复变函数与积分变换 第二章
复变函数及积分变换第二章
x
arg z在负实 轴上不连续.
若z0=x0+iy0不是原点也不是负实轴及虚轴上的点
arctan( y / x),
arg z arctan( y / x) π,
arctan( y / x), arctan( y / x),
x0 0
lim
z z0
arg
z
lim
( x, y)( x0
,
y0
)
arctan(
) ,则说函数 f(z) 在点 z0 处连 内每一点都连续,那么称函
数f(z)在区域D内连续.
定理2.3 若 f(z)、g(z) 在点z0连续,则其和、差、积、 商(要求分母不为零)在点z0处连续.
(1)多项式 w a0 zn a1zn1 an1z an 在整个复平
面上连续;
(2)任何一个有理分式函数
例2.2 判断下列函数在原点处的极限是否存在,若存
在,试求出极限值:
(1) f (z)
z Re(z) ; z
(2) f (z)
Re( z
z
2
2
)
.
解: (1)方法一
因为
f (z)
z
Re(z) z
z
所以 0,取 ,当0 z 时,总有
f (z) 0 f (z) z
根据极限定义 lim f (z) 0 z0
解:dw lim f (z Δz) f (z) lim (z Δz)n zn
dz Δz0
Δz
Δz 0
Δz
Δlizm0(Cn1 zn1 Cn2 zn2Δz
C n1 n
zΔz
n2
Cnn Δz n1 )
Cn1zn1 nzn1,
复变函数与积分变换第二章:解析函数
u v i x x
偏导数的定义
若沿平行于虚轴的方式 z z z(x 0)
f ( z z ) f ( z ) f ( z ) lim z 0 z [u( x , y y ) iv ( x , y y )] [u( x , y ) iv ( x , y )] lim y 0 i y u( x , y y ) u( x , y ) v ( x , y y ) v ( x , y ) lim i lim y 0 y 0 i y i y
f ' ( z ) ux iv x ux iuy v y iuy v y iv x
函数在区域 D 内解析的充要条件
定理二
函数 f ( z ) u( x , y ) iv ( x , y ) 在其定义
域 D 内解析的充要条件是: uபைடு நூலகம் x , y )与 v ( x , y ) 在 D 内可微, 并且满足柯西-黎曼方 程.
z ( z0 z )( z0 z ) z0 z0 z0 z z0 , z z
z 关键看 , 如果z0 0则极限存在,否则不存在。 z
定理
(1) 在区域 D 内解析的两个函数 f ( z ) 与 g( z ) 的 和、差、积、商 (除去分母为零的点 )在 D 内解析.
(6)
f [ g( z )] f ( w ) g( z ). 其中w g( z )
1 (7) f ( z ) , 其中 w f ( z )与z ( w )是 ( w ) 两个互为反函数的单值 函数, 且 ( w ) 0
微分的概念:
设函数 w f ( z )在 z0 可导, 则 w f ( z0 z ) f ( z0 ) f ( z0 ) z ( z )z ,
复变函数与积分变换第2章2.3导数
例3
讨论函数f ( z )
xy 在z 0的可微性. xy , v( x , y ) 0所以
解 由于u( x , y )
u( x ,0) u(0,0) ux (0,0) lim 0 v y (0,0) x 0 x
u(0, y ) u(0,0) u y (0,0) lim 0 v x (0,0) y 0 y
讨论函数f ( z )
xy 在z 0的可微性.
例2 解 因为u( x , y ) x , v ( x , y ) y , 所以
2
u u v v 1, 0, 0, 2 y x y x y
u( x, y )和v( x, y )在复平面上处处可微, v u x 1 y 2 y 1 由C R方程 y 2 u v 0 x y 1 2 因此 , f ( z ) x iy 仅在直线Im(z )= 上 2 的各点可导
2 2
解:f ( z ) u( x , y ) iv ( x , y )在点z 0满足 u v u v C R方程: 0, 0 x y y x
但u( x , y )、v ( x , y )在点(0,0)不连续,所以复变 函数f ( z )在z 0不连续, 从而不可导.
第二章
导数
第三讲 复变函数的导数与解析函数 学习要点 掌握复变函数的导数与微分 掌握C-R方程与函数可导的充要条件
一、复变函数的导数与微分
1. 定义 设w f ( z )在区域D上有定义,z0为D中 一点,点z0 z z D . f ( z0 z ) f ( z ) 如果极限 lim 存在, z 0 z 则说f ( z )在z0可导,此极限值称为f ( z )在
机械工业出版社 复变函数与积分变换 第2章 解析函数
24
由 C R 方 ( u x 程 i x v ) z (1 i3 ) x (2 i4 ) y
f ( z z ) f ( z ) u u
x
y
z z i x (1 i3 ) z (2 i4 ) z
第二章 解析函数
2021/7/24
1
§2.1 解析函数的概念
1. 复变函数的导数定义 2. 解析函数的概念
GO
2
一. 复变函数的导数
(1)导数定义
定义 设函数w=f (z) z∈D, 且z0、 z0 +Δz∈D,
如果极限
l i m f(z0z)存在f,(z则0)称函数
z 0
z
f (z)在点z0处可导。称此极限值为f (z)在z0的导数,
证:明 f Rz e( z)Rz e)(
z
z
x x x x
x iy
x iy
当 z取 当 z取
实 纯
虚 数 0时 0,时 数 趋 f , f z 趋 于 z 1;于 0; lzi m 0 fz
不
存
在 .
4
(2)求导公式与法则
----实函数中求导法则的推广
① 常数的导数 c=(a+ib)=0. ② (zn)=nzn-1 (n是自然数).
15
如果复变函数 w = f (z) = u(x, y) + iv(x, y)在定义域 D内处处可导 ,则函数 w = f (z) 在 D内解析。 问题 如何判断函数的解析性呢?
16
一. 解析函数的充要条件
设 函 w数 f(z)u(x,y)iv (x,y)在 点 zxiy 可,则 导
复变函数第二章 1-2
0
lim u( x , y ) = u0 , lim v ( x , y ) = v0 .
x→ x0 y → y0
若 f ( z ) 在区域 D 内处处连续 , 则称 f ( z ) 在
z = z0
z → 0
f ( z0 + z ) f ( z0 ) . z
(1)
注: (1)式中的极限与 z0 + z → z0 ( z → 0)的方式无关 , 即: 无论 z0 + z 以何种方式趋于 z0 ,
f ( z0 + z ) f ( z0 ) 都趋于同一个数 . z
该极限称为 f ( z ) 在 z0 点的导数 , 记作
1 , 其中 z = ( w ) 和 w = f ( z ) 是互为反函 ′( w ) 数的单值函数 , 且 ′( w ) ≠ 0
注:w = f ( z ) 在 z0 点可导与在 z0 点可微是等价的 .
3
§2.1 解析函数的概念 —— 解析函数
二、解析函数 定义 1.2 若 f ( z ) 在 z0 及 z0 的某个邻域内处处可导 , 则 称 f ( z ) 在 z0 点解析 ; 若 f ( z ) 在区域 D 内的每 个点都解析 , 则称 f ( z ) 在区域 D 内解析 , 或称
lim arg z = π , lim arg z = π .
x= x0 y →0 + x= x0 y→ 0
z z + 在 z = 0 点是否有极限? 否 . z z Re( z ) 在 z = 0 点是否有极限? 否 . z
复变函数与积分变换
那么称A为f (z) 当z 趋向z0时的极限,记作
lim f (z) A
zz0
z平面
w f (z)
w平面
几何意义:当变点z一旦进入z0的充分小的去心邻域时,它的 象点 f(z)就落入A的预先给定的小邻域内。
注意:z趋于z0的方式是任意的
关于极限的计算,有下面的定理。
4 )
n
wn1
r
1 n
(cos
2(n 1)
n
i sin
2(n 1) )
n
例: 3 8
8 23 (cos i sin )
3 8 2(cos 2k i sin 2k )
3
3 k 0,1,2
即
1 i 3 k 0
简单曲线: t1 t2 , z(t1 ) z(t2 ) (方向)
简单闭曲线: 没有交叉点。
光滑曲线: x(t), y(t)存在、连续且不全为零
(12)单连通区域 设D为复平面上的区域,若在D内的任意简单闭曲线的内部 仍属于D,则称D为单连通区域,否则称多连通区域。
平面图形的复数表示
复数的三角形式与指数形式
利用极坐标来表示复数z, 则复数 z 可表示为:
三角式: z rcos i sin
x r cos
y
r
sin
r
x2 y2
A
rctan
y
x
指数式: z rei
复数的四则运算
规定: z1 z2 (x1 x2 ) i( y1 y2 )
复变函数与积分变换(修订版-复旦大学)课后的第二章习题答案
解:f(z)除 外处处可导,且 .
(4) .
解:因为
.所以f(z)除z=0外处处可导,且 .
6.试判断下列函数的可导性与解析性.
(1) ;
解: 在全平面上可微.
所以要使得
, ,
只有当z=0时,
从而f(z)在z=0处可导,在全平面上不解析.
(2) .
解: 在全平面上可微.
只有当z=0时,即(0,0)处有 , .
它们分别为
∴
∴满足C-R条件.
(3)当z沿y=x趋向于零时,有
∴ 不存在.即f(z)在z=0处不可导.
11.设区域D位于上半平面,D1是D关于x轴的对称区域,若f(z)在区域D内解析,求证 在区域D1内解析.
证明:设f(z)=u(x,y)+iv(x,y),因为f(z)在区域D内解析.
所以u(x,y),v(x,y)在D内可微且满足C-R方程,即 .
15.计算下列各值.
(1)
(2)
(3)ln(ei)=ln1+iarg(ei)=ln1+i=i
(4)
16.试讨论函数f(z)=|z|+lnz的连续性与可导性.
解:显然g(z)=|z|在复平面上连续,lnz除负实轴及原点外处处连续.
设z=x+iy,
在复平面内可微.
故g(z)=|z|在复平面上处处不可导.
所以f(z)在z=0处可导,在全平面上不解析.
(3) ;
解: 在全平面上可微.
所以只有当 时,才满足C-R方程.
从而f(z)在 处可导,在全平面不解析.
(4) .
解:设 ,则
所以只有当z=0时才满足C-R方程.
从而f(z)在z=0处可导,处处不解析.
复变函数与积分变换第二章_解析函数
z0 可微等价.
与一元实函数类似, 记
df ( z0 ) f ( z0 ) z f ( z0 ) dz ,
称之为 f ( z ) 在 z0 处的微分. 如果函数 f ( z ) 在区域D内处处可微, 则称
f ( z ) 在区域D内可微, 并记为
df ( z ) f ( z ) dz .
也称 z0 是 f ( z ) 的解析点. (2) 若 f ( z ) 在区域D内每一点都解析,则称
f ( z ) 在区域D内解析, 或者称 f ( z ) 是区域D内的
解析函数.
(3) 设G是一个区域,若闭区域 D G , 且 f ( z ) 在G内解析,则称 f ( z ) 在闭区域 D 上 解析. 函数 f ( z ) 在 z0 处解析和在 z0 处可导意义 不同,前者指的是在 z0 的某一邻域内可导, 但后者只要求在 z0 处可导. 函数 f ( z ) 在 z0 处解析和在 z0的某一个邻 域内解析意义相同.
连续,但处处不可导.
定理1.1
例2.2 证明 f ( z ) x 2 yi 在复面内处处
设 f ( z ) u( x , y ) iv ( x , y ), 则 f (x)
(3) 求导法则
复变函数中导数的定义与一元实函数
导数的定义在形式上完全一致,同时,复变函
数中的极限运算法则也和实函数中一样,因而
当 z0 0 时, 由 z zz , z0 z0 z0 得
2
2
f ( z ) f ( z0 ) z 2 z z0 2 z0
( z 2 z z0 2 z ) ( z0 2 z z0 2 z0 ).
f ( z ) f ( z0 ) 2 z z0 ( z z0 ) z z 0 . 故 z z0 z z0
复变函数与积分变换课件第2章
例:设f(z)在z0处连续,且f(z0)不等于0,那么可以
找到z0的一个邻域,在这个邻域内f(z)不等于0
1 导数的定义
定义 设函数w=f(z)在包含z0的某邻域D内有定义 ,点z0+⊿z∈D. 如果极限
f ( z0 Δ z ) - f ( z0 ) lim Δ z 0 Δz
存在, 则称f(z)在z0可导, 此极限值就称为f(z)在z0 的导数, 记作
பைடு நூலகம்
定义 如果函数f(z)不仅在z0可导,而且在z0的某 个邻域内的任一点都可导, 则称f(z)在z0解析。 如果f(z)在区域D内每一点解析, 则称f(z)在D内解 析, 或称f(z)是D内的一个解析函数(全纯函数 或正则函数)
如果f (z)在点z0不解析,就称z0是f (z)的奇 点。
(1) w=f (z) 在 D 内解析等价于在D内可导。 (2) 函数f (z)在 z0 点可导,未必在z0解析。 (3)函数在区域D内的点z处解析,则z 一 定是D的内点。
(4) f ( z ) z Re( z )
例3. 证明 sin ' z cos z
例4 如果f '(z)在区域D处处为零, 则f(z)在D内为一常
数 .
4.高阶导数
二阶及二阶以上的导数称为高阶导数
例 应用公式
sin( z
2
) cos z ,
(n) 求 sin z
1.解析函数的概念
例2
求f ( z) z 在z 0时的极限. z
z z0
例3 求极限 lim cos z 例4 证明 f ( z ) Re z
在z 0时的极限不存在 .
z
定理2
若 lim f ( z ) A lim g ( z ) B, 则
复变函数与积分变换答案-第2章解析函数
11 27、第二章 解析函数习题详解1、(1) f 1(z )= z 4在定义域(-,+) 内连续;2) f 2(z ) =4z +5在定义域(-,+)内连续; 1在定义域-, 3,3, +内连续。
- 4, v = 16u + 64, 为一抛物线。
4、(1)w = z 3,则w = (2i )3= -8i , w =( 2+2i )3=2 2+12i -12 2-8i =-10 2+4i ;5、 f (z )=Re z =x ,当 y →0时, f (z )→1;当x →0时, f (z )→0,因为极限不等, z x + iy 所以当z →0时, f (z )极限不存在。
1在原点处不连续,故 w =i arg z +1 在负实轴上与原点 zz3) f 3 (z )= 22、w = z2u =x 2-y 2v = 2 xy u =x 2 -4,把直线C :y =2映射成:u =x -4v = 4 xvx = ,代入第一个式子,4u =3、1zw = = = z zzx - iy22,x + yv =x 22 x + y-y 22 x + y把直线C :x =1映射成,:vu =v =1 1+y 2-y 1+y 21-u u 2u= (1- u ) u v 2 + u 22)w = z 3,像域为0arg w 26、i arg z 在负实轴上与原点处不连续, 处不连续。
f (z +z )- f (z )z →0z= limz →0(z +z )2zy 2 = 1 -1 = u为一个圆周。
uz 2-(z +z )2z 2(z +z )2z 2 -z 2 -2z z -z 22= lim = lim = - 。
z →0 z z →0z 2(z +z )2zz 38、(1) f (z ) =5-3z +5z 2,在(-,+)内解析,且导数为 f (z ) = -3+10z ;12、(1) z =e 1-2i =ecos -i sin=-ei ;1222) f (z )=1 1 1z 4 -1 (z 2 -1)(z 2 +1) (z -1)(z +1)(z +i )(z -i )在(-,+)内除z =1,5z +431 1 5 3) f (z )= z +4,在(-,+)内除z = - 3外解析, f (z )=1+ 2 =1+ 52z + 32 2 2z +32 2(2z +3)且导数为: f(z )= 1(2z +3)-2(-2)=-5 (2z +3)29、(1) f (z )=Im z = y 在z 平面上的点点不可导,不解析(因柯西-黎曼条件不满足);2) f (z )= z 4 ,在平面上的点解析。
复变函数与积分变换 第二章课后答案
e z sin z e z sin z 则 dz z 2i dz 2 z 2i z 4 z 3 z 2 i 1
2i
e 2i sin 2i e 2i sin 2i e 2i sin 2i e 2i sin( 2i ) 2i 2i 2i 2i 2i 2 2 sin 2i e 2i e 2i sin 2i cosh 2i . 2
i
i
i i
= 2 cos i .
7. 沿指定曲线的正向计算下列各积分: (1)
C
ez dz , C : z 2 1 ; z2 dz (a 0) , C : z a a ; z a2
2
(2)
C
(3)
C
eiz 3 dz , C : z 2i ; 2 z 1 2 f ( z) dz , C : z 1 ; f ( z ) 在 z 1 上解析, z0 1 ; z z0
z 0
0.
4
(8) f ( z ) 有四个奇点, 其中 z i在c 内,作互不相交互不包含且 在 C 内的小圆周 c1和c2 包含 i 与-i,则
c1
(z
2
1 dz 1 dz 2 4)( z i ) z i c2 ( z 4)( z i ) z i
(2) 由于被积函数在全平面上解析,利用柯西积分定理得
求积分
C
3 z 2 dz 0 .
2. 设 C 是由点 0 到点 3 的直线段与点 3 到点 3 i 的直线段组成的折线,
C
Re zdz .
解 将 C 分为两段,从 z=0 到 z=3, c1 的方程为 z 3 x, 0 x 1,
(含答案)复变函数与积分变换习题解析2
习题2.11. 判断下列命题的真假,若真,给出证明;若假,请举例说明. (1)如果()f z 在0z 连续,那么0()f z '存在. (2)如果0()f z '存在,那么)(z f 在0z 解析. (3)如果0z 是()f z 的奇点,那么()f z 在0z 不可导. (4) 如果0z 是()f z和()g z 的一个奇点,那么0z 也是()()f z g z +和()()f z g z ⋅的奇点.(5)如果(,)u x y 和(,)v x y 可导,那么()(,)(,)f z u x y iv x y =+亦可导.2.应用导数定义讨论函数)Re()(z z f =的可导性,并说明其解析性.3.证明函数在0z =处不可导. 习题2.21. 设试证)(z f 在原点满足柯西-黎曼方程,但却不可导.(提示:沿抛物线x y =2趋向于原点)2. 判断下列函数在何处可导,何处解析,并在可导处求出其导数.(1)y ix xy z f222)(+=; (2)i y x y x z f 22332)(+-=; (3)=)(z f232z z -+; (4)22()2(1(2)f z x y i x y y =-+-+). 3.(1 (2 (3)iy x z f 2)(+=; (4 4. (1)iz z z f 2)(3+=; (25. 讨论下列各函数的解析性.(1)3223()33f z x x yi xy y i =+--; (2 (0)z ≠; (3)1(33)x iy ω-=-; (4习题2.31. 证明下列u 或v 为某区域的调和函数,并求解析函数()f z u iv =+. (1)2(1)u x y =-; (2)3223u x x xy =-+;(3)323u x xy =-; (4)23v xy x =+;(5)x y x v 222+-=; (62. 求k 值使22ky x u +=为调和函数,并求满足1)(-=i f 的解析函数iv u z f +=)(.3. 设函数iv u z f +=)(是一个解析函数,且y x xy y x y x v u 22332233---+-=+,求iv u z f +=)(.4. 证明:如果函数iv u z f +=)(在区域D 内解析,并满足下列条件之一,则)(z f 是常数.(1(2(3(4(5.5.(1(2)u -是v 的共轭调和函数.6. 如果iv u z f +=)(是z 的解析函数,证明:(1(2习题2.41.(2 (3(4(5(6)()i Ln e ; (7)i 3; (8)i i )1(+;(9)1(34)i i ++; (10))1sin(i +;(11)cos(5)i π+; (12)i ei cos 1++π.2(1 (2)0cos sin =+z z .3. (1 (2 (34.证明:(1)121212sin()sin cos cos sin z z z z z z +=+,212121sin sin cos cos )cos(z z z z z z -=+;2)1cos sin 22=+z z ; (3(4 (55.证明:(1)122=-z sh z ch ; (2)z ch z sh z ch 222=+;(3)cos sin shz shx y ichx y =+,cos sin chz chx y ishx y =+;(4)212121)(shz chz chz shz z z sh +=+,212121)(shz shz chz chz z z ch +=+.复 习 题 二一、单项选择题1.D2.C3.B4.A5.C6.C7.A8.A9.D 10.C 11.C 12.B一、单项选择题1. ). D.z sin2. 下列说法正确的是( ).A.函数的连续点一定不是奇点B.可微的点一定不是奇点C.)(z f 在区域D 内解析,则)(z f 在D 内无奇点D.不存在处处不可导的函数3. 下列说法错误的是( ). A.如果)(z f 在点0z 解析,则)(z f 在点0z 可导B.如果0z 是)(z f 的奇点,则)(0z f '不存在C.如果)(z f 在区域D 内可导,则)(z f 在D 内解析D.如果)(z f 在点0z 可导,则)(z f 在点0z 连续 4. 下列说法正确的是( ).A.iv u z f +=)(在区域D内解析,则v u ,都是调和函数B.如果v u ,都是区域D 内的调和函数,则iv u +是D 内的解析函数C.如果v u ,满足C-R 方程,则v u ,都是调和函数D.iv u +是解析函数的充要条件是v u ,都是调和函数5. 设函数iv u z f +=)(解析,则下列命题中错误的是( ).A.v u ,均为调和函数B.v 是u 的共轭调和函数C.u 是v 的共轭调和函数D.u -是v 的共轭调和函数6. 设函数iv u z f +=)(在区域D 内解析,下列等式中错误的是( ).7. 设在区域D 内v 为u 的共轭调和函数,则下列函数中为D 内解析函数的是( ). A.iu v - B.iu v + C.iv u - D.x x iv u -8. 函数z z z f Im )(2=在0=z 处的导数( ). A. 等于0 B. 等于1 C. 等于 -1 D. 不存在9. 下列数中为实数的是( ).A. 3)1(i -B. i sinC. LniD. i e π-310. 下列函数中是解析函数的是( ).A.xyi y x 222--B.xyi x +2 C. )2()1(222x x y i y x +-+- D. 33iy x + 11. 设z z f cos )(=,则下列命题中,不正确的是( ). A. )(z f 在复平面上处处解析 B. )(z f 以π2为周期12. 设Lnz =ω是对数函数,则下列命题正确的是( ).A. nLnz Lnz n =B. 2121Lnz Lnz z Lnz +=因为x z =是实常数,所以x Lnx Lnz ln ==二、填空题 在区域D 内三、计算题1. 指出下列函数的解析区域和奇点,并求出其导数.(1)zzezf z sincos)(+-=;(2(3(4(5(62..(1(3(53. 试证下列函数为调和函数,并求出相应的解析函数ivuzf+=)(.(1)xu=;(2)xyu=;(3)3223236yxyyxxu+--=;(4(5)yev x sin2=;(64. 已知22yxvu-=-,试确定解析函数ivuzf+=)(.5. 函数yxv+=是yxu+=的共轭调和函数吗?为什么?6.(1(2)ie43+;(3)Lni;(4(5(6)i-13;(7(8四、证明题1. 若函数),(yxu和),(yxv都具有二阶连续偏导数,且满足拉普拉斯方程,现令xyvus-=,yxvut+=,则2. 设)(zf与)(zg都在,0()0g z'≠,证明第二章习题、复习题参考答案习题2.11.(1)假(2)假(3)假(4)假(5)假2. 函数)Re()(zzf=处处不可导,处处不解析.习题2.22.(1)在0z =处可导,处处不解析,导数(0)0f '=;(2)在点)0,0(和处可导,处处不解析,导数0)0(='f ,(3)处处可导, (44.(1(25.(1(3.习题2.31.(1)ci iz z z f ++=22)(; (2)ci z z z f +-=32)(; (3)=)(z f 3z ci +; (4)=)(z f 23z iz c ++;(5)c iz iz z f ++=2)(2; (62.1k =-;2()f z z =.3.c y y x y v c x xy x u --+-=+--=23,232323,c i z z z f )1(2)(3-+-=. 习题2.41.(1 (2 (3)k )1(-)(Z k ∈; ((5(6(7)3ln 2i k e e π-)(Zk ∈; (9 ( (2.(1 (23.(1)正确; (2)正确; (3)正确.复习题二二、填空题2.0;3.c uv +2(c 为实常数);4.3,1,3-==-=n m l ;5.i +1;6.常数;8.ic ixy y x ++-222或ic z +2(c 为常数);9.i -; 10.πk e 2-),2,1,0( ±±=k .三、计算题1.(1(2(3(4(5(6z z z f cot csc )(-='.2.(1)在复平面内处处不可导,处处不解析;(2)在0=z 处可导,但在复平面内处处不解析,0)0(='f ;(3)在复平面内处处不可导,处处不解析;6.(1)4e -; (2))4sin 4(cos 3i e +; (3(4(6 (7。
大学高数复变函数与积分变换复习公式知识点
ℱ f nx ( j)n F()
4、积分性质
ℱ
x x0
f
xdx
1 F () j
ℱ
(
j
xn)
f
x
d
n F () d n
由 Fourier 变换的微分和积分性质,我们可以利用 Fourier 变换求解微积分方程。
四、卷积和卷积定理
f1(x) * f2 (x) f1( ) f2 (x )d
2、闭路积分: a) f zdz c
利用留数定理,柯西积分公式,高阶导数公式。
b) [u(x, y) iv(x, y)]dz c
三、柯西积分定理:
c f zdz 0
推论 1:积分与路径无关
f zdz z2 f (z)dz
c
z1
推论 2:利用原函数计算积分
z2 z1
f
(z)dz
F(z2 ) F(z1)
第四章 解析函数的级数
一、幂级数及收敛半径:
an (z b)n
n0
1、一个收敛半径为 R(≠0)的幂级数,在收敛圆内的和函数 f (z) 是解析函数,在这个收敛圆内,这
个展开式可以逐项积分和逐项求导,即有:
f 'z nan z bn n1
zb R
z f
0
z dz
n0
z
l an
大学高数复变函数与积分变换复习公式知识点
第一章 复变函数 一、复变数和复变函数
w f z ux, y ivx, y
二、复变函数的极限与连续
极限 lim f (z) A zz0
连续
lim f (z)
zz0
f (z0)
第二章 解析函数
一、复变函数 w f (z) u(x, y) iv(x, y) 可导与解析的概念。
复变函数与积分变换讲稿 第二章 拉普l拉斯变换
第二章拉普拉斯变换(2)拉普拉斯(Laplace )变换(简称拉氏变换)在电学、力学、控制论等很多工程与科学领域中有着广泛的应用。
对某些问题,它比傅氏变换的适用面要广,这是因为它对像原函数)(t f 要求的条件比起傅氏变换来要弱的缘故。
§1 拉普拉斯变换的概念 一、从傅氏变换到拉氏变换傅氏变换要求函数满足狄氏条件,且在),(+∞-∞内绝对可积,但在工程技术中,变量是时间,定义在[]∞,0内,而且,许多常用的函数(例如单位阶跃函数,正弦、余弦,线性函数等),都不满足绝对可积的条件,所以我们对傅氏变换中的被积函数)()(t u t ⨯φ,使其积分定义在[]+∞,0,0)()(,0=⨯<t u t t φ,另外,再乘以指数衰减函数)0(>-σσt e ,使其衰减速度加快,当+∞→t 时,只要σ足够大,则t e t u t t σφ-⨯⨯<)()(,0就能满足绝对可积,因此傅氏变换就转换为拉氏变换。
即 ⎰⎰⎰+∞-+∞+-+∞∞---===00)()()()()()(dt e t f dt e t f dt e e t u t F pt t i t i t ωσωσσφω, 其中 ωσφi p t u t t f +=⨯=,)()()(,令)()(p F ip F =-σσ,则可得 ⎰+∞-=0)()(dt e t f p F pt 称该积分变换为拉普拉斯变换。
二、拉氏变换的概念定义1 设)(t f 为实变量t 的实值(或复值)函数,当0≥t 时有定义,如果积分⎰+∞-0)(dt e t f pt (其中ωσi p +=,为复参数)在p 的某一区域内收敛,则由此积分就确定了一个复变数p 的复函数)(p F ,即⎰+∞-=0)()(dt t f p F pt ,称该积分变换为拉普拉斯变换 (1)记为 [])()(t f L p F =,即 []⎰+∞-=0)()(dt e t f t f L pt ,并称)(p F 为)(t f 的拉氏变换的像函数。
复变函数与积分变换2-3
10
如果将Lnz ln z iArgz中Argz 取主值arg z, 那末 Lnz 为一单值函数,记为ln z,称为Lnz 的主值.
27
例9 求 f (z) sin 5z 的周期.
解 因为 sin( z 2) sin z,
所以 sin( 5z 2) sin 5z,
又因为
sin(5z
2)
sin 5
z
2 5
所以
sin 5
z
2 5
sin 5z,
故 f (z) sin 5z 的周期是 2 . 5
28
2. 双曲函数的定义
i
arctan
3 2
2k .
(k 0, 1, 2,)
14
(2)Ln(3 3i)
ln 3 3i iArg(3 3i)
ln 2 3 iarctan 3 2k
3
ln 2
3
i
2k
6
.
(k 0, 1, 2,)
(3)Ln(3) ln 3 iArg(3)
ln 3 (2k 1)i. (k 0, 1, 2,)
2
2
2
2
2sin
2
sin
2
i
cos
2
7
2sin
2
cos
π
2
i
sin
π
2
因为 0 2π, sin 0,
2
上式就是复数 ei ei 的三角表示式.
所以 Arg(ei ei ) π 2kπ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若在区域 D内 处 处 连 续 , 则 称 f ( z )在D内 连 续 ; 若z、z0 C , 且 l i m f ( z ) f ( z0 ), 则 称 f (z)
z z0
在曲线 C上 点z0处 连 续 .
定理2.3 连续函数的和、差、积、商 (分母不为0) 仍为连续函数。
w z2 u x2 y2
v 2 xy
1 1 例2 若已知 f ( z ) x 1 x 2 y 2 iy 1 x 2 y 2 将 f ( z )表示成z 的函数 .
1 1 设z x iy , 则x ( z z ), y ( z z ) 2 2i 1 f (z) z z
对
象
复变函数(自变量为复数的函数) 研究复变数之间的相互依赖关系, 具体地就是复数域上的微积分。
主要任务
主要内容
复数与复变函数、解析函数、 复变函数的积分、级数等。
学习方法
复变函数中许多概念、理论、和 方法是实变函数在复数域内的推 广和发展,它们之间有许多相似 之处。但又有不同之处,在学习
中要善于比较、区别、特别要注
lim
z z0
z
lim
z z0
z z0
n 1 ( z z0 )(z n1 z n 2 z0 z0 ) n 1 lim nz0 z z0 z z0
③
设函数f (z),g (z) 均可导,则 [f (z)±g (z)] =f (z)±g(z),
对应关系来表达两对变量 u,v 与 x,y
之间的对应关系,以便在研究和理解复变
函数问题时,可借助于几何直观.
以下不再区分函数与映射(变换)。
例 已知映射w= z3 ,求区域 0<argz< 在平面w上的象。 3
1 例 已知映射 w , 判断: z平面上的曲线x 2 y 2 1被 z 映射成 w平面上怎样的曲线 ?
注意(1) 定义中 z z0 的方式是任意的. 与一元实变函数相比较要求更高. (2) A是复数. (3) 若f(z)在 z0 处有极限,其极限是唯一的.
运算性质
复变函数极限与其实部和虚部极限的关系: 定理2.1
设f ( z ) u( x, y ) iv( x, y )
则 lim f ( z ) A a ib
z z0 z z0
i m f (z) f (z) l A z z0 lim ( l i m g ( z ) 0) z z0 g ( z ) l i m g ( z ) z z0 B
z z0
. 例1 证明w x 2 y i ( x y 2 )在平面上处处有极限
定义 设函数w=f (z) z∈D, 且z0、 z0 +Δz∈D,
z 0
如果极限 lim
f ( z 0 z ) f ( z 0 ) 存在,则称函数 z
f (z)在点z0处可导。称此极限值为f (z)在z0的导数, 记作
dw f ' ( z0 ) dz
z z0
f ( z 0 z ) f ( z 0 ) lim z 0 z
处可导 .
④复合函数的导数 ( f [g(z)]) =f (w)g(z), 其中w=g(z)。
1 ⑤ 反函数的导数 f ' ( z ) ,其中: w=f (z) '(w)
若z 一个w值,称f ( z )是单值函数; z 多个w值,称f ( z )是多值函数.
今后无特别声明,所讨 论的函数均为单值函数 。
E f ( z )的定义集合,常常是平 面区域(定义域)
G {w w f ( z ) , z E } — 函数值集合
z x iy ( x , y ); w u iv ( u, v ) w f ( z ) f ( x iy ) u( x , y ) iv ( x , y )
l i m g( z ) B, 则
z z0 z z0 z z0
l i m f ( z ) g ( z ) l i m f ( z ) l i m g ( z ) A B l i m f ( z ) g ( z ) l i m f ( z ) l i m g ( z ) AB
设曲线 C为闭曲线或端点包括在 内的曲线段 若f ( z )在C上连续 M 0, 在曲线上恒有 f ( z ) M
例
讨论f (z)=argz的连续性。
y z o
(z)
P ( x ,0)
x
z
第二节 解析函数的概念
1. 复变函数的导数
2. 解析函数的概念
一. 复变函数的导数
(1)导数定义
在 z0 x0 iy0处连续 ( x , y ) ( x0 , y0 ) . lim v ( x , y ) v ( x 0 , y0 )
( x , y ) ( x0 , y0 )
lim
u( x , y ) u( x0 , y0 )
有界性:
设D为复平面上的有界闭域 若f ( z )在D上连续 M 0, z D, 恒有 f ( z ) M
如果w=f(z)在区域D内处处可导,则称 f (z)在区域D内可导。
注意
(1) Δz→0是在平面区域上以任意方式趋于零。 (2) z=x+iy,Δz=Δx+iΔy, Δf=f(z+Δz)-f(z)
可导 . 例 证明: f ( z ) Re z在平面上的任何点都不
证 明: f Re (z z ) Re (z ) z z
z 0
lim f ( z0 z ) f ( z0 ), 所 以f ( z )在z0连 续
求导公式与法则 ----实函数中求导法则的推广
① 常数的导数 c=(a+ib)=0. ② (zn)=nzn-1 (n是自然数).
证明
对于复平面上任意一点z0,有 n z n z0
z平面上的曲线x 1被 映射成 w平面上怎样的曲线 ?
反函数
定义 设 w =f (z) 的定义集合为E,函数值集合为G
f (z) z E w w G
一个(或几个) z E w G z ( w ) 则称z ( w)为w f ( z )的反函数(逆映照) .
由定理2.3 P ( z ) a 0 a1 z a n z n 在整个复平面内是连续 的; P(z) R( z ) 在复平面内除分母为 0点外处处连续 . Q( z )
定理2.4 连续函数的复合函数仍为连续函数。 定理2.5 设f ( z ) u( x , y ) iv( x , y )
显然有 w f [ ( w )] w G 当反函数单值时 z [ f ( z )] z E
当函数 (映 射 )w f ( z )和 其 反 函 数 (逆 映 射 ) z ( w )都 是 单 值 的 , 则 称 函(数 映射 )w f ( z ) 是一一的。也称集合 E与 集 合 G是 一 一 对 应 的 。
x x x x x iy x iy
当z取 实 数 趋 于 0时, f z 1;
f l i m 不存在 . z 0 z 当z取 纯 虚 数 趋 于 0时, f z 0;
1 例 讨论: f ( z ) 在整个z平面上的可导性 . z
故 u u( x, y ) v v( x, y )
w f ( z ) u iv u u( x , y ) v v( x, y )
2 例1 w z
令z x iy w u iv
则 w (u iv ) ( x iy)2 x 2 y 2 2 xyi
可导与连续
若 w=f (z) 在点 z0 处可导 w=f (z) 点 z0 处连续.
?
证 明: 若f ( z )在z0可 导, 则 0, 0, f ( z 0 z ) f ( z 0 ) f ( z0 ) , z f ( z 0 z ) f ( z 0 ) 令 z f ( z0 ),则 lim z 0, z 0 z 由此可得 f ( z0 z ) f ( z0 ) f ( z0 )z z z , 使得当 0 z 时, 有
[f (z)g(z)] = f (z)g(z) + f (z)g(z)
f ( z ) ' f ' ( z ) g( z ) f ( z ) g' ( z ) , ( g( z ) 0) g( z ) 2 g (z)
由以上讨论 P ( z ) a0 a1 z a n z n在 整 个 复 平 面 上 处 处 导 可; R( z ) P(z) 在 复 平 面 上 ( 除 分 母0 为 点外)处 Q( z )
意复数域上特有的那些性质与结 果。
第二章:解析函数
第一节 复变函数的概念、极限与连续性 1. 复变函数的概念 —与实变函数定义相类似
定义 设E为一个复数集。若对E中的每一个复数
z x iy,按照某种法则f 有确定的一个或几个 w u iv与之对应,则称复变数w是复变数z的 函数(简称复变函数),记作 w f ( z ).
z z0
z x iy z0 x0 iy0
( x , y ) ( x 0 , y0 ) ( x , y ) ( x0 , y0 )
lim
u( x , y ) a v( x, y ) b
lim
定理2
若 l i m f (z) A
z z0 z z0 z z0