第7章 传热过程的分析与计算

合集下载

第7章 传热过程的分析和计算

第7章 传热过程的分析和计算
总热阻Rk取得极小值时的保温层外径dx称为临界 绝缘直径, 用dc表示
Rk
1
d1lh1
1
21l
ln
d2 d1
1
2xl
ln
dx d2
1
dxlh2
dRk ddx
1
2x d x
1
d
2 x
h2
0
dc
2x
h2
临界绝缘直径与保温材料有关、与所处环境有关
dc
2x
h2
(1)当dx<dc时,随保温层厚度的增加,总热阻 减小,传热量增大,此时对管道敷设保温层反而
7.4.2 换热器热计算的基本方程
约定: 下标 1 —— 热流体 下标 2 —— 冷流体 上标 ’ —— 进口参数 上标 ’’ —— 出口参数 以热流体进口作为计算起点
1 换热器中流体的温度分布 因变量—冷、热流体的温度 自变量—?
换热面积 —热流体入口,Ax=0 —热流体出口,Ax=At —在换热器内的不同位置,Ax不同,流体温
★如何提高传热系数?
1
1
K
1 h1
1 h2
1 h1
1 h2
数学上可以证明
K min h1, h2
提高较小的表面传热系数值,强化薄弱环节, 效果最好
h1=103,h2=10,没有强化前:K=9.90 W/(m2.K)
❖ 措施1: h1=2000,h2=10: K’=9.95 W/(m2.K)
7.2.1 通过平壁的传热过程 导热中—只关注平板的导热过程,计算了各类边
界条件下的温度分布、通过平板的导热量 传热过程中—壁面两侧流体间的热量传递过程
1 h1 A(t f 1 tW1)
2

传热第7章2

传热第7章2

•3.大容器膜态沸腾换热的计算公式
• 膜态沸腾中气膜的流动和换热类似于膜状凝结中 液膜的流动与换热,可用类似的分析方法分析,得到 的解的函数形式也很相似:
• 定性温度:l 和 r采用饱和温度ts,其余物性参数用
tm=(tw+ts)/2。对于球面,系数0.62改为0.67。
•注意:
•(1)因为汽膜热阻较大,而且tw 在膜态沸腾时很
•(2)加热表面状况 :决定汽化核心数目的多少。 • (a) 壁面材料的种类、热物理性质以及壁面的厚度 等。如壁面与沸腾液体间的润湿性、加热壁面的吸热
系数 (c)1/2对沸腾换热都有影响;
• (b) 加热壁面的粗糙度; • (c) 加热壁面的氧化、老化和污垢沉积情况等。
• (3)不凝结气体:强化传热
• 强迫对流沸腾过程中始终 伴随有汽液两相流动。
热管技术简介 •1. 热管的工作原理
•加热 段
•绝热 段
•管 •吸热 •蒸
壳芯

•散热 段
•2. 热管的工作特点:
• (1)传热能力强:一根钢- 水热管的传热能力大致相当于同 样尺ቤተ መጻሕፍቲ ባይዱ紫铜棒导热能力的1500倍 ; • (2)传热温差小;
• (3)结构简单、工作可靠、 传输距离长;
•2. 气泡动力学
•汽化核心:汽泡产生点 。•汽泡的力平衡 :
• 为表面张力
• 汽。泡的生存条件:
• 汽泡的力平

• 称为过热度
• 从传热角度分析,应该
,即液体是过热的。
•过热度越大,能够生存的汽泡半径越小。加热壁面处
的过热度最大,所以该处的汽泡最容易生存。
•7-5 沸腾换热计算公式 •1.大容器饱和核态沸腾换热计算公式

第七章锅炉本体的热力计算

第七章锅炉本体的热力计算

1.炉膛容积Vl
炉子火床表面到炉膛出口烟窗之间 的容积。 底部是火床表面;四周以及顶部为 水冷壁中心线表面(如水冷壁覆盖 耐火材料,则为耐火材料向火表 面) ;没有布置水冷壁的部分为炉 墙内表面 ;炉膛出口界面为出口烟 窗第一排管子中心线界面。 炉排上的燃料层厚度一般取 为150毫米。 如果装有老鹰铁,则炉排长 度计算到两者的接触点的垂 直平面,如没老鹰铁,则到 炉排末端。
Vy—对应αl''的每kg燃料燃烧后的烟气容积,Nm3/kg cpj—烟气从0到ll温度范围内的平均容积比热,kJ/Nm3· ℃。
五、火焰平均温度及水冷壁管外积灰层表面温度
事实上,燃烧是一个动态过程, 烟气温度的变化取决于燃烧放热 与辐射换热之间的平衡。
Q f 0 al H f Th4 Tb4
(7-21)
或查图
h
Aar a fh 100G y
* * k kq k g kq rq kh h C
ah 1 e
kp
2. 燃用气体或液体燃料时
分发光部分和不发光部分的黑度合成.
四、炉膛有效放热量与理论燃烧温度
炉膛有效放热量,也称入炉热量,是相应于1kg真正参与燃烧的 燃料所进入炉膛的热量,它计及了随它一起加进炉膛的其他 热量,即
解决关键
K
1 1
1

1
K
1
2
h 1 1 h 2
1

1
h 1 1 1 h 2
工业试验解决缺Βιβλιοθήκη 灰污系数值另外方法:有效系数
燃用固体燃料的错列管束,在烟气横向冲刷时,其灰污 系数与烟气的流速、管子的节距和直径以及烟气中灰粒 的分散度等因素有关。

第7章 稳态热传导问题的有限元法

第7章 稳态热传导问题的有限元法

)dΒιβλιοθήκη 0(8-18)14
采度用分布Ga函ler数ki和n方换法热,边选界择条权件函代数入为(8,-w181 )式N,i 单将元单的元加内权的积温
分公式为
e
[ Ni x
(x
[N ]) Ni x y
( y
[N ])]{T}e d y
e
e
NiQ d 2 Ni qs d
(8-19)
e 3
Ni h[N ]{T}e d
一点上都满足边界条件(8-11)。对于复杂的工程问
题,这样的精确解往往很难找到,需要设法寻找近似
解。所选取的近似解是一族带有待定参数的已知函数
,一般表示为:
n
u u Ni ai Na
(8-12)
i 1
其中 ai为待定系数,为 Ni已知函数,称为试探函数。试探
函数要取完全的函数序列,是线性独立的。由于试探函数
T
0
t
5
这类问题称为稳态(Steady state)热传导问题。 稳态热传导问题并不是温度场不随时间变化,而是指 温度分布稳定后的状态。
若我们不关心物体内部的温度场如何从初始状态 过渡到最后的稳定温度场,那么随时间变化的瞬态( Transient)热传导方程就退化为稳态热传导方程,三 维问题的稳态热传导方程为
,取: W j N j W j N j
下面用求解二阶常微分方程为例,说明Galerkin 法(参见,王勖成编著“有限元法基本原理和数值 方法”的1.2.3节)。
12
以二维问题为例,说明用Galerkin法建立稳态温度场 的一般有限元格式的过程。二维问题的稳态热传导方程:
x
x
T x
y
y
1 x j

第7章对流换热

第7章对流换热

外掠流动 沿流动方向的 边界层外的主
纵向距离x
流速度u∞
管内流动 Re<2300——稳定的层流 Re>104 ——旺盛紊流
2300<Re<104——过渡流
外掠平壁 Rex<6×104——稳定的层流 Rex=(3~5)×105——过渡到紊流
15
一、层流流动
稳定流动情况下,粘性流体以均匀流速流入管道时壁面逐渐形 成边界层。管内流动时边界层厚度逐渐增加,并最后汇集于管道 中心。当流体再往前推进时,管内速度分布不再改变而形成充分 发展的流动 。
拉普拉斯算子在直角坐标系中代表
Du p 2u 2 (divV) X
D x
3 x
幻灯片 16
▲若流体的密度也是常数,则divV=0
粘性力
Du p 2u X D x
流体单位体 积的惯性力
单位体积的压力
体积力
原则上,据三个方向的动量方程式和连续性方程式可以结合 边界条件求解四个未知数u、v、w 和p。
但由于纳维——斯托克斯方程是非线性的微分方程组,只有少 数几种经简化后的情况可求得分析解,大量的尚依赖于数值解。 此外,流体的物性和压力都可能与温度有关,必须引进能量方程 式,并进一步考虑温度场和速度场之间的关联。
6
三、能量方程
微元控制体积单位时间内流 体通过控制体边界面净导入的 热量-总和,加上单位时间内界 面上作用的各种力对流体所作 的功,等于控制体积内流体总能 的时间变化率。

v
u y

w u z


Fx
dxdydz
控制体所受的力
可分为表面力Fs 和体积力Fb 两类
剪应力
du

第七章凝结及沸腾换热_传热学

第七章凝结及沸腾换热_传热学

23
3 大空间饱和沸腾曲线:
表征了大容器饱和沸腾的全部过程,共包括4个换热规律不 同的阶段:自然对流、泡态沸腾、过渡沸腾和稳定膜态沸腾, 如图所示:
qmax
qmin
24
4.几点说明: (1)上述热流密度的峰值qmax 有重大意义,称为临界 热流密度,亦称烧毁点。一般用核态沸腾转折点DNB作 为监视接近qmax的警戒。这一点对热流密度可控和温度 可控的两种情况都非常重要。 (2)对稳定膜态沸腾,因为热量必须穿过的是热阻较 大的汽膜,所以换热系数比凝结小得多。
25
三. 大空间泡态沸腾表面传热系数计算
沸腾换热也是对流换热的一种,因此,牛顿冷却公式仍 然适用,即
q h(tw ts ) ht
但对于沸腾换热的h却又许多不同的计算公式 影响泡态沸腾的因素主要是过热度和汽化核心数,而汽 化核心数受表面材料、表面状况、压力等因素的支配,所 以沸腾换热的情况液比较复杂,导致了个计算公式分歧较 大。目前存在两种计算是,一种是针对某一种液体,另一 种是广泛适用于各种液体的。
与膜状凝结换热不同,液体中的不凝结气体会使沸腾换热 得到某种程度的强化 2 过冷度
只影响过冷沸腾,不影响饱和沸腾,因自然对流换热时,
h (tw, 因t f 此)n ,过冷会强化换热。
30
3.液位高度
当传热表面上的液位足够高时, 沸腾换热表面传热系数与液位 高度无关。但当液位降低到一 定值时,表面传热系数会明显 地随液 位的降低而升高(临界 液位)。
2t y 2
5
考虑(3)液膜的惯性力忽略
l (u
u x
v
u y
)
0
考虑(7)忽略蒸汽密度
dp 0 dx
考虑(5) 膜内温度线性分布, 即热量转移只有导热

第7章 热传导

第7章 热传导
4. 一维非稳态导热的速算图
5. 二维、三维非稳态导热
1. 薄壁物体非稳态导热 ----集总热容法 ( lumped capacity method ) 薄壁——当物体内部的导热热阻比物体与环境
的对流热阻小的很多时,可归结为薄壁物体的导热 问题。
集总热容法——当物体体积不大,而导热系
数又比较大,认为物体内部的温度在任意时刻都是均 匀的,好像该物体原来连续分布的质量和热容量汇 总到一点,因而只有一个温度值,这种分析法称为 总集热容法。
第一类边界条件(记为B.C.I)
直接给出边界上(任意时刻)的数值。
传热 传质
T TS
A AS
第二类边界条件(记为B.C.II)
给出边界上的导数值(梯度值、通量值)
传热 传质
q ys
T k y
S
j Ays D AB
A y
S
T 0 如某一端面(L)绝热,则可具体写为 q k x x l T 如温度分布中心对称(x =0),则写为 x 0 0 x
初始条件(I.C.)
反映研究对象的特定历史条件。 追溯了在某个初始时刻的状态。
边界条件(B.C.)
反映所研究对象是处于怎样的特定环境。 环境通过体系的边界将如何影响所研究的对象。
下面以传热为例写出相应的初始条件和边界条件。
1)初始条件
给定某时刻物体内的温度或浓度分布,写为:
传热 传质 传热 传质
三、非稳态导热
在工程问题中,需要知道当物体表面的热状态
发生变化时,物体内给定的温度变化到某一确 定值需要的时间,这也是非稳态导热问题。
在本节将着重讨论薄壁、无限大物体、厚
壁物体 非稳态导热中的 温度分布及求解 方法。

传热学第七章

传热学第七章
(强迫流动沸腾)
7-4 沸腾传热的模式
根据沸腾过程是否有加热面分类: 均相沸腾:因压力突降发生的沸腾现象(闪蒸),不存在加热面。 非均相沸腾: 因表面加热产生的沸腾现象。
根据沸腾过程流体温度分类: 饱和沸腾:将水加热到饱和温度,产生沸腾 过冷沸腾:流体处于末饱和状态即低于饱和温度的沸腾现象
是液氮、液氧等低温流体在输送过程中一类易发的物理现 象,指液体主体温度低于相应压力下饱和温度,壁面温度 大于该饱和温度所发生的沸腾换热,称过冷沸腾。
2. 强化技术简介 竖壁、竖管: 降低传热面高度, 竖管改为横管; 利用尖峰: 液膜表面张力 减薄尖峰上液膜厚度。
7-3 凝结换热的影响因素及传热强化
7.3.2 膜状凝结的强化原则和技术
内侧微肋管: 有效减少热阻。
分段排液: 控制液膜厚度。
7-3 凝结换热的影响因素及传热强化
1. 竖壁倾斜后其凝结换热表面传热系数是增加 还是减小,为什么?
竖壁倾斜后,使液膜顺壁面流动的力不再是重力而是 重力的一部分,液膜流动变慢,从而热阻增加,表面 传热系数减小。另外,从表面传热系数公式知,公式 中的g亦要换成gsinθ( gcosθ ),从而h减小。
2. 在电厂动力冷凝器中,主要冷凝介质是水蒸 汽,而在制冷剂(氟里昂)的冷凝器中,冷凝 介质是氟里昂蒸汽。在工程实际中,常常要强 化制冷设备中的凝结换热,而对电厂动力设备 一般无需强化。试从传热学的角度加以解释。
自1916年以来,各种修正或发展都是针
对Nusselt分析的限制性假设而进行,并
形成了各种实用的计算方法。
WILHELM NUSSELT 1882-1957
首先了解Nusselt对纯净饱和蒸汽膜状凝结换热的分析。
7.2.1 层流膜状凝结分析解

对流传热

对流传热
第7章 章
对流传热
13:55:09
1
对流传热系指两种流体之间或流体与其接触的固体壁面之 间因存在温度差而发生的传热过程。根据对流产生的原因, 间因存在温度差而发生的传热过程。根据对流产生的原因, 可分为强制对流 自然对流。 强制对流和 可分为强制对流和自然对流。对流传热在工程上应用非常广 对其进行研究具有重要的实际意义。 泛,对其进行研究具有重要的实际意义。 由于在描述对流传热的能量方程中出现了速度项, 由于在描述对流传热的能量方程中出现了速度项,说明 对流传热的温度分布是受速度分布影响的, 对流传热的温度分布是受速度分布影响的,亦即在对流传 热过程中温度分布与速度分布之间将会发生相互作用。 热过程中温度分布与速度分布之间将会发生相互作用。因 此,解决对流传热问题需要用到流体运动方程。 解决对流传热问题需要用到流体运动方程。 本章将以运动方程、连续性方程和能量方程为基础, 本章将以运动方程、连续性方程和能量方程为基础,运用 边界层理论和湍流理论,分析对流传热的机理,探讨流体内 边界层理论和湍流理论,分析对流传热的机理, 部温度变化规律,解决对流传热速率问题。 部温度变化规律,解决对流传热速率问题。1:55:09 2第一节
一、对流传热的机理
对流传热的基本理论
层流内层 流体呈层状运动 , 由于在垂直于流动方 流体呈层状运动, 向上不存在对流, 向上不存在对流 , 故在垂直于流动方向 上的热量传递只能以导热的方式进行。 上的热量传递只能以导热的方式进行 。 在层流内层中温度梯度较大。 在层流内层中温度梯度较大。 流体沿固体 壁面的流动 对流传热和导热的作用大致相同, 对流传热和导热的作用大致相同,在过渡 过 渡 层 层内温度变化比较缓慢。 层内温度变化比较缓慢。 热量传递以旋涡运动所引起的对流传热为 温度梯度很小。 主,温度梯度很小。

传热学-第7章 传热过程的分析和计算2

传热学-第7章 传热过程的分析和计算2
13
四、强化传热的考虑
kAtf1 tf 2
• 为强化传热,有三条途径:
★方法1:提高温差 ★方法2:提高传热系数
14
★如何提高传热系数?
k
1 h1
1 h2
1
1 h1
1 h2
1
数学上可以证明
k min( h1, h2 )
提高较小的表面传热系数值,强化薄弱环节,效果最好
15
• h1=1000,h2=10,没有强化前:k=9.90 W/(m2.K)
t m in
Δtmax、Δtmin 均指端差,即同一端热流体与冷流体间的温差。 Δtmax 是其中大温差, Δtmin 则是其中小温差。
26
平均温差的另一种更为简单的形式是算术平均温差,即
tm,算术
tmax
2
tmin
tm,对数
t max tmin ln t max
t m in
t1' t1"
t
' 2
温差 t f 1 沿t f 2整 个壁面不是常数,必须采用整个面积上的平均温差
t m
kAtm
25
(一)简单顺流及逆流换热器的对数平均温差
t1'
t1"
t1'
t
' 2
t
" 2
t
" 2
t1"
t
' 2
顺流
逆流
换热器中流体温度沿程变化的示意图
可以推导出顺流和逆流的平均温差公式为
对数平均温差
tm
t max tmin ln t max
第7章 传热过程与换热器
导热
Φ

第七章 对流换热

第七章 对流换热

7 对流换热7.0 本章主要内容导读本章讨论对流换热问题,首先介绍对流换热的相关基本概念——对流换热的机理、数学描述方法和主要研究方法,然后介绍两类无相变的对流换热——强制对流换热和自然对流换热,主要内容如图7-1所示。

图7-1 第七章主要内容导读7.1 对流换热基本概念7.1.1对流换热机理如前所述,实际工程中经常遇到的对流问题是对流换热问题,它是导热与热对流共同作用的结果。

由于流体的热运动强化了传热,通过对流流体的传热速率比通过静止流体导热的传热速率高得多。

并且,流体速度越快,传热速率越高。

理论上,对流换热可以通过牛顿冷却公式求解,即=αQ∆Ft与导热中的导热系数λ不同,对流换热系数α不是物性参数,因此对流换热过程和相应的对流换热系数受到许多因素的影响,这些影响因素可以分为如下五类。

(1)流体流动产生的原因。

根据流动产生的原因,对流换热可以分为强制对流换热与自然对流换热两大类。

前者由泵、风机或其它外部动力源的作用引起,后者通常由流体各个部分温度不同产生的密度差引起。

两种流动产生的原因不同,流体中的速度场、对流换热规律和换热强度均不一样。

通常强制对流换热的流速高、换热系数α大;(2)流体有无相变。

在流体没有相变时对流换热中的热量传输由流体显热的变化实现,在有相变的换热过程中(如沸腾或凝结),流体相变热(潜热)的释放或吸收常常起主要作用,流体的物性、流动特性和换热规律均与无相变时不同。

一般同一种流体在有相变时的换热强度远大于无相变时的强度;(3)流体的流动状态。

根据动量传输知识,粘性流体存在着两种不同的流态——层流和湍流。

层流时流体微团沿着主流方向作有规则的分层流动,湍流时流体各部分之间发生剧烈的混合。

因此,在其它条件相同时湍流换热的强度明显强于层流换热的强度;(4)换热表面的几何因素。

这里的几何因素指换热表面的形状、大小、换热表面与流体运动方向的相对位置以及换热表面的状态(光滑或粗糙)。

这些几何因素都将影响流体在壁面上的流动状况,从而影响到对流换热。

传热学 第7章-热辐射的基本定律

传热学 第7章-热辐射的基本定律

第七章热辐射的基本定律在工程技术中,在日常生活中,辐射换热现象是屡见不鲜的。

太阳对大地的照射是最常见的辐射现象。

高炉中灼热的火焰会烘烤得人们难以忍受‘太阳对人造卫星的辐射,会使卫星的朝阳面的温度明显地高于卫星背阳面的温度;高温发动机部件与飞机机体之间的辐射换热严重地影响着飞机的结构与强度设计,等等。

特别是近年来,人类对太阳能的利用,都大大地促进了人们对辐射换热的研究。

本章首先介绍辐射的基本特性和基本规律;然后重点讨论物体之间的辐射换热规律;最后对气体辐射换热的特点作扼要的介绍。

第一节基本概念1-1 热辐射的本质和特征由于不同的原因,物体能够向其所在的空间发射各种不同波长的电磁波;不同波长的电磁波具有不同的效应,人们可以利用不同波长的电磁波效应达到一定的目的。

比如,人们可以利用无线电波传送信息,利用x射线穿透物质的能力进行零件探伤,利用热射线传递热能,等等。

人们根据电磁波不同效应把电磁波分成若干波段。

波长λ=0.38一0.76μm的电磁波段称为可见光波段λ=0.76—1000 μm的电磁波段称为红外波段(一般将红外波段范围又分为近红外波段和远红外波段,近红外波段为λ=0.7—25μm,远红外波段为λ=25—1000μm);波长大于1000μm的电磁波段称为无线电波段(根据其波长的不同又可分为雷达、视频和广播三个波段);波长小于0.4μm的电磁波依次分为紫外线、x射线和Y射线等。

可见光和红外线以及紫外线的一部分被物体吸收后产生热效应,即波长λ=0.1—1000 μm范围内的电磁技能被物体吸收变为热能,因此,这一波长范围的电磁波称为热射线。

因为在一般常见的工业温度条件下,其辐射波长均在这一范围,所以本课程所感兴趣的将是热射线,下面将专门讨论这一波长范围内电磁波的发射、传播和吸收的规律。

一、热辐射的本质和特点1、发射辐射能是各类物质的固有特性。

当原子内部的电子受温和振动时,产生交替变化的电场和磁场,发出电磁波向空间传播,这就是辐射。

工程热力学(第7章--蒸汽动力循环)

工程热力学(第7章--蒸汽动力循环)

1
T2 T1
从理论上确定了通过热机循环 实现热能转变为机械能的条件 及给定温度范围内循环热效率 的最高极限值,并指出了提高 热机效率的方向和途径,为度 量实际热机循环的热力学完善
s 程度提供了标准。
对于任意复杂循环,可利用相 应的等效卡诺循环(即平均温 度法)来分析其热经济性。
3
任意循环ηt 的分析方法——平均温度法
1
p1
h
1 t1
T1
p2
4
T2 3
2
2 x=1
s
0
s
t
h1 h2 h1 h2
f
( p1,t1,
p2 )
1 T2 T1
t1
p1
p2
12
一、蒸汽初温对热效率的 影响:
设 初 压 p1=const, 排 汽 压力p2=const.
提高t1对ηt的影响:
(1)提高初温使平均加热温度升高,而放热温度不变, 则朗肯循环的热效率得到提高; (2)排汽干度增加,即x2′>x2,这有利于改善汽轮机叶 片的工作条件。
受到的限制:排汽压力的降低主要受汽轮机排汽干度下降及环 境温度的限制。目前火电厂的排汽压力最低在0.004MPa左右
15
新课引入
p1
t
x2
为解决二者间的矛盾,可对循环方式 加以改进:采用再热循环。
7-3 再热循环
➢采用再热的目的:提高汽轮机排汽干度,为
初压的提高创造条件;同时提高循环热效率。
➢再热的概念:当蒸汽在汽轮机中膨胀作功而
0
则朗肯循环的热效率可近似地表示为: h
t
w12 q1
h1 h2 h1 h3
h1 h2 h1 h2'

(完整版)《传热学》第7章_相变对流传热

(完整版)《传热学》第7章_相变对流传热
13
第7章 相变对流传热
3. 管内凝结 管内凝结传热情况与蒸气流速有很大关系:当蒸气流速较低时,凝结
液主要聚集在管子底部,蒸气在管子上半部;当蒸气流速比较高时,形成 环状流动,中间蒸气四周凝结液,随着流动进行,凝结液占据整个截面。
4. 蒸气流速 努塞尔理论分析忽略了流速的影响,只适于流速较低的场合。当蒸
16
第7章 相变对流传热
家用空调的冷凝器中已成功应用了二维和 三维的微肋管。 低肋管凝结传热的表面传热系数比光管提 高2-4倍,锯齿管可以提高一个数量级,微 肋管可以提高2-3倍。 及时排液的技术: 两种加快及时排液的方法: 第一:在凝液下流的过程中分段排泄,有效地控制了液 膜的厚度,管表面的沟槽又可以起到减薄液膜厚度的作 用。主要用于立式冷凝器。 第二:右图中的泄流板可以使布置在该板上不 水平管束上的冷凝液体不会集聚到其下的其它 管束上。主要用于卧式冷凝器。
的潜热改为过热蒸气与饱和液的焓差即可。 6. 液膜过冷度及温度分布的非线性
努塞尔理论分析忽略了液膜过冷度的影响,并假设液膜中的温度呈
线性分布,利用r`代替公式中的潜热r即可兼顾以上两个因素。
r r 0.68cp tr tw
上式也可以表示为:
r r1 0.68 Ja
其中,Ja是雅各布数,定义为
竖壁凝结传热壁面的平均表面传热系数可以表示为:
h hl
xc l
ht
1
xc l
hl,ht分别是层流和湍流层的平均表面传热系数, xc是流态转折点的高度,l为壁面的总高度
整个壁面的平均表面传热系数可以通过以下实验关联式计算:
Nu Ga1/3 58 Prw1/ 2
Prw/ Prs
Re 1/ 4 Re 3/ 4 253

传热学-第七章换热器

传热学-第七章换热器

1
qmc min qmc max
exp(
NTU)1
qmc min qmc max
第七章 换热器
当冷热流体之一发生相变时,即 qmc max 趋于无穷大
时,于是上面效能公式可简化为
1 exp NTU
当两种流体的热容相等时, 公式可以简化为
顺流:
逆流:
1 exp 2NTU
第七章 换热器
a、增加流速 增加流速可改变流态,提高紊流强度。
b、流道中加插入物增强扰动
在管内或管外加进插入物,如金属丝、 金属螺旋环、盘片、麻花铁、翼形物,以及 将传热面做成波纹状等措施都可增强扰动、 破坏流动边界层,增强传热。
第七章 换热器
c、采用旋转流动装臵 在流道进口装涡流发生器,使流体在一
(3)由冷、热流体的4个进、出口温度确定平均温
差,计算时要注意保持修正系数 具有合适
的数值。
(4)由传热方程求出所需要的换热面积 A,并核算
换热面两侧有流体的流动阻力。 (5)如流动阻力过大,改变方案重新设计。
第七章 换热器
对于校核计算具体计算步骤:
(1)先假设一个流体的出口温度,按热平衡式计 算另一个出口温度
第七章 换热器
7.1 换热器简介 用来使热量从热流体传递到冷流体,
以满足规定的工艺要求的装置统称换热器。
分为间壁式、混合式及蓄热式(或称回热 式)三大类。
第七章 换热器
1、间壁式换热器的主要型式 (1)套管式换热器
图7-1 套管式换热器
适用于传热量不大或流体流量不大的情形。
第七章 换热器
(2)壳管式换热器 这是间壁式换热器的一种主要形式,又
(t1
t2
)

传热过程分析与换热器的热计算

传热过程分析与换热器的热计算

第四页,共42页。
每米管长的传热量:
q l1t1 f1 ltn d f2 21 k l(tf1 tf2) h 1d 1 2 d 1 h 2d 2
kl h11d1211 lnd d1 2h21d2
对于多层圆管
1
kl 1 n
1ln di 1 1
1d 1
2 i 1
i
di
d 2 n 1
第五页,共42页。
传热过程分析与换热器的热计算
第一页,共42页。
本章要点:1. 着重掌握传热过程的分析和计算(肋壁的传热)
2. 着重掌握临界热绝缘直径的概念和分析计算
3. 着重掌握顺流及逆流的对数平均温差的分析计算 4. 掌握换热器的型式和分类以及换热器的热设计 5. 了解传热的强化和隔热保温技术及有关问题分析 本章难点:临界热绝缘直径、对数平均温差的概念和分析计算
本章主要内容:
第一节 传热过程的分析和计算
第二节 换热器的类型 第三节 换热器中传热过程平均温差的计算 第四节 间壁式换热器的热设计 第五节 热量传递过程的控制(强化与削弱)
第二页,共42页。
传热过程:一侧的热流体通过固体壁面把热量传给另一侧冷流体的过程。 传热过程分析求解的基本关系为传热方程式,即
第十五页,共42页。
一、换热器的分类 1.换热器:把热量从热流体传递给冷流体的热力设备。
2.按换热器操作过程分为:间壁式、混合式及蓄热式(或称回 热式)三大类。
1)间壁式:冷、热流体被间壁隔开,通过间壁换热。 2)混合式:冷、热流体通过直接接触换热。
3)回热式:冷、热流体周期性地流过固体壁面换热。
h 1 h 2 205 00 10
q1 /q = 4347.6/570.3 = 7.623

第7章 相变对流传热

第7章 相变对流传热
沸腾(池内沸腾 和强制对流沸腾, 沸腾 池内沸腾)和强制对流沸腾,每种又分为 池内沸腾 过冷沸腾和饱和沸腾。 过冷沸腾和饱和沸腾。
a 大容器沸腾 池内沸腾 :加热壁面沉浸在具有自由表面的液 大容器沸腾(池内沸腾 池内沸腾):
h Hg h Vg l = 0 . 77 d
1 4
边界层内的流态 凝结液体流动也分层流和湍流, 凝结液体流动也分层流和湍流,并 且其判断依据仍然时Re Re, 且其判断依据仍然时Re,
无波动层流
Re = 20
有波动层流
Re =
de ρul
η
Re c = 1600
湍流
式中: 式中: ul 为 x = l 处液膜层的平均流速; 处液膜层的平均流速; 为该截面处液膜层的当量直径。 de 为该截面处液膜层的当量直径。
2 定义: 定义:
a 沸腾:工质内部形成大量气泡并由液态转换到气态的一 沸腾: 种剧烈的汽化过程 b 沸腾换热:指工质通过气泡运动带走热量,并使其冷却 沸腾换热:指工质通过气泡运动带走热量, 的一种传热方式
3 分类:沸腾的分类很多,书中仅介绍了常见的大容器 分类:沸腾的分类很多,书中仅介绍了常见的大容器
求解上面方程可得: 求解上面方程可得: (1) 液膜厚度
4ηl λl (ts − tw )x δ = gρl2r
tm ts + tw = 2
1/ 4
定性温度: 定性温度:
注意: 注意:r 按 ts 确定
(2) 局部对流换热系数
grρ λ hx = 4 l (ts − tw )x η
§7-2 膜状凝结分析解及计算关联式
1916年,Nusselt提出的简单膜状凝结换热分析是近代膜状 年 提出的简单膜状凝结换热分析是近代膜状 凝结理论和传热分析的基础。 年以来, 凝结理论和传热分析的基础。自1916年以来,各种修正或 年以来 发展都是针对Nusselt分析的限制性假设而进行了,并形成 分析的限制性假设而进行了, 发展都是针对 分析的限制性假设而进行了 了各种实用的计算方法。所以,我们首先得了解Nusselt对 了各种实用的计算方法。所以,我们首先得了解 对 纯净饱和蒸汽膜状凝结换热的分析。 纯净饱和蒸汽膜状凝结换热的分析。 假定: )常物性; )蒸气静止; )液膜的惯性力忽略; 假定:1)常物性;2)蒸气静止;3)液膜的惯性力忽略; 4)气液界面上无温差,即液膜温度等于饱和温度;5)膜 )气液界面上无温差,即液膜温度等于饱和温度; ) 内温度线性分布,即热量转移只有导热; ) 内温度线性分布,即热量转移只有导热;6)液膜的过冷度 忽略; )忽略蒸汽密度; ) 忽略; 7)忽略蒸汽密度;8)液膜表面平整无波动

传热学_7-1

传热学_7-1

hL 1/ 3 0.664 Re 0.5 Pr L k
hL 1/ 3 Nu 0.037 Re0.8 Pr L k
ReL 5 105
0.6 Pr 60 5 7 5 10 Re 10 L
Beijing Jiaotong University
Heat Transfer 7-1
5/8

4/5
在 Re Pr > 0.2的情况下 . 定性温度为:
T f Ts T / 2
Beijing Jiaotong University
Heat Transfer
流体外掠球体,Whitaker 关联式:
Nucyl hD 1/ 2 2/3 0.4 2 0.4 Re 0.06Re P r k s
(b)
Patm = 83.4 kPa
Air
(a)
Beijing Jiaotong University
Heat Transfer 7-1
解:热源表面的强制对流换热, 换热率的确定分为两 种情况。 假设 1 存在稳定的工况。 2 临界雷诺数 Recr = 5 105。 3 辐射作用可以忽略。 4 来流气体为理想气体。 物性 理想气体的 k, , Cp, 和Pr 与压力无关, 但 和 则与密度和压力成反比. 来流的定性温度为 Tf = (Ts + T)/2 = (140 + 20)/2 = 80C , 1 atm 大气压 (见表 A–15)
Heat Transfer 7-1
流体温度通常用定性温度来表示
Ts T Tf 2
平均对流换热系数
1 h hx dx L0
传热量
L

第七章热质交换原理

第七章热质交换原理

2006.6.10
HEU
18
(续)
(3)水苗阻力
2006.6.10
HEU
19
喷淋室设计计算例题:
2006.6.10
HEU
20
(续)
2006.6.10
HEU
21
(续)
2006.6.10
HEU
22
(续)
2006.6.10
HEU
23
(续)
2006.6.10
HEU
24
喷淋室校核计算:
在新的水温条件下,所需喷水系数的大小
2006.6.10
HEU
34
冷却塔设计计算例题
2006.6.10
HEU
35
(续)
2006.6.10
HEU
36
(续)
2006.6.10
HEU
37
其他混合式热质交换设备的热工计算
水—水喷射式热交换器的构造与工作原理
2006.6.10
HEU
38
水—水喷射式热交换器的特性方程:
(1)质量守恒方程
(2)能量守恒方程
喷射器形成的相对压降:
2006.6.10
HEU
43
将各截面比作如下变换:
2006.6.10
HEU
44
最佳截面比和最大扬程:
2006.6.10
HEU
45
喷管出口截面:
喷管出口截面与圆筒形混合室入口截面之间的最佳距离:
2006.6.10
HEU
46
水-水喷射式热交换器的计算例题
2006.6.10
HEU
却极限。一般情况冷却极限为空气湿球温度,生产中要求冷却水出
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

返回
§7.4 换热器与换热器的热力计算
§7.4.1 换热器的分类 换热器热计算的基本方程(与下节合) §7.4.2 换热器热计算的基本方程(与下节合) §7.4.3 换热器的对数平均温差 §7.4.4 换热器的热力计算 7.4.4
返回
§7.4.1 换热器的分类
• 按工作原理分为三大类
蓄 热 式
间 壁 式 (管 壳 式 )
K ' ' = 1.98K
2、加装肋片
问题:表面肋化,但肋片应该加在哪一侧呢? 问题:表面肋化,但肋片应该加在哪一侧呢? 与强化对流传热类似,应加在对流传热热阻较大的那一侧, 与强化对流传热类似,应加在对流传热热阻较大的那一侧, 大热阻对应表面传热系数较小的情形,所以应在表面传热系数 大热阻对应表面传热系数较小的情形, 较小的那一侧加肋片 问题:对暖气片强化传热时,加肋片应当加在哪一侧? 问题:对暖气片强化传热时,加肋片应当加在哪一侧? 问题: 问题:但工程上有时也把肋片加在流体表面传热系数大的冷 流体一侧,为何? 流体一侧,为何?
传热系数(以管外表面积为基准): 传热系数(以管外表面积为基准):
tf 1 − tf 2 Φ= do 1 1 1 + ln + π di lhi 2πλl di π d olho = π d olK o ( tf1 − tf2 )
1 do 1 do do 1 + ln + di hi 2λ di ho
• 高温流体通过固体壁面把热量传给另一侧低温流体的过程, 高温流体通过固体壁面把热量传给另一侧低温流体的过程, 称为传热过程 称为传热过程 • 传热方程式: 传热方程式:
Φ = KA ( tf1 − tf2 )
K-传热系数,W/(m2.K),是衡量传热过程强度的物理量, 传热系数, .K),是衡量传热过程强度的物理量,
热阻分析图: 热阻分析图:
传热过程传热量: 传热过程传热量:
Φ = K A∆t =
传热系数: 传热系数:
δ 1 + + h1 A h2 A λ A
1
1
t f1 − t f2
K=
1 δ 1 + + h1 λ h2
根据热阻分析图, 根据热阻分析图,也可容易计算出壁面的温度
Φ t w1 = t f 1 − h1 A
传热学考试安排
• 考试时间: 考试时间: 2010年 2010年6月28日,19:00-21:00 28日 19:00-21: • 考试地点: 考试地点: 石工07级4-6班:东廊201 石工07级 07 东廊201 • 题目类型: 题目类型: 简答分析题:40%;计算题:60% 简答分析题:40%;计算题:60% %;计算题 • 注意:带学生证、计算器等 注意:带学生证、 • 答疑:南堂一层答疑室,26、27晚上,28白天 答疑:南堂一层答疑室,26、27晚上,28白天 晚上
1 δ 1 + + h1 λ h2
1
根据传热方程式.要增大传热量,可有三条途径: 根据传热方程式.要增大传热量,可有三条途径: ① 提高传热温差 ② 增加传热面积 ③ 提高传热系数 • 提高传热温差会受到生产工艺、技术及经济等方面限制 提高传热温差会受到生产工艺、 • 简单增加传热面积会增加设本成本及体积 • 提高传热系数是较为理想的强化传热途径 如何提高传热系数呢? 如何提高传热系数呢? • 提高对流传热的表面传热系数或加装肋片
Φr hr = A (Tw − Tf )
Φ r = hr A (Tw − Tf )
Φ t = ( hc + hr ) A (Tw − Tf ) = ht A (Tw − Tf )
ht称为复合传热表面传热系数,引入复合传热表面传热系数 称为复合传热表面传热系数 复合传热表面传热系数,
的目的是简化复杂换热系统的分析计算 返回
1、提高对流传热的表面传热系数 、
导热热阻一般较小,关键是降低对流传热热阻。那么, 导热热阻一般较小,关键是降低对流传热热阻。那么, 应当提高哪一侧对流传热表面传热系数呢? 应当提高哪一侧对流传热表面传热系数呢?
1 δ 1 1 1 K = + + ≈ + h1 λ h2 h1 h2
对一般保温材料(λ .K), 对一般保温材料(λs=0.12 W/m.K ),自然对流条件下(ho=9 W/(m2.K),临 ,自然对流条件下(ho=9 界热绝缘直径为26.6mm 界热绝缘直径为26.6mm • 工程上一般管道(如输油管道、暖气管线)外径都大于此值,因此敷设保 工程上一般管道(如输油管道、暖气管线)外径都大于此值, 温层会减小散热量 • 在小管径且环境又是自然对流的条件下(实验室内),对管道加保温材料 在小管径且环境又是自然对流的条件下(实验室内),对管道加保温材料 ), 时要特别谨慎。因为,当管径小于临界绝缘半径时, 时要特别谨慎。因为,当管径小于临界绝缘半径时,增加保温层能起到强 化换热的作用 • 电工中,在电线外加上绝缘层一方面可以利用这一点强化电线的散热,使 电工中,在电线外加上绝缘层一方面可以利用这一点强化电线的散热, 其温度不至于升得很高,另一方面可以起到绝缘保护作用。 其温度不至于升得很高,另一方面可以起到绝缘保护作用。
第7章 作业
• 思考题: • 习题:
• 前面我们已经掌握了导热、对流传热、辐射传热等过程的有 前面我们已经掌握了导热、对流传热、辐射传热等过程的有 导热 关理论和计算方法 • 本章主要介绍对同时包含有几种热量传递方式的复杂热量传 递过程如何进行分析和计算 • 重点1:对传热过程,介绍如何确定传热系数k及如何强化传 重点1 对传热过程,介绍如何确定传热系数k 热过程 • 重点2:对换热器,介绍如何进行换热器的热力计算,重点 重点2 对换热器,介绍如何进行换热器的热力计算, 是如何确定冷热流体的平均传热温差
2λs d cr = ho
称为临界热绝缘直径, dcr称为临界热绝缘直径,它与保温材料热导率及所处环 境对流传热强度有关。 境对流传热强度有关。
根据右图, 根据右图,当管线外径小于临界热 绝缘直径时, 绝缘直径时,随着保温层厚度的增 管线的总热阻先减小, 加,管线的总热阻先减小,达到某 一最小值后, 一最小值后,又随保温层厚度的增 加而增大
• h1=103,h2=10,没有强化前:K=9.90 W/(m2.K) ,没有强化前: • 措施 : h1=2000,h2=10: K’=9.95 W/(m2.K) 措施1: , : =
K ' = 1.005K
• 措施 :h1=103,h2=20: K’’=19.6 W/(m2.K) 措施2: :
返回
§7.2.2 通过圆筒壁的传热过程 7.2.2
与通过平壁的传热过程类似, 与通过平壁的传热过程类似,应借助 热阻的概念来进行分析求解 热阻分析图: 热阻分析图:
传热过程传热量: 传热过程传热量:
tf 1 − tf 2 tf 1 − tf 2 Φ= = Rk Rh1 + Rλ + Rh2
tf 1 − tf 2 = do 1 1 1 + ln + π di lhi 2πλl di π d olho
单位管长总热阻: 单位管长总热阻:
ds 1 Rl = ln + 2πλs d o πd s ho 1
随着保温层厚度的增加, 的增大: 随着保温层厚度的增加,即随着ds 的增大: • —保温层导热热阻Rs逐渐增加 保温层导热热阻 • —保温层外侧的对流传热热阻Rh却随之减小
对单位管长总热阻求极值,可得: 对单位管长总热阻求极值,可得:
tw2
Φ = tf2 + h2 A
二、通过多层平壁的传热
• 求解方法与单层平壁类似
Φ=
t f 1 − tf 2 Rh1 + ∑ Rλi + Rh2
i=1 = n
= KA ( tf 1 − tf 2 )
K=
1
δi 1 1 +∑ + h1 i =1 λi h2
n
三、如何强化t f1 − t f2 )
−1
−1
理论上可以证明, 理论上可以证明,改善表面传热系数值较小的那一侧的对 流传热,对总的传热系数提高的效果较好。 流传热,对总的传热系数提高的效果较好。如果两侧对流热阻 相差不大,则应同时改善。 相差不大,则应同时改善。 思考:把盛有稀饭的碗放在冷水里冷却,应当搅拌哪一侧, 思考:把盛有稀饭的碗放在冷水里冷却,应当搅拌哪一侧,稀 饭会冷却地更快? 饭会冷却地更快?
本书仅学习间壁式换热器中最简单、但也是最基本的所谓套管式换热器 本书仅学习间壁式换热器中最简单、但也是最基本的所谓套管式换热器 (也可认为是1-1型壳管式换热器)的热力计算内容。其它各种间壁式换 也可认为是1 型壳管式换热器)的热力计算内容。 热器的计算也是在套管式换热器热力计算基础上进行的。 热器的计算也是在套管式换热器热力计算基础上进行的。 套管式换热器按冷热流体流向的关系又分为顺流 逆流两种 顺流和 两种, 套管式换热器按冷热流体流向的关系又分为顺流和逆流两种,具有各自 不同的换热特点。 不同的换热特点。
综合反映了两侧对流传热和导热对传热过程的影响 • 本节介绍冷热流体在传热过程中流体温度保持不变情况 下,传热系数的计算以及传热量的确定,传热温差在§ 传热系数的计算以及传热量的确定,传热温差在 以及传热量的确定 7.4介绍。 介绍。 介绍
§7.2 传热过程分析与计算
§7.2.1 通过平壁的传热过程 7.2.1 §7.2.2 通过圆筒壁的传热过程 7.2.2 §7.2.3 临界热绝缘直径 7.2.3
返回
§7.2.3 临界热绝缘直径 7.2.3
• 设圆管外径为do,其外表面温度为two,保温层外径为ds,其导热 设圆管外径为d 其外表面温度为t 保温层外径为d 系数为λs 。环境流体温度为tf,保温层外表面与流体间复合传 环境流体温度为t 热的表面传热系数为h 热的表面传热系数为ho。 • 分析单位管长散热量与保温层厚度关系 热阻分析图: 热阻分析图:
相关文档
最新文档