祖暅求积法

合集下载

高考数学公开课——祖暅原理

高考数学公开课——祖暅原理
3.1415926 (肭数) 3.1415927 (盈数)
字景烁,又名祖暅之,是祖冲之 的儿子,自小对数学有浓厚的兴趣,经常与 父亲一起钻研数学问题。祖氏父子在数学和 天文学上都有杰出的贡献。 祖暅修补、编辑了祖冲之的《缀术》。 他运用祖暅原理十分巧妙的推导了球的体积 公式。他在数学上的成就,除了父亲对他的 影响,和他自己后天的努力是分不开的。

4 R3 . 3
注意:∵S
1 3 其形式与锥体的体积公式相似. 4 R , V球 S球表面积 R, 球表面积 3
例 1 有一种空心钢球,重 142 g,测得外径等于 5.0 cm,求它的内径(钢的比重是 7.9 g/cm3.) 解:设空心钢球的内径为 2x cm,那么钢球的重量为
夹在两个平行平面间的两个 几何体,被平行于这两个平面的 任意平面所截,如果截得的两个 截面的面积总相等,那么这两个 几何体的体积相等。
解释
棱柱、圆柱的截面有什么性质? 平行于底面的截面与底面相等. 设棱柱与圆柱的底面积都为S、高都为h,根 据祖暅原理,那么它们的体积相等,但等于多少 呢?为此还必须引进一个底面积为S、高为h的长 方体,而这样的长方体、棱柱、圆柱的体积都相 等.
中国数学史
1 刘徽 刘徽首先证明了《九章算术》中的球体 积公式是不正确的,并在《九章算术》 “开立圆术”注文中指出了一条推算球体 积公式的正确途径。 刘徽创造了一个新的立体图形,他称之 为“牟合方盖”,并指出:一旦算出牟 合方盖的体积,球体积公式也就唾手可 得。在一立方体内作两个互相垂直的内 切圆柱。这两个圆柱体相交的部分,就 是刘徽所说的“牟合方盖”。牟合方盖 恰好把立方体的内切球包含在内并且同 它相切。如果用同一个水平面去截它们, 就得到一个圆(球的截面),和它的外 切正方形(牟合方盖的截面)。

祖暅原理完整课件

祖暅原理完整课件
拓展了数学应用领域
祖暅原理的应用不仅仅局限于几何学领域,还可以拓展到物理学、 工程学等其他领域,为这些领域的发展提供了数学支持。
提高了数学家的思维能力
祖暅原理的证明需要较高的数学思维能力,因此它的提出也促进了 数学家思维能力的提高。
对后世数学家启示意义
重视基础概念的研究
祖暅原理的提出,强调了基础概念在数学发展中的重要性,对后世 数学家注重基础概念的研究产生了积极的影响。
主要贡献
祖暅在数学方面的主要贡献包括提出祖暅原理,即等高处横截面积相等的两个 立体,其体积也必然相等。这一原理在解决一些复杂的几何问题时具有重要的 作用。
南北朝时期数学发展概况
南北朝时期数学发展背景
南北朝时期是中国古代数学发展的重要阶段,这一时期的数 学家们在继承和发扬前人成果的基础上,取得了许多新的突 破和进展。
如何运用祖暅原理解决实际问题?解决方案:结合实际问题进行分析和讲解,引导学生掌握运用祖暅原理解 决实际问题的思路和方法;同时加强练习和巩固,提高学生的解题能力。
难点三
如何在现代数学视角下重新审视祖暅原理?解决方案:介绍现代数学中的相关概念和性质,引导学生了解祖 暅原理在现代数学中的地位和作用;同时鼓励学生进行探究和创新,发现新的证明方法和应用领域。
祖暅原理完整课件
contents
目录
• 祖暅简介与历史背景 • 祖暅原理内容及表述方式 • 祖暅原理证明方法及过程剖析 • 祖暅原理在几何学中应用举例 • 祖暅原理对数学发展影响及评价 • 跨学科视角下的祖暅原理思考
01
祖暅简介与历史背景
祖暅生平及主要贡献
祖暅生平
祖暅是南北朝时期著名的数学家和天文学家,他的一生致力于数学和天文学的 研究,为后世留下了宝贵的学术遗产。

祖暅(gèng)原理与柱体、锥体、球体的表面积和体积公开课优质获奖课件

祖暅(gèng)原理与柱体、锥体、球体的表面积和体积公开课优质获奖课件

棱锥的表面积 侧面展开
练一练、埃及胡夫金字塔大约建于公元前2580年, 其形状为正四棱锥.金字塔高146.6米,底面边长 230.4米. 这座金字塔的表面积是多少?(只列式 不计算)
D
E
圆柱的表面积
O
l
r
2r
O
圆柱的侧面展开图是矩形
S圆柱表面积 2r 2 2rl 2r(r l)
圆锥的表面积
探究 柱体的体积 一:
设有底面积都等于S,高都等于h的任意一个棱柱、 一个圆柱和一个长方体,使它们的下底面在同一个平面α 内(如图)
由祖暅原理可知:等底面积等高的任意两个柱体的
体积 相等,而长方体的体积为V长方体= sh,所以与
长方体等底面积等高的棱柱、圆柱的体积为:
V柱体= sh
探究 锥体的体积 二:
设有底面积都等于S,高都等于h的任意一个三棱锥、 一个圆锥和一个四棱锥,使它们的下底面在同一个平面α 内(如图)
等底面积等高的两个锥体的体积相等
A

探究锥体的体积公式
思考1:一个三棱柱可以分割
成几个三棱锥?
思考2:每个锥体的体积有什么关系? 说明理由。
锥体的体积
V锥体
1 3
S底h
A
A
C


B

C

2r
l
r
O
圆锥的侧面展开图是扇形
S圆锥表面积 r 2 rl r(r l )
球的表面积
O
球的截面 的形状
圆面
球面被经过球心的平面截得的圆叫做大圆 不过球心的截面截得的圆叫做球的小圆
例、如图,圆柱的底面直径与高都等于球的直径, 求证:球的表面积等于圆柱的侧面积.

高一数学 祖暅原理 ppt

高一数学 祖暅原理 ppt
祖暅原理指出,夹在两个平行平面间的几何体,若被平行于这两个平面的任意平面所截得的截面面积总相等,则这两个几何体的体积相等。基于这一原理,我们探讨了如何求解球的体积。首先,通过实验排液法测量小球的体积,观察了半球的体积与底面积相等的旋转体体积的对比。接着,设定球的半径为R,截面半径为r,平面α与截ห้องสมุดไป่ตู้的距离为l,推导出截面圆的面积公式。进一步,通过比较圆截面与圆环面的面积,发现二者相等,根据祖暅原理,推导出球的体积公式为V球=4/3πR^3。这一过程典型地展示了祖暅原理在求解几何体体积中的应用,有助于理解并掌握该原理。

球表面积和体积的初等教学方法

球表面积和体积的初等教学方法

球表⾯积和体积的初等教学⽅法
⼀、推导⽅法⼩议:
推导球的表⾯积公式和体积公式,⼤体有两⼤⽅法:1、定积分法;2、祖暅原理法。

⽽“定积分法”⼜分两类:(1)多重积分计算法,此法属于⾼等数学的范围,不适合在初等数学中使⽤;(2)定积分定义法,但此法的推导⽐较复杂,特别是推导球的体积公式。

⼆、祖暅原理的特点:
祖暅原理是由柱体和锥体“等底等⾼则等积”的性质推⼴⽽得,实际上就是定积分求体积的前⾝。

祖暅原理通俗易懂,是推导初等数学中常见曲⾯⼏何体(圆柱、圆锥、圆台、球体、球缺、球台)体积公式的最简⽅法。

三、推导⽅法归纳:
(1)球表⾯积:锥带微元法(S=2πph);
(2)球体积:祖暅原理法;
(3)两者关系式:球锥微元法(V=SR/3)、相似极限法。

祖暅原理金太阳

祖暅原理金太阳

祖暅原理,也被称为“金太阳”,是中国古代数学家祖暅在公元6世纪发现的一个重要原理。

这个原理在数学、物理和工程等领域有着广泛的应用,被誉为中国古代数学的瑰宝之一。

祖暅原理的内容非常简洁,但它涵盖了极其深刻的数学思想和哲学思想。

它表述为:“任意三角形ABC的面积S可以用其底AB和对应的高h来表示为S=1/2AB×h。

如果将三角形ABC的底AB分成n等份,每份长度为x,那么三角形ABC的面积S可以表示为S=n/2×x ×h。


这个原理的发现,标志着中国古代数学发展的一个重要里程碑。

它不仅揭示了三角形面积的计算方法,而且通过将底分为n等份,引入了无穷小分割的思想,为后续的微积分学发展奠定了基础。

在应用方面,祖暅原理被广泛应用于各种领域。

在水利工程中,祖暅原理被用来计算水库的容量和溢洪道的排水量。

在船舶设计中,祖暅原理也被用来计算船体的阻力、波浪力以及船舶的运动轨迹等。

此外,祖暅原理还在建筑、航空航天、机械工程等领域有着广泛的应用。

总之,祖暅原理是一个非常伟大的数学原理,它不仅是中国古代数学的瑰宝,也是全人类文明发展的重要成果。

通过研究祖暅原理,我们可以更好地理解数学的本质和哲学思想,同时也可以为各种实际问题的解决提供重要的理论支持。

高考数学公开课祖暅原理ppt课件(2024)

高考数学公开课祖暅原理ppt课件(2024)
拓展问题与讨论
在解答学生问题的过程中,教师可以适当提出拓展问题,引导学生 进行更深入的讨论和思考。
20
学生分享学习心得环节
分享学习经验
邀请已经掌握祖暅原理的学生分 享他们的学习经验和方法,帮助 其他同学更好地理解和掌握。
交流学习感悟
鼓励学生分享自己在学习祖暅原 理过程中的感悟和体会,促进彼 此之间的情感交流和学习动力。
2024/1/29
该原理给出了判断两个几何体体积相等的一个充分条件,为求解一些复杂几何体的体积提供了有效方法 。
5
祖暅原理意义
2024/1/29
01
祖暅原理在立体几何中具有重要地位,为解决许多 复杂几何问题提供了有力工具。
02
该原理体现了数学中的转化与化归思想,即通过转 化问题的形式或构造新的图形来简化问题。
12
例题二:利用祖暅原理证明不等式问题
解析
我们可以将函数$f(x)$和$g(x)$的图像分别视为两个几 何体的侧面,然后通过比较这两个几何体的体积来证 明不等式。
2024/1/29
解答
设函数$f(x)$和$g(x)$的图像分别与直线$x = 0$、$x = 1$及$x$轴所围成的几何体的体积分别为$V_f$和 $V_g$。根据祖暅原理,如果两个几何体在等高处的截 面积相等,则它们的体积相等。因此,我们可以通过比 较两个几何体在等高处的截面积来证明不等式。在距离 底面高度为$y$处,函数$f(x)$的截面积为$sqrt{y}$, 函数$g(x)$的截面积为$sqrt[3]{y^2}$。由于$sqrt{y} leq sqrt[3]{y^2}$,所以两个几何体在等高处的截面 积满足$sqrt{y} leq sqrt[3]{y^2}$。根据祖暅原理,我 们得到$V_f leq V_g$,即当$x in [0,1]$时,有$f(x) leq g(x)$。

祖暅原理的应用求椭球体积

祖暅原理的应用求椭球体积

祖暅原理的应用求椭球体积祖暅原理简介祖暅原理是一种数学方法,用于求解椭球体积的问题。

椭球是一种特殊的三维几何体,具有多个重要的性质和应用场景。

祖暅原理被广泛应用于数学、物理和工程学科中。

祖暅原理的数学表达根据祖暅原理,椭球的体积可以通过其主轴和椭球旋转角度来计算。

具体公式如下:V = (4/3) * π * a * b * c其中,V表示椭球的体积,π为圆周率,a、b和c分别表示椭球的三个主轴长度。

祖暅原理的应用举例祖暅原理的应用非常广泛,下面列举几个常见的实际问题。

1.行星体积计算:祖暅原理可以用于计算行星的体积。

根据行星的长半轴、短半轴和极半径,可以求解行星的椭球体积。

2.建筑材料计算:在工程领域,祖暅原理可以用于计算建筑材料的体积。

例如,当需要制作一个椭球形的建筑雕塑时,可以根据给定的尺寸和材料密度来计算所需的材料量。

3.药物颗粒计算:在制药工程中,药物颗粒的设计通常需要考虑药物的体积。

祖暅原理可以用于计算药物颗粒的体积,并确定最佳的颗粒尺寸。

4.液体容器设计:在化学工程中,设计合适的液体容器对于储存和运输液体是非常重要的。

祖暅原理可以用于计算椭球形液体容器的容积,从而帮助工程师设计出满足需求的容器。

祖暅原理的计算方法步骤使用祖暅原理计算椭球体积的方法可以分为以下几个步骤:1.确定椭球的主轴长度:测量椭球的长半轴、短半轴和极半径,分别表示为a、b和c。

2.计算椭球体积:根据祖暅原理的公式V = (4/3) * π * a * b * c,将相应的数值代入计算,得出椭球的体积。

3.单位转换:根据实际需要,将椭球体积的单位转换为所需的单位。

常见的单位包括立方米、升、立方厘米等。

总结祖暅原理是一种用于求解椭球体积的数学方法。

它广泛应用于多个学科领域,包括数学、物理和工程学科。

通过测量椭球的主轴长度和应用祖暅原理的公式,可以准确计算椭球的体积。

祖暅原理的应用涵盖了行星体积计算、建筑材料计算、药物颗粒计算和液体容器设计等多个领域。

祖暅原理

祖暅原理

祖暅原理祖暅原理也就是“等积原理”。

它是由我国南北朝杰出的数学家、祖冲之(429-500)的儿子祖暅(gèng)首先提出来的。

祖暅原理的内容是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的任何平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等。

等积原理的发现起源于《九章算术》中的答案是错误的。

他提出的难方法是取每边为1寸的正方体棋子八枚,拼成一个边长为2寸的正方体,在正方体内画内切圆柱体,再在横向画一个同样的内切圆柱体。

这样两个圆柱所包含的立体共同部分像两把上下对称的伞,刘徽将其取名为“牟合方盖”。

(古时人称伞为“盖”,“牟”同侔,意即相合。

)根据计算得出球体积是牟合方盖体的体积的四分之三,可是圆柱体又比牟合方盖大,但是《九章算术》中得出球的体积是圆柱体体积的四分之三,显然《九章算术》中的球体积计算公式是错误的。

刘徽认为只要求出牟合方盖的体积,就可以求出球的体积。

可怎么也找不出求导牟合方盖体积的途径。

祖暅沿用了刘徽的思想,利用刘徽“牟合方盖”的理论去进行体积计算,得出“幂势相同,则体不容异”的结论。

“势”即是高,“幂”是面积。

在西方,球体的体积计算方法虽然早已由希腊数学家阿基米德发现,但“祖暅原理”是在独立研究的基础上得出的,且比阿基米德的内容要丰富,涉及的问题要复杂。

二者有异曲同工之妙。

根据这一原理就可以求出牟合方盖的体积,然后再导出球的体积。

这一原理主要应用于计算一些复杂几何体的体积上面。

在西方,直到17世纪,才由意大利数学家卡瓦列里(Cavalieri.B,1589-1647)发现。

于1635年出版的《连续不可分几何》中,提出了等积原理,所以西方人把它称之为“卡瓦列里原理”。

其实,他的发现要比我国的祖暅晚1100多年。

高考数学公开课祖暅原理

高考数学公开课祖暅原理
多做历年高考真题和模拟题,加强对祖暅原理的掌握和应用能力。
在备考过程中,注意与其他知识点的综合运用,提高解决复杂数学问 题的能力。
注意计算准确性和思路的清晰性,避免因计算错误或思路混乱导致失 分。
04
拓展应用:祖暅原理在其他领域应用
物理中浮力问题求解
浮力计算
祖暅原理可用于计算物体在液体中所 受的浮力,通过比较物体在液体中排 开的液体体积和物体自身的体积,可 以推导出浮力的大小。
掌握祖暅原理的推导过程,理 解其几何意义和物理意义。
能够将祖暅原理与其他知识点 (如微积分、立体几何等)进 行综合运用,解决一些较复杂 的数学问题。
历年高考真题回顾与解析
(2019年全国卷I理科数学第16题)题目略。解析
该题考查了祖暅原理在求解几何体体积中的应用,需要考生根据题意构造出两个等高的 几何体,并比较它们的体积大小。通过运用祖暅原理,可以简化计算过程,提高解题效
方法选择建议
在实际应用中,可以根据问题的具体情况和个人的数学基 础选择合适的方法进行证明。对于初学者来说,可以先从 几何法入手,逐渐过渡到代数法;对于已经具备一定数学 基础的同学来说,可以直接使用代数法进行证明。
03
高考中涉及祖暅原理知识点梳理
高考考纲对祖暅原理要求
理解祖暅原理的基本内容,能 够运用祖暅原理求解一些简单 的几何体体积。
方法。
通过比较不同解题方法的优缺点 ,学生可以更深入地理解祖暅原
理的适用条件和解题技巧。
分组讨论还可以促进学生之间的 交流和合作,提高团队协作能力
和解决问题的能力。
教师总结并给出建议性意见
1
教师在学生讨论的基础上进行总结,强调祖暅原 理的重要性和应用价值,鼓励学生多加练习和思 考。

祖暅原理(以祖暅原理为背景的高中数学)解析版

祖暅原理(以祖暅原理为背景的高中数学)解析版

祖暅原理一、单选题1我国南北朝时期的数学家祖暅在计算球的体积时,提出了一个原理(祖暅原理):“幂势既同,则积不容异”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.利用祖暅原理可以将半球的体积转化为与其同底等高的圆柱和圆锥的体积之差.图1是一种“四脚帐篷”的示意图,其中曲线AOC和BOD均是以1为半径的半圆,平面AOC和平面BOD均垂直于平面ABCD,用任意平行于帐篷底面ABCD的平面截帐篷,所得截面四边形均为正方形.模仿上述半球的体积计算方法,可以构造一个与帐篷同底等高的正四棱柱,从中挖去一个倒放的同底等高的正四棱锥(如图2),从而求得该帐篷的体积为()A.23B.43C.π3D.2π3【答案】B【分析】根据题意,求得对应正四棱柱的底面边长和高,根据帐篷的体积等于棱柱的体积减去棱锥的体积,根据体积公式求得结果.【详解】根据题意,底面正方形的边长为2,高为1,根据题意,可知该帐篷的体积为V=2×2×1-13×2×2×1=43,故选:B.【点睛】方法点睛:该题考查的是有关几何体体积的求解,解题方法如下:(1)认真读题,理解题意;(2)根据题意,求得相应几何体的棱长;(3)利用体积公式求得结果.2祖暅,又名祖暅之,是我国南北朝时期的数学家、天文学家祖冲之的儿子.他在《级术》中提出“幂势既同,则积不容异”的结论,其中“幂”是面积.“势”是高,意思就是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的任一平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等(如图①).这一原理主要应用于计算一些复杂几何体的体积,若某艺术品如图②所示,高为40cm ,底面为边长20cm 的正三角形挖去以底边为直径的圆(如图③),则该艺术品的体积为()A.10003-10003π cm 3 B.20003-20003π cm 3C.200033-20009π cm 3D.100033-10009π cm 3【答案】B 【分析】先求出阴影部分的面积,其面积为边长20cm 的正三角形的面积减去两个边长为10cm 的正三角形的面积,再减去圆心角为π3,半径为10cm 的扇形面积,然后利用柱体的体积公式求解即可【详解】由图知阴影部分的面积为12×20×20×32-12×10×10×32×2-12×π3×102=503-503π cm 2,所以艺术品的体积为20003-20003π cm 3.故选:B3我国南北朝时期的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.这个原理能够帮助人们计算3D 打印时的材料耗费问题.3D 打印属于快速成形技术的一种,是将粉末状金属或塑料等可粘合材料,通过逐层喷涂,逐渐堆叠累积的方式来构造物体的技术,可以用来制造结构复杂的物件.根据祖暅原理,对于3D 打印制造的零件,如果能找到另一个与其高相等,并在所有等高处的水平截面的面积均相等的几何体,就可以通过计算该几何体的体积得到打印的零件的体积.现在要用3D 打印技术制造一个零件,其在高为h 的水平截面的面积为S h =π4-h 2 ,0≤h ≤2,则该零件的体积为()A.4π3B.8π3C.16π3D.32π3【答案】C 【分析】易知该零件的体积为以2为半径的半球的体积,根据祖暅原理,即可得到该零件的体积【详解】解:由祖暅原理可知,该零件在高为h 的水平截面的面积为S h =π4-h 2 ,恰好与一个半径为2的半球在高为h 处的水平截面面积一致,所以该零件的体积为半球的体积12×4π3×23=16π3,故选:C4图为祖冲之之子祖暅“开立圆术”中设计的立体模型.祖暅提出“祖氏原理”,他将牟合方盖的体积化成立方体与一个相当于四棱锥的体积之差,从而求出牟合方盖的体积等于23d 3(d 为球的直径),并得到球的体积为V =16πd 3,这种算法比外国人早了一千多年,人们还用过一些类似的公式,根据π=3.1415926⋅⋅⋅,判断下列公式中最精确的一个是()A.d ≈3169VB.d ≈32VC.d ≈3300157V D.d ≈3158V 【答案】C 【解析】利用选项中的公式化简求得π,找到最精确的选项即可.【详解】由V =16πd 3得:π=6Vd 3.由A 得:V d 3≈916,∴π≈6×916=3.375;由B 得:V d 3≈12,∴π≈62=3;由C 得:V d 3≈157300,∴π≈6×157300=3.14;由D 得:V d3≈815,∴π≈6×815=3.2,∴C 的公式最精确.故选:C .【点睛】本题考查数学史与立体几何的知识,关键是能够对选项中的公式进行准确化简求得π的近似值.5祖暅是我国南北朝时期杰出的数学家和天文学家祖冲之的儿子,他提出了一条原理:“幂势既同幂,则积不容异”.这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.如图所示,某帐篷的造型是两个全等圆柱垂直相交的公共部分的一半(这个公共部分叫做牟合方盖).设两个圆柱底面半径为R ,牟合方盖与其内切球的体积比为4:π.则此帐篷距底面R2处平行于底面的截面面积为()A.34πR 2 B.3πR 2 C.43πR 2 D.3R 2【答案】D 【分析】由已知求出牟合方盖的内切球距底面R2处平行于底面的截面圆的半径,得到截面面积,再由祖暅原理列式求得答案.【详解】牟合方盖的内切球距底面R 2处平行于底面的截面圆的半径为32R ,截面面积为S 1=π×32R 2=34πR 2,设帐篷距底面R2处平行于底面的截面面积为S 2,则由题意可得,S 2:S 1=4:π,即S 234πR 2=4π,解得S 2=4π×34πR 2=3R 2.故选:D .6中国南北朝时期数学家、天文学家祖冲之、祖暅父子总结了魏晋时期著名数学家刘微的有关工作,提出“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高,即:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等,上述原理称为“祖暅原理”.一个上底面边长为1,下底面边长为2,侧棱长为13的正六棱台与一个不规则几何体满足“幂势既同”,则该不规则几何体的体积为()A.7239 B.163 C.183 D.21【答案】D 【分析】由“祖暅原理”,结合已知求出正六棱台的上下底面面积,再由棱台体积公式求解即可.【详解】解:由“祖暅原理”知,该不规则几何体的体积与正六棱台的体积相等,因为正六棱台的上下底面边长分别为1和2,设上底面面积为S 1,下底面面积为S 2,高为h ,则S 1=6×12×1×1×32=332,S 2=6×12×2×2×32=63,h =13-1=23,所以V =13(S 1+S 1S 2+S 2)h=13×332+632+63 ×23=21,所以该不规则几何体的体积为21.故选:D .7祖暅(公元5-6世纪,祖冲之之子),是我国齐梁时代的数学家,他提出了一条原理:“幂势既同,则积不容易.”这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.如图将底面直径皆为2b ,高皆为a 的椭半球体和已被挖去了圆锥体的圆柱体放置于同一平面β上,用平行于平面β且与β距离为d 的平面截两个几何体得到S 圆及S 环两截面,可以证明S 圆=S 环总成立.据此,短轴AB 长为3cm ,长半轴CD 为2cm 的椭半球体的体积是()A.3πcm 3B.6πcm 3C.48πcm 3D.96πcm 3【答案】A 【分析】根据祖恒原理可得出椭半球的体积为V =12V 椭球=V 圆柱-V 圆锥,即可得解.【详解】由题意可知,短轴AB 长为3cm ,长半轴CD 为2cm 的椭半球体的体积为V =12V 椭球=V 圆柱-V 圆锥=π⋅32 2⋅2-13⋅π⋅32 2⋅2=3πcm 3.故选:A .8祖暅是南北朝时代伟大的科学家,在数学上有突出贡献.他在五世纪末提出祖暅原理:“密势既同,则积不容异.”其意思是:两个等高的几何体若在所有等高处的水平截面面积相等,则这两个几何体的体积相等.我们称由双曲线x 2a 2-y 2b2=1a >0,b >0 中y ≤m m >0 的部分绕其虚轴旋转形成的几何体为双曲线旋转体.如图,双曲线旋转体的下半部分挖去底面直径为2a ,高为m 的圆柱体后,所得几何体与底面半径为amb,高为m 的圆锥均放置于平面β上(几何体底面在β内).与平面β平行且到平面β距离为h 0≤h ≤m 的平面与两几何体的截面面积分别为S 圆,S 圆环,可以证明S 圆=S 圆环总成立.依据上述原理,x 2-y 24=1y ≤4 的双曲线旋转体的体积为()A.443π B.563π C.283π D.323π【答案】B 【分析】根据双曲线旋转体的定义,结合双曲线的标准方程、圆柱和圆锥的体积公式即可求解.【详解】解:依题意m =4,a =1,b =2,圆锥底面半径amb=2,即圆锥底面积为4π,由祖暅原理可知,双曲线旋转体体积V =2V 圆柱+V 圆锥 =2π×12×4+13×π×22×4 =56π3.故选:B .9我国南北朝时期的数学家祖暅提出了计算几何体体积的祖暅原理:“幂势既同,则积不容异”.意思是两个同高的几何体,如果在等高处的截面积都相等,那么这两个几何体的体积相等.现有同高的三棱锥和圆锥满足祖暅原理的条件,若圆锥的侧面展开图是半径为3的三分之一圆,由此推算三棱锥的体积为()A.223π B.423π C.42πD.163π【答案】A【分析】由已知列式求得圆锥的底面半径与高,代入圆锥体积公式求解.【详解】解:由题意可知,几何体的体积等于圆锥的体积,∵圆锥的侧面展开图恰为一个半径为3的圆的三分之一,∴圆锥的底面周长为2π×33=2π,故圆锥的底面半径为1,母线为3,所以圆锥的高为32-12=22.∴圆锥的体积V =13×π×12×22=223π.从而所求几何体的体积为V =223π.故选:A .10我国南北朝时期的科学家祖暅,提出了计算体积的祖暅原理:“幂势既同,则积不容异.”意思是:如果两个等高的几何体,在等高处的截面积恒等,则这两个几何体的体积相等.利用此原理求以下几何体的体积:曲线y =x 2(0≤y ≤L )绕y 轴旋转一周得几何体Z ,将Z 放在与y 轴垂直的水平面α上,用平行于平面α,且与Z 的顶点O 距离为l 的平面截几何体Z ,得截面圆的面积为π(l )2=πl .由此构造右边的几何体Z 1:其中AC ⊥平面α,AC =L ,AA 1⊂α,AA 1=π,它与Z 在等高处的截面面积都相等,图中EFPQ 为矩形,且PQ =π,FP =l ,则几何体Z 的体积为A.πL 2B.πL 3C.12πL 2D.12πL 3【答案】C 【分析】通过截面面积相等可求得BC 的长度,再利用三棱柱体积公式即可求解.【详解】由题意可知:在高为L 处,截面面积为πL ,且截面面积相等∴S BB 1C 1C =πL ⇒BC =L∴V ABC -A 1B 1C 1=S ΔABC ⋅π=12πL 2本题正确选项:C 【点睛】本题考查空间几何体中柱体体积的求解,属于基础题.11祖暅(公元前5~6世纪)是我国齐梁时代的数学家,是祖冲之的儿子,他提出了一条原原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.设由椭圆x 2a 2+y 2b2=1(a >b >0)所围成的平面图形绕y 轴旋转一周后,得一橄榄状的几何体(称为椭球体),课本中介绍了应用祖暅原理求球体体积公式的做法,请类比此法,求出椭球体体积,其体积等于A.43πa 2b B.43πab 2 C.2πa 2bD.2πab 2【答案】A 【解析】先构造两个底面半径为a ,高为b 的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理得出椭球的体积.【详解】椭圆的长半轴长为a ,短半轴长为b ,先构造两个底面半径为a ,高为b 的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理得出椭球的体积为:V =2V 圆柱-V圆锥 =2π×a 2×b -13π×a 2×b =43πa 2b ,故选:A .【点睛】本题考查了类比推理的问题,类比推理过程中要注重方法的类比,属基础题.12祖暅原理:“幂势既同,则积不容异”意思是说两个同高的几何体,若在等高处的截面积恒相等,则体积相等.设A ,B 为两个同高的几何体,p :A ,B 在等高处的截面积不恒相等,q :A ,B 的体积不相等,根据祖暅原理可知,p 是q 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【分析】根据逆否命题的等价性判断p 与q 的关系.【详解】“两个同高的几何体,等高处的截面积恒相等,则体积相等”的等价命题是“两个同高的几何体,体积不相等,则等高处的截面积不恒相等”,所以q ⇒p ;反之“两个同高的几何体,体积相等,则等高处的截面积恒相等”不成立,即由p 推不出q ,所以p 是q 的必要不充分条件.故选:B .13我国南北朝时期的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.根据祖暅原理,对于3D 打印制造的零件,如果能找到另一个与其高相等,并在所有等高处的水平截面的面积均相等的几何体,就可以通过计算几何体的体积得到打印的零件的体积.现在要用3D 打印技术制造一个高为2的零件,该零件的水平截面面积为S ,随高度h 的变化而变化,变化的关系式为S h =π4-h 2 (0≤h ≤2),则该零件的体积为()A.4π3B.8π3C.16π3D.32π3【答案】C 【分析】由S h =π4-h 2 恰好与一个半径为2的半球在高为h 的水平截面面积一致,由祖眶原理,该零件的体积等于该半球的体积,从而可得答案.【详解】由祖眶原理,该零件在高为h 的水平截面的面积为S h =π4-h 2 (0≤h ≤2).而S h =π4-h 2 恰好与一个半径为2的半球在高为h 的水平截面面积一致,所以该零件的体积等于该半球的体积:V =12×4π3×23=16π3故选:C14用祖暅原理计算球的体积时,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图1)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图2),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等.现将椭圆x 29+y 225=1(y ≥0)绕y 轴旋转一周后得一半橄榄状的几何体(如图3),类比上述方法,运用祖暅原理可求得其体积等于()A.15πB.30πC.45πD.60π【答案】B 【分析】构造一个底面半径为3,高为5的圆柱,通过计算可得高相等时截面面积相等,根据祖暅原理可得橄榄球形几何体的体积的一半等于圆柱的体积减去圆锥体积.【详解】构造一个底面半径为3,高为5的圆柱,在圆柱中挖去一个以圆柱下底面圆心为顶点的圆锥,则当截面与顶点距离为h (0≤h ≤5)时,小圆锥的底面半径为r ,则h 5=r 3,∴r =35h ,故截面面积为9π-9h 2π25,把y =h 代入椭圆x 29+y 225=1可得x =±325-h 25,∴橄榄球形几何体的截面面积为πx 2=9π-9h 2π25,由祖暅原理可得半个橄榄球形几何体的体积V =V 圆柱-V 圆锥=9π×5-13×9π×5=30π.故选:B15刘徽构造的几何模型“牟合方盖”中说:“取立方棋八枚,皆令立方一寸,积之为立方二寸.规之为圆困,径二寸,高二寸.又复横规之,则其形有似牟合方盖矣.”牟合方盖是一个正方体被两个圆柱从纵横两侧面作内切圆柱体时的两圆柱体的公共部分,计算其体积的方法是将原来的“牟合方益”平均分为八份,取它的八分之一(如图一).记正方形OABC 的边长为r ,设OP =h ,过P 点作平面PQRS 平行于平面OABC .OS =OO =r ,由勾股定理有PS =PQ =r 2-h 2,故此正方形PQRS 面积是r 2-h 2.如果将图一的几何体放在棱长为r 的正方体内(如图二),不难证明图二中与图一等高处阴影部分的面积等于h 2.(如图三)设此棱锥顶点到平行于底面的截面的高度为h ,不难发现对于任何高度h ,此截面面积必为h 2,根据祖暅原理计算牟合方盖体积()注:祖暅原理:“幂势既同,则积不容异”.意思是两个同高的立体,如在等高处的截面积相等,则体积相等A.83r 3B.83r 3π C.163r 3D.163r 3π【答案】C【分析】计算出正方体的体积,四棱锥的体积,根据祖暅原理可得图一中几何体体积,从而得结论.【详解】V 棱锥=13Sh=13×r2×r=13r3,由祖暅原理图二中牟合方盖外部的体积等于V棱锥=1 3 r3所以图1中几何体体积为V=r3-13r3=23r3,所以牟合方盖体积为8V=163r3.故选:C.16我国南北朝时期的数学家祖暅提出了计算体积的祖暅原理:“幂势既同,则积不容异.”意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.已知曲线C:y= x2,直线l为曲线C在点(1,1)处的切线.如图所示,阴影部分为曲线C、直线l以及x轴所围成的平面图形,记该平面图形绕y轴旋转一周所得的几何体为T.给出以下四个几何体:图①是底面直径和高均为1的圆锥;图②是将底面直径和高均为1的圆柱挖掉一个与圆柱同底等高的倒置圆锥得到的几何体;图③是底面边长和高均为1的正四棱锥;图④是将上底面直径为2,下底面直径为1,高为1的圆台挖掉一个底面直径为2,高为1的倒置圆锥得到的几何体.根据祖暅原理,以上四个几何体中与T的体积相等的是A.①B.②C.③D.④【答案】A【分析】将题目中的切线写出来,然后表示出水平截面的面积,因为是阴影部分旋转得到,所以水平界面面积为环形面积,整理后,与其他四个几何体进行比较,找到等高处的水平截面的面积相等的,即为所求.【详解】∵几何体T是由阴影旋转得到,所以横截面为环形,且等高的时候,抛物线对应的点的横坐标为x1,切线对应的横坐标为x2f x =x2,f x =2x,∴k=f 1 =2切线为y -1=2x -1 ,即y =2x -1,∴x 12=y ,x 2=y +12横截面面积s =πx 22-πx 12=πy +1 24-y =πy -12 2图①中的圆锥高为1,底面半径为12,可以看成由直线y =2x +1绕y 轴旋转得到横截面的面积为S =πx 2=πy -122.所以几何体T 和①中的圆锥在所有等高处的水平截面的面积相等,所以二者体积相等,故选A 项.【点睛】本题考查对题目条件的理解和转化,在读懂题目的基础上,表示相应的截面面积,然后进行比较.属于难题.17祖原理也称祖氏原理,是我国数学家祖暅提出的一个求积的著名命题:“幂势既同,则积不容异”,“幂”是截面积,“势”是几何体的高,意思是两个同高的立体,如在等高处截面积相等,则体积相等.满足x 2+y 2≤16的点(x ,y )组成的图形绕y 轴旋转一周所得旋转体的体积为V 1,由曲线x 2-y 2=16,y =±x ,y =±4围成的图形绕y 轴旋转一周所得旋转体的体积为V 2,则V 1、V 2满足以下哪个关系式()A.V 1=12V 2B.V 1=23V 2C.V 1=2V 2D.V 1=V 2【答案】B 【分析】作出曲线在第一想象内的图象进行分析:当双曲线方程为:x 2-y 2=a 2,高度为h 时,双曲线与渐近线旋转一周所形成的图形是圆环,计算可得圆环的面积S =πa 2为定值,进而由由祖暅原理知等轴双曲线与渐近线绕y 轴旋转一周所形成的几何体体积V 2,与底面半径为a ,高为2a 的圆柱体体积V 柱一致,而满足x 2+y 2≤16的点(x ,y )组成的图形绕y 轴旋转一周所得旋转体为球体,体积为V 1,通过分析计算可得V 1=23V 柱,V 2=V 柱,进而可得V 1=23V 2,从而得解.【详解】如图可知:当双曲线方程为:x 2-y 2=a 2,高度为h 时,双曲线与渐近线旋转一周所形成的图形是圆环,其中小圆环的半径r 即是h ,所以小圆面积为:S 1=πh 2,而大圆半径R 可以由:R 2-h 2=a 2求出,即:R =a 2+h 2,所以大圆的面积为:S 2=πR 2=πa 2+h 2 2=πa 2+h 2 ,所以圆环的面积为:S =S 2-S 1=πa 2,为定值,所以由祖暅原理知等轴双曲线与渐近线绕y 轴旋转一周所形成的几何体体积V 2,与底面半径为a ,高为2a 的圆柱体体积V 柱一致,而球体体积V 1=43πa 3=πa 2⋅2a ⋅23=23V 柱,所以V 2=V 柱,V 1=23V 柱=23V 2.故选:B .18南北朝时期的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被任一平行于这两个平面的平面所截,如果两个截面的面积总是相等,则这两个立体的体积相等.如图,两个半径均为1的圆柱体垂直相交,则其重叠部分体积为()A.43B.163C.43π D.3π【答案】B 【分析】分析几何体的每层截面都是正方形,计算正方形的在上下距离中心h 截面面积,再根据正方形的特点想到顶点在中心的正四棱锥(上、下两个),计算正四棱锥的上下距离中心h 截面面积,通过发现面积之间的关系,结合祖暅原理即可求解.【详解】(左) (中) (右)重叠部分的几何体的外接正方体如上图(左)所示,在距离中心h 处的截面正方形的边长是:2l =2R 2-h 2,所以距离中心h 处截面面积是S =2l 2=2R 2-h 2 2=4(R 2-h 2),而从同一个正方体的中心位置,与底面四点连线构成的正四棱锥的示意图如上图(中)所示,在距离中心h 处的截面正方形的边长是:l 0MQ =hOQ,因为内切球的半径等于正方体棱长一半,所以,MQ =OQ =R ,所以l 0=h ,在距离中心h 处的截面正方形的边长是:2l 0=2h ,以距离中心h 处截面面积是S =2l 0 2=4h 2,又因为正方体的水平截面面积为:2R 2,所以2R 2-4h 2=4(R 2-h 2),所以剩余部分的截面面积如上图(右)“回”形面积为4(R 2-h 2),因此根据祖暅原理:“夹在两个平行平面之间的两个几何体,被任一平行于这两个平面的平面所截,如果两个截面的面积总是相等”,可得:左图几何体的体积加上中间图上下椎体的体积等于正方体的体积,即有:V +2×13(2R )2R =(2R )3,解得V =163R 3=163×13=163,故选:B .二、多选题19我国古代数学家祖暅求几何体的体积时,提出一个原理:幂势即同,则积不容异.这个定理的推广是夹在两个平行平面间的两个几何体,被平行于这两个平面的平面所截,若截得两个截面面积比为k ,则两个几何体的体积比也为k .如下图所示,已知线段AB 长为4,直线l 过点A 且与AB 垂直,以B 为圆心,以1为半径的圆绕l 旋转一周,得到环体M ;以A ,B 分别为上下底面的圆心,以1为上下底面半径的圆柱体N ;过AB 且与l 垂直的平面为β,平面α⎳β,且距离为h ,若平面α截圆柱体N 所得截面面积为S 1,平面α截环体M 所得截面面积为S 2,则下列结论正确的是()A.圆柱体N 的体积为4πB.S 2=2πS 1C.环体M 的体积为8πD.环体M 的体积为8π2【答案】ABD 【分析】圆柱体N 的体积为4π,即可判断A ,S 1=21-h 2⋅4=81-h 2,S 2=πr 2外-πr 2内,即可判断B ,环体M 体积为2πV 柱,可判断C 、D .【详解】由已知圆柱体N 的体积为4π,故选项A 正确;由图可得S 1=21-h 2⋅4=81-h 2,S 2=πr 2外-πr 2内,其中r 2外=4+1-h 2 2,r 2内=4-1-h 2 2,故S 2=161-h 2⋅π=2πS 1,故选项B 正确;环体M 体积为2πV 柱=2π⋅4π=8π2,故选项D 正确,选项C 错误故选:ABD20祖暅(公元5-6世纪,祖冲之之子),是我国齐梁时代的数学家,他提出了一条原理:“幂势既同,则积不容异.”这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.如图将底面直径皆为2b ,高皆为a 的椭半球体和已被挖去了圆锥体的圆柱体放置于同一平面β上,用平行于平面β且与β距离为d 的平面截两个几何体得到S 圆及S 环两截面,可以证明S 圆=S 环总成立,若椭半球的短轴AB =6,长半轴CD =5,则下列结论正确的是()A.椭半球体的体积为30πB.椭半球体的体积为15πC.如果CF =4FD,以F 为球心的球在该椭半球内,那么当球F 体积最大时,该椭半球体挖去球F 后,体积为863πD.如果CF =4FD,以F 为球心的球在该半球内,那么当球F 体积最大时,该椭半球体挖去球F 后,体积为29π【答案】AC 【分析】由题可得V =12V 椭球=V 圆柱-V 圆锥,可判断AB ,利用椭圆的性质可得球F 的最大半径为1,进而可判断CD .【详解】由题意知,短轴AB =6,长半轴CD =5的椭半球体的体积为V =12V 椭球=V 圆柱-V 圆锥=π⋅622⋅5-13⋅π622⋅5=30π,∴A 正确,B 错误;椭球的轴截面是椭圆,它的短半轴长为3,长半轴长为5,所以半焦距为4,由于CF =4FD ,所以F 椭圆的焦点,因此FD 是椭圆的最小焦半径,即球F 的最大半径为1,该椭半球体挖去球F 后,体积为30π-43π=863π,故C 正确,D 错误.故选:AC .三、填空题21祖暅,祖冲之之子,南北朝时代伟大的科学家,于5世纪末提出下面的体积计算原理:祖暅原理:“幂势既同,则积不容异”.意思是如果两个等高的几何体在同高处截得两几何体的截面面积相等,那么两个几何体的体积相等,现有如图的半椭球体与被挖去圆锥的圆柱等高,且平行于底面的平面在任意高度截两几何体所得截面面积相等,已知圆柱高为h ,底面半径为r ,则半椭球的体积是.。

高考数学公开课祖暅原理课件

高考数学公开课祖暅原理课件

1 2
柱体体积公式
$V = Sh$,其中 $S$ 是底面面积,$h$ 是高
锥体体积公式
$V = frac{1}{3}Sh$,其中 $S$ 是底面面积, $h$ 是高
3
球体体积公式
$V = frac{4}{3}pi r^3$,其中 $r$ 是球半径
祖暅原理在高考中应用
利用祖暅原理求不规则几 何体的体积
03
证明方法
运用定积分的知识,可以推导出祖暅原理的公式,从而证明该原理的正
确性。
祖暅原理意义
数学价值
祖暅原理在数学史上具有重要地位,它提供了一种计算几何体体积 的新方法,丰富了数学理论。
应用领域
在建筑、工程、物理等领域中,经常需要计算各种复杂几何体的体 积,祖暅原理为此提供了有效的解决方案。
对后世影响
祖暅提出的“幂势既同,则积不容异”,即等高处横 截面积常相等的两个几何体,其体积也必然相等。这
一原理在中国被誉为“祖暅原理”。
祖暅原理内容
01 02
定义
夹在两个平行平面间的两个几何体,被平行于这两个平行平面的任何平 面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相 等。
适用范围
适用于夹在两个平行平面间的两个几何体。
例题2
有两个底面半径相等的圆柱,一个的高为另一个 的2倍,试判断它们的体积大小关系。
解析
根据祖暅原理,我们可以通过比较两个几何体在 任意高度处的截面积来判断它们的体积大小关系 。
解析
根据祖暅原理,我们可以通过构造一个与两个圆 柱等高的长方体,使得长方体在任意高度处的截 面积与两个圆柱的截面积相等,从而判断它们的 体积大小关系。
01
观察题目所给几何体的形状、大小、位置等特征,分析其与已 知几何体的相似之处和差异之处。

2024年度-黄老师讲数学954:球缺体积计算与祖暅原理

2024年度-黄老师讲数学954:球缺体积计算与祖暅原理

$V = frac{1}{3} Sh$,其 中$S$为底面积,$h$为 高。例如,圆锥体的体积 公式为$V = frac{1}{3} pi r^2 h$。
$V = frac{1}{3} (S_1 + S_2 + sqrt{S_1 S_2})h$, 其中$S_1$和$S_2$分别 为上、下底面积,$h$为 高。例如,圆台体的体积 公式可以通过此公式推导 得出。
22
06 练习题与测试题
23
针对性练习题选编
01
02
03
基础题
通过简单的球缺体积计算, 巩固学生对基本概念和公 式的掌握。
提高题
引入更复杂的球缺形状, 要求学生能够灵活运用公 式进行计算。
拓展题
结合祖暅原理,引导学生 探索球缺体积计算的其他 方法,培养学生的创新思 维能力。
24
测试题及答案解析
12
具体应用案例分析
球缺体积计算
在求解球缺体积时,可以利用祖暅原 理将球缺转化为等高的圆柱和圆锥的 组合体,进而通过计算组合体的体积 来得到球缺的体积。
实际应用举例
例如,在计算球体被平面截去一部分后 剩余的体积时,可以利用祖暅原理将问 题转化为计算等高的圆柱和圆锥的体积 差,从而得到球缺的体积。
13
性质
球缺的表面积和体积都可以通过公式来计算,其中体积公式为V = (πh²/3)(3R-h),表面积公式为S = 2πRh。此外,球缺还具 有一些其他的性质,比如其底面圆的半径与球缺的高之间的关 系等。
4
祖暅原理概述
原理内容
祖暅原理也称祖氏原理,是指夹在两个平行平面间的两个立体图形,被平行于 这两个平面的任意平面所截,如果所得两个截面的面积相等,那么这两个立体 图形的体积相等。

祖暅原理|高中数学命题热点(一)

祖暅原理|高中数学命题热点(一)

祖暅原理|高中数学命题热点(一)祖暅原理祖暅(中国南北朝时期数学家、天文学家,祖冲之之子),沿用了刘徽的思想,利用刘徽“牟合方盖”的理论去进行体积计算,得出“幂势既同,则积不容异”的结论。

“幂势既同,则积不容异”。

“幂”是截面积,“势”是立体的高。

是指两个同高的立体,如在等高处的截面积相等,则体积相等。

也就是界于两个平行平面之间的两个立体,被任一平行于这两个平面的平面所截,如果两个截面的面积相等,则这两个立体的体积相等。

注:牟合方盖当一正立方体用圆柱从纵横两侧面作内切圆柱体时,两圆柱体的公共部分。

刘徽在他的注中对“牟合方盖”有以下的描述:“取立方棋八枚,皆令立方一寸,积之为立方二寸。

规之为圆囷,径二寸,高二寸。

又复横规之,则其形有似牟合方盖矣。

八棋皆似阳马,圆然也。

按合盖者,方率也。

丸其中,即圆率也。

”高中数学中祖暅原理的命题方式1、与立体几何三视图结合A.158 B.162 C.182 D.32本题首先根据三视图,本质上和祖暅原理关联不大,还原得到几何体—棱柱,根据题目给定的数据,计算几何体的体积.常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2、祖暅原理的理解①祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的原理,意思是两个等高的几何体,若在同高处的截面积恒相等,则体积相等.设A,B为两个等高的几何体,P:A,B的体积相等.q:A,B在同高处的截面积恒相等.根据祖暅原理可知,P是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3、求体积一般上海高考试题和模拟试题出现较多先根据椭圆方程,构造一个底面半径为2,高为3的圆柱,通过计算可知高相等时截面面积相等,因而由祖暅原理可得橄榄球几何体的体积的一半等于圆柱的体积减去圆锥的体积.② 【2019·黑龙江高考模拟】我国南北朝时期的数学家祖暅提出了计算几何体体积的祖暅原理:“幂势既同,则积不容异”.意思是两个同高的几何体,如果在等高处的截面积都相等,那么这两个几何体的体积相等.现有同高的三棱锥和圆锥满足祖暅满足祖暅原理的条件.若圆锥的侧面展开图是半径为2的半圆,由此推算三棱锥的体积为()先构造两个底面半径为b,高为a的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理得出椭球的体积。

由祖暅原理引发的思考

由祖暅原理引发的思考

所以,1 2犞椭球 =π犪2犫- 3π犪2犫=2π犪32犫,
则犞椭球
4π犪2犫 =3.
把所求几何体,用圆锥、圆柱、圆台等几何图形进
行重组,就能构造出一个这样的图形来解决椭球的体
积问题.同理,球的体积问题也就迎刃而解了.这一问
题的解决,在 人 类 文 明 的 早 期,极 大 推 动 了 几 何 学 的
式都等于底面积乘高.
这个原理就是祖原
理.
图1
在很早的时候,人们已经会求三角形、四边形、多
边形等图形的面积,但由曲线围成图形的面积和体积
一直困扰 着 数 学 家.而 利 用 这 个 原 理,中 国 古 代 数 学
家已 经 可 以 计 算 出 球 的 体 积 了.这 个 方 法 非 常 巧 妙,
即把球的体积转化为已知体积大小的立体图形.如图
涵.历 史 上 简 单 且 有 用 的 定 理
图3
远不止此,拉格朗日中值定理,也是如此.如图3所示,
一条曲线,连 接 两 个 端 点 得 到 一 条 直 线,那 么 在 这 个
曲线上至少可以找到一点,使得这个点的切线平行于

这条直线.详述如下:
设函数犳(狓)满足如下条件: (1)在[犪,犫]上连续; (2)在(犪,犫)内可导.
复习 备考 学习交流 2021年4月
由祖原理引发的思考
? 江西科技师范大学 陶 醉 ? 江西科技师范大学 舒斯会
祖又名祖之,于公元5世纪末提出体积计算
原理,即 祖 原 理.这 是 一 个 有 关 几 何 求 积 的 著 名 命
则至少存在一点ξ∈ (犪,犫),使得犳(犫)-犳(犪)= 犳′(ξ)(犫-犪),也常常写成如下形式:
犳′(ξ)=犳(犫犫)- -犪犳(犪).

祖暅定理

祖暅定理
棱柱的体积
夹在两个平行平面间的两个几何体, 夹在两个平行平面间的两个几何体,被平行于这两 个平面的任意平面所截, 个平面的任意平面所截,如果截得的两个截面的面 积总相等,那么这两个几何体的体积相等。 积总相等,那么这两个几何体的体积相等。
β
P Q
α
祖暅原理
祖暅原理
前提:两个几何体夹在两平行平面间 前提:两个几何体夹在两平行平面间. 条件:被平行于这两个平行平面的任何平面 条件:被平行于这两个平行平面的任何平面 任何 所截得的两个截面面积都相等 结论: 结论:这两个几何体的体积相等 功能:从一种几何体的体积公式, 功能:从一种几何体的体积公式,推导另一 种几何体的体积
已知:棱柱的底面积和高分别是S和 设棱柱的体 已知:棱柱的底面积和高分别是 和h,设棱柱的体 积为V,试用祖暅原理证明: 积为 ,试用祖暅原理证明:V=sh 证明:取一个底面积为 ,高为h的长方体 的长方体, 证明:取一个底面积为S,高为 的长方体,使长 方体与棱柱的下底面在同一个平面 α 上,因为它 们的上底面与下底面平行,并且高相等, 们的上底面与下底面平行,并且高相等,所以它 们的上底面都在和 α 平行的同一个平面 β 内。
取一个底面积为s高为h的长方体使长方体与棱柱的下底面在同一个平面上因为它们的上底面与下底面平行并且高相等所以它们的上底面都在和平行的同一个平面用平行与平面的任意平面截棱柱和长方体分别截得多边形aopqr根据棱柱的性质可得这两个截面的面积相等且都等于s因此根据祖暅原理可得vsh定理棱柱的体积等于它的底面sh柱体的体积推论
例. 已知平行六面体 ABCD− A1 B1C1 D1的 底面是边长为a的正方形,侧棱A1 A长 为2a,且A1 A与AB、AD都成60 的角,
o

祖暅原理与柱体、椎体、球体的体积 课件

祖暅原理与柱体、椎体、球体的体积  课件

课堂练习 某几何体的三视图如图,求该几何体的体积。 (图中所给数字单位为厘米)
解:V 22 4 1 22 2 3
3
16 8 3
3
所以该几何体的体积是 16 8 3
3
课堂小结 总结一下你在本节课中 获得的知识和学习心得 祖暅原理 柱、锥、球的体积公式
V锥体
1 3
sh
例:三个直角三角形如图放置,它们围绕固定直线旋转一周形成几何体,求出该几何体的体积 (图中的长度单位是厘米)。
先研究半球的体积 思考:
如何找到一个与半球等体积的“替代品”呢?
结论 半径为R的球 的体积公式是
V球
4 3
R3
例: 一个正四面体的所有棱长都是 厘米,四个 2
顶点都在同一球面上,求此球的体积。
祖暅原理
祖冲之父子是 我们中华民族的
骄傲和自豪
祖暅原理的提出要比其他国家的 数学家早一千多年。在欧洲直到17世 纪,才有意大利数学家卡瓦列里提出 上述结论。
祖暅原理 “幂势既同,则积不容异”
设有底面积都等于S,高都等于h 的任意一个棱柱、一个圆柱和一个长 方体,使它们的下底面在同一平面内。 你能得到什么结论?
祖暅,字景烁,祖冲之之子, 范阳郡蓟县人(今河北省涞源县 人),南北朝时代的伟大科学家。 祖暅在数学上有突出贡献,他在 实践的基础上,于5世纪末提出 了体积的计算原理。祖暅原理: “幂势既同,则积不容异”。
“势”即是高,“幂”即是面积。
祖暅原理 “幂势既同,则积不容异”
夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意 平面所截,如果截得的两个截面的面积总相等,那么这两个几何体 的体积相等。
由祖暅原理可得:
V柱体=Sh 其中S 是柱体的底面积, h是柱体的高。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

祖暅求积法
祖暅(音gèng),一名祖暅之,是祖冲之的儿子,他的活动时期大约在公元504—526年.祖氏父子在数学和天文学上都有杰出的贡献.
祖暅的主要工作是修补编辑祖冲之的《缀术》.他推导球体积公式的方法非常巧妙.
根据中国算书《九章算术》中李淳风的注释,下面我们使用现代的术语,并将原来的图形略加修改,把祖暅当时推导球体积公式的方法介绍如下:
.底面OABC是一个正方形,边长为r(图2-18).高作一个几何体V
1
取一点S,过点S与底面平行的截面为SPQR,设它的边长为a,OS为h,则截面面积a2=r2-h2.
另取一个边长为r的正方体V
2
(图2-19),连结O′D′,O′C′,O′A′,
锥体O′-A′B′C′D′记作V
3,V
2
-V
3
是正方体O′D′挖去锥体O′-A′B′C′
D′剩下的几何体.下面来证明
V 1=V
2
-V
3

设平行于底面与底面距离为h的平面,截V
2
的截面是正方形P′TS′M,面
积等于r2,截V
3
的截面是正方形Q′TR′N,面积等于h2(因为Q′T=O′T=h),所以这两个正方形的差形成曲尺形P′Q′NR′S′M,它的面积等于r2-h2.
比较V
1与V
2
-V
3
在等高(h)处的截面,它们的面积都是r2-h2,因此体积相等,
即V
1=V
2
-V
3

祖暅原理的原文是“幂势既同,则积不容异.”“幂”是截面积,“势”是
几何体的高.意思是:两个同高的几何体,如果与底等距离的截面积总相等,那么几何体的体积相等.这就是现在说的:夹在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.
积为V
4(是未知数).和V
1
比较,在高h处的截面积C″EF是以a为半
祖暅提出的“幂势既同,则积不容异”,及“体积之比等于对应截面积之比”,在这里是当作公理使用.提法“幂势既同,则积不容异”,在西方通常叫做“卡瓦列利原理”(Cavalierisches,Prinzip).卡瓦列利[米兰Milan(现意大利城市)人]在他的名著《连续不可分几何》中提出这一原理,这本书出版于1635年.。

相关文档
最新文档