网时间在(4,12]内的定义为“长时间使用手机上网”;每周使用手机上网时间在(0,4]内的定义为“不长时间使用手机上网”.在样本数据中,有25名学生不近视.请完成每周使用手机上网的时间与近视程度的2×2列联表,并判断是否有95%的把握认为“该校学生的每周使用手机上网时间与近视程度有关”.近视不近视合计长时间使用手机不长时间使用手机15合计25.附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)P(K2≥k0)0.10.050.0100.005k0 2.7063.8416.6357.87920.已知椭圆x2a2+y2b2=1(a>b>0)的右焦点为F1(2,0),离心率为e.(1)若e=√22,求椭圆的方程;(2)设A,B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,若原点O在以线段MN为直径的圆上.①证明点A在定圆上;②设直线AB的斜率为k,若k≥√3,求e的取值范围.21.已知函数.(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)讨论f(x)的单调性与极值点.22. 已知过点P (0,−1)的直线的参数方程为{x =12ty =−1+√32t(t 为参数),在以坐标原点OI 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的方程为2asinθ−ρcos 2θ=0(a >0). (1)求曲线C 的直角坐标方程;(2)若直线l 与曲线C 分别交于点M ,N ,且|PM|,|MN|,|PN|成等比数列,求a 的值.23. 设函数f(x)=|x +1|+|x −a|(a >0).(1)当a =2时,求不等式f(x)>8的解集;(2)若∃x ∈R ,使得f(x)≤32成立,求实数a 的取值范围.【答案与解析】1.答案:B解析:本题考查交集的求法,考查交集定义等基础知识,是基础题,利用交集定义直接求解.解:∵集合A={0,1,2,3},B={x|−1≤x<3},∴A∩B={0,1,2}.故选:B.2.答案:B解析:解:∵z=1−i,∴|z|=√12+(−1)2=√2故选:B由条件代入复数的模长公式可得.本题考查复数的模长公式,属基础题.3.答案:B解析:本题考查了向量垂直与数量积的关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.由b⃗ ⊥(a⃗+b⃗ ),可得b⃗ ⋅(a⃗+b⃗ )=2+m(3+m)=0,解得m,即可判断出结论.解:a⃗+b⃗ =(1,3+m),∵b⃗ ⊥(a⃗+b⃗ ),∴b⃗ ⋅(a⃗+b⃗ )=2+m(3+m)=0,解得m=−1或−2,∴“m=−1”是“b⃗ ⊥(a⃗+b⃗ )”的充分不必要条件.故选:B.4.答案:A解析:本题考查同角三角函数的基本关系,是基础题.利用同角三角函数的基本关系式,求出sinα,然后得到tanα,即可求解,解:由有sinαcosπ3−cosαsinπ3=−3(cosαcosπ6+sinαsinπ6),故12sinα−√32cosα=−3√32cosα−32sinα,则有2sinα=−√3cosα,显然cosα≠0,所以tanα=−√32,故tan2α=2tanα1−tan2α=−√31−34=−4√3,故选A.5.答案:B解析:本题考查双曲线的简单性质的应用,是基本知识的考查,属于基础题.由条件求得b=√3a,进一步即可求离心率.解:双曲线y2a2−x2b2=1(a>0,b>0)的一条渐近线:by−ax=0,渐近线经过点(√3,1),可得b=√3a,即b2=3a2,可得c2−a2=3a2,所以:c2=4a2,c=2a,所以双曲线的离心率为:e=ca=2.故选:B.6.答案:A解析:解:∵集合A={2,3,4,5,6},现从集合A中任取两数m,n,且m≠n,∴基本事件总数N=A52=20,∵函数f(x)=cosπx 4,∴f(m)⋅f(n)≠0包含的基本事件有: (3,4),(4,3),(3,5),(5,3),(4,5),(5,4), 共有M =6个,∴f(m)⋅f(n)≠0的概率为p =M N=620=310.故选:A .先求出基本事件总数,再用列举法求出f(m)⋅f(n)≠0包含的基本事件的个数,由此能求出f(m)⋅f(n)≠0的概率.本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.7.答案:B解析:本题主要考查回归直线和相关系数,属于基础题. 根据散点图分析即可得解.解:因为点E 到回归直线的距离最远,所以去掉点E ,余下的5个点所对应的数据的相关系数最大. 故选B .8.答案:C解析:本题考查分段函数,已知函数值求解自变量的值,属于基础题. 根据分段函数讨论计算f(a)=12可得结论. 解:当a >0时,f(a)=12,即,解得a =√2,当a ⩽0时,f(a)=12,即2a =12,解得a =−1, 综上,a =√2或a =−1. 故选C .9.答案:B解析:本题考查异面直线所成角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.取AB 弧的中点E ,以O 为原点,OE 为x 轴,OB 为y 轴,OC 为z 轴建立空间直角坐标系,利用空间向量求解两条直线AD 与BC 所成的角.解:如图,取AB 弧的中点E ,以O 为原点,OE 为x 轴,OB 为y 轴,OC 为z 轴建立空间直角坐标系.∵AB =4,OC =2√2,∠AOD =2π3,∴A(0,−2,0),B(0,2,0),C(0,0,2√2), D(√3,1,0),AD ⃗⃗⃗⃗⃗⃗ =(√3,3,0),BC ⃗⃗⃗⃗⃗ =(0,−2,2√2),∴cos <AD ⃗⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ >=|AD ⃗⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗||AD ⃗⃗⃗⃗⃗⃗ |⋅|BC ⃗⃗⃗⃗⃗ |= 62√3×2√3= 12, ∴空间中两条直线AD 与BC 所成的角为π3, 故选:B.10.答案:C解析:解:∵函数f(x)=√3sinωx +cosωx =2sin(ωx +π6)的最小正周期为2πω=π, ∴ω=2,函数f(x)=2sin(2x +π6). ∵x ∈[−π4,π4],∴2x +π6∈[−π3,2π3],∴2sin(2x +π6)∈[−√3,2].即函数f(x)在区间[−π4,π4]上的取值范围是[−√3,2],故选:C.根据函数的最小正周期为π求得ω的值,可得函数的解析式,再利用正弦函数的定义域和值域求得函数f(x)在区间[−π4,π4]上的取值范围.本题主要考查两角和的正弦公式,三角函数的周期性及其求法,正弦函数的定义域和值域,属于中档题.11.答案:C解析:解:抛物线y2=12x的焦点坐标(3,0),则DF=6,直线NF的斜率为−√33,可得DN=2√3,则抛物线y2=12x可得:12=12x,解得x=1,所以M(1,2√3),|MF|=|MN|=3+1=4.故选:C.利用抛物线的方程求出焦点坐标,利用已知条件转化求解|MF|即可.本题考查抛物线的简单性质的应用,考查转化思想以及计算能力.12.答案:A解析:本题考查利用导数研究函数的单调性和最值,属于基础题.求出函数的导数,根据其单调性即可求解函数的最值.解:因为f′(x)=1−xe x,当x∈[0,1)时,f′(x)>0,f(x)单调递增,当x∈(1,4]时,f′(x)<0,f(x)单调递减,因为f(0)=0,f(4)=4e4>0,所以当x=0时,f(x)有最小值,且最小值为0,故选A.13.答案:3解析:本题考查分段函数的求值,考查运算求解能力,属于基础题.判断ln2的范围,求出,即可求出结果.解:∵f(x)={−e x ,x >0x 2−1,x ≤0,, ,∴f(f(ln2))=f(−2)=4−1=3.故答案为3.14.答案:13解析:解:∵向量a ⃗ =(2,3),b ⃗ =(m,−6),a ⃗ ⊥b ⃗ ,∴a ⃗ ⋅b⃗ =2m −18=0, 解得m =9,∴2a ⃗ +b ⃗ =(13,0)|2a ⃗ +b ⃗ |=√132+02=13.故答案为:13.由a ⃗ ⊥b ⃗ ,求出m =9,从而2a ⃗ +b ⃗ =(13,0),由此能求出|2a ⃗ +b ⃗ |的值.本题考查向量的模的求法,考查平面向量坐标运算法则,考查向量垂直的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.答案:π6解析:本题考查余弦定理,属于基础题.由余弦定理即可求解.解: 因为a 2+b 2−c 2=√3ab ,所以由余弦定理有cosC =a 2+b 2−c 22ab =√3ab 2ab =√32,又0<C <π,所以C =π6.故答案为π6.16.答案:√64解析:由已知可得∠A =∠ABD ,∠BDC =2∠A ,设AD =BD =x ,由正弦定理在△BCD 中4sin2A =x sin60°,在△AED 中,可得2√2sinA =x 1,联立即可解得cos A 的值.本题主要考查了正弦定理在解三角形中的应用,考查了转化思想和计算能力,属于基础题.解:∵C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足,DE =2√2, ∴∠A =∠ABD ,∠BDC =2∠A ,设AD =BD =x ,∴在△BCD 中,BC sin∠CDB =BD sinC ,可得:4sin2A =x sin60°,①在△AED 中,ED sinA =AD sin∠AED =,可得:2√2sinA =x 1,② ∴联立可得:42sinAcosA=2√2sinA √32,解得:cosA =√64. 故答案为√64.17.答案:解:(1)设等差数列{a n }的公差为d ,∵由{a 4+a 5=4a 22a 3−a 6=1, ∴得{2a 1−3d =0a 1−d =1, ∴解得a 1=3,d =2,∴数列{a n }的通项公式为a n =2n +1;(2)∵b n =1a n a n+1 =1(2n +1)(2n +3)=12(12n+1−12n+3),∴{b n }的前n 项和:S n =12(13−15+15−17+⋯+12n +1−12n +3) =12(13−12n+3)=n 6n+9, ∴S n =n 6n+9.解析:本题考查了等差数列的通项公式,以及利用裂项相消法求数列的和,属于中档题.(1)由条件,得到{2a 1−3d =0a 1−d =1,解得a 1=3,d =2,从而得到通项公式; (2)由题意得到b n =1a n a n+1=12(12n+1−12n+3),利用裂项相消法,得到数列的和.18.答案:(1)证明:如图,取PD 中点为G ,连结EG ,AG ,则EG//CD,EG =12CD,AF//CD,AF =12CD ,所以EG 与AF 平行与且相等,所以四边形AGEF 是平行四边形,所以EF//AG ,AG ⊂平面PAD ,EF ⊄平面PAD ,所以EF//平面PAD .(2)连结AC ,BD ,交于点O ,连结EO ,因为E 为PC 的中点,所以EO 为△PAC 的中位线,又因为PA ⊥平面ABCD ,所以EO ⊥平面ABCD ,即EO 为三棱锥E −AFC 的高.在菱形ABCD 中可求得AC =2√3,在Rt △PAC 中,PC =2√7,所以PA =√PC 2−AC 2=4,EO =2所以S △ACF =12S △ABC2=12×12×AB ×BCsin∠ABC =√32, 所以V C−AEF =V E−ACF =13S △ACF ×EO =13×√32×2=√33.解析:【试题解析】本题考查直线与平面平行的判断定理的应用,几何体的体积的求法,考查计算能力.(1)取PD 中点为G ,连结EG ,AG ,证明四边形AGEF 是平行四边形,得到EF//AG ,然后证明EF//平面PAD .(2)连结AC ,BD ,交于点O ,连结EO ,说明EO 为三棱锥E −AFC 的高.通过V C−AEF =V E−ACF .转化求解即可.19.答案:解:(1)根据频率分布直方图,计算 x =1×0.025×2+3×0.100×2+5×0.150×2+7×0.125×2+9×0.075×2+11×0.025×2=5.8;估计该校学生每周平均使用手机上网时间为5.8小时;(2)由频率分布直方图得1−2×(0.100+0.025)=0.75,估计该校学生每周使用手机上网时间超过4个小时的概率为0.75;(3)根据题意填写2×2列联表如下,由表中数据,计算K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=100×(65×15−10×10)275×25×75×25≈21.78>3.841, ∴有95%的把握认为“该校学生的每周使用手机上网时间与近视程度有关”.解析:(1)根据频率分布直方图,计算平均数即可;(2)由频率分布直方图求得对应的频率值; (3)根据题意填写2×2列联表,计算观测值,对照临界值得出结论.本题考查了频率分布直方图与独立性检验的应用问题,是基础题.20.答案:解:(1)由e =√22=c a,c =2,得a =2√2,b =√a 2−c 2=2. 故所求椭圆方程为x 28+y 24=1.(2)设A(x 1,y 1),则B(−x 1,−y 1),故M(x 1+22,y 12),N(2−x 12,−y12). ①由题意,得OM ⃗⃗⃗⃗⃗⃗⃗ ⋅ON⃗⃗⃗⃗⃗⃗ =0.化简,得x 12+y 12=4,∴点A 在以原点为圆心,2为半径的圆上. ②设A(x 1,y 1),则{y 1=kx 1x 12a 2+y 12b 2=1x 12+y 12=4得到1a 2+k 2b 2=14(1+k 2).将e=ca =2a,b2=a2−c2=4e2−4,代入上式整理,得k2(2e2−1)=e4−2e2+1;∵e4−2e2+1>0,k2>0,∴2e2−1>0,∴e>√22.∴k2=e4−2e2+12e2−1≥3,化简得{e4−8e2+4≥02e2−1>0,解之得12<e2≤4−2√3,√22<e≤√3−1.故离心率的取值范围是(√22,√3−1].解析:(1)利用离心率的计算公式e=ca及b2=a2−c2即可得出椭圆的标准方程;(2)利用①的结论,设出直线AB的方程与椭圆的方程联立即可得出关于a、b与k的关系式,再利用斜率与a、b的关系及其不等式的性质即可得出.熟练掌握椭圆的标准方程及其性质、参数a、b、c的关系、中点坐标公式、直线方程、离心率的计算公式、不等式的基本性质是解题的关键.21.答案:解:(1)当a=1时,f(x)=x+1x ,f′(x)=1−1x2,则f(2)=2+12=52,f′(2)=1−14=34,∴切线方程为y−52=34(x−2),整理得:3x−4y+4=0;(2)f(x)的定义域为(0,+∞),f′(x)=a−1x +1−ax2=(x+a)(x−1)x2,当a≥0时,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,此时f(x)的极小值点为1,无极大值点;当a<0时,令f′(x)=0,x=−a或x=1,(i)若−1<a<0,则−a<1,f(x)在(0,−a)和(1,+∞)上单调递增,在(−a,1)上单调递减,此时f(x)的极小值点为1,极大值点为−a;(ii)若a =−1,f′(x)≥0恒成立,f(x)在(0,+∞)上单调递增,f(x)无极值;(iii)若a <−1,则−a >1,f(x)在(0,1)和(−a,+∞)上单调递增,在(1,−a)上单调递减,此时f(x)的极小值点为−a ,极大值点为1.综上可得,当a ≥0时,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,此时f(x)的极小值点为1,无极大值点;当−1<a <0时,f(x)在(0,−a)和(1,+∞)上单调递增,在(−a,1)上单调递减,此时f(x)的极小值点为1,极大值点为−a ;当a =−1时,f(x)在(0,+∞)上单调递增,f(x)无极值;当a <−1时,f(x)在(0,1)和(−a,+∞)上单调递增,在(1,−a)上单调递减,此时f(x)的极小值点为−a ,极大值点为1.解析:本题考查导数的几何意义和曲线切线的求法,考查利用导数研究函数单调性、极值,以及分类讨论的数学思想,属于中档题.(1)当a =1时,直接求出f ′(x)从而确定f(2)和f ′(2),利用点斜式方程即可求出切线方程;(2)分类讨论,当a ≥0时,当a <0时,再分情况讨论−1<a <0,a =−1,a <−1三种情况下,确定f(x)的单调性和极值点.22.答案:解:(1)曲线C 的方程为2asinθ−ρcos 2θ=0(a >0).∴2aρsinθ−ρ2cos 2θ=0.即x 2=2ay(a >0).(2)将{x =12t y =−1+√32t代入x 2=2ay , 得t 2−4√3at +8a =0,得{△=(−4√3a)2−4×8a >0t 1+t 2=4√3at 1t 2=8a.①. ∵a >0,∴解①得a >23.∵|PM|,|MN|,|PN|成等比数列,∴|MN|2=|PM|⋅|PN|,即|t 1−t 2|2=t 1t 2,∴(t 1+t 2)2−4t 1t 2=t 1t 2,即(4√3a)2−40a =0,解得a =0或a =56.∵a >23, ∴a =56.解析:本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,直线的参数方程及其应用,一元二次方程根与系数的关系的应用.(1)直接利用转换关系把参数方程和极坐标方程与直角坐标方程进行转化;(2)利用直线和曲线的位置关系,把方程组转换为一元二次方程根与系数的关系的应用求出结果. 23.答案:解:(1)f(x)>8即|x +1|+|x −2|>8,当x ≥2时,x +1+x −2>8,解得x >92;当−1<x <2时,x +1+2−x >8,解得x ∈⌀;当x ≤−1时,−x −1+2−x >8,可得x <−72.综上可得,原不等式的解集为{x|x >92或x <−72};(2)若∃x ∈R ,使得f(x)≤32成立,可得f(x)min ≤32,由f(x)=|x +1|+|x −a|(a >0)≥|x +1−x +a|=|1+a|=a +1,当−1≤x ≤a 时,f(x)取得最小值a +1,由a+1≤3,2,可得0<a≤12].即a的范围是(0,12解析:本题考查绝对值不等式的解法和性质的运用:求最值,考查分类讨论思想方法和转化思想,考查运算能力,属于中档题.(1)去绝对值,讨论x的范围,解不等式求并集,即可得到所求解集;(2)由题意可得f(x)min≤3,运用绝对值不等式的性质可得f(x)的最小值,解不等式可得a的范围.2。

2020年甘肃省高考数学一诊试卷(理科) (含答案解析)

2020年甘肃省高考数学一诊试卷(理科) (含答案解析)

2020年甘肃省高考数学一诊试卷(理科)一、单项选择题(本大题共12小题,共60.0分)1. 已知A ={x|x 2−2x ≤0},B ={x|y =lgx},则A ∪B =( )A. RB. (0,+∞)C. [0,+∞)D. [1,+∞)2. 若复数z =4−i ,则z−z=( )A. −1517+817iB. 1+817iC. 1517+817iD. 1517−817i3. 已知平面向量a ⃗ =(k,3),b ⃗ =(1,4),若a ⃗ ⊥b⃗ ,则实数k 为( ) A. −12 B. 12C. 43D. 344. 已知抛物线y 2=2px(p >0)的焦点为F ,过点F 作斜率为k 的直线交抛物线于A ,B 两点,若|AB|=3p ,则k =( )A. √2B. −√2C. ±√2D. ±25. 函数f(x)=x4x 2−1的部分图象大致是( )A.B.C.D.6. 已知圆(x −1)2+y 2=34的一条切线y =kx 与双曲线C :x 2a2−y 2b 2=1(a >0,b >0)有两个交点,则双曲线C 的离心率的取值范围是( )A. (1,√3)B. (1,2)C. (√3,+∞)D. (2,+∞)7. 具有线性相关关系的两变量x ,y 满足的一组数据如表,若y 与x 的回归直线方程为y ̂=3x −32,则m 的值为( )x0123y−11m7A. 4B. 92C. 5D. 68.若m,n是两条不同的直线,m⊥平面α,则“m⊥n”是“n//α”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件9.已知函数f(x)是定义在上的偶函数,且当x≤0时,f(x)=log 2(1−x).若f(a2−1)<1,则实数a的取值范围是()A. (−√2,0)∪(0,√2)B. (−√2,√2)C. (−1,0)∪(0,1)D. (−1,1)10.将函数y=sin(2x+π3)图象上各点的横坐标伸长为原来的2倍,再向左平移π6个单位,所得函数的一个对称中心可以是()A. (0,0)B. (π6,0) C. (π3,0) D. (π2,0)11.在(1+x)6(1−2x)展开式中,含x5的项的系数是A. 36B. 24C. −36D. −2412.已知函数f(x)=a(2a−1)e2x−(3a−1)(x+2)e x+(x+2)2有4个不同的零点,则实数a的取值范围为( )A. (12,e) B. (12,e+12)C. (12,1)∪(1,e) D. (12,1)∪(1,e+12)二、填空题(本大题共4小题,共20.0分)13.若实数x,y满足约束条件{x+2y≥0x−y≤0x−2y+2≥0,则z=3x−y的最小值等于______.14.某班星期二的课表有6节课,其中上午4节,下午2节,要安排语文、数学、英语、信息技术、体育、地理各1节,要求上午第一节课不排体育,数学必须排在上午,则共有___________种安排方法(用数字作答).15.在ΔABC中,a、b、c分别是角A、B、C的对边,若ccosB+bcosC=2acosA,M为BC的中点,且AM=1,则b+c的最大值是________.16.类比初中平面几何中“面积法”求三角形内切圆半径的方法,可以求得棱长为a的正四面体的内切球半径为________.三、解答题(本大题共7小题,共82.0分)17.若一个数列的奇数项与偶数项分别都成等比数列,则称该数列为“亚等比数列”,已知数列{a n}:a n=2 [n2],n∈N∗其中[x]为x的整数部分,如[5.9]=5,[−1.3]=−2(1)求证:{a n}为“亚等比数列”,并写出通项公式;(2)求{a n}的前2014项和S2014.18.在棱长为2的正方体ABCD−A1B1C1D1中,E,F分别为A1B1,CD的中点.(1)求直线EC与AF所成角的余弦值.(2)求二面角E−AF−B的余弦值.19.在合作学习小组的一次活动中,甲、乙、丙、丁、戊五位同学被随机地分配承担A,B,C,D四项不同的任务,每个同学只能承担一项任务.(1)若每项任务至少安排一位同学承担,求甲、乙两人不同时承担同一项任务的概率;(2)设这五位同学中承担任务A的人数为随机变量ξ,求ξ的分布列及数学期望Eξ.20.设椭圆C:x2a2+y2b2=1(a>b>0)过点(0,4),离心率为35.(1)求椭圆C的标准方程;(2)求过点(3,0)且斜率为45的直线被椭圆C所截线段的长及中点坐标21.函数f(x)=−lnx+12ax2+(a−1)x−2(a∈R).(1)求f(x)的单调区间;(2)若a>0,求证:f(x)≥−32a.22.在直角坐标系xOy中,直线l的参数方程为{x=1+tcosα,y=tsinα(t为参数).以坐标原点为极点,以x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ2=4ρcosθ+5.(1)求证:直线l与圆C必有两个公共点;(2)已知点M的直角坐标为(1,0),直线l与圆C交于A,B两点,若||MA|−|MB||=1,求cosα的值.23.已知函数f(x)=|x+1|−|4−2x|.(1)求不等式f(x)≥13(x−1)的解集;(2)若函数f(x)的最大值为m,且2a+b=m(a>0,b>0),求2a +1b的最小值.【答案与解析】1.答案:C解析:解:A ={x|x 2−2x ≤0}={x|0≤x ≤2}, B ={x|y =lgx}={x|x >0}, 则A ∪B ={x|x ≥0}=[0,+∞). 故选:C .化简集合A 、B ,根据并集的定义写出A ∪B . 本题考查了集合的化简与运算问题,是基础题.2.答案:C解析:解:∵z =4−i ,∴z −z =4+i4−i =(4+i)2(4−i)(4+i)=1517+817i . 故选:C .由已知利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.答案:A解析:本题主要考查两个向量的数量积公式,两个向量垂直的性质,属于基础题. 由条件利用两个向量的数量积公式,两个向量垂直的性质,求得k 的值. 解:∵平面向量a ⃗ =(k,3),b ⃗ =(1,4),a ⃗ ⊥b ⃗ , ∴a ⃗ ·b⃗ =k +12=0, 解得k =−12, 故选A .4.答案:C解析:本题考查了抛物线的定义,性质,直线与抛物线的位置关系,属于中档题.依题意,设过点F 的直线方程为y =k(x −p2),与抛物线方程联立,利用韦达定理可得x 1+x 2=k 2p+2p k 2,根据|AB|=x 1+x 2+p ,即可求得结果. 解:设过点F 的直线方程为y =k(x −p2),联立方程{y =k (x −p2)y 2=2px ,消y 得k 2x 2−(k 2p +2p )x +k 2p 24=0,Δ>0恒成立,设A(x 1,y 1),B(x 2,y 2), 则x 1+x 2=k 2p+2p k 2,因为|AB|=x 1+x 2+p , 所以k 2p+2p k 2+p =3p ,解得k 2=2⇒k =±√2.故选C .5.答案:A解析:本题主要考查函数图象的识别,利用函数奇偶性和特殊值进行排除是解决本题的关键.属于基础题. 判断函数的奇偶性,判断函数的对称性,利用特殊值法进行排除判断即可. 解:由4x 2−1≠0,得x 2≠14,得x ≠±12,所以函数f(x)的定义域为{x |x ≠±12},关于原点对称,函数f(−x)=−x4(−x)2−1=−x4x 2−1=−f(x),则函数为奇函数,可排除C ,D , 当x =1时,f(1)=14−1=13>0,排除B . 故选:A .6.答案:D解析:本题考查直线与圆的位置关系,考查双曲线的方程与性质,考查学生的计算能力,属于中档题. 先求出切线的斜率,再利用圆(x −1)2+y 2=34的一条切线y =kx 与双曲线C :x 2a2−y 2b 2=1(a >0,b >0)有两个交点,可得ba >√3,即可求出双曲线C 的离心率的取值范围. 解:由题意,圆心到直线的距离d =√k 2+1=√32, ∴k =±√3,∵圆(x −1)2+y 2=34的一条切线y =kx 与双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)有两个交点,∴ba >√3, ∴1+b 2a 2>4, 即c 2a 2>4,∴e >2, 故选:D .7.答案:C解析:本题考查了线性回归方程过样本中心点的应用问题,是基础题.由表中数据计算x −、y −,把样本中心点代入线性回归方程中,求得m 的值.解:由表中数据,计算x −=14×(0+1+2+3)=1.5, y −=14×(−1+1+m +7)=m+74,把样本中心点(1.5,m+74)代入线性回归方程y ̂=3x −32中,得m+74=3×1.5−32,解得m =5. 故选C .8.答案:B解析:解:∵m ,n 是两条不同的直线,m ⊥平面α, ∴“m ⊥n ”推不出“n//α”, “n//α”⇒“m ⊥n ”,∴“m⊥n”是“n//α”的必要不充分条件.故选:B.“m⊥n”推不出“n//α”,“n//α”⇒“m⊥n”.本题考查命真假的判断,是基础题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.9.答案:A解析:本题考查函数的奇偶性、函数的单调性,一元二次不等式的解法,属于中档题.当x≤0时,f(x)=log2(1−x)为减函数,结合偶函数f(x)满足f(−1)=1,可得答案.解:当x≤0时,f(x)=log2(1−x)为减函数.令f(x)=1,即log2(1−x)=1,解得x=−1.又函数f(x)是定义在上的偶函数,若f(a2−1)<1,则a2−1∈(−1,1),解得a∈(−√2,0)∪(0,√2).故选A.10.答案:D解析:解:将函数y=sin(2x+π3)图象上各点的横坐标伸长为原来的2倍,可得y=sin(x+π3)的图象;再向左平移π6个单位,可得y=sin(x+π6+π3)=cosx的图象,故它的一个对称中心可以是(π2,0),故选:D.利用函数y=Asin(ωx+φ)的图象变换规律,可得平移后函数的解析式,再利用余弦函数的图象的对称性,得出结论.本题主要考查函数y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,属于基础题.11.答案:D解析:本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题. 把(1+x)6按照二项式定理展开,可得(1+x)6(1−2x)展开式中,含x 5的项的系数.解:∵(1+x)6展开式中,x 4系数为C 64,x 5系数为C 65,可得(1+x)6(1−2x)展开式中,含x 5的项的系数为1×C 65+(−2)×C 64故展开式中含x 5的系数为6−30=−24, 故选D .12.答案:D解析:本题考查了函数零点与方程根的关系,利用导数求函数的最值,属于中档题. 由题意可得a =x+2e x, 2a −1=x+2e x,令g(x)=x+2e x,求导,利用导数可得g(x)max =g(−1)=e ,可得,解不等式即可. 解:由得即a =x+2e x, 2a −1=x+2e x,令g(x)=x+2e x,g′(x)=−(x+1)e x,所以g(x)在(−∞, −1)上单调递增,在(−1, +∞)上单调递减,g(−2)=0, 所以g(x)max =g(−1)=e ,当x >−2, g(x)>0.x →−∞, g(x)→−∞,x →+∞, g(x)→0+, 要使方程有4个不同的零点,则{0<a <e,0<2a −1<e, 2a −1≠a ⇒12<a <1+e2, a ≠1, 即实数a 的取值范围为(12,1)∪(1,e+12).故选D .13.答案:−72解析:作出不等式组对应的平面区域,通过目标函数的几何意义,利用数形结合即可的得到结论.本题主要考查线性规划的应用,利用z 的几何意义,通过数形结合是解决本题的关键. 解:依题意,可行域为如图所示的阴影部分的三角形区域,目标函数化为:y =3x −z , 则z 的最小值即为动直线在y 轴上的截距的最大值.通过平移可知在A 点处动直线在y 轴上的截距最大.因为A :{x +2y =0x −2y +2=0解得A(−1,12),所以z =3x −y 的最小值z min =3⋅(−1)−12=−72. 故答案为:−72.14.答案:408解析:本题考查排列组合的综合应用,属基础题目. 对数学是否排在上午第一节进行分类即可.解:上午第一节排数学,有A 55=5×4×3×2×1=120种排法, 上午第一节不排数学,也不排体育,数学又必须在上午,所以有A 41×A 31×A 44=4×3×4×3×2×1=288.所以共有120+288=408种方法. 故答案为408种.15.答案:4√33解析:本题考查正弦定理,余弦定理,基本不等式,属于综合题,先由正弦定理和ccosB +bcosC =2acosA ,求得,再由余弦定理a 2=b 2+c 2−bc ,b 2+c 2=2+a 22消去a 得(b +c)2=4+bc ,再利用基本不等式可得.解:∵ccosB +bcosC =2acosA ,,,解得,在ΔABC 中,由余弦定理a 2=b 2+c 2−bc ,①在ΔAMC 中,, 在ΔAMB 中,,∴b 2+c 2=2+a 22,②由①②消去a 得(b +c)2=4+bc , ∴(b +c)2=4+bc ≤4+(b+c)24,当且仅当b =c 取“=”,∴b +c ≤4√33,即b +c 的最大值是4√33. 故答案为4√33. 16.答案:√612a解析:本题考查了类比推理,平面图形类比空间图形,二维类比三维得到类比平面几何的结论,证明时连接球心与正四面体的四个顶点,把正四面体分成四个高为r 的三棱锥,正四面体的体积,就是四个三棱锥的体积的和,求解即可.解:设正四面体的内切球半径为r ,各面面积为S ,正四面体的高为h , 所以13×ℎ×S =4×13×r ×S ,.故答案为√612a .17.答案:解:(1)若n 为偶数,不妨设n =2k ,k ∈Z ,则[n2]=[k]=k =n2,此时a n =2 [n2]=2n2. 此时a n+2a n =2n+222n 2=2为常数,此时数列{a n }是公比为2,首项a 2=2的等比数列.若n 为奇数,不妨设n =2k −1,则[n 2]=[2k−12]=k −1=n+12−1=n−12,则a n =2[n2]=2n−12.此时a n+2a n=2n+2−122n−12=2为常数,此时数列{a n }是公比为2,首项a 1=1的等比数列.即{a n }为“亚等比数列,且a n ={2n−12,n =2k −1,k ∈Z2n 2,n =2k,k ∈Z.(2)∵a n ={2n−12,n =2k −1,k ∈Z2n 2,n =2k,k ∈Z,奇数项是公比为2,首项a 1=1的等比数列,偶数项是公比为2,首项a 2=2的等比数列, ∴{a n }的前2014项和S 2014=S 奇+S 偶=1×(1−21007)1−2+2×(1−21007)1−2=3⋅21007−3.解析:(1)根据条件求数列的通项公式,利用{a n }为“亚等比数列的条件分别证明奇数项和偶数项是等比数列即可得,(2)利用分组求和和将数列分为奇数项和偶数项,然后利用等比数列的求和公式即可求{a n }的前2014项和S 2014.本题主要考查等比数列的通项公式以及数列求和,根据定义求出数列的通项公式是解决本题的关键.18.答案:解:(1)如图建立空间直角坐标系,则A(2,0,0),F(0,1,0),C(0,2,0),E(2,1,2), ∴AF ⃗⃗⃗⃗⃗ =(−2,1,0),CE ⃗⃗⃗⃗⃗ =(2,−1,2). ∴cos <AF,⃗⃗⃗⃗⃗⃗ CE⃗⃗⃗⃗⃗ >=22222=−√53, 故直线EC 与AF 所成角的余弦值为√53.(2)平面ABCD 的一个法向量为n 1⃗⃗⃗⃗ =(0,0,1). 设平面AEF 的一个法向量为n 2⃗⃗⃗⃗ =(x,y,z),∵AF ⃗⃗⃗⃗⃗ =(−2,1,0),AE ⃗⃗⃗⃗⃗ =(0,1,2),∴{−2x +y =0y +2z =0, 令x =1,则y =2,z =−1⇒n 2⃗⃗⃗⃗ =(1,2,−1), ∴cos <n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ >=n 1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ |n 1⃗⃗⃗⃗⃗ ||n 2⃗⃗⃗⃗⃗ |=√1+4+1=−√66. 由图知二面角E −AF −B 为锐二面角,所以其余弦值为√66.解析:本题考查利用空间向量求异面直线夹角及二面角的余弦值,属于中档题.(1)通过建立空间直角坐标系,得到AF ⃗⃗⃗⃗⃗ 与CE ⃗⃗⃗⃗⃗ 的坐标,利用它们的夹角公式即可得到异面直线EC 与AF 所成角的余弦值;(2)利用线面垂直的性质及空间向量求出平面ABCD 与平面AEF 的一个法向量,利用法向量的数量积公式即可得到二面角的余弦值.19.答案:解:(1)设甲、乙两人同时承担同一项任务为事件M ,则P(M)=A 44C 52A 44=110,所以甲、乙两人不同时承担同一项任务的概率是P(M)=1−P(M)=910, 答:甲、乙两人不同时承担同一项任务的概率是910; (2)ξ的可能取值为ξ=0,1,2,3,4,5, P(ξ=0)=3545=(34)5, P(ξ=1)=C 51⋅3445=5⋅3445, P(ξ=2)=C 52⋅3345=10⋅3345, P(ξ=3)=C 53⋅3245=10⋅3245,P(ξ=4)=C 54⋅3145=1545,P(ξ=5)=C 55⋅3045=145,ξ的分布列为:所以E (ξ)=∑i ⋅P i 5i=0=54.解析:本题考查离散型随机变量的期望的求解及古典概型.(1)利用古典概型求出甲、乙两人同时承担同一项任务的概型,然后利用对立事件的概率公式求解即可;(2)分析ξ的取值,求出各自的概率,得出分布列,再求期望.20.答案:解:(1)由题意得:b =4,c a =35,又因为a 2=b 2+c 2,解得a =5,椭圆C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x −3), 设直线被椭圆C 所截线段的端点为A(x 1,y 1)、B(x 2,y 2), 中点为M(x 1+x 22,y 1+y 22),y =45(x −3)与x 225+y 216=1联立消元得:x 2−3x −8=0,△=41>0,x 1+x 2=3,x 1x 2=−8,x 1+x 22=32,y 1+y 22=45(32−3)=−65,所以,直线被椭圆C 所截线段中点坐标为(32,−65); |AB|=√(x 1−x 2)2+(y 1−y 2)2=√(1+1625)(x 1−x 2)2=√415√(x 1+x 2)2−4x 1x 2,|AB|=√415√9+32=415,直线被椭圆C 所截线段长为415.解析:本题考查椭圆的简单性质的应用,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.(1)利用椭圆的离心率以及椭圆经过的点,转化求解椭圆方程即可.(2)求出直线方程,利用椭圆方程联立通过中点坐标,弦长公式转化求解即可.21.答案:解:(1)f′(x)=−1x +ax +(a −1)=ax 2+(a−1)x−1x=(ax−1)(x+1)x(x >0).①当a ≤0时,f ′(x)<0,则f(x)在(0,+∞)上单调递减;②当a >0时,由f ′(x)>0解得x >1a ,由f ′(x)<0解得0<x <1a .即f(x)在(0 , 1a )上单调递减;f(x)在(1a ,+∞)上单调递增;综上,a ≤0时,f(x)的单调递减区间是(0,+∞),没有单调递增区间; a >0时,f(x)的单调递减区间是(0 , 1a ),f(x)的单调递增区间是(1a ,+∞). (2)由(1)知f(x)在(0 , 1a )上单调递减;f(x)在(1a ,+∞)上单调递增, 则f(x)min =f(1a )=lna −12a −1.要证f(x)≥−32a ,即证lna −12a −1≥−32a ,即lna +1a −1≥0, 构造函数μ(a)=lna +1a −1,则μ′(a)=1a −1a 2=a−1a 2,由μ′(a)>0解得a >1,由μ′(a)<0解得0<a <1, 即μ(a)在(0,1)上单调递减;μ(a)在(1,+∞)上单调递增; ∴μ(a)min =μ(1)=ln1+11−1=0, 即lna +1a −1≥0成立. 从而f(x)≥−32a 成立.解析:本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,考查不等式的证明,是一道中档题.(1)求出函数的导数,通过讨论a 的范围求出函数的单调区间即可;(2)根据函数的单调性求出f(x)的最小值,问题转化为lna +1a −1≥0,构造函数μ(a)=lna +1a −1,根据函数的单调性证明即可.22.答案:解:(1)圆C 的极坐标方程为ρ2=4ρcosθ+5.由ρ2=x 2+y 2,ρcosθ=x ,得曲线C 的直角坐标方程为x 2+y 2−4x −5=0. 法一:将直线l 的参数方程为{x =1+tcosαy =tsinα(t 为参数).代入x 2+y 2−4x −5=0, 得t 2−2tcosα−8=0,(∗)∴Δ=4cos 2α+32>0, ∴方程(∗)有两个不等的实数解. ∴直线l 与圆C 必有两个公共点.法二:直线l 过定点(1,0),(1,0)在圆C 内, ∴直线l 与圆C 必有两个公共点.(2)记A,B两点对应的参数分别为t1,t2,由(1)可知t1+t2=2cosα,t1t2=−8<0,∴||MA|−|MB||=|t1+t2|=2|cosα|=1,∴cosα=±12.解析:(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用三角函数关系式的变换和正弦型函数的性质的应用求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,三角函数关系式的恒等变换,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.23.答案:解:(1)f(x)=|x+1|−|4−2x|={x−5,x<−13x−3,−1≤x≤2−x+5,x>2,因为f(x)≥13(x−1),所以{x<−1x−5≥13(x−1)或{−1≤x≤23x−3≥13(x−1)或{x>2−x+5≥13(x−1),解得1≤x≤2或2<x≤4.故不等式f(x)≥13(x−1)的解集为[1,4].(2)由(1)可知f(x)的最大值m=f(2)=3.因为2a+b=3(a>0,b>0),所以2a +1b=13(2a+b)(2a+1b)=13(2ab+2ba+5)≥13×(2×2+5)=3,当且仅当a=b=1时,等号成立,故2a +1b的最小值是3.解析:(1)将函数f(x)化为分段函数的形式,再分类讨论去掉绝对值,解不等式组后取并集即可得到解集;(2)由(1)知,2a+b=3,再利用基本不等式即可求得所求式子的最小值.本题考查绝对值不等式的解法以及利用基本不等式求最值,考查计算能力,属于基础题.。

2020届甘肃省兰州市高三一诊数学(理)模拟试题有答案

2020届甘肃省兰州市高三一诊数学(理)模拟试题有答案

兰州市高三诊断考试数学(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U R =,集合{|0}M x x =≥,集合2{|1}N x x =<,则()U M C N =I ( )A .(0,1)B .[0,1]C .[1,)+∞D .(1,)+∞2.已知复数512z i =-+(i 是虚数单位),则下列说法正确的是( )A .复数z 的实部为5B .复数z 的虚部为12iC .复数z 的共轭复数为512i +D .复数z 的模为133.已知数列{}n a 为等比数列,且22642a a a π+=,则35tan()a a =( )A ...4.双曲线22221x y a b-=的一条渐近线与抛物线21y x =+只有一个公共点,则双曲线的离心率为( )A .54B .5C .4D 5.在ABC ∆中,M 是BC 的中点,1AM =,点P 在AM 上且满足2AP PM =u u u r u u u u r ,则()PA PB PC ⋅+u u u r u u u r u u u r 等于( )A .49-B .43-C .43D .496.数列{}n a 中,11a =,对任意*n N ∈,有11n n a n a +=++,令1i i b a =,*()i N ∈,则122018b b b ++⋅⋅⋅+=( )A .20171009B .20172018C .20182019D .403620197.若1(1)n x x ++的展开式中各项的系数之和为81,则分别在区间[0,]π和[0,]4n 内任取两个实数x ,y ,满足sin y x >的概率为( )A .11π- B .21π- C .31π- D .128.刘徽《九章算术注》记载:“邪解立方有两堑堵,邪解堑堵,其一为阳马,一为鳖臑,阳马居二,鳖臑居一,不易之率也”.意即把一长方体沿对角面一分为二,这相同的两块叫做堑堵,沿堑堵的一顶点与其相对的面的对角线剖开成两块,大的叫阳马,小的叫鳖臑,两者体积之比为定值2:1,这一结论今称刘徽原理.如图是一个阳马的三视图,则其外接球的体积为( )A.3π B.3π C.3π D.4π9.某程序框图如图所示,则程序运行后输出的S的值是()A.1008 B.2017 C.2018 D.302510.设p:实数x,y满足22(1)[(22)]x y-+-322≤-;q:实数x,y满足111x yx yy-≤⎧⎪+≥⎨⎪≤⎩,则p是q的()A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要的条件11.已知圆C:22(1)(4)10x y-+-=和点(5,)M t,若圆C上存在两点A,B使得MA MB⊥,则实数t 的取值范围是()A.[2,6]- B.[3,5]- C.[2,6] D.[3,5]12.定义在(0,)2π上的函数()f x,已知'()f x是它的导函数,且恒有cos'()sin()0x f x x f x⋅+⋅<成立,则有()A.()2()64fππ> B3()()63fππ> C.()3()63fππ> D.()3()64fππ>二、填空题:本大题共4小题,每小题5分,共20分.13.若2sin()45πα-=-,则cos()4πα+=.14.已知样本数据1a,2a,……2018a的方差是4,如果有2i ib a=-(1,2,,2018)i=⋅⋅⋅,那么数据1b,2b,……2018b 的均方差为. 15.设函数()sin(2)f x x ϕ=+()2πϕ<向左平移3π个单位长度后得到的函数是一个奇函数,则ϕ=. 16.函数23()123x x f x x =+-+,23()123x x g x x =-+-,若函数()(3)(4)F x f x g x =+-,且函数()F x 的零点均在[,](,,)a b a b a b Z <∈内,则b a -的最小值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知向量(cos 2,sin 2)a x x =r ,(3,1)b =r ,函数()f x a b m =⋅+r r .(1)求()f x 的最小正周期;(2)当[0,]2x π∈时,()f x 的最小值为5,求m 的值.18.如图所示,矩形ABCD 中,AC BD G =I ,AD ⊥平面ABE ,2AE EB BC ===,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥平面BCE ;(2)求平面BCE 与平面CDE 所成角的余弦值.19.某地一商场记录了12月份某5天当中某商品的销售量y (单位:kg )与该地当日最高气温x (单位:C o )的相关数据,如下表:x 11 9 8 5 2y 7 8 8 1012 (1)试求y 与x 的回归方程y bxa =+; (2)判断y 与x 之间是正相关还是负相关;若该地12月某日的最高气温是6C o ,试用所求回归方程预测这天该商品的销售量;(3)假定该地12月份的日最高气温2(,)X N μσ:,其中μ近似取样本平均数x ,2σ近似取样本方差2s ,试求(3.813.4)P X <<.附:参考公式和有关数据$1122211()()()n n i i i i i i n n i i i i x y nx y x x y y b x nx x x a y bx ====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑$$3.2≈1.8≈,若2(,)X N μσ:,则()0.6826P X μσμσ-<<+=,且(22)0.9544P X μσμσ-<<+=.20.已知圆C :22(1)8x y ++=,过(1,0)D 且与圆C 相切的动圆圆心为P .(1)求点P 的轨迹E 的方程;(2)设过点C 的直线1l 交曲线E 于Q ,S 两点,过点D 的直线2l 交曲线E 于R ,T 两点,且12l l ⊥,垂足为W (Q ,R ,S ,T 为不同的四个点). ①设00(,)W x y ,证明:220012x y +<; ②求四边形QRST 的面积的最小值.21.已知函数1()1x x t f x e x -+=-,其中e 为自然对数的底数. (1)证明:当1x >时,①1,②1x e x ->; (2)证明:对任意1x >,1t >-,有1()ln )2f x x >+. (二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题评分.22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.已知直线l的参数方程是2x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 是参数),圆C 的极坐标方程为2cos()4πρθ=+. (1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,并切线长的最小值.23.[选修4-5:不等式选讲] 设函数()2f x x a x =-+,其中0a >.(1)当2a =时,求不等式()21f x x ≥+的解集;(2)若(2,)x ∈-+∞时,恒有()0f x >,求a 的取值范围.兰州市高三诊断考试 数学(理科)试题参考答案及评分参考 一、选择题 1-5: CDADA 6-10: DBBAB 11、12:CC 二、填空题 13. 25- 14. 2 15. 3π 16. 10 三、解答题17.(1)由题意知:()cos(2,sin 2)f x x x =(3,1)m ⋅+3cos 2sin 2x x m =++2sin(2)3x m π=++, 所以()f x 的最小正周期为T π=.(2)由(1)知:()2sin(2)3f x x m π=++, 当[0,]2x π∈时,42[,]333x πππ+∈. 所以当4233x ππ+=时,()f x 的最小值为3m -+. 又∵()f x 的最小值为5,∴35m -+=,即53m =+.18.(1)因为AD ⊥面ABE ,所以AD AE ⊥,又//BC AD ,所以BC AE ⊥.因为BF ⊥面ACE ,所以BF AE ⊥.又BC BF B =I ,所以AE ⊥面BCF ,即AE ⊥平面BCE .(2)方法1:因为BF ⊥面ACE ,CE ⊂面ACE ,所以BF CE ⊥,又BC BE =,所以F 为CE 中点,在DEC ∆中,22DE CE CD ===DF CE ⊥,BFD ∠为二面角B CE D --的平面角,222cos 2BF DF BD BFD BF DF +-∠=⋅⋅3226==⋅⋅∴平面BCE 与平面CDE所成角的余弦值为3. 方法2: 以E 为原点,EB 所在直线为x 轴,EA 所在直线为y 轴,过E 且垂直于平面ABE 的直线为z 轴建立空间直角坐标系,则相关点的坐标为(0,0,0)E ,(2,0,0)B ,(2,0,2)C ,(0,2,2)D ,设平面BCE 的法向量1n u r ,平面CDE 的法向量为2n u u r ,易知1(0,1,0)n =u r ,令2(,,)n x y z =u u r ,则2200n EC n ED ⎧⋅=⎪⎨⋅=⎪⎩u u r u u u r u u r u u u r ,故220220x z y z +=⎧⎨+=⎩,令1x =,得111x y z =⎧⎪=⎨⎪=-⎩,2(1,1,1)n =-u u r , 于是,12cos ,n n <>u r u ur 1212n n n n ⋅==u r u u r u r u ur =此即平面BCE 与平面CDE 所成角的余弦值.19.(1)由题意,7x =,9y =,1n i i i x y nx y =-∑28757928=-⋅⋅=-, 221n i i x nx =-∑22955750=-⋅=,280.5650b =-=-$,$a y bx =-$9(0.56)712.92=--⋅=. 所以所求回归直线方程为$0.5612.92y x =-+.(2)由0.560b=-<$知,y 与x 负相关.将6x =代入回归方程可得, $0.56612.929.56y =-⋅+=,即可预测当日销售量为9.56kg .(3)由(1)知7x μ≈=, 3.2σ≈=,所以(3.813.4)P X <<(2)P X μσμσ=-<<+1()2P X μσμσ=-<<+1(22)2P X μσμσ+-<<+0.8185=.20.解:(1)设动圆半径为r ,由于D 在圆内,圆P 与圆C 内切,则PC r =,PD r =,PC PD +=2CD >=,由椭圆定义可知,点P 的轨迹E是椭圆,a =1c =,1b ==,E 的方程为2212x y +=. (2)①证明:由已知条件可知,垂足W 在以CD 为直径的圆周上,则有22001x y +=,又因Q ,R ,S ,T 为不同的四个点,220012x y +<.②解:若1l 或2l 的斜率不存在,四边形QRST 的面积为2.若两条直线的斜率存在,设1l 的斜率为1k ,则1l 的方程为1(1)y k x =+, 解方程组122(1)12y k x x y =+⎧⎪⎨+=⎪⎩,得222(21)4k x k x ++2220k +-=,则QS =,同理得RT = ∴12QSRT S QS RT =⋅2222(1)4(21)(2)k k k +=++2222(1)49(1)4k k +≥+169=, 当且仅当22212k k +=+,即1k =±时等号成立.综上所述,当1k =±时,四边形QRST 的面积取得最小值为169. 21.解:(1)令()ln1)m x =,则1'()2m x x =-1)0=<,()m x 为(1,)+∞上的减函数,而(1)0m =,所以()ln1)0m x =<,1<成立; 令1()x n x e x -=-,则1'()10x n x e -=->,()n x 为(1,)+∞上的增函数,而(1)0n =,所以1()0x n x ex -=->,1x e x ->成立. (2)1()ln )2f x x >+,即11x x t e x -+-1ln )2x >+ln =+, 由(1)1<,所以1+<,ln+x <=,所以,只需证11x x t x e x -+<-,即12()x x t e x x -+>-, 由(1)1x e x ->,所以只需证2()x x t x x +>-,只需证1x t x +>-,即1t >-, 上式已知成立,故原式成立,得证.22.解:(1)∵ρθθ=,∴2cos sin ρθθ=,∴圆C的直角坐标方程为220x y +-=,即22((122x y -++=,∴圆心直角坐标为22-.(2)方法1:直线l 上的点向圆C 引切线长是==≥, ∴直线l 上的点向圆C引的切线长的最小值是方法2:直线l的普通方程为0x y -+=,∴圆心C 到直线l|5++=, ∴直线l 上的点向圆C=23.解:(1)当2a =时,2221x x x -+≥+, 所以21x -≥,所以3x ≥或1x ≤,解集为(,1][3,)-∞+∞U .(2)3,(),x a x a f x x a x a -≥⎧=⎨+<⎩,因为0a >,∴x a ≥时,320x a a -≥>恒成立, 又x a <时,当2x >-时,2x a a +>-+,∴只需20a -+≥即可,所以2a ≥.。

2020届甘肃省普通高中高三年级下学期第一次高考诊断性考试数学(理)试题(解析版)

2020届甘肃省普通高中高三年级下学期第一次高考诊断性考试数学(理)试题(解析版)

绝密★启用前甘肃省普通高中2020届高三年级下学期第一次高考诊断性考试数学(理)试题(解析版)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知{}1A x x =<,{}21x B x =<,则AB =( ) A. ()1,0-B. ()0,1C. ()1,-+∞D. (),1-∞ 【答案】D【解析】【分析】分别解出集合,A B 、然后求并集. 【详解】解:{}{}111A x x x x =<=-<<,{}{}210x B x x x =<=< A B =(),1-∞故选:D【点睛】考查集合的并集运算,基础题.2.已知()32z i i =-,则z z ⋅=( )A. 5B.C. 13D.【答案】C【解析】【分析】先化简复数()32z i i =-,再求z ,最后求z z ⋅即可.【详解】解:()3223z i i i =-=+,23z i =-222313z z ⋅=+=,故选:C【点睛】考查复数的运算,是基础题.3.已知平面向量a ,b 满足()1,2a =-,()3,b t =-,且()a a b ⊥+,则b =( )A. 3B.C.D. 5 【答案】B【解析】【分析】先求出a b +,再利用()0a a b ⋅+=求出t ,再求b .【详解】解:()()()1,23,2,2t t a b -+-=-=-+由()a a b ⊥+,所以()0a a b ⋅+= ()()()12220t ⨯-+-⨯-=,1t =,()3,1b =-,10=b故选:B【点睛】考查向量的数量积及向量模的运算,是基础题.4.已知抛物线()220y px p =>经过点(M ,焦点为F ,则直线MF 的斜率为( )A. B. 4 C. 2 D. -【答案】A【解析】。

2020届甘肃省第一次高考诊断考试数学(理)试题(解析版)

2020届甘肃省第一次高考诊断考试数学(理)试题(解析版)
(若将 作为该平面法向量,需证明 与该平面垂直)
【点睛】
考查确定平面的方法以及线面角的求法,中档题.
19.某健身馆为响应十九届四中全会提出的“聚焦增强人民体质,健全促进全民健身制度性举措”,提高广大市民对全民健身运动的参与程度,推出了健身促销活动,收费标准如下:健身时间不超过1小时免费,超过1小时的部分每小时收费标准为20元(不足l小时的部分按1小时计算).现有甲、乙两人各自独立地来该健身馆健身,设甲、乙健身时间不超过1小时的概率分别为 , ,健身时间1小时以上且不超过2小时的概率分别为 , ,且两人健身时间都不会超过3小时.
(2)建立空间直角坐标系求线面角正弦值
【详解】
解:(1)截面如下图所示:其中 , , , , 分别为边 , , , , 的中点,则 垂直于平面 .
(2)建立如图所示的空间直角坐标系,
则 , , , , ,所以 , , .
设平面 的一个法向量为 ,则 .
不妨取 ,则 ,
所以 与该平面所成角的正弦值为 .
8.设 , 是空间两条不同的直线, , 是空间两个不同的平面,给出下列四个命题:
①若 , , ,则 ;
②若 , , ,则 ;
③若 , , ,则 ;
④若 , , , ,则 .其中正确的是()
A.①②B.②③C.②④D.③④
【答案】C
【解析】根据线面平行或垂直的有关定理逐一判断即可.
【详解】
解:①: 、 也可能相交或异面,故①错
A. B. C. D.
【答案】B
【解析】由 是偶函数,则只需 在 上有且只有两个零点即可.
【详解】
解:显然 是偶函数
所以只需 时, 有且只有2个零点即可
令 ,则
令 ,
递减,且

甘肃兰州市2020届高考数学(文)诊断试题(含答案)

甘肃兰州市2020届高考数学(文)诊断试题(含答案)

2020年兰州市高三诊断考试数学(文科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、考号填写在答题纸上.2.本试卷满分150分,考试用时120分钟.答题全部在答题纸上完成,试卷上答题无效.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0,1,2,3,4,5A =,{}*2,B x x n n N ==∈,则A B =I ( )A. {}0,2,4B. {}2,4C. {}1,3,5D.{}1,2,3,4,5【答案】B 【解析】 【分析】根据交集定义求解.【详解】因为集合{}0,1,2,3,4,5A =,{}*2,B x x n n N ==∈,所以{2,4}A B ⋂=, 故选:B .【点睛】本题考查集合的交集运算,属于简单题. 2.已知复数5i22iz =+-,则z =( ) A. 5 5 C. 1313【答案】B 【解析】 【分析】首先进行除法运算化简z ,再求模即可. 【详解】因为5i 5(2)2212i 2i 5i i z +=+=+=+-,所以5z =故选:B【点睛】本题考查复数的基本运算,复数的模,属于基础题.3.已知非零向量a r ,b r 给定:p R λ∃∈,使得λa b =r r,:q a b a b +=+r r r r ,则p 是q 的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B 【解析】 【分析】分析各个命题中向量a r ,b r的关系,然后根据充分必要条件的定义确定. 【详解】:p R λ∃∈,使得λa b =r r ,则a r ,b r共线,:q a b a b +=+r r r r 等价于a r ,b r同向,因此p 是q 的必要不充分条件. 故选:B .【点睛】本题考查充分必要条件的的判断,考查向量的共线定理及向量模的性质.判断充分必要条件时可以对两个命题分别进行化简,得出其等价的结论、范围,然后再根据充分必要条件的定义判断即可.4.若21tan 5722sincos 1212tan2αππα-=,则tan α=( )A. 4B. 3C. 4-D. 3-【答案】C 【解析】 【分析】利用二倍角的正弦和正切公式可求出tan α的值. 【详解】575555512sincos 2sin cos 2sin cos sin 12121212121262ππππππππ⎛⎫=-=-=-=- ⎪⎝⎭Q ,2221tan 1tan 222tan tan 2tan 22ααααα⎛⎫-- ⎪⎝⎭==,由题意可得21tan 2α=-,因此,tan 4α=-. 故选:C.【点睛】本题考查利用二倍角公式求值,考查计算能力,属于中等题.5.已知双曲线()2222100x y a b a b-=>,>的一条渐近线过点(2,﹣1),则它的离心率是( )A.52B.3C.5 D. 23【答案】A 【解析】 【分析】由点(2,﹣1)在双曲线的渐近线y b a =-x 上,得到a =2b ,再根据e 22222c a ba a+==解.【详解】因为(2,﹣1)在双曲线的渐近线y ba=-x 上, 所以a =2b ,即a 2=4b 2,所以e 222225c a b a a +===, 故选:A .【点睛】本题主要考查双曲线的几何性质,还考查了运算求解的能力,属于基础题. 6.已知集合571113,,,,66666A πππππ⎧⎫=⎨⎬⎩⎭,从A 中任选两个角,其正弦值相等的概率是( ) A.110 B.25C.35D.310【答案】B 【解析】 【分析】 由题意可得5131sinsinsin 6662πππ===,7111sin sin 662ππ==-,列举出所有的基本事件,并列举出事件“从A 中任选两个角,其正弦值相等”所包含的基本事件,利用古典概型的概率公式可求出所求事件的概率. 【详解】由题意可得5131sinsinsin 6662πππ===,7111sin sin 662ππ==-, 从A 中任选两个角,所有的基本事件有:5,66ππ⎛⎫⎪⎝⎭、7,66ππ⎛⎫ ⎪⎝⎭、11,66ππ⎛⎫ ⎪⎝⎭、13,66ππ⎛⎫ ⎪⎝⎭、57,66ππ⎛⎫ ⎪⎝⎭、65611,ππ⎛⎫ ⎪⎝⎭、513,66ππ⎛⎫ ⎪⎝⎭、711,66ππ⎛⎫ ⎪⎝⎭、713,66ππ⎛⎫ ⎪⎝⎭、1113,66ππ⎛⎫⎪⎝⎭,共10种情况.其中,事件“从A 中任选两个角,其正弦值相等”包含的基本事件有:5,66ππ⎛⎫⎪⎝⎭、13,66ππ⎛⎫ ⎪⎝⎭、513,66ππ⎛⎫ ⎪⎝⎭、711,66ππ⎛⎫⎪⎝⎭,共4个, 因此,从A 中任选两个角,其正弦值相等的概率为42105=. 故选:B【点睛】本题考查古典概型概率的计算,考查计算能力,属于中等题.7.近五年来某草场羊只数量与草场植被指数两变量间的关系如表所示,绘制相应的散点图,如图所示: 年份12345 羊只数量(万只) 1.4 0.9 0.75 0.6 0.3草地植被指数 1.1 4.3 15.6 31.3 49.7根据表及图得到以下判断:①羊只数量与草场植被指数成减函数关系;②若利用这五组数据得到的两变量间的相关系数为1r ,去掉第一年数据后得到的相关系数为2r ,则12r r <;③可以利用回归直线方程,准确地得到当羊只数量为2万只时的草场植被指数;以上判断中正确的个数是( ) A. 0 B. 1C. 2D. 3【答案】B 【解析】 【分析】根据两组数据的相关性,对题中三个命题分别判断即可.【详解】对于①,羊只数量与草场植被指数成负相关关系,不是减函数关系,∴①错误; 对于②,用这五组数据得到的两变量间的相关系数为1r ,∵第一组数据(1,4,1,1)是离群值,去掉后得到的相关系数为2r ,其相关性更强,∴12r r <,②正确;对于③,利用回归直线方程,不能准确地得到当羊只数量为2万只时的草场植被指数,只是预测值,∴③错误;综上可知正确命题个数是1. 故选:B .【点睛】本题考查了数据分析与线性相关性的判断问题,属于基础题. 8.已知函数()(2ln1f x x =+,且()0.20.2a f =,()3log 4b f =,13log 3c f ⎛⎫= ⎪⎝⎭,则a 、b 、c 的大小关系为( )A. a b c >>B. c a b >>C. c b a >>D.b c a >>【答案】D 【解析】 【分析】分析出函数()y f x =是偶函数,且在[)0,+∞上为增函数,利用偶函数的性质可得()1c f =,利用指数函数和对数函数的单调性结合中间值法比较0.20.2、1、3log 4的大小关系,利用函数()y f x =在[)0,+∞上的单调性可得出a 、b 、c 的大小关系.【详解】函数()2ln1f x x =+的定义域为R ,且()(()221ln1ln 12f x x x =+=+,()()()()2211ln 1ln 122f x x x f x ⎡⎤-=-+=+=⎣⎦,函数()y f x =为偶函数,()()13log 311c f f f ⎛⎫∴==-= ⎪⎝⎭,由于函数21u x =+在[)0,+∞上为增函数,函数ln y u =为增函数, 所以,函数()(2ln1f x x =+在[)0,+∞上为增函数,0.203300.20.21log 3log 4<<==<Q ,因此,a c b <<.故选:D.【点睛】本题考查利用函数的单调性与奇偶性比较函数值的大小关系,考查分析问题和解决问题的能力,属于中等题.9.已知圆锥的顶点为A ,高和底面的半径相等,BE 是底面圆的一条直径,点D 为底面圆周上的一点,且∠ABD =60°,则异面直线AB 与DE 所成角的正弦值为( ) A.3 B.22C.3 D.13【答案】A 【解析】 【分析】根据圆锥高和底面的半径相等,且点D 为底面圆周上的一点,∠ABD =60,可知D 为¶BE的中点,则以底面中心为原点,分别以OD ,OE ,OA 为x ,y ,z 轴,建立空间直角坐标系,不妨设底面半径为1,求得向量AB u u u r ,DE u u u r 的坐标,代入公式cos AB u u u r <,AB DEDE AB DE⋅=⋅u u u r u u u ru u u r u u ur u u u r >求解.【详解】因为高和底面的半径相等,∴OE =OB =OA ,OA ⊥底面DEB.∵点D 为底面圆周上的一点,且∠ABD =60°, ∴AB =AD =DB ;∴D 为¶BE的中点建立如图所示空间直角坐标系,不妨设OB =1则O (0,0,0),B (0,﹣1,0),D (1,0,0),A (0,0,1),E (0,1,0), ∴AB =uu u r (0,﹣1,﹣1),DE =uuu r(﹣1,1,0),∴cos AB u u u r <,12AB DE DE AB DE⋅==⋅u u u r u u u ru u u r u u ur u u u r >, ∴异面直线AM 与PB 所成角的大小为3π. ∴异面直线AB 与DE 所成角的正弦值为32. 故选:A .【点睛】本题主要考查圆锥的几何特征和向量法求异面直线所成的角,还考查了推理论证和运算求解的能力,属于中档题.10.已知函数()()sin sin cos f x x x x ωωω=+(0>ω),若函数()f x 的图象与直线1y =在()0,π上有3个不同的交点,则ω的取值范围是( )A. 13,24⎛⎤⎥⎝⎦B. 15,24⎛⎤⎥⎝⎦ C. 53,42⎛⎤⎥⎝⎦D. 55,42⎛⎤⎥⎝⎦【答案】C 【解析】【分析】利用二倍角公式化简所给函数解析式,则题意等价于方程2sin 242x πω⎛⎫-= ⎪⎝⎭在()0,π上有3个实根,利用正弦函数的图象与性质即可求得ω的范围. 【详解】()()1cos 2121sin sin cos sin 2222242x f x x x x x x ωπωωωωω-⎛⎫=+=+=-+ ⎪⎝⎭,()f x 的图象与直线1y =在()0,π上有3个不同交点,即方程2sin 242x πω⎛⎫-= ⎪⎝⎭在()0,π上有3个实根, 由()0,x π∈得2,2444x πππωωπ⎛⎫-∈-- ⎪⎝⎭,所以9112444πππωπ<-≤,解得5342ω<≤. 故选:C【点睛】本题考查二倍角公式,逆用两角和与差的公式进行化简,正弦函数的图象与性质,属于中档题.11.已知点()4,2M --,抛物线24x y =,F 为抛物线的焦点,l 为抛物线的准线,P 为抛物线上一点,过P 作PQ l ⊥,点Q 为垂足,过P 作FQ 的垂线1l ,1l 与l 交于点R ,则QR MR+的最小值为( ) A. 15+ B. 5 C. 17 D. 5【答案】D 【解析】 【分析】作出图形,推导出直线1l 为线段FQ 的垂直平分线,利用中垂线的定义可得RQ FR =,进而可得出QR MR FR MR +=+,利用F 、R 、M 三点共线可求得QR MR +的最小值. 【详解】根据抛物线定义得PF PQ =,1l FQ ⊥Q ,则1l 为FQ 的垂直平分线,FR RQ ∴=,()224125QR MR FR MR FM ∴+=+≥=++=.故选:D.【点睛】本题考查抛物线中折线段长度之和最小值的求解,考查抛物线定义的应用,考查数形结合思想的应用,属于中等题.12.已知定义在R 上的函数()f x ,()f x '是()f x 的导函数,且满足()()2xxf x f x x e '-=,()1f e =,则()f x 的最小值为( )A. e -B. eC.1eD. 1e-【答案】D 【解析】 【分析】将题干中的等式变形为()()2x xf x f x e x -=',可得出()xf x e x '⎡⎤=⎢⎥⎣⎦,并构造函数()()f x F x x=,可得出()x f x e c x=+,进而可得出()xf x xe cx =+,利用()1f e =求得c的值,可得出函数()y f x =的解析式,进而利用导数可求得函数()y f x =的最小值. 【详解】由()()2xxf x f x x e -=',变形得()()2x xf x f x e x -=',即()xf x e x '⎡⎤=⎢⎥⎣⎦,()x f x e c x∴=+(c 为常数),则()xf x xe cx =+,()1f e c e =+=,得0c =. ()x f x xe ∴=,()()1x f x x e ∴=+',当1x <-时,()0f x '<,此时函数()y f x =单调递减; 当1x >-时,()0f x '>,此时函数()y f x =单调递增.所以,函数()y f x =在1x =-处取得极小值,亦即最小值,则()()min 11f x f e=-=-. 故选:D.【点睛】本题考查利用导数求解函数的最值问题,利用导数等式的结构构造新函数是解答的关键,考查计算能力,属于中等题.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第23题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分,共20分.13.已知函数()21211x x f x x x ⎧<=⎨+≥⎩,,,则232f f log ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭_____.【答案】4 【解析】 【分析】根据分段函数()21211x x f x x x ⎧<=⎨+≥⎩,,的定义域,先求232f log ⎛⎫ ⎪⎝⎭,再求232f f log ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值. 【详解】∵函数()21211x x f x x x ⎧<=⎨+≥⎩,,,且23log 12<,∴232f log ⎛⎫ ⎪⎝⎭232322log ==,∴232f f log ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭f (32)=23142⨯+=. .故答案为:4.【点睛】本题主要考查分段函数求函数值,还考查了运算求解的能力,属于基础题.14.已知向量a →,b →满足2b →=,向量a →,b →夹角为120︒,且a b b →→→⎛⎫+⊥ ⎪⎝⎭,则向量a b →→+=________.6 【解析】 【分析】由垂直得数量积为0,从而得a b ⋅r r,得a r ,然后把模的运算转化为数量积运算即得.【详解】由a b b →→→⎛⎫+⊥ ⎪⎝⎭得2()0a b b a b b +⋅=⋅+=uu r r r r r r ,2a b ⋅=-r r ,即cos1202a b ︒=-r r ,22a =ra b →→+=22222()2(22)2(2)(2)6a b a a b b +=+⋅+=+⨯-+r r r r r r6.【点睛】本题考查求向量的模,解题关键是掌握向量的垂直、模与数量积的关系. 15.在ABC ∆中,内角A ,B ,C 的对边分别是a ,b ,c ,且2222c a b ab =+,8a =,1sin 23A =,则c =_______. 【答案】9 【解析】 【分析】已知由余弦定理即可求得4C π=,由1sin23A =可求得22cos 23A =,即可求得sin A ,利用正弦定理即可求得结果.【详解】由余弦定理2222cos c a b ab C =+-和2222c a b ab =+-,可得2cos 2C =,得2sin C =,由1sin 23A =,22cos 2A =,42sin 2sin cos 22A A A ∴==sin sin a cA C=,得9c =. 故答案为:9.【点睛】本题考查正余弦定理在解三角形中的应用,难度一般.16.大自然是非常奇妙的,比如蜜蜂建造的蜂房.蜂房的结构如图所示,开口为正六边形ABCDEF,侧棱AA'、BB'、CC'、DD'、EE'、FF'相互平行且与平面ABCDEF垂直,蜂房底部由三个全等的菱形构成.瑞士数学家克尼格利用微积分的方法证明了蜂房的这种结构是在相同容积下所用材料最省的,因此,有人说蜜蜂比人类更明白如何用数学方法设计自己的家园.英国数学家麦克劳林通过计算得到∠B′C′D′=109°28′16''.已知一个房中BB'=53,AB =26,tan54°44′08''2=,则此蜂房的表面积是_____.【答案】2162【解析】【分析】表面积分两部分来求,一是底面,是三个全等的菱形,连接BD,B′D′,易得BD∥B′D′,BD =B′D′=62,再根据∠B′C′D′=109°28′16'',tan54°44′08''2=,得到OC′,B′C′,可计算菱形的面积,二是侧面,是六个全等的直角梯形,由B′C′,结合BB′,BC,得到CC′,求得梯形的面积,然后两部分相加即可.【详解】如图所示:连接BD ,B ′D ′,则由题意BD ∥B ′D ′,BD =B ′D ′=2, ∵四边形OB ′C ′D ′为菱形,∠B ′C ′D ′=109°28′16'',tan 54°44′08''2=∴OC ′=21''25444'08B D tan ⋅=︒"2322=6,B ′C ′=3, ∴CC ′=BB ′22''BC BC --=3 ∴S 梯形BB ′CC ′(2653432==2,∴S 表面积=62⨯316622⨯⨯⨯=2. 故答案为:2.【点睛】本题主要考查空间几何体的结构特征和表面积的求法,还考查了空间想象和运算求解的能力,属于中档题.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.在等差数列{}n a 中,18a =-,243a a =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设()()*412n n b n N n a =∈+,n T 为数列{}n b 的前n 项和,若95n T =,求n 的值. 【答案】(Ⅰ)210n a n =-;(Ⅱ)9n =. 【解析】 【分析】(Ⅰ)设等差数列{}n a 的公差是d ,根据题中条件求出d 的值,利用等差数列的通项公式可求得数列{}n a 的通项公式; (Ⅱ)求得1121n b n n ⎛⎫=- ⎪+⎝⎭,利用裂项相消法可求得n T ,然后解方程95n T =,可求得正整数n 的值.【详解】(Ⅰ)设等差数列{}n a 的公差是d ,由18a =-,243a a =,得()8338d d -=-,解得2d =.因此,()11210n a a n d n =+-=-; (Ⅱ)设()()4411212221n n b n a n n n n ⎛⎫===- ⎪+++⎝⎭,11111121222122311n T n n n ⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-++-=- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭L ,令95n T =,即192115n ⎛⎫-= ⎪+⎝⎭,得到9n =.【点睛】本题考查等差数列通项公式的求解,同时也考查了裂项求和法,考查计算能力,属于基础题.18.如图,在四棱锥P ABCD -中,底前ABCD 为平行四边形,点P 在面ABCD 内的射影为A ,1==PA AB ,点A 到平面PBC 的距离为3,且直线AC 与PB 垂直.(Ⅰ)在棱PD 找点E ,使直线PB 与平面ACE 平行,并说明理由; (Ⅱ)在(Ⅰ)的条件下,求三棱锥-P EAC 的体积.【答案】(Ⅰ)点E 为PD 中点时,直线PB 与面ACE 平行,理由见解析;(Ⅱ)112. 【解析】 【分析】(Ⅰ)取PD 的中点E ,连接OE ,利用中位线的性质证得//OE PB ,进而可证得//PB 平面ACE ,由此可得出结论;(Ⅱ)推导出AC ⊥平面PAB ,由E 为PD 的中点,可得出12P ACE P ACD V V --=,进而可求得三棱锥-P EAC 的体积.【详解】(Ⅰ)点E 为PD 中点时直线PB 与面ACE 平行. 连接BD ,交AC 点O ,则点O 为BD 的中点,因为点E 为PD 中点,故OE 为PBD △的中位线,则//OE PB ,OE ⊂Q 平面ACE ,PB ⊄平面ACE ,所以,//PB 平面ACE ;(Ⅱ)根据题意AC PB ⊥,PA ⊥底面ABCD ,AC ⊂底面ABCD ,则有AC PA ⊥,PA PB P =I ,所以AC ⊥平面PAB ,则AC AB ⊥,设AC x =,2111113112323223P ACB A PBC V V x x --==⨯⨯⨯⨯=⨯⨯⨯+⨯,得1AC =, 则11111111223212P EAC P ACD V V --==⨯⨯⨯⨯⨯=. 【点睛】本题考查线面平行的判断,同时也考查了利用等体积法求三棱锥的体积,考查推理能力与计算能力,属于中等题.19.甘肃省是土地荒漠化较为严重的省份,一代代治沙人为了固沙、治沙,改善生态环境,不断地进行研究与实践,实现了沙退人进.2019年,古浪县八步沙林场“六老汉”三代人治沙群体作为优秀代表,被中宣部授予“时代楷模”称号.在治沙过程中为检测某种固沙方法的效果,治沙人在某一实验沙丘的坡顶和坡腰各布设了50个风蚀插钎,以测量风蚀值.(风蚀值是测量固沙效果的指标之一,数值越小表示该插钎处被风吹走的沙层厚度越小,说明固沙效果越好,数值为0表示该插钎处没有被风蚀)通过一段时间的观测,治沙人记录了坡顶和坡腰全部插钎测得的风蚀值(所测数据均不为整数),并绘制了相应的频率分布直方图.(Ⅰ)根据直方图估计“坡腰处一个插钎风蚀值小于30”的概率;(Ⅱ)若一个插钎的风蚀值小于30,则该数据要标记“*”,否则不标记根据以上直方图,完成列联表:标记不标记合计坡腰坡顶合计并判断是否有95%的把握认为数据标记“*”与沙丘上插钎所布设的位置有关?附:()()()()()22n ad bcKa b c d a c b d-=++++.()2P K k≥0.0500.0100.001k 3.841 6.63510.828【答案】(Ⅰ)0.6;(Ⅱ)列联表见解析,有95%的把握认为数据标记“*”与沙丘上插钎所布设的位置有关.【解析】【分析】(Ⅰ)根据频率分布直方图可估计“坡腰处一个插钎风蚀值小于30”的概率;(Ⅱ)根据两幅频率分布直方图完善22⨯列联表,并根据列联表计算出2K的观测值,结合临界值表可得出结论.【详解】(Ⅰ)设“坡腰处一个插钎风蚀值小于30”为事件C,()0.80.160.360.6P C=++=;(Ⅱ)完成列联表如下:标记不标记合计坡腰302050坡顶203050合计5050100根据列联表,计算得:()22100303020204 3.84150505050K⨯⨯-⨯==>⨯⨯⨯.所以有95%的把握认为,数据标记“*”与沙丘上插钎所布设的位置有关.【点睛】本题考查利用频率分布直方图估计概率,同时也考查了独立性检验思想的应用,考查数据处理能力,属于基础题.20.已知点F为椭圆22221x ya b+=(a>b>0)的一个焦点,点A为椭圆的右顶点,点B为椭圆的下顶点,椭圆上任意一点到点F距离的最大值为3,最小值为1.(1)求椭圆的标准方程;(2)若M、N在椭圆上但不在坐标轴上,且直线AM∥直线BN,直线AN、BM的斜率分别为k1和k2,求证:k1•k2=e2﹣1(e为椭圆的离心率).【答案】(1)22143x y+=(2)证明见解析【解析】【分析】(1)根据椭圆上任意一点到点F距离的最大值为3,最小值为1,则有31a ca c+=⎧⎨-=⎩求解.(2)由(1)可知,A(2,0),B(0,3),分别设直线AM的方程为y=k(x﹣2),直线BN的方程为y=kx3-M,N的坐标,再利用斜率公式代入k1•k2求解.【详解】(1)由题意可知,31a ca c+=⎧⎨-=⎩,解得21ac=⎧⎨=⎩,∴b 2=a 2﹣c 2=3,∴椭圆的标准方程为:22143x y +=;(2)由(1)可知,A (2,0),B (0,3), 设直线AM 的斜率为k ,则直线BN 的斜率也为k ,故直线AM 的方程为y =k (x ﹣2),直线BN 的方程为y =kx 3-由()2234122x y y k x ⎧+=⎪⎨=-⎪⎩得:(3+4k 2)x 2﹣16k 2x +16k 2﹣12=0, ∴221612234M k x k -=+,∴228634Mk x k -=+,21234M k y k -=+, ∴22286123434k M k k ⎛⎫-- ⎪++⎝⎭,,由2234123x y y kx ⎧+=⎪⎨=⎪⎩得:()2234830k x kx +-=, ∴83N k x =,24333N k y -=, ∴2228343333434k k N k k ⎛⎫- ⎪ ⎪++⎝⎭,,∴()221243333433483244332k k k k k k k --+==--+- )()22222212334433348624334kk k k k k k k --++==--+, ∴k 1k 2()2234324433k k k -=--+•)()223443334243k k k -+=--,又∵12c e a ==, ∴k 1•k 2=e 2﹣1.【点睛】本题主要考查椭圆方程的求法和直线与椭圆的位置关系,还考查了运算求解的能力,属于中档题.21.已知函数()21123ln 22f x x a x x =--+(a ∈R 且0a ≠). (Ⅰ)当23a =()y f x =在点()()1,1f 处的切线方程; (Ⅱ)若0a >,讨论函数()f x 的单调性与单调区间;(Ⅲ)若()y f x =有两个极值点1x 、2x ,证明:()()129ln f x f x a +<-. 【答案】(Ⅰ)310x y +-=;(Ⅱ)详见解析;(Ⅲ)证明见解析. 【解析】 【分析】(Ⅰ)求出()1f 和()1f '的值,利用点斜式可得出所求切线的方程;(Ⅱ)求得()223x x af x -+-'=2230x x a -+-=,分>0∆和0∆≤两种情况讨论,分析()f x '的符号变化,可得出函数()y f x =的单调递增区间和递减区间; (Ⅲ)由题意可知,方程()0f x '=有两正根1x 、2x ,利用韦达定理得出1223x x +=12x x a =且()0,3a ∈,将所证不等式转化为ln ln 20a a a a --+>,构造函数()ln ln 2x x g x x x =--+,利用导数证明出当()0,3x ∈时,()0g x >即可.【详解】由题可知:函数()f x 的定义域为()0,∞+ (Ⅰ)因为23a =()211232322f x x x x =--+,所以()2323f x x x'=-, 那么()11f '=-,()123f =所以曲线()y f x =在()()1,1f 处的切线方程为:()231y x -=--, 即2310x y +-=;(Ⅱ)因为()22323a x x af x x x -+-'=-=2230x x a -+-=可得:①当1240a ∆=->,()0,3a ∈,时,有133x a =-233x a =-120x x >>,()20,x x ∈和()1,x x ∈+∞时()0f x '<,即函数()y f x =在(33a -和()33,a -+∞上为减函数;()21,x x x ∈时,()0f x '>,即函数()y f x =在33,33a a --上增函数;②当3a ≥时,0∆≤,()0f x '≤恒成立,所以函数()y f x =在()0,∞+为减函数. 综上可知:当0<<3a 时,函数()y f x =在(33a -和()33,a -+∞上为减函数,在33,33a a --上为增函数;当3a ≥时,函数()y f x =在(0,)+∞上为减函数; (Ⅲ)因为()y f x =有两个极值点1x 、2x ,则()2230x x af x x-+-'==有两个正根1x 、2x ,则有1240a ∆=->,且1223x x +=120x x a =>,即()0,3a ∈,所以()())()()2212121212123ln 1ln 72f x f x x x a x x x x a a a +=+--++=-++ 若要()()129ln f x f x a +<-,即要ln ln 20a a a a --+>, 构造函数()ln ln 2x x g x x x =--+,则()1ln g x x x'=-,易知()y g x '=在()0,3上为增函数,且()110g '=-<,()12ln 202g '=->, 所以存在()01,2x ∈使()00g x '=即001ln x x =, 且当()01,x x ∈时()0g x '<,函数()y g x =单调递减; 当()0,2x x ∈时,()0g x '>,函数()y g x =单调递增.所以函数()y g x =在()1,2上有最小值为()00000001ln ln 23g x x x x x x x ⎛⎫=-++=-+ ⎪⎝⎭,又因为()01,2x ∈则00152,2x x ⎛⎫+∈ ⎪⎝⎭,所以()00g x >在()01,2x ∈上恒成立, 即()()129ln f x f x a +<-成立.【点睛】本题考查利用导数求函数的切线方程、利用导数求解含参函数的单调区间以及利用导数证明不等式,考查分析问题和解决问题的能力,属于中等题.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分. 【选修4-4:坐标系与参数方程】22.在平面直角坐标系xOy 中,直线l 的参数方程为2122x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为24cos πρα⎛⎫=+ ⎪⎝⎭,曲线C 2的直角坐标方程为24y x =-(1)若直线l 与曲线C 1交于M 、N 两点,求线段MN 的长度;(2)若直线l 与x 轴,y 轴分别交于A 、B 两点,点P 在曲线C 2上,求AB AP ⋅u u u r u u u r的取值范围.【答案】(16(2)121AB AP ⎡⎤⋅∈-⎣⎦u u u r u u u r,2【解析】 【分析】(1)将直线l 的参数方程消去参数,得到直角坐标方程,将圆C 1的极坐标方程,转化为直角坐标方程,然后利用“r ,d ”法求弦长.(2)将曲线C 2的直角坐标方程转换为参数方程为22x cos y sin θθ=⎧⎨=⎩(0≤θ≤π),由A (1,0),B (0,1),P (2cosθ,2sinθ),得到AB u u u r,AP u u u r的坐标,再利用数量积公式得到AB AP ⋅u u u r u u u r 2214sin πθ⎛⎫=-+ ⎪⎝⎭,然后用正弦函数的性质求解.【详解】(1)直线l 的参数方程为212222x y ⎧=--⎪⎪⎨⎪=+⎪⎩(t 为参数),消去参数,得直角坐标方程为x +y ﹣1=0,因为曲线C 1的极坐标方程为24cos πρα⎛⎫=+ ⎪⎝⎭, 所以222sin cos ρραρα=-所以直角坐标方程为x 2+y 2﹣2x +2y =0, 标准式方程为(x ﹣1)2+(y +1)2=2, 所以圆心(1,﹣1)到直线x +y ﹣1=0的距离d 222== 所以弦长|MN |=222(2)()62-=(2)因为曲线C 2的直角坐标方程为24y x =-所以x 2+y 2=40y ≥,转换为参数方程为22x cos y sin θθ=⎧⎨=⎩(0≤θ≤π).因为A (1,0),B (0,1),点P 在曲线C 2上,故P (2cosθ,2sinθ),所以()11AB =-u u u r ,,()212AP cos sin θθ=-u u u r,,(0≤θ≤π), 所以AB AP ⋅=u u u r u u u r 122cos sin θθ=-+214sin πθ⎛⎫=-+ ⎪⎝⎭,因为30,444πππθπθ≤≤-≤-≤所以2124sin πθ⎛⎫-≤-≤ ⎪⎝⎭, 所以121AB AP ⎡⎤⋅∈-⎣⎦u u u r u u u r,2.【点睛】本题主要考查参数方程,极坐标方程,直角坐标方程的转化,直线与圆的位置关系以及三角函数与平面向量,还考查了转化化归的思想和运算求解的能力,属于中档题.【选修4-5:不等式选讲】23.已知函数f (x )=|x ﹣1|+|2x +2|,g (x )=|x +2|﹣|x ﹣2a |+a .(1)求不等式f (x )>4的解集;(2)对∀x 1∈R ,∃x 2∈R ,使得f (x 1)≥g (x 2)成立,求a 的取值范围.【答案】(1)()513∞∞⎛⎫--⋃+ ⎪⎝⎭,,(2)[﹣4,0] 【解析】 【分析】(1)根据绝对值的几何意义,去掉绝对值()311311311x x f x x x x x --≤-⎧⎪=+-<<⎨⎪+≥⎩,,,,再分类解不等式f (x )>4.(2)根据对∀x 1∈R ,∃x 2∈R ,使得f (x 1)≥g (x 2)成立,则f (x )min ≥g (x )min ,由(1)知, f (x )min =2,g (x )=|x +2|+|x ﹣2a |+a ≥|(x +2)﹣(x ﹣2a )|+a =|2a +2|+a ,解不等式2≥|2a +2|+a 即可.【详解】(1)因为()311311311x x f x x x x x --≤-⎧⎪=+-⎨⎪+≥⎩,,<<,, 所以f (x )>4即为1314x x ≤-⎧⎨--⎩>或1134x x -⎧⎨+⎩<<>或1314x x ≥⎧⎨+⎩>,解得53x -<或x >1,所以不等式的解集为()513∞∞⎛⎫--⋃+ ⎪⎝⎭,,; (2)由(1)知,当x =﹣1时,f (x )min =2,g (x )=|x +2|+|x ﹣2a |+a ≥|(x +2)﹣(x ﹣2a )|+a =|2a +2|+a ,由题意,对∀x 1∈R ,∃x 2∈R ,使得f (x 1)≥g (x 2)成立, 故f (x )min ≥g (x )min , 即2≥|2a +2|+a ,所以2222a a a -≤+≤- 解得﹣4≤a ≤0,所以实数a 的取值范围为[﹣4,0].【点睛】本题主要考查绝对值不等式的解法和绝对值不等式恒成立问题,还考查了转化化归的思想和运算求解的能力,属于中档题.。

2020年兰州市数学高考一模试题(及答案)

2020年兰州市数学高考一模试题(及答案)

2020年兰州市数学高考一模试题(及答案)一、选择题1.123{3x x >>是12126{9x x x x +>>成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .即不充分也不必要条件2.甲、乙、丙三人到三个不同的景点旅游,每人只去一个景点,设事件A 为“三个人去的景点各不相同”,事件B 为“甲独自去一个景点,乙、丙去剩下的景点”,则(A |B)P 等于( ) A .49B .29C .12D .133.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a-b|≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( ) A .19B .29C .49D .7184.已知非零向量a b ,满足2a b =,且b a b ⊥(–),则a 与b 的夹角为 A .π6B .π3C .2π3D .5π65.某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上(包括50岁)的人,用分层抽样的方法从中抽取20人,各年龄段分别抽取的人数为( ) A .7,5,8B .9,5,6C .7,5,9D .8,5,76.已知函数()25,1,,1,x ax x f x a x x⎧---≤⎪=⎨>⎪⎩是R 上的增函数,则a 的取值范围是( )A .30a -≤<B .0a <C .2a ≤-D .32a --≤≤7.已知a 与b 均为单位向量,它们的夹角为60︒,那么3a b -等于( ) ABCD .48.设,a b R ∈,“0a =”是“复数a bi +是纯虚数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件9.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .8010.在如图的平面图形中,已知1,2,120OM ON MON ==∠=,2,2,BM MA CN NA ==则·BC OM 的值为A .15-B .9-C .6-D .011.下列说法正确的是( ) A .22a b ac bc >⇒> B .22a b a b >⇒> C .33a b a b >⇒>D .22a b a b >⇒>12.设集合(){}2log 10M x x =-<,集合{}2N x x =≥-,则M N ⋃=( )A .{}22x x -≤<B .{}2x x ≥-C .{}2x x <D .{}12x x ≤<二、填空题13.曲线21y x x=+在点(1,2)处的切线方程为______________. 14.若x ,y 满足约束条件x y 102x y 10x 0--≤⎧⎪-+≥⎨⎪≥⎩,则xz y 2=-+的最小值为______.15.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为________.16.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,3c =,2C B =,则ABC 的面积为______.17.已知样本数据,,,的均值,则样本数据,,,的均值为 .18.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为33,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 19.计算:1726cos()sin 43ππ-+=_____. 20.()sin 5013tan10+=________________.三、解答题21.如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°. (Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.22.如图,四棱锥P ABCD -的底面ABCD 是平行四边形,连接BD ,其中DA DP =,BA BP =.(1)求证:PA BD ⊥;(2)若DA DP ⊥,060ABP ∠=,2BA BP BD ===,求二面角D PC B --的正弦值.23.为评估设备生产某种零件的性能,从设备生产该零件的流水线上随机抽取100个零件为样本,测量其直径后,整理得到下表:经计算,样本的平均值,标准差,以频率值作为概率的估计值.(I )为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行判定(表示相应事件的概率):①; ②; ③.判定规则为:若同时满足上述三个式子,则设备等级为甲;若仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部都不满足,则等级为了.试判断设备的性能等级.(Ⅱ)将直径尺寸在之外的零件认定为是“次品”.①从设备的生产流水线上随机抽取2个零件,求其中次品个数的数学期望;②从样本中随意抽取2个零件,求其中次品个数的数学期望.24.如图,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD ,//EF AB ,90BAF ∠=︒,2AD =,1AB AF ==,点P 在线段DF 上.(1)求证:AF ⊥平面ABCD ; (2)若二面角D AP C --6,求PF 的长度. 25.在直角坐标平面内,以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A ,B 的极坐标分别为()π42,,5π224⎛⎫ ⎪⎝⎭,,曲线C 的方程为r ρ=(0r >).(1)求直线AB 的直角坐标方程;(2)若直线AB 和曲线C 有且只有一个公共点,求r 的值.26.设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A【解析】 试题分析:因为123{3x x >>12126{9x x x x +>⇒>,所以充分性成立;1213{1x x ==满足12126{9x x x x +>>,但不满足123{3x x >>,必要性不成立,所以选A.考点:充要关系2.C解析:C 【解析】 【分析】这是求甲独自去一个景点的前提下,三个人去的景点不同的概率,求出相应的基本事件的个数,即可得出结果. 【详解】甲独自去一个景点,则有3个景点可选,乙、丙只能在剩下的两个景点选择,根据分步乘法计数原理可得,对应的基本事件有32212⨯⨯=种;另外,三个人去不同景点对应的基本事件有3216⨯⨯=种,所以61(/)122P A B ==,故选C. 【点睛】本题主要考查条件概率,确定相应的基本事件个数是解决本题的关键.3.C解析:C 【解析】试题分析:由题为古典概型,两人取数作差的绝对值的情况共有36种,满足|a-b|≤1的有(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)(1,2)(2,1)(3,2)(2,3)(3,4)(4,3)(5,4)(4,5)(5,6)(6,5)共16种情况,则概率为;164369p == 考点:古典概型的计算.4.B解析:B 【解析】 【分析】本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由()a b b -⊥得出向量,a b 的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角. 【详解】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||122||a bb b a b ⋅==⋅,所以a 与b 的夹角为3π,故选B . 【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.5.B解析:B 【解析】 【分析】分层抽样按比例分配,即可求出各年龄段分别抽取的人数. 【详解】由于样本容量与总体中的个体数的比值为2011005=,故各年龄段抽取的人数依次为14595⨯=,12555⨯=,20956--=.故选:B【点睛】本题考查分层抽样方法,关键要理解分层抽样的原则,属于基础题.6.D解析:D 【解析】 【分析】根据分段函数的单调性特点,两段函数在各自的定义域内均单调递增,同时要考虑端点处的函数值. 【详解】要使函数在R 上为增函数,须有()f x 在(,1]-∞上递增,在(1,)+∞上递增,所以21,20,115,1a a a a ⎧-≥⎪⎪<⎨⎪⎪--⨯-≤⎩,解得32a --≤≤.故选D. 【点睛】本题考查利用分段函数的单调性求参数的取值范围,考查数形结合思想、函数与方程思想的灵活运用,求解时不漏掉端点处函数值的考虑.7.A解析:A 【解析】本题主要考查的是向量的求模公式.由条件可知==,所以应选A .8.B解析:B 【解析】 【分析】 【详解】当a=0时,如果b=0,此时0a bi +=是实数,不是纯虚数,因此不是充分条件;而如果a bi +已经是纯虚数,由定义实部为零,虚部不为零可以得到a=0,因此是必要条件,故选B【考点定位】本小题主要考查的是充分必要条件,但问题中又涉及到了复数问题,复数部分本题所考查的是纯虚数的定义9.C解析:C 【解析】分析:写出103152rrr r T C x -+=,然后可得结果详解:由题可得()5210315522rrr r r rr T C x C x x --+⎛⎫== ⎪⎝⎭令103r 4-=,则r 2= 所以22552240rr C C =⨯=故选C.点睛:本题主要考查二项式定理,属于基础题。

2020年甘肃省高三第一次高考诊断考试理科数学试题

2020年甘肃省高三第一次高考诊断考试理科数学试题

2020年甘肃省第一次高考诊断考试数 学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用像皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知{}1<=x x A ,{}12<=x x B ,则AUB=( )A .(-1,0)B .(0,1)C .(-1,+∞)D .(-∞,1)2.已知:)23(i i z -=,则z z ⋅=( ) A .5 B .5 C .13 D .133.已知平面向量b a ,满足),3(),2,1(t b a -=-=,且)(b a a +⊥=( )A .3B .10C .32D .54.已知抛物线)0(22>=p px y 经过点)22,2(M ,焦点为F .则直线MF 的斜率为( )A .22B .42C .22 D .22- 5.函数22cos ln )(x x x x f +=的部分图象大致为( )A B C D6.已知双曲线)0,0(12222>>=-b a by a x C :的一条渐近线经过圆04222=-++y x y x E :的圆心,则双曲线的C 的离心率为( )A .25 B .5 C .2 D .2 7.5G 网络是一种先进的高频传输技术,我国的5C 技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款5G 手机,现调查得到该款5G 手机上市时间x 和市场占有率y (单位:%)的几组相关对应数据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月,……,5代表2019年12月,根据数据得出y 关于x 的线性回归方程为a x y ˆ042.0ˆ-=.若用此方程分析并预测该款手机市场占有率的变化趋势,则最早何时该款5C 手机市场占有率能超过0.5%( )(精确到月)A .2020年6月B .2020年7月C .2020年8月D .2020年9月8.设n m ,是空间两条不同的直线,βα,是空间两个不同的平面.给出下列四个命题:①若α∥m ,β∥n ,βα∥,则n m ∥;②若βα⊥,β⊥m ,α⊄m ,则α∥m ;③若n m ⊥,α⊥m ,βα∥,则β∥n ;④若βα⊥,l =βαI ,α∥m ,l m ⊥.则β⊥m .其中正确的是( )A .①②B .②③C .②④D .③④9.定义在R 上的偶函数)(x f ,对)0,(,21-∞∈∀x x .且21x x ≠,有0)()(1212>--x x x f x f 成立,已知)(ln πf a =,)(21-=e f b ,)61(log 2f c =,则a ,b ,c 的大小关系为( ) A .b >a >c B .b >c >a C .c >b >a D .c >a >b10.将函数)6sin()(π+=x x f 图象上每一点的横坐标变为原来的2倍.再将图像向左平移3π个单位长度,得到函数)(x g y =的图象,则函数)(x g y =图象的一个对称中心为( )A .)0,12(πB .)0,4(πC .)0,(πD .)0,34(π 11.若nx x )1(3+的展开式中二项式系数和为256.则二项式展开式中有理项系数之和为( ) A .85 B .84 C .57 D . 5612.若函数2)(mx e x f x-=有且只有4个不同的零点.则实数m 的取值范围是( ) A .),4[2+∞e B ),4(2+∞e C .)4,(2e -∞ D .]4,(2e -∞ 二、填空题:本题共4小题,每小题5分,共20分。

甘肃省2020届高三数学上学期第一次诊断考试试题

甘肃省2020届高三数学上学期第一次诊断考试试题

高三数学上学期第一次诊断考试试题一、选择题(每小题5分,共60分)1.已知集合A ={1,2,3},B ={x |(x +1)·(x -2)<0,x ∈Z },则A ∪B =( )A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}2.设p :x<3,q :-1<x<3,则p 是q 成立的( )A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件3.下列函数中,既是偶函数又存在零点的是( )A.y=lnxB.21y x =+ C.y=sinx D.y=cosx4.已知命题p :∀x >2,x 3-8>0,那么¬p 是( )A .∀x ≤2,x 3-8≤0B .∃x >2,x 3-8≤0C .∀x >2,x 3-8≤0D .∃x ≤2,x 3-8≤05.函数f (x )=的定义域为( ) A.(-1,+∞)B.(-1,1)∪(1,+∞)C.[-1,+∞)D.[-1,1)∪(1,+∞) 6.若函数f (x )=ax 2+(2a 2﹣a )x+1为偶函数,则实数a 的值为( )A .1 B. C .0 D .0或7.已知复数z =1+2i2-i (i 为虚数单位),则z 的虚部为( )A.-1B.0C.1D.i8.设函数()1x 22,x 1,f x 1log x,x 1,-⎧≤=⎨->⎩则满足f(x)≤2的x 的取值范围是( ) A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞) 9.设0.6 1.50.60.6,0.6, 1.5a b c === ,则,,a b c 的大小关系是( )A .a b c <<B .a c b <<C .b a c <<D .b c a <<10.曲线x x x y 223-+=在1-=x 处的切线斜率是( )A.1B. -1C. 2D. 311.定义域为R 的奇函数()y f x =的图像关于直线2x =对称,且(2)2018f =,则(2018)(2016)f f +=( )A. 2018B. 2020C. 4034D. 212.若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是( )A.(-∞,-2)B.(-2,+∞)C.(-6,+∞)D.(-∞,-6)二、填空题(每空5分,共20分)13.=-+-1)21(2lg 225lg 。

2020届甘肃省第一次高考诊断考试(数学理)

2020届甘肃省第一次高考诊断考试(数学理)

2020届甘肃省第一次高考诊断考试(数学理)数学理科考生注意:本试卷分第1卷〔选择题〕和第二卷〔非选择题〕两部分,总分值为150分,考试时刻120分钟, 所有试题均在答题卡上作答•其中,选择题用28铅笔填涂,其余题用0.5毫米黑色墨水签字笔作答,参考公式:假如事件A、B互斥,那么-假如事件A、B相互独立,那么’,假如事件.A在一次试验中发生的概率是P,那么它在n次独立重复试验中恰好发生A次的概率为'' •球的表面积公式:身亠:吭T,其中R表示球的半径,球的体积公式:,其中R表示球的半径,第1卷〔选择题,共60分〕一、选择题:本大题共12小题,每题5分,共60分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1•集合心w m弘"乩用.那么ifn』¥=(A)・'3 - L (B) ' -]川川(C),-2. - 1 刖(D) |0.],2j2 •运算:2 -(=(A)I +3i (B)3+3i (C)1-3i (D)3 -3i7y£>ir) 1 * 对rt丧Kmf —-3.在△ ABC中,假设2,那么△ ABC的形状为(A)直角三角形(B)等边三角形(c)等腰三角形(D)等腰直角三角形4•以下四个数中,最大的一个是(A)卜;(B) I: ' (C) :!1 ' f;-' :(D) 1:;j_5 .某篮球运动员在三分线投篮的命准率为,他投篮5次,恰好投准3次的概率为丄T35(A)32(B)(C)(D) ' *6.在等差数列“中,假设那么它的前10项和"(A)70 (B)80 (C)90 (D)IOO斗TS' I .7•将函数'的图像按向量"‘亍’:平移,那么平移后的函数图像的解析式为9•从4名男生和3名女生中选出3人,分不参加三项不同的工作,假设这三人中至少有1女生,那么选派方案共有(A)270 种 (B)216 种 (C)186 种 (D)108 种10 .过半径为2的球0表面上一点 A ,作球0的截面,假设 OA 与该截面所成的角为30° 的面积为(A)4 n (B)3 n (C)2 n (D) n11.设a=(3. 4), a 在b 上的投影为 ,b 在j=(o , 1)上的投影为1,且|悅〔占超那么b=(B)(1,2) (C)(1,1) (D)(2,1)第二卷〔非选择题,共90分〕二、填空题:本大题共 4小题,每题5分,共20分把答案填在答题卡中对应题号后的横线上. 13.「:的展开式中常数项为 ________________ .—-= I14. 双曲线 上的点到左焦点的距离与到左准线的距离的比为 2,那么m=15.设随机变量 服从标准正态总体 N(O , 1),假设b"魁“° 9兀:,那么标准正态总体在区间〔-1 98.1.98〕内取值的概率为 _________________16. 以下命题中:①假设a.b.m 差不多上正数,那么 ,那么b>a ;②a 、b 差不多上实数,假设,那么ab <O;其中,正确的命题为 _____ 〔将正确的序号填在横线上〕.三、解答题:本大题共 6小题,共70分.解承诺写出文字讲明、证明过程或演算步骤. 17 .本小题总分值10分(C)&正三棱锥 为1(A)S -ABC 的各棱长均相等,D 为SC 的中点,那么SA 与BD 所成角的余弦值(B) (c) (D) ,那么该截面(A)(0,1)12 .偶函数f(x)的定义域为R ,假设’’二为奇函数,那么(A)' 1门为偶函数(c)小为奇函数(B)为奇函数(D) ;lf 谬为偶函数③假设a 、b 、c ABC 的三条边,那么a2 +b2 +C2 >2〔 ab+ bc+ ca 〕④假设a>b>c ,那么 )• 1AFR ( 2J * =(B)(1)求 的单调区间;设函数只”(1) 求f(x)的最大值及最小正周期;(2) 假设锐角厶ABC 中,角A 满足Z 亠荷,求"'的值. 18 .本小题总分值12分如图(1), AABC 是等腰直角三角形, AC =BC =4 , E 、F 分不为AC 、AB 的中点,将 AABC 沿 EF 折起,使A '在平面BCEF 上的射影0恰为EC 的中点,得到图(2). (1) 求证:EF 丄 A'C ;(2) 求二面角 A ' -BC -E 的大小; (3) 求三棱锥F-A'BC 的体积,图(1) 图(2)19. 〔本小题总分值12分〕某单位有三辆汽车参加某种事故保险,年初单位向保险公司缴纳一定数量的 保险金,对在一年内发生此种事故的每辆汽车,单位可获得9000元的赔偿〔假设每辆|_L 丄 _L 车最多只赔偿一次〕,设这三辆车在一年内发生此种事故的概率分不为 b m‘ii 且各辆车是否发生事故相互独立,求一年内该单位在此保险中: (1) 获赔的概率;(2) 获赔金额 的分布列与期望. 20. 本小题总分值12分在数列中,广’为其前n 项和,且满足呂■士沐 75芒“ .(1) 求数列丨歧」的通项公式;21. 本小题总分值12分 抛物线的焦点为F , M 为其准线上一点,直线 MF 与抛物线交与 A 、B 两加A y、点,人耐・(1)求证Mi 汕;(2)当A 虫时,求直线AB 的方程. 22本小题总分值12分设函数(2)证明:小,都有幻⑴"+口成立,求实数a的取值范畴.(2)假设对所有的一第一次高考诊断数学试题参奇答案及评分标准第I 卷一、迭择题;本大地兴】2小臥甸小题$分・共3分.I. U 2Jk 2.C4.B$1)6.A7.R R.C 9.C IO.B Jl.D I2.C第II 卷二、 填空也小眄剜邇§分,共20分.L3.W M. - I,吃09,24;(又)]"・T 席@321三. 解答矽;本大题求6小亟共"分・L7•衣小朋分10分耶:11»/ (.i ) - 3co$lv - \3sin 2x + 3= 2^'3«os(2.t-4- —}+3.♦ !♦•«・・♦♦・・,••••• •••・•• •・・••••・・X ・・・・・・・・・・5 2$⑵ Hi/(4) = 3-2v3.人一m 亠3 - 3-2J?・6 7;/. UO M2.A —)= l ・6X 0 < H A — — ■从"ii un — A w Gin — — ^32 12 5 3i«.右小m 濮分12分t I i i 「9•一:九丄・ EF ff :^3COl AA»C 的中处裁.••• FF 丄 AC.・•• EF 丄平面A :EC.乂川QuN 西片&•,・・・E :F 丄屮c 芥肚•::同丄EC.・・••••・・••・・・・•・・・••・・・・・・ ・*e ・0・・・0・・・・,・・《«7夕}・・・•・・・・・・•・・・I «>v .40丄EF. •・・EF丄平正.谊E?故孑芒秦ik(ll 7!i i又/f<7u 平ifcA^C •: EF 丄才G.(2) 7 A'O 丄面 BCEF.OCLKC.fk^A f C!BC•; C0平•••••••••x.•♦*••■••••••••••••••••••••・••• •又T/fo 垂 11 平分we. ^o = V-EO 2 = .oc-i. 住直fh'A'CO 中・ lan" CO "3.二10A-g-E 为丁 -(3) 庄宜角梯形EFRC 中.EC = 2. BC = A : S 沖=i-«C・£C = 4 ・X v 勿垂直 V 分 «?,• •• "0 ■ \- EO 1 = <5.•:三綾链F-XJJC 的体积为:]I4*^5二、O = 2 * 4 * 33 ・・・■••・・•■・・■ •・・•《•♦・・•■・・・•・・・■♦・・12攵宙用向呈法求解•可酌馆给分〉19・本小通满分12分氏科》解:设&祓示笔K 轲午在 年内发生此爭故.KJ2.3•则儿、仏、九相亙独立. 且P ⑷冷丿他)■占,")■右.(1)该单位一年内沃赔的口率为? 1・F (入兀A )4P (A )PC 石)丽)r 89 10 39 10 II 11(2) g 的所有可fi£«T 为 0.9000.18000.27(X )0・陀=O ) = P w 小 g )P ( “P (州X 評才亍晋 尸点■ 9000> = AjA,)+ 尸(厲 Aj Ay ) + 石心 3)・ =PS )P (石)此石H p (瓦屮(比屮(石>+巩可W (石)p (4)1 9 10 8 I 10 8 9 1 242 11=*- X — X —十—X —X 1—X — X —= =—: ...9 10 II 9 10 丄 9 10 J1 990 _ 45---- 8分・2分• •・・・・•• ••• ••• »M •■・・・■・・•・•・・••••••••••••••••• ・•・・•・・•・• ・・・0 ・・・•・ ••■•••• ••■••• ・・•・・ «••••••• • ■■••00・・・・・・・・0・・ •・•• •••・・•・ ・・・・・・・・•・ ・>«・・・・・ ••*•6夕十'尸(好=18000)二P(人比瓦)4 P(占石A J + P(\A L A,)1 1 10 1 9 1 8 1 1 27 3 B -x —x - 4- —X — X 一 4 —X — X 一 = ---- = ----- 9 10 11 9 10 II 9 10 11 990 110P(i = 27000) = F(A 入已)=)P(A 2)P(A })Q11a170900Ef = 0x2+9000x 旦斗 18000x2 十 27000乂云=^- ................................. 12 分9 11 45 110 990 11(文科)解:设儿、再表示三道工序合版则令、厶、Aj 相互独工45 7,卩(人)二亍................................... 2 分(1 )恢种零件合格的槪率为P ■ Pg・A ・厲)="叫)尸⑷ .......................... 4分 4 5 7 7 -X —X —=— 5 6 8 127(2)由于该种窶fl 3】合格辜为~...... .... —…山辿立車貝试聖的抵舉公式得於好取到-件合格詁的嘅率为 p-r «/Zi./Av: 25J 、I"V *• ••• ••»••••• ••• ••••• »••••«••••••••••••• ••••• ••<1 121257620•車小点満分12分(建科)解:(1 > 当兀=10扌,a i = S 、= 2a,-】■•••“! = 1 ■冷 S“| =2兔S" = 2a… -n,9 10 11 990的分布列为;40 9W01800027000p 8 11 3 1-■■11 45 110990.... o 分••・j =2a” -2a,~l.•・.{£ + 1}见以2为首顶.2为公比的每比数列. •••4 = 2“一1(刃€用)・n I Z1 \ . n \= -------- (1——)> ------------- ・..... ................ .. ................................................ 12分 2 3 r 2 3 " (文科)餡没帶羞数列5}的&顶为q •公羞为厶r 耳・比・®成等比数列.・•.(坷十5cf 『二(q 十衍)(耳十&/)• ................................. 4分 ・iq' + 10q 〃 +25d* = a ; +」1吗〃 +2心.-«i = d ・ .. ............................................................. . ................................. 8 分 又1為=10 = 4十4乩・ \^ = tf —2......................................................................... 「・ S 乂二 50x2 + x2 = 93O, ....................... ................. 21.本小SI 满分】2分解:⑴i 站找砂的方程为 —£).代人拟物线方稈> : = 2p.r •笑■fr\v 2 一 p{k l 4 2)才+"上二0 ........................................................................ ..4_ 丨 I 1 I"2^2(2^'^1) 2*3-2< + 2< -2 ............. 一 ........... 8分 ............. . ................................... 10 分•…川分 门分 沙-扌*仗= 1.2,3,…,心讣人(巧 t? l)» B g 1 >2 )・则M (— % — 〃A 入心亠导).>1 4 Pk =心 + pk)9曲1;达定理知 X =£•••• \(壬i 自■俘一殆Z. AE -AFB ・ ___(若用几何法证阴也町sm 钦分)(2) V AF =入就Hi 2用=才)叮•从両得X )=入'並③・疥/代人I •冯彳-才七二几(毛一牛.从而蒔心=总▼円=丸■久2读瞒致学答秦«5 5l<M7 H)即直线的方程为『=士73(*-彳)・■22•本小题满分12分(理科)#;(1)V帆和的定义域为XE(Q+oc).・・2分X出△=尸一4三0,即一20rcOH寸.^(x)>0.则XO为增函数:② 当A«fc J-4>t<-2Bj ・ x?4lr^! = OWW不尊曲实ftt.4按匚4 -R+J宀4 口°卄一-—・屯=—-—•且0 5 <心当x eCO■丙M(打>0;当K W (.r lt x;).^(.r) v0:当尤£ g—oo)■卩(x)> 0. ...4 分那上当上V-处L冲)的增区何为疋一4站—加P .丄2 2m/nz _上_、'火・_4 —k + Uk'—4减区何为-------- ------- . ------ ------ .2 2■ ■S-2<*<W. 的增区间为(0.4-OO) ............................................. . ...... ... 6分10分■ 21 xlnx1................... 8 分当I 3时•得疋二土的.乂 •・,(攵41" x —1) =1 —— >1.X・••" 扫響 >0,即 饨巧=更罕(*€&亠8»为用函数 ................. 10分(X4-1)-K 十1即“的取值范国为(^—. 〔丈和 «:< I ) v/(\x ) = r+2ar + L当A<0・即/W 耐• / *)20. /(X )在/?上为单圖増函数: ...................... 4分 当△>(!即a 、a ]时・由/ (工)二 0•得4 = 一。

2020年4月甘肃省2020届第一次高考诊断考试文科数学答案

2020年4月甘肃省2020届第一次高考诊断考试文科数学答案

解:(1)当 a 2 时, f (x) ln x+x2 -3x 的定义域为 (0, ) ,
f '(x) 1 2x 3 2x2 3x 1 (x 1)(2x 1) ,
x
x
x
所以
f
(x)

0,1 2

1,
上单调递增,
f
(x)

12,1
单调递减.
…………5

(2)令 g(x) f (x) [ 1 a(x 1)2 ] ln x x a (x 0).
……………………12 分 (二)选考题:共 10 分。请考生在第 22、23 题中选定一题作答,并用 2B 铅笔在答题卡
上将所选题目对应的题号方框涂黑。按所涂题号进行评分,不涂、多涂均按所答第一题评
分;多答按所答第一题评分。
22.(本题满分 10 分)
解:(1)曲线 C1 : 2cos , 曲线 C2 : x2
可化为 an1 1 2(an 1) ,
故数列an 1 是以 a1 1 2 为首项,2 为公比的等比数列.
即 an 1 (a1 1) 2n1 2n ,所以 an 2n 1 .
…………………6 分
(2)由(1)知,数列an 2n 的通项为: an 2n 2n 2n 1 ,
所以 Sn (21 22 23 2n ) (1 3 5 2(1 2n ) n2 2n1 n2 2.
1 2
2n 1)
…………………12 分
18. (本题满分 12 分)
解:(1)由列表可得:
K2
n(ad bc)2
= 100 26 20-30 242 = 50 0.649 3.841 .
(a b)(c d)(a c)(b d )

2020年4月甘肃省2020届第一次高考诊断考试理科数学答案

2020年4月甘肃省2020届第一次高考诊断考试理科数学答案

a
a
所以 f (x) 在 (0, 1 ) 上单调递增,在 (1 ,1) 单调递减,在 (1,) 单调递增. …………6 分
a
a
(2)当 a 2 时,欲证 f (x) ex 2x 1 ,只需证 ln x 2 ex , x
第一次诊断理科数学答案 第 3 页(共 5 页)
令 g(x) ln x ex 2 , x (0,) ,则 g(x) 1 ex , x
因存在 x0 (0,1) ,使得
1 x0
ex0
成立,即有 x0
ln x0
,使得 g(x0 ) 0 成立.
当 x 变化时, g(x) , g(x) 的变化如下:
x g(x)
(0, x0 ) +
x0
( x0 , )
0
-
g(x)
单调递增
单调递减
所以
g ( x)max
故数列an 1 是以 a1 1 2 为首项,2 为公比的等比数列.
即有 an 1 (a1 1) 2n1 2n ,所以 an 2n 1.
…………………6 分
(2)由(1)知,数列an 2n 的通项为: an 2n 2n 2n 1 ,
Sn (21 22 23 2n ) (1 3 5 2n 1)
13. 10
14. 1344
15. 2,3
16. 20; 21(1 6)
三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考 题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。
(一)必考题:共 60 分。 17.(本题满分 12 分)
解 1,可化为 an1 1 2(an 1) ,
2(1 2n ) n2 2n1 n2 2 . 1 2

甘肃省2020年第一次高考诊断考试文科数学【含答案】

甘肃省2020年第一次高考诊断考试文科数学【含答案】

【详解】由于双曲线
x2 5
y2 m
1m
0
的一个焦点为
F
3,
0
,则
m
32
5
4,
x2 y2 1
y2 5x
双曲线的标准方程为 5 4 ,其渐近线方程为
5.
故选:B.
【点睛】本题考查双曲线渐近线方程的求解,同时也考查了利用双曲线的焦点坐标求参数, 考查计算能力,属于基础题.
6.已知 tan
3
,则
sin
1 x2

f
1 1 ,
f
1
3

因此,曲线
f
x
2
1 x
2 ln
x

x
1 处的切线方程为
y
1
3x
1,即
3x y 2 0 .
故答案为: 3x y 2 0 .
【点睛】本题考查利用导数求函数的切线方程,考查计算能力,属于基础题.
x y 1 0
x 2 y 2 0
14.实数 x , y 满足约束条件 y 2 0
甘肃省 2020 年第一次高考诊断考试文科数学
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号 涂黑.如需改动,用像皮擦干净后,再选涂其它答案标号.回答非选择题时,将 答案写在答题卡上,写在本试卷上无效.
3.考试结束后,将本试卷和答题卡一并交回.
t
1,b
3,1

b
10
故选:B
【点睛】考查向量的数量积及向量模的运算,是基础题.
5.已知双曲线
x2 5

2020届甘肃省第一次高考诊断考试(数学理)

2020届甘肃省第一次高考诊断考试(数学理)

2020届甘肃省第一次高考诊断考试(数学理)数学理科考生注意:本试卷分第1卷〔选择题〕和第二卷〔非选择题〕两部分,总分值为150分,考试时刻120分钟,所有试题均在答题卡上作答.其中,选择题用28铅笔填涂,其余题用0.5毫米黑色墨水签字笔作答,参考公式:假如事件A、B互斥,那么假如事件A、B相互独立,那么,假如事件.A在一次试验中发生的概率是P,那么它在n次独立重复试验中恰好发生A次的概率为.球的表面积公式:,其中R表示球的半径,球的体积公式:,其中R表示球的半径,第1卷〔选择题,共60分〕一、选择题:本大题共12小题,每题5分,共60分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.集合.那么=(A) (B) (C) (D)2.运算:=(A)I +3i (B)3+3i (C)1-3i (D)3 -3i3.在△ABC中,假设,那么△ABC的形状为(A)直角三角形(B)等边三角形(c)等腰三角形(D)等腰直角三角形4.以下四个数中,最大的一个是(A) (B) (C) (D)5.某篮球运动员在三分线投篮的命准率为,他投篮5次,恰好投准3次的概率为(A) (B) ( C) (D)6. 在等差数列中,假设,那么它的前10项和(A)70 (B)80 (C)90 (D)IOO7.将函数的图像按向量平移,那么平移后的函数图像的解析式为(A) (B)( C) (D)8.正三棱锥S -ABC的各棱长均相等,D为SC的中点,那么SA与BD所成角的余弦值为(A) (B) (c) (D)9.从4名男生和3名女生中选出3人,分不参加三项不同的工作,假设这三人中至少有1名女生,那么选派方案共有(A)270种(B)216种(C)186种(D)108种lO.过半径为2的球O表面上一点A,作球O的截面,假设OA与该截面所成的角为30°,那么该截面的面积为(A)4π(B)3π(C)2π(D)π11.设a=(3.4),a在b上的投影为,b在j=(o,1)上的投影为1,且,那么b=(A)(O,1) (B)(1,2) (C)(1,1) (D)(2,1)12.偶函数f(x)的定义域为R,假设为奇函数,那么(A) 为偶函数(B) 为奇函数(c) 为奇函数(D) 为偶函数第二卷〔非选择题,共90分〕二、填空题:本大题共4小题,每题5分,共20分把答案填在答题卡中对应题号后的横线上.13.的展开式中常数项为_______________.14.双曲线上的点到左焦点的距离与到左准线的距离的比为2,那么m=_________15.设随机变量服从标准正态总体N(O,1),假设,那么标准正态总体在区间〔-1 98.1. 98〕内取值的概率为______________.16.以下命题中:①假设a.b.m差不多上正数,那么,那么b>a;②a、b差不多上实数,假设,那么ab <O;③假设a、b、c为△ABC的三条边,那么a2 +b2 +C2 >2〔ab+ bc+ ca〕④假设a>b>c,那么.其中,正确的命题为____ 〔将正确的序号填在横线上〕.三、解答题:本大题共6小题,共70分.解承诺写出文字讲明、证明过程或演算步骤.17.本小题总分值10分设函数.(1)求f(x)的最大值及最小正周期;(2)假设锐角△ABC中,角A满足,求的值.18.本小题总分值12分如图(1),AABC是等腰直角三角形,AC =BC =4,E、F分不为AC、AB的中点,将AABC沿EF折起,使A’在平面BCEF上的射影O恰为EC的中点,得到图(2).(1)求证:EF⊥A'C;(2)求二面角A’-BC -E的大小;(3)求三棱锥F-A'BC的体积,图(1) 图(2)19.〔本小题总分值12分〕某单位有三辆汽车参加某种事故保险,年初单位向保险公司缴纳一定数量的保险金,对在一年内发生此种事故的每辆汽车,单位可获得9000元的赔偿〔假设每辆车最多只赔偿一次〕,设这三辆车在一年内发生此种事故的概率分不为且各辆车是否发生事故相互独立,求一年内该单位在此保险中:(l)获赔的概率;(2)获赔金额的分布列与期望.20.本小题总分值12分在数列中,为其前n项和,且满足.(1)求数列的通项公式;(2)证明:.21.本小题总分值12分抛物线的焦点为F,M为其准线上一点,直线MF与抛物线交与A、B两点,(1)求证;(2)当时,求直线AB的方程.22本小题总分值12分设函数(1)求的单调区间;(2)假设对所有的,都有成立,求实数a的取值范畴.。

兰州市达标名校2020年高考一月适应性考试数学试题含解析

兰州市达标名校2020年高考一月适应性考试数学试题含解析

兰州市达标名校2020年高考一月适应性考试数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如图,已知三棱锥D ABC -中,平面DAB ⊥平面ABC ,记二面角D AC B --的平面角为α,直线DA 与平面ABC 所成角为β,直线AB 与平面ADC 所成角为γ,则( )A .αβγ≥≥B .βαγ≥≥C .αγβ≥≥D .γαβ≥≥2.已知命题:p x R ∀∈,20x >,则p ⌝是( ) A .x ∀∈R ,20x ≤B .0x ∃∈R ,200x ≤.C .0x ∃∈R ,200x >D .x ∀∉R ,20x ≤.3.观察下列各式:2x y ⊗=,224x y ⊗=,339x y ⊗=,4417x y ⊗=,5531x y ⊗=,6654x y ⊗=,7792x y ⊗=,,根据以上规律,则1010x y ⊗=( )A .255B .419C .414D .2534.已知全集U =R ,集合{}{}237,7100A x x B x x x =≤<=-+<,则()UA B ⋂=( )A .()(),35,-∞+∞B .(](),35,-∞+∞C .(][),35,-∞+∞ D .()[),35,-∞+∞5.正项等差数列{}n a 的前n 和为n S ,已知2375150a a a +-+=,则9S =( )A .35B .36C .45D .546.集合{}2|4,M y y x x ==-∈Z 的真子集的个数为( )A .7B .8C .31D .327.若函数()ln f x x x h =-++,在区间1,e e ⎡⎤⎢⎥⎣⎦上任取三个实数a ,b ,c 均存在以()f a ,f b ,()f c 为边长的三角形,则实数h 的取值范围是( )8.函数cos 23sin 20,2y x x x π⎛⎫⎡⎤=-∈ ⎪⎢⎥⎣⎦⎝⎭的单调递增区间是( ) A .06,π⎡⎤⎢⎥⎣⎦B .0,3π⎡⎤⎢⎥⎣⎦ C .,62ππ⎡⎤⎢⎥⎣⎦D .,32ππ⎡⎤⎢⎥⎣⎦9.已知函数()()()2ln 14f x ax x ax =-+-,若0x >时,()0f x ≥恒成立,则实数a 的值为( ) A .2eB .4eC .2e - D .4e- 10.在菱形ABCD 中,4AC =,2BD =,E ,F 分别为AB ,BC 的中点,则DE DF ⋅=( ) A .134-B .54C .5D .15411.下列说法正确的是( )A .“若1a >,则21a >”的否命题是“若1a >,则21a ≤”B .“若22am bm <,则a b <”的逆命题为真命题C .0(0,)x ∃∈+∞,使0034x x >成立D .“若1sin 2α≠,则6πα≠”是真命题 12.已知正四面体A BCD -外接球的体积为86π,则这个四面体的表面积为( ) A .183B .163C .143D .123二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年甘肃省兰州市高考数学一诊试卷(一)一、选择题(本大题共12小题,共60.0分)1.已知集合A={x∈N|-1<x<4},则集合A中的元素个数是()A. 3B. 4C. 5D. 62.(-1+i)(2i+1)=()A. 1-iB. 1+iC. -3-iD. -3+i3.若双曲线=1(a>0,b>0)的实轴长为4,离心率为,则其虚轴长为()A. 8B. 4C. 2D.4.已知向量,的夹角为,,,则()A. B. -3 C. D. 35.某区要从参加扶贫攻坚任务的5名干部A,B,C,D,E中随机选取2人,赴区属的某贫困村进行驻村扶贫工作,则A或B被选中的概率是()A. B. C. D.6.朱世杰是元代著名数学家,他所著《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中提到一些堆垛问题,如“三角垛果子”,就是将一样大小的果子堆垛成正三棱锥,每层皆堆成正三角形,从上向下数,每层果子数分别为1,3,6,10,…,现有一个“三角垛果子”,其最底层每边果子数为10,则该层果子数为()A. 50B. 55C. 100D. 1107.已知函数f(x)=x•ln,a=f(-),b=f(),c=f(),则以下关系成立的是()A. c<a<bB. c<b<aC. a<b<cD. a<c<b8.如图是某算法的程序框图,则程序运行后输出的n是()A. 168B. 169C. 336D. 3389.若点P是函数y=图象上任意一点,直线l为点P处的切线,则直线l斜率的范围是()A. (-∞,1)B. [0,1]C. [1,+∞)D. (0,1]10.在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,AB=1,PD=2,则异面直线PA与BD所成角的余弦值为()A. B. C. D.11.已知点F1,F2是椭圆=1(a>b>0)的左、右焦点,P为椭圆上的动点,动点Q在射线F1P的延长线上,且||=||,若||的最小值为1,最大值为9,则椭圆的离心率为()A. B. C. D.12.已知函数f(x)=x2+ln(|x|+1),若对于x∈[1,2],f(ax2)<f(3)恒成立,则实数a的范围是()A. B. -3<a<3 C. a D. a<3二、填空题(本大题共4小题,共20.0分)13.已知数列{a n}中,a n+1=2a n对∀n∈N*成立,且a3=12,则a1=______.14.若实数x,y满足约束条件,则z=-2x-y必有最______值(填“大”或“小”).15.已知sinα+cosα=,sinα>cosα,则tanα=______.16.已知函数f(x)=a ln x+,当a∈(-)时,函数的零点个数为______.三、解答题(本大题共7小题,共82.0分)17.已知锐角△ABC中,角A,B,C的对边分别为a,b,c,b+c=10,a=,5b sin A cos C+5c sin A cos B=3a.(1)求A的余弦值;(2)求b和c.18.“一本书,一碗面,一条河,一座桥”曾是兰州的城市名片,而现在“兰州马拉松”又成为了兰州的另一张名片,随着全民运动健康意识的提高,马拉松运动不仅在兰州,而且在全国各大城市逐渐兴起,参与马拉松训练与比赛的人口逐年增加.为此,某市对人们参加马拉松运动的情况进行了统计调查.其中一项调查是调查人员从参与马拉松运动的人中随机抽取200人,对其每周参与马拉松长跑训练的天数进行统计,得到以下统计表:平均每周进行长跑不大于2天3天或4天不少于5天调练天数人数3013040若某人平均每周进行长跑训练天数不少于5天,则称其为“热烈参与者”,否则称为“非热烈参与者”.(1)经调查,该市约有2万人参与马拉松运动,试估计其中“热烈参与者”的人数;(2)根据上表的数据,填写下列2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“热烈参与马拉松”与性别有关?热烈参与者非热烈参与者合计男140女55合计附:k2=(n为样本容量)P(k2≥k0)0.5000.4000.2500.1500.1000.0500.0250.0100.0050.001 k00.4550.708 1.323 2.072 2.706 3.841 5.024 6.6357.87910.82819.已知曲线C上的任意一点到直线l:x=-的距离与到点F()的距离相等.(1)求曲线C的方程;(2)若过P(1,0)的直线与曲线C相交于A,B两点,Q(-1,0)为定点,设直线AQ的斜率为k1,直线BQ的斜率为k2,直线AB的斜率为k,证明:为定值.20.如图,在四棱锥P-ABCD中,四边形ABCD为平行四边形,△PCD为正三角形,∠BAD=30°,AD=4,AB=2,平面PCD⊥平面ABCD,E为PC中点.(1)证明:BE⊥PC;(2)求多面体PABED的体积.21.已知函数f(x)=x3-(a2+a+2)x2+a2(a+2)x,a∈R.(1)当a=-1时,求函数y=f(x)的单调区间;(2)求函数y=f(x)的极值点.22.已知曲线E的极坐标方程为4(ρ2-4)sin2θ=(16-ρ2)cos2θ,以极轴为x轴的非负半轴,极点O为坐标原点,建立平面直角坐标系.(1)写出曲线E的直角坐标方程;(2)若点P为曲线E上动点,点M为线段OP的中点,直线l的参数方程为(t为参数),求点M到直线l的距离的最大值.23.已知a>0,b>0,a+b=4,m∈R.(1)求+的最小值;(2)若|x+m|-|x-2|≤+对任意的实数x恒成立,求m的范围.-------- 答案与解析 --------1.答案:B解析:【分析】用列举法写出集合B.本题考查了集合中元素个数的判断,属于基础题.【解答】解:集合A={x∈N|-1<x<4}={0,1,2,3}.即集合A中的元素个数是4.故选:B.2.答案:C解析:【分析】本题考查了复数代数形式的乘除运算,是基础题.直接利用复数代数形式的乘除运算化简得答案.【解答】解:(-1+i)(2i+1)=-2i-1+2i2+i=-3-i.故选:C.3.答案:B解析:【分析】根据题意,由双曲线的实轴长可得a的值,进而由离心率公式可得c的值,计算可得b 的值,由双曲线的虚轴长为2b,即可得答案.本题考查双曲线的几何性质,注意双曲线的实轴长为2a.【解答】解:根据题意,若双曲线=1(a>0,b>0)的实轴长为4,即2a=4,则a=2,又由双曲线的离心率e=,则有e==,则c=a=2,则b==2,则该双曲线的虚轴长2b=4;故选:B.4.答案:D解析:【分析】根据条件即可得出,从而求出.考查向量数量积的计算公式,向量夹角和长度的定义.【解答】解:∵,的夹角为,=-3,||=2;∴;∴.故选:D.解析:解:某区要从参加扶贫攻坚任务的5名干部A,B,C,D,E中随机选取2人,赴区属的某贫困村进行驻村扶贫工作,基本事件总数n==10,A或B被选中的对立事件是A和B都没有被选中,则A或B被选中的概率是p=1-=.故选:D.基本事件总数n==10,A或B被选中的对立事件是A和B都没有被选中,由此能求出A或B被选中的概率.本题考查概率的求法,考查古典概型、对立事件概率计算公式等基础知识,考查运算求解能力,是基础题.6.答案:B解析:【分析】本题考查数列在实际问题中的运用,考查等差数列的求和公式的运用,考查运算能力,属于基础题.由题意可得从上而下每层的个数为1+2+3+…+n,由等差数列的求和公式,计算可得所求值.【解答】解:由题意可得每层果子数分别为1,3,6,10,…,即为1,1+2,1+2+3,1+2+3+4,…,其最底层每边果子数为10,即有该层的果子数为1+2+3+…+10=×10×11=55.故选:B.7.答案:A解析:解:,,;∵;∴;∴c<a<b.故选:A.根据f(x)的解析式,可以求出,,容易看出,从而得出c<a<b.考查已知函数求值的方法,对数的运算,以及对数函数的单调性.解析:解:模拟程序的运行,可得该程序的功能是利用循环结构计算并输出1到2019中满足条件sin=1的k的个数n的值,由sin=1,又正弦函数的性质可知函数的取值周期为12,且2019=12×168+3,可得:n=168.故选:A.由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,利用正弦函数的周期性即可得解.本题主要考查程序框图的识别和判断,根据条件进行模拟计算是解决本题的关键.9.答案:C解析:解:∵y=,∴y′==.∵-1<sin2x≤1,∴0<1+sin2x≤2,∴,则y′=.∴直线l斜率的范围是[1,+∞).故选:C.求出原函数的导函数,进一步求得导函数的值域得答案.本题考查利用导数研究过曲线上某点处的切线方程,考查三角函数值域的求法,是中档题.10.答案:D解析:【分析】本题考查利用空间向量求解空间角,考查计算能力,是中档题.由题意建立空间直角坐标系,求出的坐标,由两向量所成角的余弦值求解,注意异面直线所成角的范围为(0°,90°].【解答】解:由题意,建立如图的空间直角坐标系,∵底面ABCD为正方形,AB=1,PD=2,PD⊥底面ABCD,∴点A(1,0,0),P(0,0,2),D(0,0,0),B(1,1,0),则,,∴cos<>=.∴异面直线PA与BD所成角的余弦值为.故选:D.11.答案:C解析:解:因为||=||,||的最小值为1,最大值为9,∴|PF2|的最大值为a+c=9,最小值为a-c=1∴a=5,c=4.∴椭圆的离心率为e=,故选:C.可得|PF2|的最大值为a+c=9,最小值为a-c=1求得a,c.即可得椭圆的离心率.本题考查了椭圆的离心率,属于基础题.12.答案:A解析:解:函数f(x)=x2+ln(|x|+1)的定义域为R,且f(-x)=(-x)2+ln(|-x|+1)=x2+ln(|x|+1)=f(x),所以f(x)为R上的偶函数,且在[0,+∞)上为增函数;所以对于x∈[1,2],f(ax2)<f(3)恒成立,等价于|ax2|<3在x∈[1,2]上恒成立;即|a|<在x∈[1,2]上恒成立,所以|a|<,解得-<a<;所以实数a的范围是(-,).故选:A.判断函数f(x)是定义域R上的偶函数,且在[0,+∞)上为增函数;把问题转化为|ax2|<3在x∈[1,2]上恒成立,即|a|<在x∈[1,2]上恒成立,由此求出实数a的范围.本题考查了利用函数的单调性求不等式恒成立应用问题,是中档题.13.答案:3解析:解:∵12=a3=2a2,∴a2=6,∵6=a2=2a1,∴a1=3.故答案为:3.先求a2,再求a1.本题考查了数列的递推公式,属基础题.14.答案:大解析:解:实数x,y满足约束条件的可行域如图:则z=-2x-y如图中的红色直线,可知目标函数结果A时截距取得最小值,此时在取得最大值,故答案为:大.画出约束条件的可行域,判断目标函数的几何意义,然后推出结果.本题考查线性规划的简单应用,画出目标函数的可行域是解题的关键.15.答案:解析:解:∵sinα+cosα=,∴1+2sinαcosα=,即2sinαcosα=.又cos2α+sin2α=1,且sinα>cosα,∴sinα=,cosα=,tanα=.故答案为:.由sinα+cosα=,两边平方可得2sinαcosα=,又cos2A+sin2A=1,且sinα>cosα,解得cosα,sinα的值,则tanα可求.本题考查同角三角函数的基本关系的应用,是基础题.16.答案:1解析:解:函数f(x)=a ln x+,可得f′(x)=-x,a∈(-)时,f′(x)<0,函数是减函数,f(1)=-=,f()=1-+>0,所以函数函数f(x)=a ln x+,当a∈(-)时,函数的零点个数为1.故答案为:1.通过导函数的符号判断函数的单调性,通过零点判断定理转化求解即可.本题考查函数的导数的应用,函数的零点判断定理的应用,是简单的综合题目.17.答案:解:(1)∵5b sin A cos C+5c sin A cos B=3a,∴由正弦定理可得:5sin B sin A cos C+5sin C sin A cos B=3sin A,∵sin A≠0,∴5sin B cos C+5sin C cos B=3,可得:sin(B+C)=,∵B+C=π-A,∴sin A=,∵A∈(0,),∴cos A==;(2)∵a2=b2+c2-2bc cos A=(b+c)2-2bc(1+cos A),又∵b+c=10,a=,∴解得:bc=25,∴解得:b=c=5.解析:(1)由正弦定理,两角和的正弦函数公式,诱导公式,三角形内角和定理可得sin A=,结合范围A∈(0,),利用同角三角函数基本关系式可求cos A的值.(2)由已知利用余弦定理即可解得b,c的值.本题主要考查了正弦定理,两角和的正弦函数公式,诱导公式,三角形内角和定理,同角三角函数基本关系式,余弦定理在解三角形中的综合应用,考查计算能力和转化思想,属于基础题.18.答案:解:(1)以200人中“热烈参与者”的频率作为概率,则该市:热烈参与者“的人数约为:20000×=4000.(2)热烈参与者非热烈参与者合计男35105140女55560合计40160200K2=≈7.292>6.635,故能在犯错误的概率不超过0.01的前提下认为“热烈参与马拉松”与性别有关.解析:(1)以200人中“热烈参与者”的频率作为概率,则该市:热烈参与者“的人数约为:20000×=4000.(2)先得2×2列联表,再根据表中数据计算K2,结合临界值表可得.本题考查了独立性检验,属中档题.19.答案:(1)解:由条件可知,此曲线是焦点为F的抛物线,,p=1.∴抛物线的方程为y2=2x;(2)证明:根据已知,设直线AB的方程为y=k(x-1)(k≠0),由,可得ky2-2y-2k=0.设A(),B(),则,y1y2=-2.∵,.∴====.∴.解析:(1)直接由抛物线定义可得曲线C的方程;(2)设直线AB的方程为y=k(x-1)(k≠0),联立直线方程与抛物线方程,利用斜率公式求得,即可证明为定值.本题考查轨迹方程的求法,考查直线与抛物线位置关系的应用,考查计算能力,是中档题.20.答案:证明:(1)∵BD2=AB2+AD2-2AB•AD•cos∠BAD=4,∴BD=2,∴∠ABD=90°,∴BD⊥CD,∵面PCD⊥面ABCD,面PCD∩面ABCD=CD,∴BD⊥面PCD,∴BD⊥PC,∵△PCD是正三角形,E为PC的中点,∴DE⊥PC,∴PC⊥面BDE,∴BE⊥PC.解:(2)作PF⊥CD,EG⊥CD,F,G为垂足,∵面PCD⊥面ABCD,∴PF⊥面ABCD,EG⊥面ABCD,∵△PCD是正三角形,CD=2,∴PF=3,EG=,∴V P-ABCD==4,=,∴多面体PABED的体积V=V P-ABCD-V E-BCD=4=3.解析:(1)推导出BD⊥CD,从而BD⊥面PCD,进而BD⊥PC,推导出DE⊥PC,从而PC⊥面BDE,由此能证明BE⊥PC.(2)作PF⊥CD,EG⊥CD,推导出多面体PABED的体积V=V P-ABCD-V E-BCD,由此能求出结果.本题考查线线垂直的证明,考查多面体的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.21.答案:解:(1)当a=-1时,.∵f′(x)=x2-2x+1=(x-1)2≥0,故函数在R内为增函数,单调递增区间为(-∞,+∞).(2)∵f′(x)=x2-(a2+a+2)x+a2(a+2)=(x-a2)[x-(a+2)],①当a=-1或a=2时,a2=a+2,∵f’(x)≥0恒成立,函数为增函数,无极值;②当a<-1或a>2时,a2>a+2,可得当x∈(-∞,a+2)时,f’(x)>0,函数为增函数;当x∈(a+2,a2)时,f’(x)<0,函数为减函数;当x∈(a2,+∞)时,f’(x)>0,函数为增函数.当x=a+2时,函数有极大值f(a+2),当x=a2时,函数有极小值f(a2).③当-1<a<2时,a2<a+2.可得当x∈(-∞,a2)时,f’(x)>0,函数为增函数;当x∈(a2,a+2)时,f’(x)<0,函数为减函数;当x∈(a+2,+∞)时,f’(x)>0,函数为增函数.当x=a+2时,函数有极小值f(a+2);当x=a2时,函数有极大值f(a2).解析:(1)首先求得导函数,然后结合导函数的符号求解函数的单调区间即可;(2)首先求得导函数,然后结合函数的解析式分类讨论确定函数的极值点即可.本题主要考查导数研究函数的单调性,导数研究函数的极值,分类讨论的数学思想等知识,属于中等题.22.答案:解:(1)由4(ρ2-4)sin2θ=(16-ρ2)cos2θ得4ρ2sin2θ+ρ2cos2θ=16,利用互化公式可得x2+4y2=16;所以曲线E的直角坐标方程为:x2+4y2=16.(2)直线l的普通方程为:x-2y+3=0,设P(4cosα,2sinα),则M(2cosα,sinα)点M到直线l的距离d==≤=解析:(1)利用互化公式ρcosθ=x,ρsinθ=y,可得E的普通方程;(2)先l的参数方程化普通方程,再利用E的参数方程设出P点,利用中点公式得M,用点到直线距离公式求得M到直线l的距离,再求最大值.本题考查了简单曲线的极坐标方程,属中档题.23.答案:解:(1)∵a>0,b>0,a+b=4,∴+=(+)•(a+b)=(2++)≥(2+2)=1,当且仅当a=b=2时取“=”;∴+的最小值为1;(2)若|x+m|-|x-2|≤+对任意的实数x恒成立,则|x+m|-|x-2|≤对任意的实数x恒成立,即|x+m|-|x-2|≤1对任意的实数x恒成立;∵|x+m|-|x-2|≤|(x+m)-(x-2)|=|m+2|,即|m+2|≤1,∴-1≤m+2≤1,解得-3≤m≤-1,∴m的取值范围是-3≤m≤1.解析:(1)由题意,利用基本不等式求出+=(+)•(a+b)的最小值;(2)把问题等价于|x+m|-|x-2|≤对任意的实数x恒成立,即|x+m|-|x-2|≤1对任意的实数x恒成立,利用绝对值不等式转化为关于m的不等式,求出解集即可.本题考查了含有绝对值的不等式应用问题,也考查了基本不等式的应用问题,是中档题.。

相关文档
最新文档