温度监测中英文翻译

合集下载

常用仪器仪表中英文对照

常用仪器仪表中英文对照

常用仪器仪表中英文对照光线示波器 light beam oscillograph光学高温计 optical pyrometer光学显微镜 optical microscope光谱仪器 optical spectrum instrument吊车秤 crane weigher地中衡 platform weigher字符图形显示器 character and graphic display位移测量仪表 displacement measuring instrument巡检测装置 data logger波纹管 bellowsX射线衍射仪 X-ray diffractometerX射线荧光光谱仪 X-ray fluorescence spectrometer力测量仪表 force measuring instrument孔板 orifice plate文丘里管 venturi tube水表 water meter加速度仪 accelerometer可编程序控制器 programmable controller平衡机 balancing machine皮托管 Pitot tube皮带秤 belt weigher长度测量工具 dimensional measuring instrument长度传感器 linear transducer厚度计 thickness gauge差热分析仪 differential thermal analyzer扇形磁场质谱计 sector magnetic field mass spectrometer 料斗秤 hopper weigher核磁共振波谱仪 nuclear magnetic resonance spectrometer 气相色谱仪 gas chromatograph浮球调节阀 float adjusting valve真空计 vacuum gauge动圈仪表 moving-coil instrument基地式调节仪表 local-mounted controller密度计 densitometer液位计 liquid level meter组装式仪表 package system热流计 heat-flow meter热量计 heat flux meter热电阻 resistance temperature热电偶 thermocouple膜片和膜盒 diaphragm and diaphragm capsule调节阀 regulating valve噪声计 noise meter应变仪 strain measuring instrument湿度计 hygrometer声级计 sound lever meter黏度计 viscosimeter转矩测量仪表 torque measuring instrument转速测量仪表 tachometer露点仪 dew-point meter变送器 transmitter减压阀 pressure reducing valve测功器 dynamometer紫外和可见光分光光度计 ultraviolet-visible spectrometer 顺序控制器 sequence controller微处理器 microprocessor温度调节仪表 temperature controller煤气表 gas meter节流阀 throttle valve电子自动平衡仪表 electronic self-balance instrument电子秤 electronic weigher电子微探针 electron microprobe电子显微镜 electron microscope弹簧管 bourdon tube数字式显示仪表 digital display instrument光线示波器 light beam oscillograph光学高温计 optical pyrometer光学显微镜 optical microscope光谱仪器 optical spectrum instrument吊车秤 crane weigher地中衡 platform weigher字符图形显示器 character and graphic display位移测量仪表 displacement measuring instrument巡检测装置 data logger波纹管 bellowsX射线衍射仪 X-ray diffractometerX射线荧光光谱仪 X-ray fluorescence spectrometer 力测量仪表 force measuring instrument孔板 orifice plate文丘里管 venturi tube水表 water meter加速度仪 accelerometer可编程序控制器 programmable controller平衡机 balancing machine皮托管 Pitot tube皮带秤 belt weigher长度测量工具 dimensional measuring instrument长度传感器 linear transducer厚度计 thickness gauge差热分析仪 differential thermal analyzer扇形磁场质谱计 sector magnetic field mass spectrometer 料斗秤 hopper weigher核磁共振波谱仪 nuclear magnetic resonance spectrometer 气相色谱仪 gas chromatograph浮球调节阀 float adjusting valve真空计 vacuum gauge动圈仪表 moving-coil instrument基地式调节仪表 local-mounted controller密度计 densitometer液位计 liquid level meter组装式仪表 package system热流计 heat-flow meter热量计 heat flux meter热电阻 resistance temperature热电偶 thermocouple膜片和膜盒 diaphragm and diaphragm capsule调节阀 regulating valve噪声计 noise meter应变仪 strain measuring instrument湿度计 hygrometer声级计 sound lever meter黏度计 viscosimeter转矩测量仪表 torque measuring instrument转速测量仪表 tachometer露点仪 dew-point meter变送器 transmitter减压阀 pressure reducing valve测功器 dynamometer紫外和可见光分光光度计 ultraviolet-visible spectrometer 顺序控制器 sequence controller微处理器 microprocessor温度调节仪表 temperature controller煤气表 gas meter节流阀 throttle valve电子自动平衡仪表 electronic self-balance instrument电子秤 electronic weigher电子微探针 electron microprobe电子显微镜 electron microscope弹簧管 bourdon tube数字式显示仪表 digital display instrument。

外文翻译 室内环境温度监测(英文原文)

外文翻译 室内环境温度监测(英文原文)

Sustainable Cities and Society 13(2014)57–68Contents lists available at ScienceDirectSustainable Cities andSocietyj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /s csMonitoring building energy consumption,thermal performance,and indoor air quality in a cold climate regionTanzia Sharmin a ,Mustafa Gül a ,∗,Xinming Li a ,Veselin Ganev b ,Ioanis Nikolaidis b ,Mohamed Al-Hussein aa Department of Civil and Environmental Engineering,University of Alberta,9105116th Street,Edmonton,Alberta,Canada bDepartment of Computing Science,2-21Athabasca Hall,University of Alberta,Edmonton,Alberta,Canadaa r t i c l ei n f oKeywords:Sensor-based monitoring system Energy usageBuilding envelope thermal performance Indoor air qualityBuilding management systema b s t r a c tBuildings are major consumers of the world’s energy.Optimizing energy consumption of buildings during operation can significantly reduce their impact on the global environment.Monitoring the energy usage and performance is expected to aid in reducing the energy consumption of occupants.In this regard,this paper describes a framework for sensor-based monitoring of energy performance of buildings under occupancy.Different types of sensors are installed at different locations in 12apartment units in a building in Fort McMurray,Alberta,Canada to assess occupant energy usage,thermal performance of the building envelope,and indoor air quality (IAQ).The relationship between heating energy consumption and the thermal performance of building envelope and occupant comfort level is investigated by analyzing the monitoring data.The results show that the extent of heat loss,occupant comfort level,and appliance usage patterns have significant impacts on heating energy and electricity consumption.This study also identifies the factors influencing the poor IAQ observed in some case-study units.In the long term,it is expected that the extracted information acquired from the monitoring system can be used to support intelligent decisions to save energy,and can be implemented by the building management system to achieve financial,environmental,and health benefits.©2014Elsevier Ltd.All rights reserved.1.IntroductionThe building sector accounts for about 30%of total green-house gas (GHG)emissions in Canada (NRC,2006).Furthermore,the construction and operation of buildings are responsible for over a third of the world’s energy consumption (Straube,2006).Data shows that energy consumption and GHG emissions in build-ing sector are growing at an advanced rate than in other sectors (Akashi &Hanaoka,2012).As a result,reducing energy consump-tion has become essential to planning,construction,and use of buildings from the environmental point of view (Stoy,Pollalis,&Fiala,2009).This also entails that the building sector has con-siderable potential for energy and energy-related CO 2emissionssavings (Gökc¸e &Gökc ¸e,2013).According to the International Energy Agency,the building sector can reduce energy consump-tion with an estimated energy savings of 1509Mtoe (million tonnes of oil equivalent)by 2050.Furthermore,through energy-efficient building design,carbon dioxide (CO 2)emissions can be reduced,∗Corresponding author.Tel.:+17804923002.E-mail address:mustafa.gul@ualberta.ca (M.Gül).which can possibly mitigate 12.6Gt (gigatonnes)of CO 2emissions by 2050(International Energy Agency,2010).Energy consumption by built environments can be reduced through new designs,technologies,and materials;proper control;and the use of effective energy management systems by consider-ing factors such as building orientation,shape,wall–window ratio,insulation,use of high-efficiency windows,and natural ventila-tion (Dawood,Crosbie,Dawood,&Lord,2013).However,electrical loads,especially miscellaneous electrical loads (involving a range of products,devices,and electrical equipment in some combina-tion,common in every household)consume a significant portion of total building energy (Hendron &Eastment,2006).In Canada,the residential building sector consumes approximately 16%of total secondary energy usage (NRC,2006).According to Statistics Canada,in 2007the average Canadian household consumed 106GJ (gigajoules)of energy,with the national total reaching 1,368,955TJ (terajoules)(Statistics Canada,2007).A substantial share of total energy consumption is due to improper use of appliances,and elim-inating this wastage can reduce the overall energy consumption by approximately 30%in buildings (US DOE Energy Information Administration,2003).Today it is important to focus on greater energy efficiency to reduce our impact on the environment by/10.1016/j.scs.2014.04.0092210-6707/©2014Elsevier Ltd.All rights reserved.58T.Sharmin et al./Sustainable Cities and Society13(2014)57–68reducing fossil fuel consumption(Gua,Sun,&Wennersten,2013; Sharmin,Li,Gökc¸e,Gül,&Al-Hussein,2012).Built environments also have a significant impact on human health.The extent of a building’s impact on human health and the environment depends on the building design,materials,and the methods used for construction and operation(Vittori,2002). According to the Science Advisory Board of the United States Envi-ronmental Protection Agency(EPA),indoor environment stands among the topfive environmental risks to public health.In Canada, people spend an average of89%of their time indoors and66%of their time indoors at home(Leech,Wilby,McMullen,&Laporte, 1996),and there is a possibility that people with weak immune systems may suffer from asthmatic symptoms or other respiratory health problems as a result of exposure to poor indoor air quality (Vittori,2002).Considering the fact that human health is affected by poor indoor air quality(IAQ),it is important to maintain a healthy IAQ in the interest of occupant health.Continuous monitoring of indoor environmental quality(IEQ)can thus play a significant role in maintaining healthy indoor environments.A significant aspect of assessing the sustainability of a building is the monitoring of energy performance(Berardi,2012).Recent innovations in sensing,data logging,and computing technologies have improved monitoring of indoor environment and energy per-formance of buildings.“Real-time”energy performance and IEQ monitoring are significant from the perspective of real-time feed-back to promote energy-saving behavior,and also for maintaining healthy IAQ.Proper targeting and monitoring of energy consump-tion and continuous energy management can be effective strategies for improved energy performance of buildings,and can result in reductions in operating costs of facilities(Lee&Augenbroe,2007; Sapri&Muhammad,2010).Research studies examining the effect of energy feedback information on occupant behavior have shown that real-time feedback can be a powerful impetus for behavioral change.McClelland and Cook(1980)first tested the impact of con-tinuous energy feedback on electricity usage.The results showed that on average electricity usage was lowered by12%in the homes with continuous electricity usage feedback compared to the homes with no usage feedback system(as cited in Allen&Janda,2006). In another study,a technical research university has monitored energy usage to reduce energy costs through an energy awareness program that offered departments a chance to receive payments of up to30%of the savings achieved.The departments had accom-plished energy savings(saving about$300,000per year)after one and half years of monitoring through improved operations and maintenance procedures and reduced their usage from about44 million kWh to40million kWh(Energy Star,2002).Hutton,Mauser, Filiatrault,and Antola(1986)have shown how the feedback pro-vided by monitoring helped to conserve energy for over75%of the subjects in25households in three cities.In a case regarding water usage,the city of Boston,MA,USA was unable to account for the use of50%of the water used in its municipal water system and,after installing meters,water that was unaccounted for had dropped to 36%(Grisham&Fleming,1989).Another study has shown that an effective energy management system can identify problems in an operating system which might not otherwise have been identified (Mills&Mathew,2009).Yang and Wang(2013)has shown that energy management systems can also provide comfortable building environments with high energy efficiency.Literature reviews from the last ten years show that usage of energy can be reduced from0%to20%by using a variety of feed-back mechanisms(Abrahamse,Steg,Vlek,&Rothengatter,2005). However,despite the fact that providing appropriate feedback can significantly reduce the overall energy consumption,relying only on occupants’awareness and behavioral change might not be an effective approach.In a recent study,wireless AC plug-load meters and light sensors were deployed in a computer science laboratory as a case study in energy monitoring.The study reported that more than30%energy savings were achieved immediately after installing a monitoring system,but that the savings were subse-quently reduced to less than4%of the week one level by the fourth week of the study.It light of this case,it might be considered that an effective solution for reducing energy consumption could be an automated energy management system,in addition to user coop-eration(Jiang,Van Ly,Taneja,Dutta,&Culler,2009).Major progress has been made in recent years in accomplish-ing greater awareness(Jiang et al.,2009),showing that advanced measurement of energy usage enables reduction of energy con-sumption.While the approach of monitoring energy usage is useful to achievefinancial benefits,a holistic monitoring of the perfor-mance of the building system can also be used to identify the factors influencing irregular energy usage or non-standard IEQ.Any information pertaining to irregularity of building system perfor-mance can contribute to building management systems intended to support operational improvement,and can also provide the infor-mation needed to encourage behavioral and operational changes by building occupants and operators.Monitoring is essential to achieving an energy-efficient building management system,but sensor-based monitoring is sometimes costly.In recent years more cost-effective high performance sensor technologies have been introduced,such that the benefits of utilizing this technology outweigh the associated costs.Continuous collection of the indi-vidualized energy use information would translate into increased energy use awareness,identification of problems in the building management system,and notification of irregular energy usage and non-standard indoor environmental parameters,all of which can lead to more sustainable building operations.However,it remains an open question whether the apparent additional understanding would be enough to justify the cost of installation,maintenance, and calibration of sensors.This paper thus offers a methodological approach by which to extract useful information by establishing relationships and studying patterns across different components of a building management system,facilitated by the installation of various sensors in a case study,the“Stony Mountain Plaza”project in Fort McMurray,Alberta,Canada.1.1.Objective and scopeThe objective of the sensor-based monitoring system adopted in this research is to provide relevant information regarding effec-tive management of building systems in cold-climate regions.The implemented monitoring system can be used for increasing energy performance and occupant comfort while reducing energy and water consumption.In this study,the ASHRAE standard specifying environmental parameter ranges(indoor air temperature,RH,CO2 level)has been used to define occupant comfort.A holistic exam-ination of the performance of the building system(energy usage, thermal performance,and IEQ)helps to determine whether or not the system is working efficiently by identifying correlations across different monitoring components.A more advanced understand-ing of the recorded data is expected to result in changes in building operations through the use of intelligent controls that automati-cally adjust to environmental requirements.It is expected that the extracted information and strategies acquired from the monitor-ing system can be implemented within the building management system to achievefinancial,environmental,and health benefits. 2.Methodological approachIn order to conduct a holistic examination of the performance of the building system under consideration,operating energy usage (e.g.,electrical energy usage,space heating energy usage,andT.Sharmin et al./Sustainable Cities and Society13(2014)57–6859Fig.1.Objective and methodological approach.household water usage);thermal performance of the building; and IAQ under occupancy are monitored.Twelve sample units are chosen in the building to be monitored for energy performance. Different types of sensors are installed in these individual units in order to monitor different components.Finally,recorded data are analyzed in order to extract useful information.Fig.1shows the objective and the monitored components for building energy performance under occupancy.2.1.Sample case-study unitTwo four-storey residential buildings have been constructed as part of the“Stony Mountain Plaza”project in Fort McMurray, Alberta,Canada.Both buildings are oriented with their longer axis facing north and south.Building1has70units while building2has 55units.There are two types of units in building1:one-bedroom and two-bedroom units.For monitoring building energy perfor-mance,three case-study units in eachfloor of building1with the same relativefloor plan position are selected:(1)Type‘A’unit (one-bedroom)facing north,(2)Type‘A’unit(one-bedroom)facing south,and(3)Type‘B’unit(two-bedroom)facing south.The sam-ple households are assigned code numbers1–12,and the specific locations of the units in theirfloors are not revealed for the sake of privacy.Fig.2displays the12case-study units.2.2.Types and locations of installed sensorsDifferent types of sensors are used for different types of required information in this assessment of building energy performance under occupancy.For electrical energy usage,Brultech ECM-1240 power meters are used.Each apartment receives power from two phases(phases A and B).Two power meters,one for each phase, recording the total energy for each load(in Ws)are therefore installed in each case-study unit.One Kamstrup MULTICAL601 heating meter is used for monitoring the energy from the water circulation heating system.Three sensors are also used for this purpose:oneflow meter and two temperature probes(for supply temperature,T s,and return temperature,T r).The heating meter records the total volume(L),total mass(g),currentflow(L/s),cur-rent T s and T r(◦C),and total energy(Wh).The energy consumed by the water circulation heating system can be calculated satisfying Eq.(1).E=V(T s−T r)k(1) where V:volume;T s:supply temperature;T r:return temperature; k:thermal coefficient.For monitoring household water usage,Minomess130water meters are used.There are two water meters in each apartment, one monitoring total incoming water and one monitoring output (cumulative hot water usage in the apartment)of the hot water tank.Two heatflux sensors(HFT3Soil Heat Flux Plate)are used for monitoring thermal performance of the building envelope:one measuring the heatflux(W/m2)through the studs and the other measuring the heatflux through the insulation.The sensor used for IAQ measurement is the IAQ Point air monitoring device man-ufactured by Honeywell Analytics.This device records real-time values of CO2(ppm),RH(%),and temperature(◦C)(Sharmin et al., 2012).The locations of the sensors for one-bedroom units and two-bedroom units are as shown in Fig.3.2.3.Development of system architectureThe power consumption meters(Brultech ECM-1240)commu-nicate using ZigBee with four EtherBee gateways(one on each floor),which are connected by a CAT5Ethernet cable to a single-board computer through a5-port switch.The energy meter andthe Fig.2.Case-study building and selection of case-study units.60T.Sharmin et al./Sustainable Cities and Society 13(2014)57–68Fig.3.Location of sensors in case-study units.IAQ sensor use the LonTalk protocol to communicate with an iLON smart server,which is also connected to the single-board computer where the data are being encrypted and transmitted to a database server through a secured connection over the Internet.The heat flux sensors are connected to the CR1000data logger (Campbell Scientific,Inc.)through a Solid State Multiplexer (Campbell Scien-tific,Inc.),which makes it possible to connect all 24of the heat flux sensors to a single data logger.The data logger converts the ana-log signal from the heat flux sensors into digital values and sends these values to the SBC through an Ethernet interface (Sharminet al.,2012).Fig.4provides a flowchart of the data collection system adopted in this project.3.Data analysisThis section discusses findings based on the collected data to assess building energy performance under occupancy.The data sets used for the analysis presented in this paper have been collected during regular operation of thebuilding.Fig.4.System architecture for data collection.T.Sharmin et al./Sustainable Cities and Society13(2014)57–6861Fig.5.Data analysis framework for electrical energy consumption.3.1.Measurement of electrical energy usageAccording to Statistics Canada(2007),Alberta’s average per household use of electricity in2007was the lowest among all provinces(26GJ).A possible reason for this low electricity con-sumption might be the comparably high rate of natural gas consumption in Alberta due to the low price of natural gas.In this paper,26GJ is set as the annual per household usage threshold. We consider the electricity consumption for individual appliances and the total electricity consumption for the case-study units. By measuring the electricity consumption of occupants,building management can pursue appropriate measures(i.e.,setting an opti-mum usage limit)if the electricity usage continuously exceeds the threshold of electricity usage established.Fig.5shows the data analysis framework for electrical energy consumption,while Fig.6shows the total electricity consump-tion by case-study unit(except unit8,because of missing data). It is observed in Fig.6that the electricity consumption by units7 (Type A)and9(Type A)in2012exceeds the26GJ threshold.Even though units7and9are type A(one-bedroom)units,the electric-ity consumption of these units is higher than the other case-study units.The data analysis framework(Fig.5)adopted in this study identi-fies factors that influence higher electricity consumption by a given unit by comparing the electricity consumption of different appli-ances of the selected unit with the average electricity consumption of individual appliances of all the case-study units.Fig.7presents the influencing factors for higher electricity consumption of3case-study units(units7,9and10).These three units are chosen as examples since two of them(units7and9)exceed the26-GJ thresh-old and the other unit(unit10)has comparatively higher electricity usage but appears to be influenced by different factors than units7 and9.Our data analysis shows that the primary factors influencing the higher electricity consumption in unit7are the bedroom appli-ances,electrical duct heating,kitchen plug,and kitchen-bathroom lighting,since electricity consumption by these appliances in unit 7is much higher than the average of the11case-study units for these appliances.A possible reason for higher electricity consump-tion in the bedroom of unit7may be the use of electrical heating radiators by occupants.On the other hand,bedroom appliances and oven usage for unit9and hot water tank and refrigerator usage for unit10are identified as the primary influencing factors accounting for the higher electricity consumption of the respective units.It is worth noting that household energy use can vary based on a number of factors,including the number of occupants,lifestyle, and usage of different appliances.With the continuous monitor-ing of electrical energy consumption,it is possible to identify the influencing factors of higher electricity consumption of occupants and to set an optimum value for electrical energy usage accord-ingly.Based on the monitoring of electricity usage carried out in this study,building management can set an appropriate optimum range of yearly energy usage by occupants.3.2.Measuring thermal performance of building envelope and space heating energy usageFor this research,the heatflux—the rate of heat energy transfer—through studs and insulation is also monitored.Since studs(working as thermal bridges between outdoor and indoor environments)lose more heat than does insulation,this research measures heatflux through studs and insulation separately.In order to assess the impact of orientation on heatflux for the case-study units,annual average heatflux through studs and annual average heatflux through insulation are compared for north-facing and south-facing units.At eachfloor level,one north-facing unit and one south-facing type A(one-bedroom)unit are selected in order to compare heatflux.As expected,the collected data in Fig.8shows that north-facing units have greater heat loss than south-facing units when considering the2nd and3rdfloor.However,contrary to expectations,at the ground(stud)and topfloor,south-facing units have greater heat loss than north-facing units.The recorded data in Fig.8gives an inconclusive result.In order to identify long-term patterns(if any)of heatflux for different orientations,it is impor-tant to monitor the data for a few years.If patterns of heatflux for differentfloor levels(variations with respect to height)or differ-ent orientations are identified,measures(i.e.,increasedinsulation) Fig.6.Electricity consumption for case-study units.62T.Sharmin et al./Sustainable Cities and Society 13(2014)57–68Fig.7.Electricity consumption of individual appliances by units 7,9and10.Fig.8.Heat flux for different orientations and floor levels in 2012.can be taken to reduce heat flux for the units with higher rates.Increasing the thermal performance of the building envelope also provides an opportunity to reduce significantly the heating loss of a building,but this is beyond the scope of this study.Fig.9shows the data analysis framework adopted in this study for heating energy consumption.The framework examines the impact of heat flux and outdoor temperature on heating energy consumption.The indoor air temperature maintained in the unit is also compared with the standard indoor temperature range in order to gain understanding of the relationship between occupant comfort level and heating energy consumption.As expected,the recorded data (Fig.10)shows that apart-ments consume more heating energy as the outside temperature decreases.Fig.10also shows the relationship between heat flux and heating energy consumption such that units with higher heat flux in general have higher heating energy consumption,with some exceptions,e.g.,unit 12in October and unit 7in January;(in these exceptions,even though heat loss was high,heating energy con-sumption was comparatively low).In general,variations in theoccupancy,such as vacations and other absences,can directly impact the energy consumption,and the absence of residents ren-ders the heat comfort level of individuals irrelevant with respect to its impact on energy consumption over these periods of absence.Another exception is with respect to unit 7in November and December.Data shows that even though heat flux was lower in unit 7,heating energy consumption was higher (compared to unit 12)in November and December.There is a possibility that occupant comfort level with a higher temperature range may have resulted in higher heating consumption in unit 7.Recorded data indicates that the indoor air temperature in unit 7has always been maintained at a higher level (sometimes exceeding the standard temperature range)compared to unit 12,indicating that occupant preference for a higher temperature range may be the reason for higher heat-ing consumption during October-December in unit 7,even though heat loss was less than for unit 12.It should be noted that occupant lifestyle and comfort level may affect the heating energy consump-tion significantly.In order to manage heating energy effectively,it is necessary to monitor and analyze the heating energy usageT.Sharmin et al./Sustainable Cities and Society 13(2014)57–6863Fig.9.Data analysis framework for heating energyconsumption.Fig.10.Heat flux and heating energy consumption in north-(unit 7)and south-facing (unit 12)units.regularly and to set realistic targets for improving energy effi-ciency.3.3.Measurement of household water usageHousehold water usage is also being monitored as part of this study.According to Environment Canada ,in 2009average resi-dential water use was 72.38gallons per capita per day,which corresponds to 26,420gallons per capita per year (Municipal Water Use Report,2011).Fig.11shows the water consumption by case-study unit in 2012.The results indicate that even though unit 9is a one-bedroom unit (assumed to be accommodating fewer residents than two-bedroom units),it exhibits the highest water consumption.By measuring the water usage of occupants,build-ing management can pursue appropriate measures (i.e.,optimum usage range)if the water usage per person for a particular unit is continuously higher than the Canadian average residential water usage per capita per day.The recorded data in Fig.11shows that hot water consumption typically accounts for more than 30%of total water consumption in the case-study units,with the exception of unit 11.Since in thisproject energy is drawn from used hot water through drain water heat recovery (DWHR),there is a possibility that this gray water could be used for toilet flushing.It should be noted that the use of gray water in the case-study units is beyond the scope of this study.3.4.Indoor air quality (CO 2concentration and relative humidity)measurementElevated CO 2levels affect occupant comfort and IAQ.With ele-vated CO 2levels,occupants may complain of perceived poor air quality and may face health problems such as headaches,fatigue,and eye and throat irritation.Poor air quality may reduce the effi-ciency of the occupants (Wyon &Wargocki,2006)and this loss can be reduced through proper design strategy (Wyon,1996).The rela-tionship between indoor CO 2concentration and IAQ is in terms of the impact of elevated CO 2on comfort,and the correlation between CO 2and ventilation (Aglan,2003).According to the American Soci-ety of Heating,Refrigerating and Air-conditioning Engineers Inc.(ASHRAE),buildings with proper ventilation should have CO 2lev-els not in excess of 1000ppm (Quinn,2011).Exceeding this level is likely indicative of inadequate ventilation.In consideration of this,64T.Sharmin et al./Sustainable Cities and Society13(2014)57–68Fig.11.Total water consumption of case-study units in2012.Fig.12.IAQ data analysis framework for CO2.Fig.13.IAQ data analysis framework for RH.T.Sharmin et al./Sustainable Cities and Society 13(2014)57–6865Fig.14.Monthly average CO 2concentration level in case-studyunits.Fig.15.Average CO 2level and ERV electricity consumption in case-study units for February and March,2012.Figs.12and 13show the framework of IAQ data analysis (CO 2and RH,respectively)considered in this project.The results of data analysis (Fig.14)show that CO 2concentra-tion levels exceed the 1000ppm threshold in units 1,3,4,5,8,and 9for several months of 2012.In order to determine if lack of energy recovery ventilation (ERV)usage is the reason for the elevated level of CO 2,electricity consumption by the ERV is inves-tigated for the case-study units for February and March,2012.These two months are chosen as examples since most of the units exceed the threshold during these two months.Fig.15shows the CO 2con-centration and ERV electricity consumption by unit,exhibiting that the units with higher ERV usage have in general relatively lowerCO 2concentration (units 7,10,and 11),while units with lower ERV usage have higher CO 2concentration (units 1,3,4,5,and 9).An improper heating,ventilation,and air conditioning system (HVAC),as well as unvented appliances (space heaters,dryers,stoves,and any other unvented gas appliances)in a house,can lead to high levels of indoor CO 2(Health Canada,1995).Complementing the recorded data (ERV usage record),interviews with occupants may be helpful for identifying the factors influencing higher CO 2levels in the identified units.Once the causal factors are identified,necessary steps (e.g.,imposing the use of ERV,proper maintenance of HVAC system and appliances)should be taken in the interest of occupant health.。

实验室专业术语中英文翻译对照

实验室专业术语中英文翻译对照

实验室专业术语中英文翻译对照实验室是科学研究和实践的重要场所。

在实验室中,专业术语的准确理解和正确翻译对于顺利进行实验工作至关重要。

本文将为大家介绍一些实验室中常见的专业术语及其中英文翻译对照。

1. 试剂 (Reagent)试剂是实验室中常用的化学物质,用于进行实验操作和测试。

常见的试剂有溶液、固体试剂、气体试剂等。

2. 试管 (Test tube)试管是实验室中常见的小型圆柱形容器,通常用玻璃制成,用于容纳和混合试剂进行反应或者进行小规模试验。

3. 显微镜 (Microscope)显微镜是实验室中用于放大显微观察样本的设备。

它能够放大细胞、细菌等微小物质,帮助科学家进行研究和观察。

4. 数据 (Data)数据是实验中所获得的信息和观测结果。

实验数据通常使用数字或图表的形式记录下来,用于后续的分析和解释。

5. 实验步骤 (Experimental procedure)实验步骤是进行实验时所执行的一系列操作和程序。

它包括实验前的准备、实验中的步骤和实验后的处理等。

6. 样品 (Sample)样品是实验中所使用的具有代表性的物质,用于测试、观察或者分析。

样品可以是固体、液体或者气体。

7. 浓度 (Concentration)浓度指的是一个溶液中溶质的含量。

常见的浓度单位有摩尔/升、毫摩尔/升等。

8. 平台 (Platform)平台是实验室仪器设备的工作表面,用于放置实验材料、试剂和仪器。

9. 温度 (Temperature)温度是一个物体分子热运动程度的量度。

在实验室中,温度的控制对于保证实验的精确性和可重复性非常重要。

10. 反应器 (Reactor)反应器是用于进行化学反应的装置。

它通常由玻璃或者金属制成,具有耐腐蚀和耐高温的性能。

11. 计时器 (Timer)计时器是用于测量时间的设备,用于监控实验的反应时间和持续时间。

12. 加热器 (Heater)加热器是实验室中常见的设备,用于提供热源,加热溶液或样品,促进化学反应的进行。

热电偶温度传感器中英文对照外文翻译文献

热电偶温度传感器中英文对照外文翻译文献

中英文对照外文翻译文献(文档含英文原文和中文翻译)外文翻译:Thermocouple Temperatur sensorIntroduction to ThermocouplesThe thermocouple is one of the simplest of all sensors. It consists of two wires of dissimilar metals joined near the measurement point. The output is a small voltage measured between the two wires.While appealingly simple in concept, the theory behind the thermocouple is subtle, the basics of which need to be understood for the most effective use of the sensor.Thermocouple theoryA thermocouple circuit has at least two junctions: the measurement junction and a reference junction. Typically, the reference junction is created where the two wires connect to the measuring device. This second junction it is really two junctions: one for each of the two wires, but because they are assumed to be at the same temperature (isothermal) they are considered as one (thermal) junction. It is the point where the metals change - from the thermocouple metals to what ever metals are used in the measuring device - typically copper.The output voltage is related to the temperature difference between the measurement and the reference junctions. This is phenomena is known as the Seebeck effect. (See the Thermocouple Calculator to get a feel for the magnitude of the Seebeck voltage). The Seebeck effect generates a small voltage along the length of a wire, and is greatest where the temperature gradient is greatest. If the circuit is of wire of identical material, then they will generate identical but opposite Seebeck voltages which will cancel. However, if the wire metals are different the Seebeck voltages will be different and will not cancel.In practice the Seebeck voltage is made up of two components: the Peltiervoltage generated at the junctions, plus the Thomson voltage generated in the wires by the temperature gradient.The Peltier voltage is proportional to the temperature of each junction while the Thomson voltage is proportional to the square of the temperature difference between the two junctions. It is the Thomson voltage that accounts for most of the observed voltage and non-linearity in thermocouple response.Each thermocouple type has its characteristic Seebeck voltage curve. The curve is dependent on the metals, their purity, their homogeneity and their crystal structure. In the case of alloys, the ratio of constituents and their distribution in the wire is also important. These potential inhomogeneous characteristics of metal are why thick wire thermocouples can be more accurate in high temperature applications, when the thermocouple metals and their impurities become more mobile by diffusion.The practical considerations of thermocouplesThe above theory of thermocouple operation has important practical implications that are well worth understanding:1. A third metal may be introduced into a thermocouple circuit and have no impact, provided that both ends are at the same temperature. This means that the thermocouple measurement junction may be soldered, brazed or welded without affecting the thermocouple's calibration, as long as there is no net temperature gradient along the third metal.Further, if the measuring circuit metal (usually copper) is different to that of the thermocouple, then provided the temperature of the two connecting terminals is the same and known, the reading will not be affected by the presence of copper.2. The thermocouple's output is generated by the temperature gradient along the wires and not at the junctions as is commonly believed. Therefore it is important that the quality of the wire be maintained where temperature gradients exists. Wire quality can be compromised by contamination from its operating environment and the insulating material. For temperatures below 400°C, contamination of insulated wires is generally not a problem. At temperatures above 1000°C, the choice of insulationand sheath materials, as well as the wire thickness, become critical to the calibration stability of the thermocouple.The fact that a thermocouple's output is not generated at the junction should redirect attention to other potential problem areas.3. The voltage generated by a thermocouple is a function of the temperature difference between the measurement and reference junctions. Traditionally the reference junction was held at 0°C by an ice bath:The ice bath is now considered impractical and is replace by a reference junction compensation arrangement. This can be accomplished by measuring the reference junction temperature with an alternate temperature sensor (typically an RTD or thermistor) and applying a correcting voltage to the measured thermocouple voltage before scaling to temperature.The correction can be done electrically in hardware or mathematically in software. The software method is preferred as it is universal to all thermocouple types (provided the characteristics are known) and it allows for the correction of the small non-linearity over the reference temperature range.4. The low-level output from thermocouples (typically 50mV full scale) requires that care be taken to avoid electrical interference from motors, power cable, transformers and radio signal pickup. Twisting the thermocouple wire pair (say 1 twist per 10 cm) can greatly reduce magnetic field pickup. Using shielded cable or running wires in metal conduit can reduce electric field pickup. The measuring device should provide signal filtering, either in hardware or by software, with strong rejection of the line frequency (50/60 Hz) and its harmonics.5. The operating environment of the thermocouple needs to be considered. Exposure to oxidizing or reducing atmospheres at high temperature can significantly degrade some thermocouples. Thermocouples containing rhodium (B,R and S types) are not suitable under neutron radiation.The advantages and disadvantages of thermocouplesBecause of their physical characteristics, thermocouples are the preferred methodof temperature measurement in many applications. They can be very rugged, are immune to shock and vibration, are useful over a wide temperature range, are simple to manufactured, require no excitation power, there is no self heating and they can be made very small. No other temperature sensor provides this degree of versatility.Thermocouples are wonderful sensors to experiment with because of their robustness, wide temperature range and unique properties.On the down side, the thermocouple produces a relative low output signal that is non-linear. These characteristics require a sensitive and stable measuring device that is able provide reference junction compensation and linearization.Also the low signal level demands that a higher level of care be taken when installing to minimise potential noise sources.The measuring hardware requires good noise rejection capability. Ground loops can be a problem with non-isolated systems, unless the common mode range and rejection is adequate.Types of thermocoupleAbout 13 'standard' thermocouple types are commonly used. Eight have been given an internationally recognised letter type designators. The letter type designator refers to the emf table, not the composition of the metals - so any thermocouple that matches the emf table within the defined tolerances may receive that table's letter designator.Some of the non-recognised thermocouples may excel in particular niche applications and have gained a degree of acceptance for this reason, as well as due to effective marketing by the alloy manufacturer. Some of these have been given letter type designators by their manufacturers that have been partially accepted by industry.Each thermocouple type has characteristics that can be matched to applications. Industry generally prefers K and N types because of their suitability to high temperatures, while others often prefer the T type due to its sensitivity, low cost and ease of use.A table of standard thermocouple types is presented below. The table also showsthe temperature range for extension grade wire in brackets.Accuracy of thermocouplesThermocouples will function over a wide temperature range - from near absolute zero to their melting point, however they are normally only characterized over their stable range. Thermocouple accuracy is a difficult subject due to a range of factors. In principal and in practice a thermocouple can achieve excellent results (that is, significantly better than the above table indicates) if calibrated, used well below its nominal upper temperature limit and if protected from harsh atmospheres. At higher temperatures it is often better to use a heavier gauge of wire in order to maintain stability (Wire Gauge below).As mentioned previously, the temperature and voltage scales were redefined in 1990. The eight main thermocouple types - B, E, J, K, N, R, S and T - were re-characterised in 1993 to reflect the scale changes. (See: NIST Monograph 175 for details). The remaining types: C, D, G, L, M, P and U appear to have been informally re-characterised.Try the thermocouple calculator. It allows you the determine the temperature by knowing the measured voltage and the reference junction temperature.Thermocouple wire gradesThere are different grades of thermocouple wire. The principal divisions are between measurement grades and extension grades. The measurement grade has the highest purity and should be used where the temperature gradient is significant. The standard measurement grade (Class 2) is most commonly used. Special measurement grades (Class 1) are available with accuracy about twice the standard measurement grades.The extension thermocouple wire grades are designed for connecting the thermocouple to the measuring device. The extension wire may be of different metals to the measurement grade, but are chosen to have a matching response over a much reduced temperature range - typically -40°C to 120°C. The reason for using extension wire is reduced cost - they can be 20% to 30% of the cost of equivalent measurementgrades. Further cost savings are possible by using thinnergauge extension wire and a lower temperature rated insulation.Note: When temperatures within the extension wire's rating are being measured, it is OK to use the extension wire for the entire circuit. This is frequently done with T type extension wire, which is accurate over the -60 to 100°C range.Thermocouple wire gaugeAt high temperatures, thermocouple wire can under go irreversible changes in the form of modified crystal structure, selective migration of alloy components and chemical changes originating from the surface metal reacting to the surrounding environment. With some types, mechanical stress and cycling can also induce changes.Increasing the diameter of the wire where it is exposed to the high temperatures can reduce the impact of these effects.The following table can be used as a very approximate guide to wire gauge:At these higher temperatures, the thermocouple wire should be protected as much as possible from hostile gases. Reducing or oxidizing gases can corrode some thermocouple wire very quickly. Remember, the purity of the thermocouple wire is most important where the temperature gradients are greatest. It is with this part of the thermocouple wiring where the most care must be taken.Other sources of wire contamination include the mineral packing material and the protective metal sheath. Metallic vapour diffusion can be significant problem at high temperatures. Platinum wires should only be used inside a nonmetallic sheath, such as high-purity alumna.Neutron radiation (as in a nuclear reactor) can have significant permanent impact on the thermocouple calibration. This is due to the transformation of metals to different elements.High temperature measurement is very difficult in some situations. In preference, use non-contact methods. However this is not always possible, as the site of temperature measurement is not always visible to these types of sensors.Colour coding of thermocouple wireThe colour coding of thermocouple wire is something of a nightmare! There are at least seven different standards. There are some inconsistencies between standards, which seem to have been designed to confuse. For example the colour red in the USA standard is always used for the negative lead, while in German and Japanese standards it is always the positive lead. The British, French and International standards avoid the use of red entirely!Thermocouple mountingThere are four common ways in which thermocouples are mounted with in a stainless steel or Inconel sheath and electrically insulated with mineral oxides. Each of the methods has its advantages and disadvantages.Sealed and Isolated from Sheath: Good relatively trouble-free arrangement. The principal reason for not using this arrangement for all applications is its sluggish response time - the typical time constant is 75 secondsSealed and Grounded to Sheath: Can cause ground loops and other noise injection, but provides a reasonable time constant (40 seconds) and a sealed enclosure.Exposed Bead: Faster response time constant (typically 15 seconds), but lacks mechanical and chemical protection, and electrical isolation from material being measured. The porous insulating mineral oxides must be sealedExposed Fast Response: Fastest response time constant, typically 2 seconds but with fine gauge of junction wire the time constant can be 10-100 ms. In addition to problems of the exposed bead type, the protruding and light construction makes the thermocouple more prone to physical damage.Thermocouple compensation and linearizationAs mentioned above, it is possible to provide reference junction compensation in hardware or in software. The principal is the same in both cases: adding a correction voltage to the thermocouple output voltage, proportional to the reference junction temperature. To this end, the connection point of the thermocouple wires to the measuring device (i.e. where the thermocouple materials change to the copper of thecircuit electronics) must be monitored by a sensor. This area must be design to be isothermal, so that the sensor accurately tracks both reference junction temperatures.The hardware solution is simple but not always as easy to implement as one might expect.The circuit needs to be designed for a specific thermocouple type and hence lacks the flexibility of the software approach.The software compensation technique simplifies the hardware requirement, by eliminating the reference sensor amplifier and summing circuit (although a multiplexer may be required).The software algorithm to process the signals needs to be carefully written. A sample algorithm details the process.A good resource for thermocouple emf tables and coefficients is at the US Commerce Dept's NIST web site. It covers the B, E, J, K, N, R, S and T types.The thermocouple as a heat pumpThe thermocouple can function in reverse. If a current is passed through a thermocouple circuit, one junction will cool and the other warm. This is known as the Peltier Effect and is used in small cooling systems. The effect can be demonstrated by alternately passing a current through a thermocouple circuit and then quickly measuring the circuit's Seebeck voltage. This process has been used, with very fine thermocouple wire (0.025 mm with about a 10 mA current), to measure humidity by ensuring the cooled junction drops below the air's dew point. This causes condensation to form on the cooled junction. The junction is allowed to return to ambient, with the temperature curve showing an inflection at the dew point caused by the latent heat of vaporization.Measuring temperature differencesThermocouples are excellent for measuring temperatures differences, such as the wet bulb depression in measuring humidity. Sensitivity can be enhanced by constructing a thermopile - a number of thermocouple circuits in series.In the above example, the thermopile output is proportional to the temperaturedifference T1 - T2, with a sensitivity three times that of a single junction pair. In practice, thermopiles with two to hundreds of junctions are used in radiometers, heat flux sensors, flow sensors and humidity sensors. The thermocouple materials can be in wire form, but also printed or etched as foils and even electroplated.An excellent example of the thermopile is in the heat flux sensors manufactured by Hukseflux Thermal Sensors. Also see RdF Corp. and Exergen Corp.The thermocouple is unique in its ability to directly measure a temperature difference. Other sensor types require a pair of closely matched sensors to ensure tracking over the entire operational temperature range.The thermoelectric generatorWhile the Seebeck voltage is very small (in the order of 10-70μV/°C), if the circuit's electrical resistance is low (thick, short wires), then large currents are possible (e.g. many amperes). An efficiency trade-off of electrical resistance (as small as possible) and thermal resistance (as large as possible) between the junctions is the major issue. Generally, electrical and thermal resistances trend together with different materials. The output voltage can be increased by wiring as a thermopile.The thermoelectric generator has found its best-known application as the power source in some spacecraft. A radioactive material, such as plutonium, generates heat and cooling is provided by heat radiation into space. Such an atomic power source can reliably provide many tens of watts of power for years. The fact that atomic generators are highly radioactive prevents their wider application.译文:热电偶温度传感器热电偶的定义热电偶是最简单的传感器之一。

外文翻译(供热站温度实时监测)

外文翻译(供热站温度实时监测)

Heating temperature and pressure test Thermistors are inexpensive, easily-obtainable temperature sensors. They are easy to use and adaptable. Circuits with thermistors can have reasonable outout voltages - not the millivolt outputs thermocouples have. Because of these qualities, thermistors are widely used for simple temperature measurements. They're not used for high temperatures, but in the temperature ranges where they work they are widely used. Thermistors are temperature sensitive resistors. All resistors vary with temperature, but thermistors are constructed of semiconductor material with a resistivity that is especially sensitive to temperature. However, unlike most other resistive devices, the resistance of a thermistor decreases with increasing temperature. That's due to the properties of the semiconductor material that the thermistor is made from. For some, that may be counterintuitive, but it is correct. Here is a graph of resistance as a function of temperature for a typical thermistor. Notice how the resistance drops from 100 kW, to a very small value in a range around room temperature. Not only is the resistance change in the opposite direction from what you expect, but the magnitude of the percentage resistance change is substantial.Temperature Sensor - The Thermocouple You are at: Elements - Sensors - Thermocouples Return to Table of Contents A thermocouple is a junction formed from two dissimilar metals. Actually, it is a pair of junctions. One at a reference temperature (like 0 oC) and the other junction at the temperature to be measured. A temperature difference will cause a voltage to be developed that is temperature dependent. (That voltage is caused by something called the Seebeck effect.) Thermocouples are widely used for temperature measurement because they are inexpensive, rugged and reliable, and they can be used over a wide temperature range. In particular, other temperature sensors (like thermistors and LM35 sensors)are useful around room temperature, but the thermocouple can The Thermocouple Why Use thermocouples To Measure Temperature? They are inexpensive. They are rugged and reliable. They can be used over a wide temperature range. What Does A Thermocouple Look Like? Here it is. Note the two wires (of two different metals) joined in the junction. What does a thermocouple do? How does it work? The junction of two dissimilar metals produces a temperature dependent voltage. For a better description of how it works, click here. How Do You Use A Thermocouple? You measure the voltage the thermocouple produces, and convert that voltage to a temperature reading. It may be best to do the conversion digitally because the conversion can be fairly nonlinear. Things You Need To Know About Thermocouples A junction between two dissimilar metals produces a voltage. In the thermocouple, the sensing junction - produces a voltage that depends upon temperature. Where the thermocouple connects to instrumentation - copper wires? - you have two more junctions and they also produce a temperature dependent voltage. Those junctions are shown inside the yellow oval. When you use a thermocouple, you need to ensure that the connections are at some standard temperature, or you need to use an electronically compensated system that takes those voltages into account. If your thermocouple is connected to a data acquisition system, then chances are good that you have an electronically compensated system. Once we obtain a reading from a voltmeter, the measured voltage has to be converted to temperature. The temperature is usually expressed as a polynomial function of the measured voltage. Sometimes it is possible to get a decent linear approximation over a limited temperature range. There are two ways to convert the measured voltage to a temperature reading. Measure the voltage and let the operator do the calculations. Use the measured voltage as an input to a conversion circuit - either analog or digital. Let us look at some other types of base-metal thermocouples. Type T thermocouples arewidely used as are type K and Type N. Type K (Ni-Cr/Ni-Al) thermocouples are also widely used in the industry. It has high thermopower and good resistance to oxidation. The operating temperature range of a Type K thermocouple is from -269 oC to +1260 oC. However, this thermocouple performs rather poorly in reducing atmospheres. Type T (Cu/Cu-Ni) thermocouples can be used in oxidizing of inert atmospheres over the temperature range of -250 oC to +850 oC. In reducing or mildly oxidizing environments, it is possible to use the thermocouple up to nearly +1000 oC. Type N (Nicrosil/Nisil) thermocouples are designed to be used in industrial environments of temperatures up to +1200 oC. A polynomial equation used to convert thermocouple voltage to temperature (oC) over a wide range of temperatures. We can write the polynomial as: The coefficients, an are tabulated in many places. Here are the NBS polynomial coefficients for a type K thermocouple. (Source: T. J. Quinn, Temperature , Academic Press Inc.,1990) Type K Polynomial Coefficients n an 0 0.226584602 1 24152.10900 2 67233.4248 3 2210340.682 4 -860963914.9 5 4.83506x1010 6 -1.18452x1012 7 1.38690x1013 8 -6.33708x1013 What If The Surrounding Temperature Exceeds Limits? There are really no thermocouples that can withstand oxidizing atmospheres for temperatures above the upper limit of the platinum-rhodium type thermocouples. We cannot, therefore, measure temperature in such high temperature conditions. Other options for measuring extremely high temperatures are radiation or the noise pyrometer. For non-oxidizing atmospheres, tungsten-rhenium based thermocouples shows good performance up to +2750 oC. They can be used, for a short period, in temperatures up to +3000 oC. The selection of the types of thermocouple used for low temperature sensing is primarily based on materials of a thermocouple. In addition, thermopower at low temperatue is rather low, so measurement of EMF will be proportionally small as well.More Facts On Various Thermocouple Types A variety of thermocouples today cover a range of temperature from -250 oC to +3000 oC. The different types of thermocouple are given letter designations: B, E, J, K, R, S, T and N Types R,S and B are noble metal thermocouples that are used to measure high temperature. Within their temperature range, they can operate for a longer period of time under an oxidizing environment. Type S and type R thermocouples are made up of platinum (Pt) and rhodium (Rh) mixed in different ratios. A specific Pt/Rh ratio is used because it leads to more stable and reproducible measurements. Types S and R have an upper temperature limit of +1200 oC in oxidizing atmospheres, assuming a wire diameter of 0.5mm. Type S and type R thermocouples are made up of platinum (Pt) and rhodium (Rh) mixed in different ratios. A specific Pt/Rh ratio is used because it leads to more stable and reproducible measurements. Types S and R have an upper temperature limit of +1200 oC in oxidizing atmospheres, assuming a wire diameter of 0.5mm. Type B thermocouples have a different Pt/Rh ratio than Type S and R. It has an upper temperature limit of +1750 oC in oxidizing atmospheres. Due to an increased amount of rhodium content, type B thermocouples are no quite so stable as either the Type R or Type S. Types E, J, K, T, and N are base-metal thermocouples that are used for sensing lower temperatures. They cannot be used for sensing high temperatures because of their relatively low melting point and slower failure due to oxidation. Type B thermocouples have a different Pt/Rh ratio than Type S and R. It has an upper temperature limit of +1750 oC in oxidizing atmospheres. Due to an increased amount of rhodium content, type B thermocouples are no quite so stable as either the Type R or Type S. we will look into some differences between different base-metal thermocouples. Type E (Ni-Cr/Cu-Ni) thermocouples have an operating temperature range from -250 oC to +800 oC. Their use is less widespread than other base-metal thermocouples due to its low operating temperature. However,measurements made by a Type E have a smaller margin of error. 1000 hours of operation in air of a Type E thermocouple at +760 oC, having 3mm wires, shold not lead to a change in EMF equivalent to more than +1 oC. Type J (Fe/Cu-Ni) thermocouples are widely used in industry due to their high thermopower and low cost. This type of thermocouple has an operating temperature range from 0 oC to +760 oC. Links to Related Lessons Temperature Sensors Thermistors Thermocouples LM35s Other Sensors Strain Gages Temperature Sensor Laboratories Return to Table of ContentsExperiments With Temperature Sensors - Data Gathering Measuring temperature is the most common measurement task. There are numerous devices available for measuring temperature. Many of them are built using one of these common sensors. Thermistor Thermocouple LM35 Integrated Circuit Temperature Sensor You can get more information about these sensors by clicking the links above. Laboratory The purpose of this laboratory is to get time response data for the three sensors you were introduced to labs week. Here are links to LabVIEW programs you can use. NTempsHydra.vi - to measure temperature from the Hydra. NVoltsHydra.vi - to measure voltage from the Hydra. ResetHydra.vi - A "sub-vi" you need to reset the Hydra. 1Temp.vi - A sub-vi that will take one temperature measurement on the Hydra. 1VoltHydra.vi - A sub-vi that will take one voltage measurement on the Hydra. You should have all the files above on your desktop. You can click on each link and save to the desktop, or you can find the NMeas folder in my public space and copy the entire folder to the desktop (best). You only need to double click the NTemps or NVolts files to start and run them in LabVIEW - but they have to be taken out of the network folder! Once you have the files together in a single folder on your desktop, Start NTempsHydra.vi to measure temperature using the thermocouple attached to terminals 21 (yellow lead) and 22 (red lead).Note that these terminals (21 and 22) are the connections for channel 1 for the Hydra. (For example, if you were doing a manual temperature reading using the front panel, you would need to set to channel 1.) You need to connect the yellow lead of the thermocouple to the top connector for Channel #1 (Terminal #21) and the red lead of the thermocouple to the bottom connector (ground?) for Channel #1 (Terminal #22). Both of those connections are made to the connector strip on the top of the Hydra Data Acquisition Unit. Start NVoltsHydra.vi to measure voltages using the LM35 and the voltage divider circuit for the thermistor. Both sets of measurements should be taken from the front panel connection points on the Hydra. For both the LM35 and the thermistor circuit, you need to supply 5v to the circuit board. In your lab notebook record any circuitry you use, and any pertinent points regarding the equipment you use. Note any other features of each sensor that will help you for your project or make things more difficult. Do the following: Connect each sensor. Here are links to using each sensor in a measurement. Thermocouples LM35s Thermistors For each sensor you need to get data in two situations: As the sensor heats up (rising time constant behavior) As the sensor cools down to ambient temperature (decaying time constant behavior) That data should be stored in a computer file. Use a different, understandable name for each file. The program will prompt you for a file name. Suggested file names are things like ThermistorUp.txt, etc. Before you leave lab be sure that you can bring your data up in Excel (to test that you have a good data file) and that you can plot the data to see that it looks like what you expect. Estimate the following for each sensor. The time it will take for the sensor to get within 1oC when the sensor is in good thermal contact with the temperature environment being measured and the temperature sensor starts at 25 oC and goes to 50 oC. (That means to measure the time it takes to get to between 49 oC and 51 oC.) The time it will take for the sensor to get within 1oC of the final value when the sensoris in air at a constant temperature and the temperature sensor starts at 25oC and goes to 50oC. In other words, when will the temperature sensor reach 49oC? The time it will take for the sensor to get within 0.1oC for the two situations above. (i.e., between 49.9 oC and 50.1 oC.) The time it will take for the sensor to get within 1oC when the sensor is in good thermal contact with the temperature environment being measured and the temperature sensor starts at 50 oC and goes to 25 oC. Explain why there is a difference in the speed of the response in the various situations above. Your report should show calculations for the time constant(s) for each device, and should show the results using the three methods. Tabular presentation of the results is best. Finally, you should - as best possible - explain your results. Why would the time constant be different going up and going down.供热站温度压力实时检测热敏电阻很便宜,易于得到的温度传感器。

温湿度测量仪外文文献翻译、中英文翻译

温湿度测量仪外文文献翻译、中英文翻译

外文翻译英文原文:Temperature and humidity measuring instrumentIntroductionTemperature and humidity measurement is a modern newly developed measurement field, especially the humidity measurement is to continue moving forward. Experienced a length method, dry and wet until today the course of the measurement, humidity measurement technology is maturing. Today, we are no longer satisfied with the measurement of the temperature and humidity, especially in some places to monitor directly the requirements of real-time measure and record the temperature and humidity changes in the whole process, and based on these changes identified during storage and transportation security, led to a new temperature and humidity measuring instrument was born. Temperature and humidity measuring instrument is the temperature and humidity parameters were measured according to a predetermined time interval stored in the internal memory, in the completion of the recording function will be coupled to a PC, use the adapter software data stored in accordance with values time analysis instrument. The instrument can determine the storage and transportation process, experiment process without any compromise product safety incident.MSP430F437 IntroducedThe MSP430 MCU main features are as follows:1)Ultra-low power consumption. MSP430 MCU supply voltage 1.8 to 3.6V low voltage RAM data retention mode power consumption of only 0.1uA active mode power 250uA/MIPS, IO input port leakage current of only 50nA.2)Powerful processing capability. The MSP430 MCU 16-bit microcontroller, reduced instruction set architecture with the most popular one clock cycle to execute an instruction, the MSP430 instruction speeds of up to 8MHz oscillator is 8MIPS.3)High-performance analog technology and a wealth of on-chip peripheral modules. The MSP430 monolithic organic combination of TI's high-performance analog technology, each member of the rich on-chip peripherals are integrated. Depending on the model of the different possible combinations of the following modules: watchdog,analog comparator A timer A, timer B, serial 0,1, hardware multiplier, LCD driver, 10/12/14-bit ADC, 12 DAC IIC bus, direct data access, port 1 to 6, the basic timer. 4)The system is stable. Power-on reset, first initiated by the DC0 CPU, to ensure that the program starts executing from the correct position to ensure crystal oscillator start-up and stabilization time. The software can then set the appropriate control bits of the register to determine the final system clock frequency. If the crystal oscillator is used as the CPU clock MCLK failure, the DCO will start automatically, in order to ensure the normal operation of the system. This structure and operational mechanism in the current series microcontroller is unique.5)Convenient and efficient development environment. MSP430 series OTP type, three types of FLASH-ROM, the domestic large-scale use FLASH. The development of these devices means, after the successful development of the OTP and ROM-type device using a dedicated emulator programmer or chip cover touch. FLASH type is very convenient development and debugging environment, because the device on-chip JTAG debug interface, as well as the electric flash FLASH memory using the first through the JTAG interface to download the program to the FLASH, run by the JTAG interface control program read the on-chip CPU status, and memory contents and other information for designers debug the entire development can be carried out in the same software integrated environment. Which only requires a PC and a JTAG debugger, without the need for a dedicated emulator and programmer. Temperature And Humidity SensorThe SHT7x temperature and humidity sensor characteristics are as follows:1)The temperature and humidity sensor signal is amplified conditioning, A / D converter, all integrated on one IIC bus interface;2)Given calibration relative humidity and temperature output;3)IIC bus with industry-standard digital output interface;4)With dewpoint calculation output function;5)With excellent long-term stability;6)Humidity value output resolution of 14 The temperature output resolution of 12 bits, and programmable;7)Small size (7.65 x 5.08 x 23.5mm) Surface Mount;8)Having reliable the CRC data transmission checking function;9)The chip load calibration coefficients can guarantee 100% interchangeability;AT25256 IntroductionTemperature and humidity data storage chip SPI interface uses ATMEL Corporation's low-voltage serial EEPROM AT25256. AT25256 is mainly applied to low-power occasion the internal accordance with 32K x 8-bit organization, can work at 3.3V, the maximum serial clock frequency as to 2.1MHz. Support for 64-byte page write mode and byte write mode. AT25256 by setting the write-protect pin / WP level to set the chip read-only or writable state. Serial Peripheral Interface (SPI) bus technology is a synchronous serial interface, the hardware features a strong, SPI software is quite simple, so that the CPU has more time to deal with other matters. SPI bus can be connected to multiple host MCU, equipped with SPI interface output devices, output devices, such as LCD drivers, A / D conversion and other peripherals can also be a simple connection to a single TTL shift register chip. The bus allows you to connect multiple devices, but only one device at any moment as the host.SPI bus clock line is controlled by the host, in addition to data lines: host input / output line from the machine and the host output / slave input line. Host and which slave communication through the slave strobe line selection.Application SPI system can be simple, complex and can take many forms: (1) a host MCU and the slave MCU; (2) multiple MCU are connected to each other into a multi-host system; (3) a host MCU and slave peripherals.Segment LCD Display PrincipleLCD display principle is to use the physical characteristics of the liquid crystal born, when power is turned on, arranged order so light by; arranged confusion is not energized, to prevent the light to pass through. Light to pass through and not through a combination of an image is displayed on the screen. In layman's terms, the liquid crystal display is the middle of the two glass clip a layer of liquid crystal material, the liquid crystal material to change their light transmission in the signal under the control of the state, so you can see the image in front of the glass panel. LCD ambient light to display information, the LCD itself is not self-luminous, LCD power consumption is very low, more suitable for single-chip low-power applications. In addition, the LCD can only use low-frequency AC voltage drive, the DC voltage will damage the LCD. There are many types of LCD segment liquid crystal character LCD, graphical LCD. Segment LCD inexpensive, simple to use, is widely used in a variety of microcomputer application system.MSP430 LCD driver module has four driving method, respectively, for static drive, 2MUX drive, 3MUX, Drivers, 4MUX drive. Static driving method, in additionto the public badly in need of a pin, each section of the drive each one pin. If the design involves a lot of number of segments, you need to take up the many pin. In order to reduce the pin number, you can select multiple drive needed: 2MUX drive, drive, 3MUX 4MUX driving method. Increase the number of public-pole, can greatly reduce the number of pins. Need to drive more segments, the more obvious effects. ConclusionThe design requirements to simultaneously detect the temperature and humidity. From the temperature and humidity sensor signal IIC bus to enter MSP430F437 MSP430F437, temperature and humidity data on the one hand to send the LCD display; the other hand, the temperature and humidity data is stored in AT25256 stored temperature and humidity data can be transmitted via RS232 bus to the PC, In the PC application, you can curve shows the temperature and humidity data, and can print the report.This design uses the MSP430 MCU measurement of temperature and humidity, display, storage, transmission, printing and other functions. But also through the button on the temperature and humidity measurement time interval, whether storage, starting time and other parameters set. In addition, the entire system can be connected to external 9V DC power supply, you can use a 9V lithium battery-powered, low-power design ultra-low power MSP430 MCU, and program design, making the whole system very power, particularly suitable for hand-held meter.中文翻译:温湿度测量仪1 引言温湿度测量是现代测量新发展出来的一个领域,尤其湿度的测量更是不断前进。

检测仪器中英文对照表

检测仪器中英文对照表
电子称
Electric/digital Balance
测头的测量范围
transmission function for the sine waves
仪器的测量范围
measuring range of the instrument
工作量规
Working gauge
模数转换器的量化步距
quantification step of the ADC
控制计划
Control plan
百分表
Dial indicator
失效模式与影响分析
Failure mode&effect analysis (FMEA)
拉力计
Tension gauge
进料检验
Incoming material quality control(IQer
铸铁平尺
cast iron straigjht edge
数字温度计
Digital thermometer
钢平尺和岩石平尺
steel and granite straigjht edge
辐射温度计
Radiation thermometer
圆度仪
roundness measuring instrument
抛光粉
polishing powder
套筒
nut driver
护镜液
lens coating liquid
量具
calipers
切削液
grinding ccoolant
粘片
adhesive tape
平形砂轮
diamod plain wheels
厚度表
thickness apparatus

Temperature Monitoring-参考译文

Temperature Monitoring-参考译文

第六课:Introduction to Temperature Monitoring
(体温监控知识介绍)
护士:准确地监控体温是一项重要的护理措施,体温反映人体热量并可以提供病人的信息。

学生:人体的正常体温多少?
护士:人体的正常体温约为37℃。

直肠温度大约是36.5-37.5℃。

口腔温度比直肠温度低0.3-0.5℃。

腑下温度比口腔温度又低0.2-0.4℃。

学生:那么,哪一个温度最准呢?
护士:直肠温度最准。

因为它是在体腔内,接近血液温度。

学生:一天给病人试几次体温。

护士:有些病人一天试两次体温。

而另外一些病人4个小时甚至两小时试一次体温。

学生:什么时间为病人试表?
护士:通常试体温的时间是在上午八点,下午4点。

发烧病人应4个小时或两个小时试一次体温。

学生:我们测量体温时,是否还要测量脉搏和呼吸?
护士:是的。

护士不仅测量体温,还要数脉搏和呼吸。

护士:你知道测量口表时应注意什么吗?
学生:是的,我知道。

测口温时要告诉病人闭紧口腔,但要小心不能把体温计咬断。

如果将玻璃或水银吞下,那是很危险的。

学生:如果病人吞服了水银该怎样处理呢?护士:应该让病人立即喝一些蛋白水或牛奶。

温度计单词

温度计单词

温度计单词单词:thermometer1. 定义与释义1.1词性:名词1.2释义:测量温度的仪器。

1.3英文解释:An instrument for measuring temperature.1.4相关词汇:thermograph(温度记录器,为派生词)、thermometric(测温的,为派生词)、temperature gauge(同义词)---2. 起源与背景2.1词源:“thermometer”源于希腊语。

“thermo -”表示热,来自希腊语“thermos”,“ - met er”表示测量的仪器,源于希腊语“metron”。

2.2趣闻:最早的温度计是由意大利科学家伽利略在1593年发明的。

不过他的温度计比较简陋,是根据空气受热膨胀的原理制成的。

---3. 常用搭配与短语3.1短语:(1) clinical thermometer:体温计例句:The nurse took my temperature with a clinical thermometer.翻译:护士用体温计给我量了体温。

(2) mercury thermometer:水银温度计例句:Mercury thermometers are being phased out in some places because mercury is toxic.翻译:由于水银有毒,有些地方正在逐步淘汰水银温度计。

(3) digital thermometer:数字温度计例句:A digital thermometer is more convenient to read than an old - fashioned one.翻译:数字温度计比老式温度计读数更方便。

---4. 实用片段(1) "I'm not feeling well. Can you pass me the thermometer? I think I have a fever." said Tom. His wife quickly found the thermometer and handed it to him.翻译:“我感觉不舒服。

温度控制系统中英文对照外文翻译文献

温度控制系统中英文对照外文翻译文献

温度控制系统中英文对照外文翻译文献温度控制系统中英文对照外文翻译文献温度控制系统中英文对照外文翻译文献(文档含英文原文和中文翻译)译文:温度控制系统的设计摘要:研究了基于AT89S 51单片机温度控制系统的原理和功能,温度测量单元由单总线数字温度传感器DS18B 20构成。

该系统可进行温度设定,时间显示和保存监测数据。

如果温度超过任意设置的上限和下限值,系统将报警并可以和自动控制的实现,从而达到温度监测智能一定范围内。

基于系统的原理,很容易使其他各种非线性控制系统,只要软件设计合理的改变。

该系统已被证明是准确的,可靠和满意通过现场实践。

践。

关键词:单片机;温度;温度关键词:单片机;温度;温度I. 导言温度是在人类生活中非常重要的参数。

在现代社会中,温度控制(TC TC)不仅用于工业生产,还广泛应用于其它领域。

随着生活质量的提)不仅用于工业生产,还广泛应用于其它领域。

随着生活质量的提高,我们可以发现在酒店,工厂和家庭,以及比赛设备。

而比赛的趋势将更好地服务于整个社会,因此它具有十分重要的意义测量和控制温度。

度。

在AT89S51AT89S51单片机和温度传感器单片机和温度传感器DS18B20DS18B20的基础上,系统环境的基础上,系统环境温度智能控制。

温度可设定在一定范围内动任意。

该系统可以显示在液晶显示屏的时间,并保存监测数据,并自动地控制温度,当环境温度超过上限和下限的值。

这样做是为了保持温度不变。

该系统具有很高的抗干扰能力,控制精度高,灵活的设计,它也非常适合这个恶劣的环境。

它主要应用于人们的生活,改善工作和生活质量。

这也是通用的,因此它可以方便地扩大使用该系统。

因此,设计具有深刻的重要性。

一般的设计,硬件设计和软件系统的设计都包括在内。

设计,硬件设计和软件系统的设计都包括在内。

II. 系统总体设计该系统硬件包括微控制器,温度检测电路,键盘控制电路,时钟电路,显示,报警,驱动电路和外部RAM RAM。

外文翻译(供热站温度实时监测)

外文翻译(供热站温度实时监测)

Heating temperature and pressure test Thermistors are inexpensive, easily-obtainable temperature sensors. They are easy to use and adaptable. Circuits with thermistors can have reasonable outout voltages - not the millivolt outputs thermocouples have. Because of these qualities, thermistors are widely used for simple temperature measurements. They're not used for high temperatures, but in the temperature ranges where they work they are widely used. Thermistors are temperature sensitive resistors. All resistors vary with temperature, but thermistors are constructed of semiconductor material with a resistivity that is especially sensitive to temperature. However, unlike most other resistive devices, the resistance of a thermistor decreases with increasing temperature. That's due to the properties of the semiconductor material that the thermistor is made from. For some, that may be counterintuitive, but it is correct. Here is a graph of resistance as a function of temperature for a typical thermistor. Notice how the resistance drops from 100 kW, to a very small value in a range around room temperature. Not only is the resistance change in the opposite direction from what you expect, but the magnitude of the percentage resistance change is substantial.Temperature Sensor - The Thermocouple You are at: Elements - Sensors - Thermocouples Return to Table of Contents A thermocouple is a junction formed from two dissimilar metals. Actually, it is a pair of junctions. One at a reference temperature (like 0 oC) and the other junction at the temperature to be measured. A temperature difference will cause a voltage to be developed that is temperature dependent. (That voltage is caused by something called the Seebeck effect.) Thermocouples are widely used for temperature measurement because they are inexpensive, rugged and reliable, and they can be used over a wide temperature range.In particular, other temperature sensors (like thermistors and LM35 sensors) are useful around room temperature, but the thermocouple can The Thermocouple Why Use thermocouples To Measure Temperature? They are inexpensive. They are rugged and reliable. They can be used over a wide temperature range. What Does A Thermocouple Look Like? Here it is. Note the two wires (of two different metals) joined in the junction. What does a thermocouple do? How does it work? The junction of two dissimilar metals produces a temperature dependent voltage. For a better description of how it works, click here. How Do You Use A Thermocouple? You measure the voltage the thermocouple produces, and convert that voltage to a temperature reading. It may be best to do the conversion digitally because the conversion can be fairly nonlinear. Things You Need To Know About Thermocouples A junction between two dissimilar metals produces a voltage. In the thermocouple, the sensing junction - produces a voltage that depends upon temperature. Where the thermocouple connects to instrumentation - copper wires? - you have two more junctions and they also produce a temperature dependent voltage. Those junctions are shown inside the yellow oval. When you use a thermocouple, you need to ensure that the connections are at some standard temperature, or you need to use an electronically compensated system that takes those voltages into account. If your thermocouple is connected to a data acquisition system, then chances are good that you have an electronically compensated system. Once we obtain a reading from a voltmeter, the measured voltage has to be converted to temperature. The temperature is usually expressed as a polynomial function of the measured voltage. Sometimes it is possible to get a decent linear approximation over a limited temperature range. There are two ways to convert the measured voltage to a temperature reading. Measure the voltage and let the operator do the calculations. Use the measured voltage as an input to a conversion circuit - either analog or digital. Let us look at someother types of base-metal thermocouples. Type T thermocouples are widely used as are type K and Type N. Type K (Ni-Cr/Ni-Al) thermocouples are also widely used in the industry. It has high thermopower and good resistance to oxidation. The operating temperature range of a Type K thermocouple is from -269 oC to +1260 oC. However, this thermocouple performs rather poorly in reducing atmospheres. Type T (Cu/Cu-Ni) thermocouples can be used in oxidizing of inert atmospheres over the temperature range of -250 oC to +850 oC. In reducing or mildly oxidizing environments, it is possible to use the thermocouple up to nearly +1000 oC. Type N (Nicrosil/Nisil) thermocouples are designed to be used in industrial environments of temperatures up to +1200 oC. A polynomial equation used to convert thermocouple voltage to temperature (oC) over a wide range of temperatures. We can write the polynomial as: The coefficients, an are tabulated in many places. Here are the NBS polynomial coefficients for a type K thermocouple. (Source: T. J. Quinn, Temperature , Academic Press Inc.,1990) Type K Polynomial Coefficients n an 0 0.226584602 1 24152.10900 2 67233.4248 3 2210340.682 4 -860963914.9 5 4.83506x1010 6 -1.18452x1012 7 1.38690x1013 8 -6.33708x1013 What If The Surrounding Temperature Exceeds Limits? There are really no thermocouples that can withstand oxidizing atmospheres for temperatures above the upper limit of the platinum-rhodium type thermocouples. We cannot, therefore, measure temperature in such high temperature conditions. Other options for measuring extremely high temperatures are radiation or the noise pyrometer. For non-oxidizing atmospheres, tungsten-rhenium based thermocouples shows good performance up to +2750 oC. They can be used, for a short period, in temperatures up to +3000 oC. The selection of the types of thermocouple used for low temperature sensing is primarily based on materials of a thermocouple. In addition, thermopower at low temperatue israther low, so measurement of EMF will be proportionally small as well. More Facts On Various Thermocouple Types A variety of thermocouples today cover a range of temperature from -250 oC to +3000 oC. The different types of thermocouple are given letter designations: B, E, J, K, R, S, T and N Types R,S and B are noble metal thermocouples that are used to measure high temperature. Within their temperature range, they can operate for a longer period of time under an oxidizing environment. Type S and type R thermocouples are made up of platinum (Pt) and rhodium (Rh) mixed in different ratios. A specific Pt/Rh ratio is used because it leads to more stable and reproducible measurements. Types S and R have an upper temperature limit of +1200 oC in oxidizing atmospheres, assuming a wire diameter of 0.5mm. Type S and type R thermocouples are made up of platinum (Pt) and rhodium (Rh) mixed in different ratios. A specific Pt/Rh ratio is used because it leads to more stable and reproducible measurements. Types S and R have an upper temperature limit of +1200 oC in oxidizing atmospheres, assuming a wire diameter of 0.5mm. Type B thermocouples have a different Pt/Rh ratio than Type S and R. It has an upper temperature limit of +1750 oC in oxidizing atmospheres. Due to an increased amount of rhodium content, type B thermocouples are no quite so stable as either the Type R or Type S. Types E, J, K, T, and N are base-metal thermocouples that are used for sensing lower temperatures. They cannot be used for sensing high temperatures because of their relatively low melting point and slower failure due to oxidation. Type B thermocouples have a different Pt/Rh ratio than Type S and R. It has an upper temperature limit of +1750 oC in oxidizing atmospheres. Due to an increased amount of rhodium content, type B thermocouples are no quite so stable as either the Type R or Type S. we will look into some differences between different base-metal thermocouples. Type E (Ni-Cr/Cu-Ni) thermocouples have an operating temperature range from -250 oC to +800 oC. Their use is less widespread than other base-metalthermocouples due to its low operating temperature. However, measurements made by a Type E have a smaller margin of error. 1000 hours of operation in air of a Type E thermocouple at +760 oC, having 3mm wires, shold not lead to a change in EMF equivalent to more than +1 oC. Type J (Fe/Cu-Ni) thermocouples are widely used in industry due to their high thermopower and low cost. This type of thermocouple has an operating temperature range from 0 oC to +760 oC. Links to Related Lessons Temperature Sensors Thermistors Thermocouples LM35s Other Sensors Strain Gages Temperature Sensor Laboratories Return to Table of ContentsExperiments With Temperature Sensors - Data Gathering Measuring temperature is the most common measurement task. There are numerous devices available for measuring temperature. Many of them are built using one of these common sensors. Thermistor Thermocouple LM35 Integrated Circuit Temperature Sensor You can get more information about these sensors by clicking the links above. Laboratory The purpose of this laboratory is to get time response data for the three sensors you were introduced to labs week. Here are links to LabVIEW programs you can use. NTempsHydra.vi - to measure temperature from the Hydra. NVoltsHydra.vi - to measure voltage from the Hydra. ResetHydra.vi - A "sub-vi" you need to reset the Hydra. 1Temp.vi - A sub-vi that will take one temperature measurement on the Hydra. 1VoltHydra.vi - A sub-vi that will take one voltage measurement on the Hydra. You should have all the files above on your desktop. You can click on each link and save to the desktop, or you can find the NMeas folder in my public space and copy the entire folder to the desktop (best). You only need to double click the NTemps or NVolts files to start and run them in LabVIEW - but they have to be taken out of the network folder! Once you have the files together in a single folder onyour desktop, Start NTempsHydra.vi to measure temperature using the thermocouple attached to terminals 21 (yellow lead) and 22 (red lead). Note that these terminals (21 and 22) are the connections for channel 1 for the Hydra. (For example, if you were doing a manual temperature reading using the front panel, you would need to set to channel 1.) You need to connect the yellow lead of the thermocouple to the top connector for Channel #1 (Terminal #21) and the red lead of the thermocouple to the bottom connector (ground?) for Channel #1 (Terminal #22). Both of those connections are made to the connector strip on the top of the Hydra Data Acquisition Unit. Start NVoltsHydra.vi to measure voltages using the LM35 and the voltage divider circuit for the thermistor. Both sets of measurements should be taken from the front panel connection points on the Hydra. For both the LM35 and the thermistor circuit, you need to supply 5v to the circuit board. In your lab notebook record any circuitry you use, and any pertinent points regarding the equipment you use. Note any other features of each sensor that will help you for your project or make things more difficult. Do the following: Connect each sensor. Here are links to using each sensor in a measurement. Thermocouples LM35s Thermistors For each sensor you need to get data in two situations: As the sensor heats up (rising time constant behavior) As the sensor cools down to ambient temperature (decaying time constant behavior) That data should be stored in a computer file. Use a different, understandable name for each file. The program will prompt you for a file name. Suggested file names are things like ThermistorUp.txt, etc. Before you leave lab be sure that you can bring your data up in Excel (to test that you have a good data file) and that you can plot the data to see that it looks like what you expect. Estimate the following for each sensor. The time it will take for the sensor to get within 1oC when the sensor is in good thermal contact with the temperature environment being measured and the temperature sensor starts at 25 oC and goes to 50 oC. (That means tomeasure the time it takes to get to between 49 oC and 51 oC.) The time it will take for the sensor to get within 1oC of the final value when the sensor is in air at a constant temperature and the temperature sensor starts at 25oC and goes to 50oC. In other words, when will the temperature sensor reach 49oC? The time it will take for the sensor to get within 0.1oC for the two situations above. (i.e., between 49.9 oC and 50.1 oC.) The time it will take for the sensor to get within 1oC when the sensor is in good thermal contact with the temperature environment being measured and the temperature sensor starts at 50 oC and goes to 25 oC. Explain why there is a difference in the speed of the response in the various situations above. Your report should show calculations for the time constant(s) for each device, and should show the results using the three methods. Tabular presentation of the results is best. Finally, you should - as best possible - explain your results. Why would the time constant be different going up and going down.供热站温度压力实时检测热敏电阻很便宜,易于得到的温度传感器。

单线温度传感器外文翻译

单线温度传感器外文翻译

本科生毕业设计(论文)外文翻译译文题目:DS18B20 单线温度传感器外文题目:DS18B20 Single - wire temperature sensor学院:信息科学与工程学院专业班级:电子信息工程0804班学生姓名:指导教师:DS18B20 Single - wire temperature sensor一. FEATURES● Unique 1-Wireinterface requires only one port pin for communication● Each device has a unique 64-bit serial code stored in an onboard ROM● Multidrop capability simplifies distributed temperature sensing applications● Requires no external components● Can be powered from data line. Power supply range is 3.0V to 5.5V● Measures temperatures from –55°C to +125°C (–67°F to +257°F) 0.5 C accuracy from–10°C to +85°C● Thermometer resolution is user-selectable from 9 to 12 bits● Converts temperature to 12-bit digital word in 750ms (max.)● User-definable nonvolatile (NV) alarm settings● Alarm search command identifies and addresses devices whose temperature isoutside of programmed limits (temperature alarm condition)● Available in 8-pin SO (150mil), 8-pin SOP, and 3-pin TO-92 packages● Software compatible with the DS1822● Applications include thermostatic controls, industrial systems, consumerproducts, thermometers, or any thermally sensitive二. DESCRIPTIONThe DS18B20 Digital Thermometer provides 9 to 12–bit centigrade temperature measurements and has an alarm function with nonvolatile user-programmable upper and lower trigger points. The DS18B20 communicates over a 1-Wire bus that by definition requires only one data line (and ground) for communication with a central microprocessor. It has an operating temperature range of –55°C to +125°Cand is accurate to 0.5 C over the range of –10°C to +85°C. In addition, the DS18B20 can derive powerdirectly from the data lin e (“parasite power”), eliminating the need for an external power supply.Each DS18B20 has a unique 64-bit serial code, which allows multiple DS18B20s to function on the same 1–wire bus; thus, it is simple to use one microprocessor to control many DS18B20s distributed over a large area. Applications that can benefit from this feature include HV AC environmental controls, temperature monitoring systems inside buildings, equipment or machinery, and process monitoring and control systems.三. OVERVIEWFigure 1 shows a block diagram of the DS18B20, and pin descriptions are given in Table 1. The 64-bit ROM stores the device’s unique serial code. The scratchpad memory contains the 2-byte temperature register that stores the digital output from the temperature sensor. In addition, the scratchpad provides access to the 1-byte upper and lower alarm trigger registers (TH and TL), and the 1-byte configuration register. The configuration register allows the user to set the resolution of the temperature-to-digital conversion to 9, 10, 11, or 12 bits. The TH, TL and configuration registers are nonvolatile (EEPROM), so they will retain data when the device is powered down.The DS18B20 uses Dallas’ exclusive 1-Wire bus protocol that implements bus communication using one control signal. The control line requires a weak pullup resistor since all devices are linked to the bus via a 3-state or open-drain port (the DQ pin in the case of the DS18B20). In this bus system, the microprocessor (the master device) identifies and addresses devices on the bus using each device’s unique 64-bit code. Because each device has a unique code, the number of devices that can be addressed on one bus is virtually unlimited. The 1-Wire bus protocol, including detailed explanati ons of the commands and “time slots,” is covered in the 1-WIRE BUS SYSTEM section of this datasheet。

关于体温计的英文翻译

关于体温计的英文翻译

体温计Gale Encyclopedia of Surgery: A Guide for Patients and CaregiversFallon, L. Fleming定义温度计是用来测量温度。

目的温度计用于卫生保健和监测体温。

不论是在办公室、医院或其他卫生保健设施,只要得到病人的允许,温度计可以让一个看护者实时的得到病人的体温。

重复测量温度有有利于检测体温是否偏离正常水平。

重复测量温度也有利于监测目前的药物或其他治疗的有效性。

病人的体温记录是对病人的身体发热或体温过低的程度等状况的监测。

描述可以使用不同的温度计来测量不同的温度。

这些温度计包括汞;玻璃管液体;电子数字显示;红外或鼓膜的;一次性点阵。

温度计可用于临床或紧急情况或在家里。

温度计可以记录口腔(口服),腋窝(腋),耳膜(鼓膜),或肛门(直肠)等的温度。

水银温度计是一个长度大约5英寸的细长玻璃杆和在玻璃杆一面或两面上标记有华氏,摄氏或两者兼有的温标刻度。

液态汞在温度计一端的玻璃泡内,当玻璃泡放置在与人体接触的地方时,其内的水银受热通过毛细管上升。

水银温度计不经常在现代临床医学中使用。

电子温度计可以记录在94°F到105°F,(35°C和42°C)范围内的口腔,腋下或直肠的温度。

它们的温度传感器内部有圆尖的探针,可以一次性覆盖着看守,防止感染的传播。

传感器连接到一个房屋中央处理单元。

传感器收集的信息可以在显示屏幕上显示。

一些有记忆功能的电子模块以把温度记录下来并在大屏幕上显示放便阅读。

使用电子温度计测量病人体温的地方是在病人的手臂或舌下,或在患者的直肠。

温度计要留在测温处的时间的长短取决于所使用的温度计的型号。

当温度达到峰值时温度计会发出提醒。

获得体温所需的时间从3-30秒不等。

鼓膜的温度计也有一圆尖的传感器,传感器可以一次性全部覆盖探测处并能防止耳部感染。

将传感器放置在耳道约1秒的时间,红外传感器可以记录的耳膜热辐射的温度。

红外温度测试仪中英文翻译

红外温度测试仪中英文翻译

附录一:英文技术资料翻译英文原文:Emerg Infect Dis. 2008 August; 14(8): 1255–1258.doi: 10.3201/eid1408.080059PMCID: PMC2600390Cutaneous Infrared Thermometry for Detecting Febrile PatientsPierre Hausfater, Yan Zhao, Stéphanie Defrenne, Pascale Bonnet, and Bruno Riou* Author information Copyright and License informationThis article has been cited by other articles in PMC.AbstractWe assessed the accuracy of cutaneous infrared thermometry, which measures temperature on the forehead, for detecting patients with fever in patients admitted to an emergency department. Although negative predictive value was excellent (0.99), positive predictive value was low (0.10). Therefore, we question mass detection of febrile patients by using this method.Keywords: Fever, mass detection, cutaneous infrared thermometry, infectious diseases, emergency, dispatchRecent efforts to control spread of epidemic infectious diseases have prompted health officials to develop rapid screening processes to detect febrile patients. Such screening may take place at hospital entry, mainly in the emergency department, or at airports to detect travelers with increased body temperatures (1–3). Infrared thermal imaging devices have been proposed as a noncontact and noninvasive method for detecting fever (4–6). However, few studies have assessed their capacity for accurate detection of febrile patients in clinical settings. Therefore, we undertook a prospective study in an emergency department to assess diagnostic accuracy of infrared thermal imaging.The StudyThe study was performed in an emergency department of a large academic hospital (1,800 beds) and was reviewed and approved by our institutional review board (Comitéde Protection des Personnes se Prêtant àla Recherche Biomédicale Pitié-Salpêtrière, Paris, France). Patients admitted to the emergency department were assessed by a trained triage nurse, and several variables were routinely measured, including tympanic temperature by using an infrared tympanic thermometer (Pro4000; Welch Allyn, Skaneateles Falls, NY, USA), systolic and diastolic arterial blood pressure, and heart rate.Tympanic temperature was measured twice (once in the left ear and once in the right ear). This temperature was used as a reference because it is routinely used in our emergency department and is an appropriate estimate of central core temperature (7–9). Cutaneous temperature was measured on the forehead by using an infrared thermometer (Raynger MX; Raytek, Berlin, Germany) (Figure 1). Rationale for an infrared thermometer device instead of a larger thermal scanner was that we wanted to test a method (i.e., measurement of forehead cutaneous temperature by using a simple infrared thermometer) and not a specific device. The forehead region was chosen because it is more reliable than the region behind the eyes (5,10). The latter region may not be appropriate for mass screening because one cannot accurately measure temperature through eyeglasses, which are worn by many persons. Outdoor and indoor temperatures were also recorded.Figure 1Measurement of cutaneous temperature with an infrared thermometer. A) The device is placed 20 cm from the forehead. B) As soon as the examiner pulls the trigger, the temperature measured is shown on the display. Used with permission.The main objective of our study was to assess diagnostic accuracy of infrared thermometry for detecting patients with fever, defined as a tympanic temperature >38.0°C. The second objective was to compare measurements of cutaneous temperature and tympanic temperature, with the latter being used as a reference point. Data are expressed as mean ± standard deviation (SD) or percentages and their 95% confidence intervals (CIs). Comparison of 2 means was performed by using the Student t test, and comparison of 2 proportions was performed by using the Fisher exact method. Bias, precision (in absolute values and percentages), and number of outliers (defined as a difference >1°C) were also recorded. Correlation between 2 variables was assessed by using the least square method. The Bland and Altman method was used to compare 2 sets of measurements, and the limit of agreement was defined as ±2 SDs of the differences (11). We determined the receiver operating characteristic (ROC) curves and calculated the area under the ROC curve and its 95% CI. The ROC curve was used to determine the best threshold for the definition of hyperthermia for cutaneous temperature to predict a tympanic temperature >38°C. We performed multivariate regression analysis to assess variables associated with thedifference between tympanic and infrared measurements. All statistical tests were 2-sided, and a p value <0.05 was required to reject the null hypothesis. Statistical analysis was performed by using Number Cruncher Statistical Systems 2001 software (Statistical Solutions Ltd., Cork, Ireland).A total of 2,026 patients were enrolled in the study: 1,146 (57%) men and 880 (43%) women 46 ± 19 years of age (range 6–103 years); 219 (11%) were >75 years of age, and 62 (3%) had a tympanic temperature >38°C. Mean tympanic temperature was 36.7°C ± 0.6°C (range 33.7°C–40.2°C), and mean cutaneous temperature was 36.7°C ± 1.7°C (range 32.0°C–42.6°C). Mean systolic arterial blood pressure was 130 ± 19 mm Hg, mean diastolic blood pressure was 79 ± 13 mm Hg, and mean heart rate was 86 ± 17 beats/min. Mean indoor temperature was 24.8°C ± 1.1°C (range 20°C–28°C), and mean outdoor temperature was 10.8°C ± 6.8°C (range 0°C–32°C). Reproducibility of infrared measurements was assessed in 256 patients. Bias was 0.04°C ± 0.35°C, precision was 0.22°C ± 0.27°C (i.e., 0.6 ± 0.7%), and percentage of outliers >1°C was 2.3%.Diagnostic performance of cutaneous temperature measurement is shown in Table 1. For the threshold of the definition of tympanic hyperthermia definition used (37.5°C, 38°C, or 38.5°C), sensitivity of cutaneous temperature was lower than that expected and positive predictive value was low. We attempted to determine the best threshold (definition of hyperthermia) by using cutaneous temperature to predict a tympanic temperature >38°C (Figure 2, panel A). Area under the ROC curve was 0.873 (95% CI 0.807–0.917, p<0.001). The best threshold for cutaneous hyperthermia definition was 38.0°C, a condition already assessed in Table 1. Figure 2, panels B and C shows the correlation between cutaneous and tympanic temperature measurements (Bland and Altman diagrams). Correlation between cutaneous and tympanic measurements was poor, and the infrared thermometer underestimated body temperature at low values and overestimated it at high values. Multiple regression analysis showed that 3 variables (tympanic temperature, outdoor temperature, and age) were significantly (p<0.001) and independently correlated with the magnitude of the difference between cutaneous and tympanic measurements (Table 2).Table 1Assessment of diagnostic performance of cutaneous temperature inpredicting increased tympanic temperature*Figure 2A) Comparison of receiver operating characteristic (ROC) curves showing relationship between sensitivity (true positive) and 1 – specificity (true negative) in determining value of cutaneous temperature for predicting various thresholds of hyperthermia ...Table 2Variables correlated with magnitude of the difference between cutaneous and tympanic temperature measurements*ConclusionsInfrared thermometry does not reliably detect febrile patients because its sensitivity was lower than that expected and the positive predictive value was low, which indicated a high proportion of false-positive results. Ng et al. (5) studied 502 patients, concluded that an infrared thermal imager can appropriately identify febrile patients, and reported a high area under the ROC curve value (0.972), which is similar to the area we found in the present study (0.925). However, such global assessment is of limited value because of low incidence of fever in the population. Rather than looking at positive predictive value or accuracy, one should determine negative predictive value. This determination might be of greater consequence if one considers an air traveler population or a population entering a hospital.Ng et al. (5) identified outdoor temperature as a confounding variable in cutaneous temperature measurement. Our study identified age as a variable that interferes with cutaneous measurement, but the role of gender is less obvious. Older persons showed impaired defense (stability) of core temperatures during cold and heat stresses, and their cutaneous vascular reactivity was reduced (12,13).Use of a simple infrared thermometry, rather than sophisticated imaging, should not be considered a limitation because this method concerns the relationship between cutaneous and central core temperatures. We can extrapolate our results to any devices that estimate cutaneous temperature and the software used to average it. Our study attempted to detect febrile patients, not infected patients. For mass detection of infection, focusing on fever means that nonfebrile patients are not detected. This last point is useful because fever is not a constant phenomenon during an infectious disease, antipyretic drugs may have been taken by patients, and a hypothermic ratherthan hyperthermic reaction may occur during an infectious process.In conclusion, we observed that cutaneous temperature measurement by using infrared thermometry does not provide a reliable basis for screening outpatients who are febrile because the gradient between cutaneous and core temperatures is markedly influenced by patient’s age and environmental characteristics. Mass detection of febrile patients by using this technique cannot be envisaged without accepting a high rate of false-positive results.AcknowledgmentWe thank David Baker for reviewing the manuscript.This study was supported by the Direction Générale de la Santé, Ministère de la Santé et de la Solidarité, Paris, France.Biography• Dr Hausfater is an internal medicine specialist in the emergency department of Centre Hospitalier Universitaire Pitié-Salpêtrière in Paris. His primary research interests are biomarkers of infection and inflammatory and infectious diseases. References1. Kaydos-Daniels SC, Olowokure B, Chang HJ, Barwick RS, Deng JF, Kuo SH, et al. ; SARS International Field Team. Body temperature monitoring and SARS fever hotline. Emerg Infect Dis2004;10:373–6. [PMC free article] [PubMed]2. Chng SY, Chia F, Leong KK, Kwang YPK, Ma S, Lee BW, et al. Mandatory temperature monitoring in schools during SARS. Arch Dis Child 2004;89:738–9. doi: 10.1136/adc.2003.047084. [PMC free article][PubMed] [Cross Ref]3. St John RK, King A, de Jong D, Brodie-Collins M, Squires SG, Tam TW Border screening for SARS.Emerg Infect Dis 2005;11:6–10. [PMC free article] [PubMed]4. Hughes WT, Patterson GG, Thronton D, Williams BJ, Lott L, Dodge R Detection of fever with infrared thermometry: a feasibility study. J Infect Dis 1985;152:301–6. [PubMed]5. Ng EY, Kaw GJ, Chang WM Analysis of IR thermal imager for mass blind fever screening. Microvasc Res 2004;68:104–9. doi: 10.1016/j.mvr.2004.05.003. [PubMed] [Cross Ref]6. Erickson RS, Meyer LT Accuracy of infrared ear thermometry and other temperature methods in adults. Am J Crit Care 1994;3:40–54. [PubMed]中文译文:新发传染性疾病.2008八月;14(8):1255–1258.DOI:10.3201/eid1408.080059PMCID: PMC2600390 红外测温仪检测发热患者的皮肤彼埃尔侯司法特,赵岩,史蒂芬妮德弗雷纳,帕斯卡尔,和布鲁诺里乌摘要我们评估皮肤红外测温的准确性,通过病人的额头检测温度,发热病人进入急科室进行检测。

红外温度测试仪中英文翻译讲课讲稿

红外温度测试仪中英文翻译讲课讲稿

附录一:英文技术资料翻译英文原文:Emerg Infect Dis. 2008 August; 14(8): 1255–1258.doi: 10.3201/eid1408.080059PMCID: PMC2600390Cutaneous Infrared Thermometry for Detecting Febrile PatientsPierre Hausfater, Yan Zhao, Stéphanie Defrenne, Pascale Bonnet, and Bruno Riou* Author information Copyright and License informationThis article has been cited by other articles in PMC.AbstractWe assessed the accuracy of cutaneous infrared thermometry, which measures temperature on the forehead, for detecting patients with fever in patients admitted to an emergency department. Although negative predictive value was excellent (0.99), positive predictive value was low (0.10). Therefore, we question mass detection of febrile patients by using this method.Keywords: Fever, mass detection, cutaneous infrared thermometry, infectious diseases, emergency, dispatchRecent efforts to control spread of epidemic infectious diseases have prompted health officials to develop rapid screening processes to detect febrile patients. Such screening may take place at hospital entry, mainly in the emergency department, or at airports to detect travelers with increased body temperatures (1–3). Infrared thermal imaging devices have been proposed as a noncontact and noninvasive method for detecting fever (4–6). However, few studies have assessed their capacity for accurate detection of febrile patients in clinical settings. Therefore, we undertook a prospective study in an emergency department to assess diagnostic accuracy of infrared thermal imaging.The StudyThe study was performed in an emergency department of a large academic hospital (1,800 beds) and was reviewed and approved by our institutional review board (Comitéde Protection des Personnes se Prêtant àla Recherche Biomédicale Pitié-Salpêtrière, Paris, France). Patients admitted to the emergency department were assessed by a trained triage nurse, and several variables were routinely measured, including tympanic temperature by using an infrared tympanic thermometer (Pro4000; Welch Allyn, Skaneateles Falls, NY, USA), systolic and diastolic arterial blood pressure, and heart rate.Tympanic temperature was measured twice (once in the left ear and once in the right ear). This temperature was used as a reference because it is routinely used in our emergency department and is an appropriate estimate of central core temperature (7–9). Cutaneous temperature was measured on the forehead by using an infrared thermometer (Raynger MX; Raytek, Berlin, Germany) (Figure 1). Rationale for an infrared thermometer device instead of a larger thermal scanner was that we wanted to test a method (i.e., measurement of forehead cutaneous temperature by using a simple infrared thermometer) and not a specific device. The forehead region was chosen because it is more reliable than the region behind the eyes (5,10). The latter region may not be appropriate for mass screening because one cannot accurately measure temperature through eyeglasses, which are worn by many persons. Outdoor and indoor temperatures were also recorded.Figure 1Measurement of cutaneous temperature with an infrared thermometer. A) The device is placed 20 cm from the forehead. B) As soon as the examiner pulls the trigger, the temperature measured is shown on the display. Used with permission.The main objective of our study was to assess diagnostic accuracy of infrared thermometry for detecting patients with fever, defined as a tympanic temperature >38.0°C. The second objective was to compare measurements of cutaneous temperature and tympanic temperature, with the latter being used as a reference point. Data are expressed as mean ± standard deviation (SD) or percentages and their 95% confidence intervals (CIs). Comparison of 2 means was performed by using the Student t test, and comparison of 2 proportions was performed by using the Fisher exact method. Bias, precision (in absolute values and percentages), and number of outliers (defined as a difference >1°C) were also recorded. Correlation between 2 variables was assessed by using the least square method. The Bland and Altman method was used to compare 2 sets of measurements, and the limit of agreement was defined as ±2 SDs of the differences (11). We determined the receiver operating characteristic (ROC) curves and calculated the area under the ROC curve and its 95% CI. The ROC curve was used to determine the best threshold for the definition of hyperthermia for cutaneous temperature to predict a tympanic temperature >38°C. We performed multivariate regression analysis to assess variables associated with thedifference between tympanic and infrared measurements. All statistical tests were 2-sided, and a p value <0.05 was required to reject the null hypothesis. Statistical analysis was performed by using Number Cruncher Statistical Systems 2001 software (Statistical Solutions Ltd., Cork, Ireland).A total of 2,026 patients were enrolled in the study: 1,146 (57%) men and 880 (43%) women 46 ± 19 years of age (range 6–103 years); 219 (11%) were >75 years of age, and 62 (3%) had a tympanic temperature >38°C. Mean tympanic temperature was 36.7°C ± 0.6°C (range 33.7°C–40.2°C), and mean cutaneous temperature was 36.7°C ± 1.7°C (range 32.0°C–42.6°C). Mean systolic arterial blood pressure was 130 ± 19 mm Hg, mean diastolic blood pressure was 79 ± 13 mm Hg, and mean heart rate was 86 ± 17 beats/min. Mean indoor temperature was 24.8°C ± 1.1°C (range 20°C–28°C), and mean outdoor temperature was 10.8°C ± 6.8°C (range 0°C–32°C). Reproducibility of infrared measurements was assessed in 256 patients. Bias was 0.04°C ± 0.35°C, precision was 0.22°C ± 0.27°C (i.e., 0.6 ± 0.7%), and percentage of outliers >1°C was 2.3%.Diagnostic performance of cutaneous temperature measurement is shown in Table 1. For the threshold of the definition of tympanic hyperthermia definition used (37.5°C, 38°C, or 38.5°C), sensitivity of cutaneous temperature was lower than that expected and positive predictive value was low. We attempted to determine the best threshold (definition of hyperthermia) by using cutaneous temperature to predict a tympanic temperature >38°C (Figure 2, panel A). Area under the ROC curve was 0.873 (95% CI 0.807–0.917, p<0.001). The best threshold for cutaneous hyperthermia definition was 38.0°C, a condition already assessed in Table 1. Figure 2, panels B and C shows the correlation between cutaneous and tympanic temperature measurements (Bland and Altman diagrams). Correlation between cutaneous and tympanic measurements was poor, and the infrared thermometer underestimated body temperature at low values and overestimated it at high values. Multiple regression analysis showed that 3 variables (tympanic temperature, outdoor temperature, and age) were significantly (p<0.001) and independently correlated with the magnitude of the difference between cutaneous and tympanic measurements (Table 2).Table 1Assessment of diagnostic performance of cutaneous temperature inpredicting increased tympanic temperature*Figure 2A) Comparison of receiver operating characteristic (ROC) curves showing relationship between sensitivity (true positive) and 1 – specificity (true negative) in determining value of cutaneous temperature for predicting various thresholds of hyperthermia ...Table 2Variables correlated with magnitude of the difference between cutaneous and tympanic temperature measurements*ConclusionsInfrared thermometry does not reliably detect febrile patients because its sensitivity was lower than that expected and the positive predictive value was low, which indicated a high proportion of false-positive results. Ng et al. (5) studied 502 patients, concluded that an infrared thermal imager can appropriately identify febrile patients, and reported a high area under the ROC curve value (0.972), which is similar to the area we found in the present study (0.925). However, such global assessment is of limited value because of low incidence of fever in the population. Rather than looking at positive predictive value or accuracy, one should determine negative predictive value. This determination might be of greater consequence if one considers an air traveler population or a population entering a hospital.Ng et al. (5) identified outdoor temperature as a confounding variable in cutaneous temperature measurement. Our study identified age as a variable that interferes with cutaneous measurement, but the role of gender is less obvious. Older persons showed impaired defense (stability) of core temperatures during cold and heat stresses, and their cutaneous vascular reactivity was reduced (12,13).Use of a simple infrared thermometry, rather than sophisticated imaging, should not be considered a limitation because this method concerns the relationship between cutaneous and central core temperatures. We can extrapolate our results to any devices that estimate cutaneous temperature and the software used to average it. Our study attempted to detect febrile patients, not infected patients. For mass detection of infection, focusing on fever means that nonfebrile patients are not detected. This last point is useful because fever is not a constant phenomenon during an infectious disease, antipyretic drugs may have been taken by patients, and a hypothermic ratherthan hyperthermic reaction may occur during an infectious process.In conclusion, we observed that cutaneous temperature measurement by using infrared thermometry does not provide a reliable basis for screening outpatients who are febrile because the gradient between cutaneous and core temperatures is markedly influenced by patient’s age and environmental characteristics. Mass detection of febrile patients by using this technique cannot be envisaged without accepting a high rate of false-positive results.AcknowledgmentWe thank David Baker for reviewing the manuscript.This study was supported by the Direction Générale de la Santé, Ministère de la Santé et de la Solidarité, Paris, France. Biography• Dr Hausfater is an internal medicine specialist in the emergency department of Centre Hospitalier Universitaire Pitié-Salpêtrière in Paris. His primary research interests are biomarkers of infection and inflammatory and infectious diseases. References1. Kaydos-Daniels SC, Olowokure B, Chang HJ, Barwick RS, Deng JF, Kuo SH, et al. ; SARS International Field Team. Body temperature monitoring and SARS fever hotline. Emerg Infect Dis2004;10:373–6. [PMC free article] [PubMed]2. Chng SY, Chia F, Leong KK, Kwang YPK, Ma S, Lee BW, et al. Mandatory temperature monitoring in schools during SARS. Arch Dis Child 2004;89:738–9. doi: 10.1136/adc.2003.047084. [PMC free article][PubMed] [Cross Ref]3. St John RK, King A, de Jong D, Brodie-Collins M, Squires SG, Tam TW Border screening for SARS.Emerg Infect Dis 2005;11:6–10. [PMC free article] [PubMed]4. Hughes WT, Patterson GG, Thronton D, Williams BJ, Lott L, Dodge R Detection of fever with infrared thermometry: a feasibility study. J Infect Dis 1985;152:301–6. [PubMed]5. Ng EY, Kaw GJ, Chang WM Analysis of IR thermal imager for mass blind fever screening. Microvasc Res 2004;68:104–9. doi: 10.1016/j.mvr.2004.05.003. [PubMed] [Cross Ref]6. Erickson RS, Meyer LT Accuracy of infrared ear thermometry and other temperature methods in adults. Am J Crit Care 1994;3:40–54. [PubMed]中文译文:新发传染性疾病.2008八月;14(8):1255–1258.DOI:10.3201/eid1408.080059PMCID: PMC2600390 红外测温仪检测发热患者的皮肤彼埃尔侯司法特,赵岩,史蒂芬妮德弗雷纳,帕斯卡尔,和布鲁诺里乌摘要我们评估皮肤红外测温的准确性,通过病人的额头检测温度,发热病人进入急科室进行检测。

学习温度控制器应熟知的几个英文单词

学习温度控制器应熟知的几个英文单词

学习温度控制器应熟知的几个英文单词学习温度控制器应熟知的几个英文单词对于学习温度控制器的人来说,熟知一些相关的英文单词是非常重要的。

这些单词涉及到温度控制器的基本原理、功能和操作等方面,掌握它们可以帮助我们更好地理解温度控制器的工作原理以及使用方法。

下面将介绍几个学习温度控制器时应熟知的英文单词。

1. Temperature(温度)Temperature是指物体内部分子的平均热运动程度的一种度量。

在温度控制器中,温度是一个非常重要的参数,它决定着控制器的工作状态和输出。

了解温度这个概念对于学习温度控制器是非常关键的。

2. Controller(控制器)Controller是指温度控制器的核心部件,它用于监测和控制温度。

控制器可以根据设定的温度值来自动调节加热、制冷或通风系统的工作状态,以保持温度在设定范围内稳定。

3. Sensor(传感器)Sensor是负责测量温度的装置或器件。

在温度控制器中,传感器起着重要的作用,它能够感知物体的温度并将其转化为电信号,然后传输给控制器进行处理。

4. Setpoint(设定值)Setpoint是指控制器中设定的期望温度值。

根据设定值和实际温度值之间的差异,控制器会相应地调整输出来维持温度稳定。

5. Heating(加热)Heating是指温度控制器中一种常见的功能,它用于在温度低于设定值时提供加热。

通过加热操作,控制器将热能传递给被控制对象,以使其温度升高。

6. Cooling(制冷)Cooling是指温度控制器中的另一种常见功能,它用于在温度高于设定值时提供制冷。

通过制冷操作,控制器将热能从被控制对象中抽取出来,以使其温度降低。

7. Hysteresis(滞后)Hysteresis是指温度控制系统中的一种现象,它描述的是温度控制器的输出在达到设定值后不立即改变方向的情况。

滞后现象是由于控制系统的惯性和对设定值的误差容忍导致的。

了解滞后现象有助于我们更好地理解温度控制器的工作原理。

传感器温湿度测量中英文资料外文翻译文献

传感器温湿度测量中英文资料外文翻译文献

中英文资料外文翻译文献SHT11/71传感器的温湿度测量Assist.Prof.Grish Spasov,PhD,BSc Nikolay KakanakovDepartment of Computer Systems,Technical University-branch Plovdiv,25,”Tzanko Djustabanov”Str.,4000Plovdiv,Bulgaria,+35932659576, E-mail:gvs@tu-plovdiv.bg,kakanak@tu-plovdiv.bg 关键词:温湿度测量,智能传感器,分布式自动测控这篇论文阐述了智能传感器的优点,介绍了SHT11/71温湿度传感器(产自盛世瑞公司)。

该传感器是一种理想的对嵌入式系统提供环境测量参数的传感器。

常规的应用时将SHT11/71放于实际的工作环境当中。

应用于分布式的温湿度监测系统。

使用单片机与集成网络服务器来实现对传感器的信息交流与关系。

这个应用是可实现与测试的。

1.介绍温湿度的测量控制对于电器在工业、科学、医疗保健、农业和工艺控制过程都有着显著地意义。

温湿度这两种环境参数互相影响,因为这至关重要的一点,在一些应用中他们是必须并联测量的。

SHT11/71是利用现代技术把温度、湿度测量元件、放大器、A/D转换器、数字接口、校验CRC计算逻辑记忆模块和核心芯片集成到一个非常小的尺寸上[1][3]。

采用这种智能传感器可以缩短产品开发时间和成本。

整合入传感器模数转换和放大器的芯片使开发人员能够优化传感器精度和长期问的的元素。

并不是全结合形式的数字逻辑接口连通性管理的传感器。

这些优点可以减少整体上市时间,甚至价格[1][3]。

本文以SHT11/71(产自盛世瑞公司)智能传感器为例,介绍他的优势和测量程序给出一个实用实例来说明该工作的实现条件。

这个应用时可行可测试的。

2.智能传感器——SHT11/71SHT11/71是一个继承了温度和湿度组建,以及一个多元化校准数字器的芯片。

温度计的英文及造句

温度计的英文及造句
n. 温度记录器
已付费成功了还是复制不了有可能是电脑的浏览器兼容性问题或者手机机型不支持的问题
温度计的英文及造句
温度计的英文:
thermograph
参考例句:
This thermometer is inaccurate.
这个温度计不准确。Readings on a thermometer,dial, etc
温度计、刻度盘等的读数A column of mercury,ie in a thermometer
加热炉用金属丝作为温度计。 The thermometer registered 32℃.
温度计显示的读数为32℃。The thermometer stood at 70 Fahrenheit.
温度计上是华氏70度。The thermometer registered 32C.
温度计显示的读数为32C.thermograph是什么意思:
水银柱(温度计中).The thermometer records 40oC.
温度计显示出40℃。The thermometer reads 27 degrees.
温度计的读数是27度。The thermometer registered 70 degermometer uses a metal strip.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

土壤温度测量的设计1.简介温度是土壤的一个十分重要的环境因素,它直接影响微生物的活跃性及有机物的分解,影响植物的根吸收水分与矿物质,同时它在植物生长率及根的范围上发挥着重要作用。

据统计,植物的根一般在地下50厘米范围内,因此测量这一范围内不同深度的土壤温度变得十分有意义。

目前,土壤温度测量仪器可分为三类。

第一种,是利用热敏电阻与土壤温度之间的关系测量实际温度。

在使用这类仪器前,系统参数需要校正,同时当解决系统遇到的问题时,十分不便。

第二种是非接触式的土壤测温仪器,它通过红外线测量温度,这种设备价格昂贵。

第三种,通过数字温度计测量温度。

目前,这类仪器不仅可测量一点的土壤温度,还可将数据进行存储与传输。

总之,上述设备因为价格过于昂贵或功能过于简单,而得不到广泛应用。

因此,一种价格更廉价,更能更强大的仪器需要去开发设计。

2.设计与原理本设计运用高品质单片机C8051F310作为核心控制器,它主要包括以下功能模块,如数据采集模块、显示与存储模块、时钟模块、串行通信模块、键控控制块及电源模块。

如图1所示系统组成及如何工作。

图 1 系统框图该系统可在不同深度测量10点的土壤温度,在采集数据的同时,并将温度及时间数据予以显示之后,系统通过串行通信接口将数据传送到计算机。

用户可以通过按键设置系统参数及运行系统。

经过试验,这种效率高成本低的便携式的仪器能平稳工作且运行良好。

2.1硬件设计在硬件设计中,系统可利用的部分包括C8051F310单片机、DS18B20数字温度传感器、ISL6292可编程锂电池充电管理芯片、NCP500电压管理芯片以及DS1302时钟芯片,它们通过相应的外围电路连接在一起,同时这几部分是系统的核心结构。

下面就介绍这些核心部分及其外围电路。

2.1.1高质量C8051F310单片机C8051F310是一款兼容8051指令集的完全集成的混合信号ISP型MCU芯片。

C8051F310主要由CIP-51内核、外围模拟电路、数字I/O口及电源模块组成。

其中,CIP-51内核采用一种管线式结构,因此它大大增加其指令吞吐量,其最大时钟频率为25MHz,峰值为25MIPS。

为我们所熟知的是它的CIP-51内核支持包括8052标准的所有外围设备。

其数字数据交叉开关允许将内部数字系统资源的影像传送到I/O端口,并且C8051F310单片机总共有29个I/O端口。

2.1.2 DS18B20数字温度传感器DS18B20数字温度传感器可测量温度范围为-55°C~+125°C。

DS18B20共有3个引脚,分别为数据I/O口DQ、电源引脚VCC以及接地引脚GND。

如图2所示,DS18B20的工作电路。

因为每一个DS18B20都具有一个唯一的芯片序列号,所以多个DS18B20可以连接在同一条数据总线上。

这就使得不同的温度传感器放置在不同位置,同时为系统的硬件设计提供方便。

图2 DS18B20工作电路本系统利用10个DS18B20数字温度传感器,去测量位于地下50厘米内的10个不同位置的土壤温度。

第一个DS18B20与第二个公用一条总线,第三个与第四个共享一条,剩余的DS18B20直接通过自身的总线接口连接在一起。

因为系统用于太多的DS18B20传感器,因此需要接外部电源。

通过DS18B20采集到的数据要经过一个0.1μF的电容过滤,使得单片机的I/O口与电路接口连接在一起。

2.1.3电源与充电电路整个系统被包装在一个密封的盒子里,因此它需要充电的锂电池,而不至于频繁的打开盒子去更换电源。

ISL6292是一种单节锂离子或锂聚合物电池充电器,它能提供系统运行的最低输入电压2.4V。

ISL6292也可用作传统的线性充电器。

因为锂电池输出电压范围在2.8V与4.2V之间,而系统需要工作在3V的稳定电压,因此需要利用NCP500电压管理芯片去提供系统稳定电压。

如图3所示,NCP500的工作电路,其中VIN接口与锂电池的输出端连接在一起,AIN0接口与C8051F310单片机模拟接口相连,通过A/D转换获得锂电压的数字值。

图3 NCP500工作电路2.2 软件设计本设计利用KEIL C软件进行单片机C语言编程与调试。

2.2.1主程序为了能过实现系统的功能,主程序结构设计如下所示。

当系统启动后,系统进行初始化设置,接着程序进入一个循环,首先检测电压源,接着C8051F310单片机读取来自DS18B20数字温度传感器以及DS1302时钟的数据,接着进行数据的显示与存储,之后主程序检测中断是否开启,如果中断开启,程序进入中断服务程序;如果中断未开启,程序进入下一个循环。

2.2.2中断子程序中断子程序位于主程序最后,当主程序判读中断标志位为真时,将执行中断子程序。

键盘中断服务程序能帮助用户通过按动在仪器上的按键启动中断服务,以此来设定系统的初始值。

键盘中断服务程序的结构与串行通信中断程序十分相似,因此下面作详细说明。

本仪器与计算机通过RS232串行通信接口相连。

根据通信协议,每一中断被分配一个唯一的机器码。

当仪器接收到来自计算机的中断时,首先程序将来自外部中断的机器码与自身的机器码作比较,如果机器码相符合,则仪器对中断做出相应反应。

图4显示了串行通信中断服务程序。

图 4 串行通信中断流程图3. 结果与讨论本系统主要用于测量土壤温度,其综合功能主要有显示、存储和传输。

用户可以通过RS232串行通信接口将本仪器与计算机相连,因此可以将仪器所测的时间与温度数据传送带计算机。

本系统较之前的仪器功能有很大改善与提高。

首先,本系统可以进行多点土壤温度测量,因此温度数据十分充足。

其次,本系统采用充电锂电池供电,很大程度上延长仪器的使用范围。

最重要的是,在本系统的硬件与软件的设计过程中,很大程度上考虑其低功率消费。

总而言之,这是一款效率高成本低的、便携的、精密的新型土壤温度测量仪器。

鸣谢感谢北京科技计划对本项目(编号:Z0006321001391)的支持。

The design of the soil temperature measurement1.IntroductionThe temperature of soil is a vital environmental factor, which directly influences the activity of microorganisms and the decomposition of organic substances. It can affect roots absorbing water and mineral elements. It also plays an important role in the growth rate and range of roots. Statistically, roots of most plants are within 50 centimeters underground, so it becomes very significant to measure the soil temperature of different depth in this level.The Soil Temperature Measuring Instruments used nowadays mainly fall into three types, the first type is the measure temperature by making use of the relationship between the soil temperature and the temperature-sensitive resistor. Before using this sort of instruments, the system parameters need to be adjusted; it is inconvenient to repair when the system runs into trouble. The second type is non-contact Soil Temperature Measuring Instrument which use infrared ray to measure temperature, this sort of instruments is quite expensive. The third type is instrument measure temperature by making use of digital thermometer, at the present time, this sort of instruments can only measure one point of soil temperature, and the data can not be stored or transmitted.In all, the products mentioned above can hardly become popular for they are either costly too expensive or functionally too simple. So a new kind of cheaper and more advanced instrument is required to be invented.2.Materials And MethodThis system applies the high quality Single Chip C8051F310 as the core controller, it mainly includes some functional blocks such as Data Collection Block, Display and Storage Block,Real Clock Block, Serial Communication Block, Keying Control Block and PowerSource Block. Fig. 1 shows what the system consists and how it functions。

The system can measure soil temperature of ten points in different depth, it can display and store both the data of temperature and the time, at which the data is collected, after that, it can transmit the data to the computer through serial communication port. The user can set system parameter or operate the system by pressing keys. By experiment, this cost-effective and portable instrument works stably and operates well.Fig. 1 System block diagram2.1 Hardware designIn the hardware design, the system utilizes parts including MCUC8051F310, Digital Thermometer DS18B20s, power charge Chip ISL6292, voltage management Chip NCP500 and real-clock Chip DS1302, combining with corresponding peripheral circuits, and these parts make the main structure of the system. Some of the main parts and its peripheral circuits will be introduced as follows.2.1.1 High quality MCU C8051F310C8051F310 device is fully integrated mixed-signal system-on-a-chip MCU, whose microcontroller is compatible with 8051 instruction set. C8051F310 mainly composes of microcontroller core CIP-51, analog peripherals, digital I/Os and the power unit. The CIP-51 core employs a pipelined architecture that greatly increases its instruction throughput, with a maximum system clock at 25MHZ, it has a peak throughout of 25MIPS. The CIP-51 core offers all the peripherals included with a standard 8052, which is familiar to Chinese technologists. The Digital Crossbar allows mapping of internal digital system resources to Port I/O pins; C8051F310 device includes a total of 29 I/O pins.2.1.2 The DS18B20 digital thermometerThe DS18B20 Digital Thermometer(He Xicai 2001;Chen Liangguang 2001 ).measurestemperatures from -55℃ to +125℃.DS18B20 includes three pins, respectively are data I/O PinDQ ,power supply Pin VDD and the GND Pin.2 shows the DS18B20 application chart.Because each DS18B20 contains a unique silicon serial number, multipleDS18B20s can exist on the same 1-Wire bus. This allows for placing temperature sensors in many different places and provides convenience for the hardware design in this system.Fig. 2. Application chart of DS18B20This system utilizes ten DS18B20s to measure temperature of ten points soil in different depth within 50 centimeters. The first DS18B20 and the second share a 1-Wire bus, the third and the fourth share one, the other six DS18B20s communicate through their own 1-Wire bus respectively. The system applies external power source, as there are too many DS18B20s. The data collected by DS18B20s is filtered by a 0.1uF capacitor, and then lead to the I/O port of MCU by interface circuits.2.1.3 Power source and recharge circuitsThe whole system is contained in a sealed box; it employs a rechargeable lithium battery so as not to open the box frequently.The ISL6292 is an integrated single-cell Li-ion or Li- polymer Battery Charger, which is capable of operating with an input voltage as low as 2.4V. The ISL6292 can be used as a traditional linear charger.For the output voltage of lithium battery ranges from 2.8V to 4.2V, and the system works at a constant voltage of 3V, so it utilizes a voltage variation chip NCP500 to supply the system with a stable voltage. Fig. 3 shows the application chart of NCP500, the Pin VIN connects to the output of lithium battery ; Pin AIN0 outputs to an analog pin of C8051F310,the digital value of lithium voltage can be acquired after a A/D conversion.Fig. 3. Application chart of NCP5002.2 Software designThe MCU program written in C Language was assembled and debugged in Keil C Assembler (Ma Zhongmei et al. 1998).2.2.1 The main programIn order to realize its functions, the structure of the main program isdesigned as follow. When the system is powered on, the system starts initialization, then the program runs into a circle, firstly it check the source voltage, secondly the MCU reads data from DS18B20s and real clock DS1302, thirdly the data is displayed and stored, after that, the main program check whether the interruption flag is set or not, if it equals one, the program runs into the part of interruption program, if not, the main program runs into another circle. 2.2.2 The interruption sub-programsThe interruption sub-programs are at the end of the main program, when the main program discovers the interruption flag true, it will runs into the interruption sub-programs.The Key-Interruption helps to set the system parameters by pressing keys on the box to intrigue the interruption program. The structure of Key-Interruption Sub-Program is somehow similar to the Serial Communication Interruption Sub-Program, so only the later is described in detail.Fig. 4. Flow chart of serial communication interruptionThe instrument and the computer are connected via RS-232 SerialCommunication Port. According to the communication protocol, every instrument is assigned a unique machine number. When the instrument receives instructions from the computer, the program first compare its own machine number with the machine number sampled from the instructions, if the machine number is matched, the instrument then respond to the instructions. Fig. 5 shows the flow chart of Serial Communication Interruption Program.3.Results And DiscussionCombining with functions such as display, storage and transmission, this system is mainly used in measuring soil temperature. User can connect this instrument to computer via RS-232 Serial Port, through which the data of temperature and time can be transmitted to the PC. It makes a lot of improvements as well as makes full use of the previous products. First, this instrument is capable of obtaining temperature of multipoint soil, so the temperature data is adequate. Second, this system employs rechargeable lithium battery, which largelyprolongs the span of the instrument.Furthermore, in the process of hardware and softwaredesign, low power consumption was always taken into consideration. In a word, this instrument is cost-effective, portable and precise.AcknowledgmentsThis work is funded by the project for Beijing Science and Technology Plan (Contract Number: Z0006321001391).11。

相关文档
最新文档