最新高考数学第一轮复习教案1

合集下载

高三数学高考第一轮复习计划(10篇)

高三数学高考第一轮复习计划(10篇)

高三数学高考第一轮复习计划(10篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高三数学高考第一轮复习计划(10篇)2023高三数学高考第一轮复习计划(10篇)如何规划好数学第一轮的高考复习计划呢?制定详细的复习计划,学生需要好好把握做好复习计划,复习并不是某种意义上的“炒冷饭”,而是“温故而知新”。

高考数学第一轮复习教案

高考数学第一轮复习教案

高考数学第一轮复习教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、述职报告、策划方案、演讲致辞、合同协议、条据文书、教案资料、好词好句、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, job reports, planning plans, speeches, contract agreements, doctrinal documents, lesson plans, good words and sentences, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高考数学第一轮复习教案高考数学第一轮复习教案七篇高考数学第一轮复习教案都有哪些?新的数学方法和概念,常常比解决数学问题本身更重要。

高考数学一轮复习教案

高考数学一轮复习教案

高考数学一轮复习教案教案标题:高考数学一轮复习教案教案目标:1. 确保学生对高考数学考试的各个知识点有全面的了解和掌握。

2. 帮助学生提高解题能力,培养分析和推理的能力。

3. 强化学生的数学思维和解题策略,提高应试能力。

教学内容:本教案主要围绕高考数学考试的各个知识点展开复习,包括代数、函数、几何、概率与统计等内容。

教学步骤:第一步:复习代数知识1. 复习一元二次方程的求根公式和应用。

2. 复习指数与对数的性质和运算法则。

3. 复习不等式的性质和解法。

第二步:复习函数知识1. 复习函数的定义和性质。

2. 复习函数的图像与性质,包括一次函数、二次函数、指数函数和对数函数等。

3. 复习函数的运算法则和复合函数的求解。

第三步:复习几何知识1. 复习平面几何的基本概念和性质。

2. 复习三角函数的定义和性质,包括正弦、余弦和正切等。

3. 复习平面几何中的相似三角形和勾股定理等。

第四步:复习概率与统计知识1. 复习概率的基本概念和计算方法。

2. 复习统计学中的数据收集、整理和分析方法。

3. 复习概率与统计在实际问题中的应用。

第五步:解题技巧和策略的讲解1. 教授解题的基本思路和步骤,包括审题、分析、解答和检查等。

2. 引导学生掌握解题中常用的技巧和策略,如代入法、逆向思维和分类讨论等。

3. 提供一些典型例题和解题方法的讲解和练习。

第六步:模拟考试和反馈1. 安排模拟考试,模拟高考数学试卷的形式和要求。

2. 收集学生的答卷并进行批改,给予详细的评价和建议。

3. 针对学生的错误和不足,进行有针对性的指导和讲解。

教学评估:1. 教师对学生的参与度和理解程度进行观察和评估。

2. 模拟考试的成绩和学生的答卷质量作为评估指标。

3. 学生对教学内容的反馈和问题的解答情况作为评估依据。

教学资源:1. 高考数学教材和辅助教材。

2. 高考数学模拟试卷和真题。

3. 多媒体设备和投影仪等。

教学延伸:1. 鼓励学生进行自主学习和拓展阅读,加深对数学知识的理解和应用能力。

2025届高考数学一轮复习教案:集合与常用逻辑用语-集合与常用逻辑用语

2025届高考数学一轮复习教案:集合与常用逻辑用语-集合与常用逻辑用语

第一章集合与常用逻辑用语【高考研究·备考导航】【三年考情】角度考查内容课程标准高考真题考题统计集合1.了解集合的含义,了解全集、空集的含义.2.理解元素与集合的属于关系,理解集合间的包含和相等关系.3.会求两个集合的并集、交集与补集.4.能用自然语言、图形语言、集合语言描述不同的具体问题,能使用Venn图表示集合间的基本关系和基本运算.2023年:新高考Ⅰ卷·T12023年:新高考Ⅱ卷·T22022年:新高考Ⅰ卷·T12022年:新高考Ⅱ卷·T12021年:新高考Ⅰ卷·T12021年:新高考Ⅱ卷·T2常用逻辑用语1.理解充分条件、必要条件、充要条件的意义;理解判定定理与充分条件、性质定理与必要条件、数学定义与充要条件的关系.2.理解全称量词和存在量词的意义,能正确对两种命题进行否定.2023年:新高考Ⅰ卷·T7命题趋势1.题型设置:主要以选择题、填空题为主.2.内容考查:集合的基本关系、集合的基本运算、充分必要条件的判断和含有一个量词命题的否定.3.能力考查:运算求解能力及逻辑推理能力.【备考策略】根据近三年新高考卷命题特点和规律,复习本章时,要注意以下几个方面:1.全面系统复习,深刻理解知识本质(1)理解集合、空集、子集等概念;会根据具体条件求集合的子集的个数;理解并集、交集、补集的含义,注意符号语言的正确应用.(2)理解充分条件、必要条件、充要条件的含义.(3)理解全称量词、存在量词、全称量词命题、存在量词命题的概念.2.熟练掌握解决以下问题的方法规律(1)能准确判断所给集合中元素的特征,会根据问题情境选择恰当的方法表示集合.(2)掌握集合并集、交集、补集运算,注意与解不等式、解方程和函数基本概念的交汇问题.(3)能准确判断命题的真假,并能根据具体问题情境判断充分条件、必要条件和充要条件.(4)能准确地对全称量词命题(或存在量词命题)进行否定.3.重视思想方法的应用(1)方程思想:涉及元素与集合的关系及集合相等的题目,可以利用集合中元素间的相等关系,列出方程或方程组求解.(2)数形结合思想:集合与不等式、方程、函数交汇考查是集合题型常见的考查模式,解决此类问题时,要重视Venn图、数轴等图形工具的应用,目的是形象直观地表示题目条件,全面准确地理解题意,避免失分.(3)化归与转化思想:充分条件、必要条件的判断问题,通常要转化为集合包含关系的判断;全称量词命题(或存在量词命题)与其否定真假性相反,解题时应注意此结论的应用.(4)分类与整合思想:在集合间关系的判断、集合运算、充分条件、必要条件的判断等问题中,若出现参数,常对参数进行分类讨论.。

2024年高三数学第一轮复习计划(五篇)

2024年高三数学第一轮复习计划(五篇)

高三数学第一轮复习计划在一轮复习中,数学科目当年的《考试说明》和《教学大纲》是非常重要的。

这些材料你可以通过网络或者通过老师来获取。

找到之后要好好研究,不能大致浏览,要了解每一部分要求学习到怎样的程度。

虽然这些工作老师也会进行,但是由于你比较了解自己的优势和不足,所以研究起来更加有针对性。

对于这两部分材料的研究,最终目的是即使丢开课本,头脑中也能有考试所要求的数学知识体系。

数学知识之间都有着千丝万缕的联系,仅仅想凭着对章节的理解就能得到高分的时代已经远去了。

第一轮复习时要尝试把相关的知识进行总结,方便自己联系思考,既能明白知识之间的区别,又能为后面的专题复习做好准备。

一轮复习的重点永远是基础。

要通过对基础题的系统训练和规范训练,准确理解每一个概念,能从不同角度把握所学的每一个知识点、所有可能考查到的题型,熟练掌握各种典型问题的通性、通法。

第一轮复习一定要做到细且实,切不可因轻重不分而出现“前紧后松,前松后紧”的现象,也不可因赶进度而出现“点到为止,草草了事”的情况,只有真正实现低起点、小坡度、严要求,实施自主学习,才能真正达到夯实“双基”的目的。

运算能力是学习数学的前提。

因为高考并不要求你临场创新,事实上,那张考卷上的题目你都见过,只不过是换了数字,换了语句,所以能不能拿高分,运算能力占据半边天。

而运算能力并不是靠难题练出来的,而是大量简单题目的积累。

其次,强大地运算能力可以弥补解题技巧上的不足。

我们都知道,很多数学题目往往都有巧妙地解决方法,不过很难掌握。

可那些通用性的方法,每个人都能学会,缺点就是需要庞大的计算量。

再者,运算迅速可以节省时间,也不会让你因为粗心而丢分。

此外,复习数学也和其它科目一样,也不能忽视表达能力和阅读理解能力的运用。

再有,本阶段要避免特难题、怪题、偏题,而是抓住典型题。

每道题都要反复想,反复结合考点琢磨,最好是一题多解,一题多变,借助典型题掌握方法。

最后,同学们在复习的时候还要注重以下几点:、跟住老师复习。

高中一轮复习教案数学

高中一轮复习教案数学

高中一轮复习教案数学第一课:函数及其性质
1.1 函数的定义和性质
概念:函数的定义和表示方法
性质:单调性、奇偶性、周期性等
1.2 函数的基本变换
平移、翻转、缩放等基本函数的变换方法
例题:给出函数图像,要求根据变换规律求新函数的图像1.3 复合函数
概念:复合函数的定义和计算方法
例题:计算复合函数的值,并分析其性质
1.4 反函数
概念:反函数的存在条件及求解方法
例题:给定函数,求其反函数,并验证是否合理
第二课:三角函数及其应用
2.1 三角函数的概念与性质
正弦、余弦、正切等三角函数的定义和性质
例题:解三角函数方程,证明恒等式等
2.2 三角函数的图像与变换
三角函数的图像特征及平移、翻转、缩放等变换规律
例题:给定函数图像,要求根据变换规律求新函数的图像2.3 三角函数的应用
三角函数在几何、物理等领域的应用
例题:实际问题中的三角函数应用
第三课:导数与微分
3.1 导数的概念与性质
导数的定义、导数与函数图像的关系等基本性质
例题:求函数的导数,研究导数的性质
3.2 导数的计算
常见函数的导数计算方法
例题:计算给定函数的导数,并分析其变化规律
3.3 微分的应用
微分的定义及在近似计算、最值问题等方面的应用
例题:利用微分求函数的极值点,解几何问题等
以上是高中数学一轮复习的教案范本,希望对你的备考有所帮助。

祝你取得优异的成绩!。

高考数学一轮复习 1.1集合教案-人教版高三全册数学教案

高考数学一轮复习 1.1集合教案-人教版高三全册数学教案

课题 第一章 集合与常用逻辑用语 第一节 集 合教学目标:知识与技能:了解集合的含义,元素与集合的属于关系,理解集合之间的包含与相等关系,理解子集与补集的关系。

过程与方法:会求两个集合的交,并,补集,能使用韦恩图表达集合的关系及运算。

情感、态度与价值观:教学过程中,要让学生充分体验集合的具体应用,应用集合解决实际问题的方法。

教学重点:集合的交,并,补关系及运算教学难点:使用韦恩图表达集合的关系及运算教 具:多媒体、实物投影仪教学过程:一、复习引入:1.集合的含义与表示方法2.集合间的基本关系3.集合的基本运算二、例题讲解例1判断下面结论是否正确(请在括号中打“√”或“×”).(1)已知集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A=B=C.( )(2)含有n 个元素的集合的子集个数是2n ,真子集个数是2n-1,非空真子集的个数是2n-2.( )(3)A ∩B= 的充要条件是A=B= .( )(4)A ∩B=A ⇔A ⊆B.( )(5)A ∪B=A ⇔B ⊆A.( )(6) (A ∪B)=( A)∩( B).( )【解析】(1)错误.集合A 是函数y=x2的定义域,即A=(-∞,+∞);集合B 是函数y=x2的值域,即B=[0,+∞);集合C 是满足方程y=x2的实数x,y 的集合,也可以看作是函数y=x2图象上的点组成的集合,因此这三个集合互不相等.(2)正确.空集的子集个数为1个,即 ;含有1个元素的集合{a1}的子集个数为2个,即 ,{a1};含有2个元素的集合{a1,a2}的子集个数为4个,即 ,{a1},{a2},{a1,a2}……归纳可得含有n 个元素的集合的子集个数为2n 个,故其真子集个数是2n-1,非空真子集的个数是2n-2.(3)错误.A ∩B= 时,只要集合A,B 没有公共元素即可,不一定是A=B= .(4)正确.当A ⊆B 时,显然A ∩B=A ;当A ∩B=A 时,对任意x ∈A ,得x ∈A ∩B ,得x ∈B ,即x ∈A ⇒x ∈B ,故A ⊆B .(5)正确.当B ⊆A 时,显然A ∪B=A ; ∅∅当A∪B=A时,对任意x∈B,则x∈A∪B,得x∈A,即x∈B⇒x∈A,即B⊆A.(6)正确.设x∈ (A∪B),则x (A∪B),得x A且x B,即x∈ A且x∈ B,即x∈( A)∩( B),即 (A∪B)⊆( A)∩( B);反之,当x∈( A)∩( B)时,得x∈ A且x∈ B得x A且x B,得x (A∪B),得x∈ (A∪B),即 (A∪B) ( A)∩( B).根据集合相等的定义得 (A∪B)=( A)∩( B).答案:(1)× (2)√ (3)× (4)√ (5)√ (6)√考向 1 集合的基本概念【典例1】(1)(2012·新课标全国卷)已知集合A={1,2,3,4,5}, B={(x,y)|x∈A,y∈A,x-y ∈A},则B中所含元素的个数为( )(A)3 (B)6 (C)8 (D)10(2)已知A={a+2,(a+1)2,a2+3a+3},若1∈A,则实数a构成的集合B的元素个数是( )(A)0 (B)1 (C)2 (D)3【思路点拨】(1)集合B中的元素是满足x∈A,y∈A,x-y∈A的有序实数对,根据要求分类列举求解.(2)据1∈A逐个讨论求解a值,根据集合元素的互异性得集合B中元素的个数.【规范解答】(1)选D.方法:x=2时,y=1,x-y=1,此时(x,y)=(2,1),此时(x,y)有1个;x=3时,y=1,2,此时x-y=2,1,(x,y)有2个;x=4时,y=1,2,3,此时x-y=3,2,1,(x,y)有3个;x=5时,y=1,2,3,4,此时x-y=4,3,2,1,(x,y)有4个.所以集合B中的元素个数为1+2+3+4=10.(2)选B.若a+2=1,则a=-1,代入集合A,得A={1,0,1},与集合元素的互异性矛盾;若(a+1)2=1,得a=0或-2,代入集合A,得A={2,1,3}或A={0,1,1},后者与集合元素的互异性矛盾,故a=0符合要求;若a2+3a+3=1,则a=-1或-2,代入集合A,得A={1,0,1}或A={0,1,1},都与集合元素的互异性相矛盾.综上可知,只有a=0符合要求,故集合B中只有一个元素.【互动探究】在本例(1)的集合B中如果去掉x-y∈A的限制条件,其他条件均不变,则集合B中含有的元素个数是多少?【解析】当x=1时,y=1,2,3,4,5,同理当x=2,3,4,5时,y=1,2,3,4,5,所以集合B中含有5×5=25个元素【变式训练】定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为( )(A)0 (B)2 (C)3 (D)6【解析】选D.根据指定的法则,集合A*B中的元素是A,B中的元素的乘积,根据集合元素的性质,得A*B={0,2,4},故集合A*B中所有元素之和为6.考向 2 集合间的基本关系【典例2】(1)(2014·三明模拟)已知集合A={x|x2-3x+2=0,x ∈R},B={x|0<x<5,x ∈N},则满足条件A ⊆C ⊆B 的集合C 的个数为 ( )(A)1 (B)2 (C)3 (D)4(2)若集合A={1,a,b},B={a,a2,ab},且A ∪B=A ∩B,则实数a 的取值集合是 .【思路点拨】(1)求出A,B 中的元素,由A ⊆C ⊆B,知集合C 的个数由B 中有A 中没有的元素个数决定.(2)A ∪B=A ∩B ⇔A=B ,得出关于a,b 的方程组,解出a,b ,再根据集合元素的性质加以检验得出结论.【规范解答】(1)选D.A={x|x2-3x+2=0,x ∈R}={1,2},B={x|0<x<5,x ∈N}={1,2,3,4},由A ⊆C ⊆B,方法一:则C 中含有除1,2之外的3,4两元素中的0个、1个、2个,即C 的个数可以看作是集合{3,4}的子集的个数,有22=4个.方法二:则C 可能为{1,2},{1,2,3},{1,2,4},{1,2,3,4}共4个(2)方法一:因为A ∪B=A ∩B,所以A=B ,所以{1,b}={a2,ab}, 所以 解得 反代回A,B 集合知,只有 适合,所以 即实数a 的取值集合是{-1}.【变式训练】(1)已知M={x|x-a=0},N={x|ax-1=0},若M ∩N=N ,则实数a 的值为( )(A)1 (B)-1 (C)1或-1 (D)0或1或-1【解析】选D .M ∩N=N ⇔N ⊆M .当a=0时,N= ,符合要求, 当a ≠0时,只要 即a=±1即可. (2)设集合A={x,y,x+y},B={0,x2,xy},若A=B ,则实数对(x,y)的取值集合是_________.【解析】由A=B ,且0∈B ,故集合B 中的元素x2≠0,xy ≠0,故x ≠0,y ≠0,那么只能是集合A 中的x+y=0,此时就是在条件x+y=0下,{x,y}={x2,xy}, 答案:{(1,-1),(-1,1)}考向 3 集合的基本运算【典例3】(1)(2012·福建高考)已知集合M={1,2,3,4},N={-2,2},下列结论成立的是( )(A)N ⊆M (B)M ∪N=M (C)M ∩N=N (D)M ∩N={2}(2)(2012·辽宁高考)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则( A)∩( B)为( )(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6}【思路点拨】(1)根据集合M ,N 中元素的特点逐一验证.(2)可以根据补集定义求出 A, B ,再根据交集定义得出结论,还可以利用Venn 图解决.【规范解答】(1)选D.显然M ∩N={2}. (2)选B.方法:集合( A)∩( B)= (A ∪B)={7,9}.如图所示:【拓展提升】小结:集合的运算律 221ab,1a b ab b a =⎧⎧=⎨⎨==⎩⎩,或,∅1a a =,(1)交换律:A∪B=B∪A,A∩B=B∩A.(2)结合律:(A∪B)∪C=A∪(B∪C);(A∩B)∩C=A∩(B∩C).(3)分配律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C).【变式训练】(1)已知集合M={y|y=2x},集合N={x|y=lg(2x-x2)},则M∩N=( )(A)(0,2) (B)(2,+∞)(C)[0,+∞] (D)(-∞,0)∪(2,+∞)【解析】选A. 集合M为函数y=2x的值域,即M=(0,+∞),集合N是函数y=lg(2x-x2)的定义域,由不等式2x-x2>0,解得N=(0,2),所以M∩N=(0,2).三,布置作业思考辨析,考点自测,知能巩固。

高三数学一轮复习教案

高三数学一轮复习教案

高三数学一轮复习教案教案标题:高三数学一轮复习教案教学目标:1. 复习高三数学的基础知识和重点概念,巩固学生的数学基础;2. 帮助学生理解数学知识的应用和解题方法;3. 提高学生的解题能力和应试技巧,为高考数学取得优异成绩做准备。

教学内容:1. 高三数学的基础知识回顾和概念梳理;2. 高考数学常见题型的解题技巧和方法;3. 高考数学试题的分析和解答。

教学步骤:一、复习基础知识和概念(2课时)1. 复习数列与数列的概念,包括等差数列、等比数列等;2. 复习函数与方程的基本概念,包括一次函数、二次函数等;3. 复习三角函数的基本概念和性质;4. 复习概率与统计的基本概念和计算方法。

二、解题技巧和方法(4课时)1. 高考数学常见题型的解题技巧和方法,包括选择题、填空题、解答题等;2. 解析高考数学试题中的典型题目,讲解解题思路和方法;3. 练习高考数学试题,让学生熟悉不同题型的解题方法。

三、高考数学试题分析与解答(4课时)1. 分析高考数学试题的命题思路和考点,帮助学生理解题目的出题思想;2. 解答高考数学试题,讲解解题步骤和思路;3. 强化练习,让学生熟悉高考数学试题的解答过程。

四、综合复习与提高(2课时)1. 综合复习高三数学各个章节的重点内容和难点;2. 解析高考数学真题中的典型题目,加强学生的解题能力;3. 模拟高考数学试卷,让学生在考试环境下进行综合复习和提高。

教学评估:1. 每节课结束时进行小测验,检查学生对所学知识的掌握情况;2. 每周安排一次模拟考试,评估学生的学习进展和应试能力;3. 针对学生的学习情况和问题,及时进行个别辅导和指导。

教学资源:1. 教材:高中数学教材;2. 题库:高考数学真题、模拟试题等;3. 多媒体设备:投影仪、电脑等。

教学反思:1. 每节课结束后进行教学反思,总结教学过程中的优点和不足;2. 收集学生的反馈意见,了解他们的学习情况和需求,及时调整教学策略;3. 与其他教师进行交流和讨论,互相借鉴教学经验,提高教学质量。

2025届高考数学一轮复习教案:数列-数列求和

2025届高考数学一轮复习教案:数列-数列求和

第五节数列求和课程标准1.熟练掌握等差、等比数列的前n项和公式.2.掌握非等差数列、非等比数列求和的几种常见方法.考情分析考点考法:高考命题常以等差、等比数列为载体,考查裂项相消、错位相减求和等数列求和方法,涉及奇偶项的求和问题是高考的热点,常以解答题的形式出现.核心素养:数学建模、数学运算、逻辑推理.【核心考点·分类突破】考点一分组、并项、倒序相加求和[例1](1)数列112,214,318,…的前n项和为S n=()A.2-1B.(r1)2+2nC.(r1)2-12+1D.2-1【解析】选C.数列112,214,318,...的前n项和为S n=(1+2+3+...+n)+(12+14+18+ (12)=(r1)2+12(1-12)1-12=(r1)2-12+1.(2)设f(x)=21+2,则f(12024)+f(12023)+…+f(1)+f(2)+…+f(2024)=________.【解析】因为f(x)=21+2,所以f(x)+f(1)=1.令S=f(12024)+f(12023)+…+f(1)+f(2)+…+f(2024),①则S=f(2024)+f(2023)+…+f(1)+f(12)+…+f(12024),②所以2S=4047,所以S=40472.答案:40472(3)(2023·深圳模拟)已知公差为2的等差数列的前n项和为S n,且满足S2=a3.①若a1,a3,a m成等比数列,求m的值;②设b n=a n-2,求数列的前n项和T n.【解析】①由题意知数列是公差为2的等差数列,设公差为d,则d=2,又因为S2=a3,所以a1+a2=a3,即2a1+d=a1+2d,得a1=d=2,所以a n=a1+(n-1)d=2n(n∈N*).又因为a1,a3,a m成等比数列,即32=a1a m,所以36=2×2m,得m=9.②因为b n=a n-2=2n-4n,所以T n=(2×1-41)+(2×2-42)+…+(2×n-4n)=2×(1+2+…+n)-(41+42+…+4n)=2×(r1)2-4×(1-4)1-4=n(n+1)-43×(4n-1)=n2+n+43-4r13.【解题技法】分组转化与并项求和法(1)数列的项可以拆分成两类特殊数列,分别对这两类数列求和,再合并后即为原来的数列的前n项和;(2)数列的项具有一定的周期性,相邻两项或多项的和是一个有规律的常数,可以将数列分成若干组求和.【对点训练】1.已知数列的通项公式为a n=n cos(n-1)π,S n为数列的前n项和,则S2023=()A.1009B.1010C.1011D.1012【解题提示】将a n=n cos(n-1)π化为a n=n×-1-1,利用并项法求和.【解析】选D.因为当n为奇数时cos(n-1)π=1,当n为偶数时cos(n-1)π=-1,所以cos(n-1)π=-1-1,所以a n=n cos(n-1)π=n×-1-1.S2023=(1-2)+(3-4)+…+(2021-2022)+2023=-1011+2023=1012.2.设f(x)=44+2,若S=f(12024)+f(22024)+…+f(20232024),则S=________.【解析】因为f(x)=44+2,所以f(1-x)=41-41-+2=22+4,所以f(x)+f(1-x)=44+2+22+4=1.S=f(12024)+f(22024)+…+f(20232024),①S=f(20232024)+f(20222024)+…+f(12024),②①+②,得2S=[f(12024)+f(20232024)]+[f(22024)+f(20222024)]+…+[f(20232024)+f(12024)]=2023,所以S=20232.答案:202323.已知是公差d≠0的等差数列,其中a2,a6,a22成等比数列,13是a4和a6的等差中项;数列是公比q为正数的等比数列,且b3=a2,b5=a6.(1)求数列和的通项公式;(2)令c n=a n+b n,求数列的前n项和T n.【解析】(1)因为a2,a6,a22成等比数列,所以62=a2a22,即(1+5)2=(a1+d)(a1+21d)①.因为13是a4和a6的等差中项,所以a4+a6=26,即(a1+3d)+(a1+5d)=26②,由①②可得:a1=1,d=3,所以a n=1+(n-1)×3=3n-2,从而b3=a2=4,b5=a6=16.因为数列是公比q为正数的等比数列,所以b5=b3q2,即16=4q2,所以q=2,从而b n=b3q n-3=2n-1.(2)由于b n=2n-1,所以b1=1.因为c n=a n+b n,所以T n=c1+c2+…+c n=(a1+b1)+(a2+b2)+…+(a n+b n)=(a1+a2+…+a n)+(b1+b2+…+b n)=+(-1)2×3+1-21-2=2n+32n2-12n-1.考点二裂项相消法求和[例2](1)已知函数f(x)=x a的图象过点(4,2),令a n=1(r1)+(),n∈N*.记数列{a n}的前n项和为S n,则S2025=________.【解析】由f(4)=2可得4a=2,解得a=12,则f(x)=12,所以a n=1(r1)+()==+1-,S2025=a1+a2+a3+…+a2025=(2-1)+(3-2)+(4-3)+…+(2025-2024)+(2026-2025)=2026-1.答案:2026-1(2)已知数列的各项均为正数,S n是其前n项的和.若S n>1,且6S n=2+3a n+ 2(n∈N*).①求数列的通项公式;②设b n=1r1,求数列的前n项和T n.【解析】①因为6S n=2+3a n+2,(i)n=1时,6S1=6a1=12+3a1+2,即12-3a1+2=0,解得a1=2或a1=1,因为S n>1,所以a1=2;(ii)n≥2时,由6S n=2+3a n+2,有6S n-1=-12+3a n-1+2,两式相减得6(S n-S n-1)=2--12+3a n-3a n-1,所以6a n=2--12+3a n-3a n-1,所以2--12-3a n-3a n-1=0,所以(a n+a n-1)(a n-a n-1)-3(a n+a n-1)=0,所以(a n+a n-1)(a n-a n-1-3)=0.因为数列的各项均为正数,所以a n+a n-1≠0,所以a n-a n-1-3=0,即a n-a n-1=3,综上所述,是首项a1=2,公差d=3的等差数列,所以a n=a1+(n-1)d=2+(n-1)×3=3n-1,所以数列的通项公式为a n=3n-1.②由①知a n=3n-1,所以a n+1=3(n+1)-1=3n+2,所以b n=1r1=1(3-1)(3r2)=13×(3r2)-(3-1)(3-1)(3r2)=13×(13-1-13r2),所以T n=13×(12-15)+13×(15-18)+13×(18-111)+…+13×(13-1-13r2)=13×(12-15+15-18+18-111+…+13-1-13r2)=13×(12-13r2)=13×3r2-22(3r2)=6r4,所以数列的前n项和T n=6r4.【解题技法】破解裂项相消求和的关键点(1)定通项:根据已知条件求出数列的通项公式.(2)巧裂项:根据通项公式的特征进行准确裂项,把数列的每一项,表示为两项之差的形式.(3)消项求和:通过累加抵消掉中间的项,达到消项的目的,准确求和.(4)常见的裂项结论:①设等差数列的各项不为零,公差为d(d≠0),则1r1=1(1-1r1);②142-1=12(12-1-12r1);③1(r1)(r2)=12(r1)(1-1r2)=12[1(r1)-1(r1)(r2)];④242-1=14(42-1)+1442-1=14+18(12-1-12r1);⑤a n=2(2+)(2r1+)=12+-12r1+;⑥a n=r12(r2)2=14[12-1(r2)2].提醒:要注意正负相消时,可以通过写出前几项观察消去规律的方法,确定消去了哪些项,保留了哪些项,不可漏写未被消去的项.【对点训练】1.{a n }是等比数列,a 2=12,a 5=116,b n =r1(+1)(r1+1),则数列{b n }的前n 项和为()A .2-12(2+1)B .2-12+1C .12+1D .2-12+2【解析】选A .a 5=a 2·q 3,所以q 3=18,所以q =12,a 1=1,所以a n =(12)n -1.b n =(12)[(12)-1+1][(12)+1]=1(12)+1-1(12)-1+1,所以b 1+b 2+b 3+…+b n =[1(12)1+1-1(12)0+1]+[1(12)2+1-1(12)1+1]+[1(12)3+1-1(12)2+1]+…+[1(12)+1-1(12)-1+1]=1(12)+1-12=2-12(2+1).2.已知数列{a n }的前n 项和为S n ,且a 2=8,S n =r12-n -1.(1)求数列{a n }的通项公式;(2)n 项和T n .【解析】(1)因为a 2=8,S n =r12-n -1,所以a 1=S 1=22-2=2.当n ≥2时,a n =S n -S n -1=r12-n -1-(2-n ),即a n +1=3a n +2.又a 2=8=3a 1+2,所以a n +1=3a n +2,n ∈N *,所以a n +1+1=3(a n +1),所以数列{a n +1}是等比数列,且首项为a 1+1=3,公比为3,所以a n +1=3×3n -1=3n ,所以a n =3n -1.(2)因为2×3=2×3(3-1)(3r1-1)=13-1-13r1-1,r1n 项和T n =(13-1-132-1)+(132-1-133-1)+…+(13-1-13r1-1)=12-13r1-1.考点三错位相减法求和[例3]已知数列中,a 1=8,且满足a n +1=5a n -2·3n .(1)证明:数列-3为等比数列,并求数列的通项公式;(2)若b n =n (a n -3n ),求数列的前n 项和S n .【解析】(1)因为a n +1=5a n -2·3n ,所以a n +1-3n +1=5a n -5·3n =5(a n -3n ),所以数列-3是以a 1-31=5为首项,以5为公比的等比数列,所以a n -3n =5×5n -1=5n ,所以a n =3n +5n .(2)因为a n =3n +5n ,所以b n =n (a n -3n )=n ×5n ,所以S n =b 1+b 2+b 3+…+b n ,即S n =1×51+2×52+3×53+…+n ×5n ①,所以5S n =1×52+2×53+3×54+…+n ×5n +1②,由①-②得:-4S n =1×51+1×52+1×53+…+1×5n -n ×5n +1,-4S n =5(1-5)1-5-n ×5n +1,化简得:S n =5+(4-1)×5r116.【解题技法】错位相减法求和的解题策略(1)巧分拆,即将数列的通项公式分拆为等差数列与等比数列积的形式,并求出公差和公比.(2)构差式,即写出S n的表达式,再乘公比或除以公比,然后将两式相减.(3)后求和,根据差式的特征准确进行求和.提醒:错位相减法求和的注意点①在写出“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n-qS n”的表达式.②应用等比数列求和公式必须注意公比q是否等于1,如果q=1,应用公式S n=na1.【对点训练】已知数列的前n项和为S n=3n2+8n-6,是等差数列,且a n=b n+b n+1(n≥2).(1)求数列和的通项公式;(2)令c n=b n·2n+2n+1,求数列的前n项和T n.【解析】(1)S n=3n2+8n-6,所以n≥2时,S n-1=3(n-1)2+8(n-1)-6,所以a n=S n-S n-1=6n+5.n=1时,a1=S1=5,不满足a n=6n+5,所以a n=5(=1)6+5(≥2);设的公差为d,a n=b n+b n+1(n≥2),所以a n-1=b n-1+b n(n≥3),所以a n-a n-1=b n+1-b n-1,所以2d=6,所以d=3.因为a2=b2+b3,所以17=2b2+3,所以b2=7⇒b1=4,所以b n=3n+1;(2)c n=3(n+1)2n,所以T n=3×2+3×22+…+(+1)2①,所以2T n=32×22+3×23+…+(+1)2r1②,①-②得,-T n=3[2×2+22+23+…+2n-(n+1)2n+1]+1)2r1=-3n·2n+1,所以T n=3n·2n+1,所以数列的前n项和T n=3n·2n+1.。

高三数学第一轮复习教案

高三数学第一轮复习教案

集合的性质: ①任何一个集合是它本身的子集,记为
A A;
②空集是任何集合的子集,记为
A;
③空集是任何非空集合的真子集;
如果 A B ,同时 B A ,那么 A = B. 如果 A B, B C,那么 A C .
[ 注 ] :① Z= { 整数 } (√) Z ={ 全体整数 } (3)
②已知集合 S 中 A的补集是一个有限集,则集合 则 CsA= {0} )
命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。
构成复合命题的形式: p 或 q( 记作“ p∨ q” ) ; p 且 q( 记作“ p∧ q” ) ;非 p( 记
作“┑ q” ) 。
3、“或”、 “且”、 “非”的真值判断 ( 1)“非 p”形式复合命题的真假与 F 的真假相 反; ( 2)“ p 且 q”形式复合命题当 P 与 q 同为真时 为真,其他情况时为假; ( 3)“ p 或 q”形式复合命题当 p 与 q 同为假时 为假,其他情况时为真.
高考数学总复习教案及知识点
第一章 - 集合
考试内容: 集合、 子集、 补集、 交集、 并集. 逻辑联结词. 四种命题. 充分条件和必要条件. 考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包 含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合. (2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充 分条件、必要条件及充要条件的意义.
( 1)根的“零分布”:根据判别式和韦达定理分析列式解之
.
( 2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之
.
第三讲,简易逻辑及命题

第一轮高考数学复习方案

第一轮高考数学复习方案

第一轮高考数学复习方案要想在考试中取得好成绩,绝对要做好第一轮复习。

那么你知道第一轮高考数学怎么复习吗?下面是小编整理的第一轮高考数学复习方案,欢迎大家阅读分享借鉴,希望对大家有所帮助。

复习计划进度表(第一轮复习)第一章集合 (1课时模拟考试1次)1、集合的概念及集合的运算2、绝对值不等式、一元二次不等式的解法3、简易逻辑第二章函数 (4课时模拟考试1次)1、函数的概念及表示方法2、函数的解析式及定义域,函数的值域3、函数的奇偶性及函数的单调性4、反函数5、指数函数与对数函数,幂函数6、二次函数及方程的根7、函数的最值 8、函数的图象9、函数综合应用第三章数列 (3课时模拟考试1次)1、数列的有关概念2、等差数列3、等比数列4、等差与等比数列5、数列求和6、数列的应用第四章三角函数 (2课时模拟考试1次)1、任意角的三角函数2、同角的三角函数关系式及诱导公式3、两角和与差的三角函数4、三角函数的图象5、三角函数的性质6、已知三角函数值求角7、解三角形 8、三角形中的有关问题第五章平面向量 (1课时模拟考试1次 )1、向量与向量的运算2、平面向量的坐标运算3、平面向量的数量积及运算4、线段的定比分点和图象的平移5、解斜三角形第六章不等式 (1天模拟考试1次)1、含绝对值不等式与一元二次不等式的解法2、不等式的性质3、不等式的证明4、不等式的解法举例5、不等式的应用第七章直线和圆的方程 (1课时模拟考试1次)1、直线的方程2、两条直线的位置关系3、简单的线性规划4、曲线与方程5、圆的方程第八章圆锥曲线方程 (2课时模拟考试1次)1、椭圆、双曲线、抛物线2、直线与圆锥曲线的位置关系3、圆锥曲线的综合问题第九章立体几何初步 (3课时模拟考试1次)1、空间几何体2、点.线.之间的位置关系第十章排列、组合、二项式定理 (1课时模拟考试1次)1、两个计数原理2、排列、组合3、二项式定理及其应用第十一章概率与统计 (2课时模拟考试1次)1、随机事件的概率2、互斥事件有一个发生的概率3、相互独立事件同时发生的概率 4.抽样方法第十二章导数及其应用 (2课时模拟考试1次)1、导数的概念及运算2、导数的应用复习策略1.吃透大纲,把握复习方向(1)全面复习,突出重点内容高考,能力立意,考察数学思想,倡导理性思维的基本指导思想不会改变,高考命题不会过分追求知识的覆盖率,所以教学时应做到既要紧扣新大纲,抓好三基,全面复习,又要突出高中数学的重点内容和主干知识。

2024年高三数学第一轮复习的教学计划(精选5篇)

2024年高三数学第一轮复习的教学计划(精选5篇)

2024年高三数学第一轮复习的教学计划(精选5篇)高三数学第一轮复习的教学计划1一、背景分析近几年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则。

考试题不但坚持了考查全面、比例适当,布局合理的特点,也突出体现了变知识立意为能力立意这一举措。

更加注重考查学生进入高校学习所需的基本数学素养,这些变化应引起我们在教学中的关注和重视。

二、指导思想在全面推行素质教育的背景下,努力提高课堂复习效率是高三数学复习的重要任务。

通过复习,让学生在数学学习过程中,更好地学会从事社会生产和进一步学习所必需的数学基础知识,从而培养学生思维能力,激发学生学习数学的兴趣,使学生树立学好数学的信心。

老师要在教学过程中不断了解新的教学信息,更新教育观念,探求新的教学模式,加强教改力度,准确把握课程标准和考试说明的各项基本要求,立足基本知识、基本技能、基本思想和基本方法教学,针对学生实际,指导学法,着力培养学生的创新能力和运用数学的意识和能力。

三、目标要求第一轮复习要结合高考考点,紧扣教材,以加强双基教学为主线,以提高学生能力为目标,加强学生对知识的理解、联系、应用,同时结合高考题型强化训练,提高学生的解题能力。

为此,我们确立了一轮复习的总体目标:通过梳理考点,培养学生分析问题、解决问题的能力;使学生养成思考严谨、分析条理、解答正确、书写规范的良好习惯,为二轮复习乃至高考奠定坚实的基础。

具体要求如下:1、第一轮复习必须面向全体学生,降低复习起点,在夯实双基的前提下,注重培养学生的能力,包括:空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。

提高学生对实际问题的阅读理解、思考判断能力;以及数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

复习教学要充分考虑到本班学生的实际水平,坚决反对脱离学生实际的任意拔高和只抓几个“优等生”放弃大部分“中等生”的不良做法,不做或少做无效劳动,加大分层教学和个别指导的力度,狠抓复习的针对性、实效性,提高复习效果。

2025届高考数学一轮复习教案:数列-等比数列

2025届高考数学一轮复习教案:数列-等比数列

第三节等比数列课程标准1.理解等比数列的概念并掌握其通项公式与前n项和公式.2.能在具体的问题情境中,发现数列的等比关系,并解决相应的问题.3.体会等比数列与指数函数的关系.考情分析考点考法:高考命题常以等比数列为载体,考查基本量的运算、求和及性质的应用.等差数列与等比数列的综合应用是高考的热点,在各个题型中均有出现.核心素养:数学建模、数学运算、逻辑推理.【必备知识·逐点夯实】【知识梳理·归纳】1.等比数列的有关概念定义一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数(不为零),那么这个数列叫做等比数列通项公式设{a n}是首项为a1,公比为q的等比数列,则通项公式a n=a1q n-1.推广:a n=a m q n-m(m,n∈N*)等比中项如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项.此时,G2=ab【微点拨】(1)等比数列中不含有0项;(2)同号的两个数才有等比中项,且等比中项有两个,它们互为相反数.2.等比数列的前n项和公式【微点拨】在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形而导致解题失误.3.等比数列与指数函数的关系等比数列的通项公式可整理为a n=1·q n,而y=1·q x(q≠1)是一个不为0的常数1与指数函数q x的乘积,从图象上看,表示数列1·q n中的各项的点是函数y=1·q x的图象上孤立的点.4.等比数列的性质(1)对任意的正整数m,n,p,q,若m+n=p+q,则a m·a n=a p·a q.特别地,若m+n=2p,则a m·a n=2.(2)若等比数列前n项和为S n,则S m,S2m-S m,S3m-S2m仍成等比数列(公比q≠-1).(3)数列{a n}是等比数列,则数列{pa n}(p≠0,p是常数)也是等比数列.(4)在等比数列{a n}中,等距离取出若干项也构成一个等比数列,即a n,a n+k,a n+2k,a n+3k,…为等比数列,公比为q k.(5)等比数列{a n}的单调性:当q>1,a1>0或0<q<1,a1<0时,数列{a n}是递增数列;当q>1,a1<0或0<q<1,a1>0时,数列{a n}是递减数列;当q=1时,数列{a n}是常数列.【基础小题·自测】类型辨析改编易错高考题号12341.(多维辨析)(多选题)下列结论正确的是()A.满足a n+1=qa n(n∈N*,q为常数)的数列{a n}为等比数列B.三个数a,b,c成等比数列的必要不充分条件是b2=acC.数列{a n}的通项公式是a n=a n,则其前n项和为S n=(1-)1-D.如果数列{a n}为正项等比数列,则数列{ln a n}是等差数列【解析】选BD.A中q不能为0;B中当a=b=c=0时满足b2=ac,但不是等比数列;C 中a=1时不成立;D中,a n>0,设a n=a1q n-1,则ln a n=ln a1+(n-1)ln q,{ln a n}是等差数列.2.(选择性必修第二册P29例1·变形式)若{a n}是各项均为正数的等比数列,且a1=1,a5=16,则a6-a5=()A.32B.-48C.16D.-48或16【解析】选C.由题意,q>0,则q=2,所以a6-a5=a5(q-1)=16.3.(忽视前n项和的条件致误)等比数列{a n}中,a3=6,前三项和S3=18,则公比q的值为()A.1B.-12C.1或-12D.-1或-12【解析】选C.因为S3=18,a3=6,所以a1+a2=32(1+q)=12,故2q2-q-1=0,解得q=1或q=-12.4.(2023·全国乙卷)已知{a n}为等比数列,a2a4a5=a3a6,a9a10=-8,则a7=________.【解析】设{a n}的公比为q(q≠0),则a2a4a5=a3a6=a2q·a5q,显然a n≠0,则a4=q2,即a1q3=q2,则a1q=1.因为a9a10=-8,则a1q8·a1q9=-8,则q15=(5)3=-8=(-2)3,则q5=-2,则a7=a1q·q5=q5=-2.答案:-2【巧记结论·速算】1.若{a n},{b n}(项数相同)是等比数列,则{λa n}(λ≠0),{1},{2},{a n·b n数列.2.当{a n}是等比数列且q≠1时,S n=11--11-·q n=A-A·q n.【即时练】1.设n∈N*,则“数列{a n}为等比数列”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】选A.充分性:若数列为等比数列,公比为q,为公比为12的等比数列,充分性成立;必要性:,公比为q,则-1=±所以数列不是等比数列,必要性不成立.2.已知数列{a n}的前n项和S n=22n+1+a,若此数列为等比数列,则a=________.【解析】因为数列的前n项和S n=22n+1+a=2×4n+a,所以a=-2.答案:-2【核心考点·分类突破】考点一等比数列基本量的计算[例1](1)(一题多法)记S n为等比数列{a n}的前n项和,若a5-a3=12,a6-a4=24,则=()A.2n-1B.2-21-nC.2-2n-1D.21-n-1【解析】选B.方法一:设等比数列{a n}的公比为q,则由5-3=14-12=12,6-4=15-13=24,解得1=1,=2,所以S n=1(1-)1-=2n-1,a n=a1q n-1=2n-1,所以=2-12-1=2-21-n.方法二:设等比数列{a n}的公比为q,因为6-45-3=4(1-2)3(1-2)=43=2412=2,所以q=2,所以=1(1-)1-1-1=2-12-1=2-21-n.(2)已知等比数列{a n}的前n项和为S n,若a3a11=232,且S8+S24=mS16,则m=()A.-4B.4C.-83D.83【解析】选D.因为a3a11=232,且a n≠0,所以a11=2a3即a1q10=2a1q2,解得q8=2或q=0(舍去),因为S 8+S 24=mS 16,所以1(1-8)1-+1(1-24)1-=m ·1(1-16)1-,又因为q 8=2,a 1≠0,所以-8=-3m ,解得m =83.【解题技法】等比数列基本量的计算(1)等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求解;(2)注意观察条件转化式的特点,尽量采用整体消元、代入的方法简化运算,如两式相除就是等比数列中常用的运算技巧.【对点训练】1.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=()A .16B .8C .4D .2【解析】选C .设各项均为正数的等比数列{a n }的公比为q ,则1+1+12+13=15,14=312+41,解得1=1=2,所以a 3=a1q 2=4.2.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,5项和为()A .158或5B .3116或5C .3116D .158【解析】选C .若q =1,则由9S 3=S 6,得9×3a 1=6a 1,则a 1=0,不满足题意,故q ≠1.由9S 3=S 6,得9×1(1-3)1-=1(1-6)1-,解得q =2.故a n =a 1q n-1=2n -1,1=(12)n -1.1为首项,以12为公比的等比数列,所以5项和为T 5=1×[1-(12)5]1-12=3116.【加练备选】设公比为q(q>0)的等比数列{a n}的前n项和为S n.若S2=3a2+2,S4=3a4+2,则q=()A.32B.12C.23D.2【解析】选A.因为在等比数列中,S2=3a2+2,S4=3a4+2,所以S4-S2=a3+a4=3(a4-a2),所以a2(q+q2)=3a2(q2-1),又a2≠0,所以q+q2=3(q2-1),即2q2-q-3=0,又q>0,所以q=32.考点二等比数列的判定与证明[例2]已知数列{a n}中,a1=1且2a n+1=6a n+2n-1(n∈N*),(1)求证:数列+;(2)求数列{a n}的通项公式.【解析】(1)因为2a n+1=6a n+2n-1(n∈N*),所以a n+1=3a n+n-12,所以r1+r12+2=3+-12+r12+2=3+32+2=3,因为a1+12=1+12=32,所以数列+2是首项为32,公比为3的等比数列.(2)由(1)得,a n+2=32×3n-1=12×3n,所以a n=12×3n-2.【解题技法】等比数列的判定方法定义法若a n+1a n=q(q为非零常数,n∈N*)或-1=q(q为非零常数且n≥2,n∈N*),则{a n}是等比数列等比中项法若数列{a n}中,a n≠0且r12=a n·+2(n∈N*),则{a n}是等比数列【对点训练】数列{a n}中,a1=2,a n+1=r12a n(n∈N*).证明数列{}是等比数列,并求数列{a n}的通项公式.【解析】由题设得r1r1=12·,又11=2,所以数列{}是首项为2,公比为12的等比数列,所以=2×(12)n-1=22-n,a n=n·22-n=42.【加练备选】成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{b n}中的b3,b4,b5.(1)求数列{b n}的通项公式;(2)数列{b n}的前n项和为S n,求证:数列{S n+54}是等比数列.【解析】(1)设成等差数列的三个正数分别为a-d,a,a+d,依题意,得a-d+a+a+d=15,解得a=5.所以数列中的b3,b4,b5依次为7-d,10,18+d.依题意,有(7-d)(18+d)=100,解得d=2或d=-13(舍去),故数列的第3项为5,公比为2.由b 3=b 1·22,即5=b 1·22,解得b 1=54.所以数列是以54为首项,以2为公比的等比数列,其通项公式为b n =54·2n -1=5·2n -3.(2)数列的前n 项和S n =54(1-2)1-2=5·2n -2-54,即S n +54=5·2n -2,所以S 1+54=52,r1+54+54=5·2-15·2-2=2.因此{S n +54}是以52为首项,以2为公比的等比数列.考点三等比数列性质的应用【考情提示】等比数列的性质作为解决等比数列问题的工具,因其考查数列知识较全面而成为高考命题的热点,重点解决基本量运算、条件转化等.角度1等比数列项的性质[例3]已知各项均为正数的等比数列的前n 项和为S n ,a 2a 4=9,9S 4=10S 2,则a 2+a 4的值为()A .30B .10C .9D .6【解析】选B .已知为各项均为正数的等比数列,则a n >0,可得a 1>0,q >0,因为32=a 2a 4=9,所以a 3=3,又因为9S 4=10S 2,则9(a 1+a 2+a 3+a 4)=10(a 1+a 2),可得9(a 3+a 4)=a 1+a 2,所以3+41+2=q 2=19,解得q =13,故a 2+a 4=3+a 3q =10.角度2等比数列前n 项和的性质[例4]已知正项等比数列{a n}的前n项和为S n,且S8-2S4=5,则a9+a10+a11+a12的最小值为()A.10B.15C.20D.25【解析】选C.由题意可得a9+a10+a11+a12=S12-S8,由S8-2S4=5,可得S8-S4=S4+5.又由等比数列的性质知S4,S8-S4,S12-S8成等比数列,则S4(S12-S8)=(S8-S4)2.于是a9+a10+a11+a12=S12-S8=(4+5)24=S4+254+10≥2当且仅当S4=5时等号成立.所以a9+a10+a11+a12的最小值为20.角度3等比数列的单调性[例5]已知{a n}是等比数列,a1>0,前n项和为S n,则“2S8<S7+S9”是“{a n}为递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选B.因为数列是等比数列,a1>0,2S8<S7+S9,所以a8<a9,所以q7<q8,所以q7(q-1)>0,所以q<0或q>1,所以2S8<S7+S9的充要条件为q<0或q>1.又a1>0,数列为递增数列的充要条件为q>1,所以“2S8<S7+S9”是“为递增数列”的必要不充分条件.【解题技法】1.应用等比数列性质的两个关注点(1)转化意识:在等比数列中,两项之积可转化为另外两项之积或某项的平方,这是最常用的性质.(2)化归意识:把非等比数列问题转化为等比数列问题解决,例如有关S m,S2m,S3m的问题可利用S m,S2m-S m,S3m-S2m(S m≠0)成等比数列求解.2.等比数列的单调性的应用方法研究等比数列的单调性问题,要综合考虑首项的符号以及公比的取值范围,而涉及等比数列有关的单调性的充分必要条件问题,既要考虑数列的单调性也要善于举反例说明.【对点训练】1.设单调递增的等比数列{a n}满足12+14=1336,a1a5=36,则公比q=()A.32B.94C.2D.52【解析】选A.因为数列{a n}为等比数列,所以a1a5=a2a4=36,所以12+14=2+424=2+436=1336,则a2+a4=13,又数列{a n}单调递增,所以q>1,解得a2=4,a4=9,则q2=94,因为q>1,所以q=32.2.设无穷等比数列{a n}的前n项和为S n,若-a1<a2<a1,则()A.{S n}为递减数列B.{S n}为递增数列C.数列{S n}有最大项D.数列{S n}有最小项【解析】选D.由-a1<a2<a1可得a1>0,所以q=21<1,因为-a1<a2得q=21>-1,所以-1<q<1,因为S n=1(1-)1-,当0<q<1时,{S n}递增,当-1<q<0时,{S n}既有递增又有递减,A,B错误;当0<q<1时,S n有最小项S1,没有最大项,当-1<q<0时,a1>0,a2<0,a3>0,a4<0且a3+a4>0,S n有最小项S2,没有最大项,C错误,D 正确.3.设等比数列{a n}的前n项和为S n.若a n>0,S3=5,a7+a8+a9=20,则S15=________.【解析】由等比数列的性质可知S3,S6-S3,S9-S6,S12-S9,S15-S12是等比数列,由条件可知S3=5,S9-S6=20,则此等比数列的公比q2=205=4,又a n>0,所以q=2,S15=S3+(S6-S3)+(S9-S6)+(S12-S9)+(S15-S12),所以S15=5(1-25)1-2=155.答案:155。

高考数学一轮复习教学设计

高考数学一轮复习教学设计

高考数学一轮复习教学设计一、教学目标本教学设计旨在帮助学生通过一轮复习,全面巩固高考数学的核心知识和解题技巧,达到以下教学目标:1. 理解并掌握高考数学各个章节的基础概念和相关定理;2. 熟悉并灵活运用各类数学问题的解题思路和方法;3. 培养学生的逻辑思维能力和数学建模能力;4. 提高学生的解决实际问题的能力和创新思维。

二、教学内容本教学设计重点涵盖高考数学的各个章节,具体内容安排如下:1. 高中数学知识的复习和巩固(8周)第一周:复习数列与数列的应用第二周:复习函数与函数的应用第三周:复习概率与统计第四周:复习立体几何第五周:复习三角函数第六周:复习向量与坐标系第七周:复习复数与平面几何第八周:复习解析几何2. 完形填空和阅读理解的练习(2周)第九周:完形填空练习第十周:阅读理解练习3. 写作和小作文的练习(2周)第十一周:写作练习第十二周:小作文练习三、教学方法1. 理论教学与实践相结合:通过教师讲解和示范,学生进行练习和解题,深化对数学知识的理解和应用。

2. 合作学习:鼓励学生分组合作,共同解决难题和研究数学问题,培养学生的团队合作精神和解决问题的能力。

3. 案例分析法:通过精选的数学题目和实际问题,引导学生运用所学知识解决实际问题,提高解决问题的能力和创新思维。

4. 异彩纷呈的教学手段:利用多媒体、模拟教学等手段,让学生在轻松的氛围中学习数学,激发学生对数学学习的兴趣和学习动力。

四、教学评估1. 课堂小测验:每周一次的课堂小测验,检验学生对本周所学内容的掌握情况。

并及时反馈评估结果,帮助学生发现问题,加强薄弱环节。

2. 月度模拟考试:每个月进行一次模拟考试,帮助学生了解自己的学习进度和存在的问题,督促学生在复习过程中不断提高,做到知识的全面复习。

3. 个人学习计划:每个学生制定个人学习计划,定期与教师进行学习情况的交流和反馈,在自主学习的基础上加强巩固和复习。

五、教学资源1. 教材:根据学生的实际情况选择适合的高考数学教材,如人民教育出版社的《高中数学》教材。

2024届高考一轮复习数学教案(新人教B版):正弦定理、余弦定理

2024届高考一轮复习数学教案(新人教B版):正弦定理、余弦定理

§4.8正弦定理、余弦定理考试要求1.掌握正弦定理、余弦定理及其变形.2.理解三角形的面积公式并能应用.3.能利用正弦定理、余弦定理解决一些简单的三角形度量问题.知识梳理1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则定理正弦定理余弦定理内容a sin A =bsinB =c sinC =2R a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)sin A =a 2R,sin B =b 2R ,sin C =c 2R;(3)a ∶b ∶c=sin A ∶sin B ∶sin Ccos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.三角形解的判断A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <b a ≥b a >b 解的个数一解两解一解一解3.三角形中常用的面积公式(1)S =12ah a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).常用结论在△ABC 中,常有以下结论:(1)∠A +∠B +∠C =π.(2)任意两边之和大于第三边,任意两边之差小于第三边.(3)a >b ⇔A >B ⇔sin A >sin B ,cos A <cos B .(4)sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C2;cos A +B 2=sin C 2.(5)三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B .(6)三角形中的面积S =12(a +b +思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)三角形中三边之比等于相应的三个内角之比.(×)(2)在△ABC 中,若sin A >sin B ,则A >B .(√)(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.(×)(4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形.(×)教材改编题1.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC 等于()A.π6B.π3C.2π3D.5π6答案C解析在△ABC 中,设AB =c =5,AC =b =3,BC =a =7,由余弦定理得cos ∠BAC =b 2+c 2-a 22bc =9+25-4930=-12,因为∠BAC 为△ABC 的内角,所以∠BAC =2π3.2.记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为4,a =2,B =30°,则c 等于()A .8B .4C .833D .433答案A解析由S △ABC =12ac sin B =12×2c ×12=4,得c =8.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知B =30°,b =2,c =2,则C =.答案45°或135°解析由正弦定理得sin C =c sin B b =2sin 30°2=22,因为c >b ,B =30°,所以C =45°或C =135°.题型一利用正弦定理、余弦定理解三角形例1(12分)(2022·新高考全国Ⅰ)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A1+sin A=sin 2B1+cos 2B.(1)若C =2π3,求B ;[切入点:二倍角公式化简](2)求a 2+b 2c2的最小值.[关键点:找到角B 与角C ,A 的关系]思维升华解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理,以上特征都不明显时,则要考虑两个定理都有可能用到.跟踪训练1(2022·全国乙卷)记△ABC的内角A,B,C的对边分别为a,b,c,已知sin C sin(A -B)=sin B sin(C-A).(1)证明:2a2=b2+c2;(2)若a=5,cos A=2531,求△ABC的周长.(1)证明方法一由sin C sin(A-B)=sin B sin(C-A),可得sin C sin A cos B-sin C cos A sin B=sin B sin C cos A-sin B cos C sin A,结合正弦定理asin A=bsin B=csin C可得ac cos B-bc cos A=bc cos A-ab cos C,即ac cos B+ab cos C=2bc cos A(*).由余弦定理可得ac cos B=a2+c2-b2,2ab cos C=a2+b2-c2,22bc cos A=b2+c2-a2,将上述三式代入(*)式整理,得2a2=b2+c2.方法二因为A+B+C=π,所以sin C sin(A-B)=sin(A+B)sin(A-B)=sin2A cos2B-cos2A sin2B=sin2A(1-sin2B)-(1-sin2A)sin2B=sin2A-sin2B,同理有sin B sin(C-A)=sin(C+A)sin(C-A)=sin2C-sin2A.又sin C sin(A-B)=sin B sin(C-A),所以sin2A-sin2B=sin2C-sin2A,即2sin2A=sin2B+sin2C,故由正弦定理可得2a2=b2+c2.(2)解由(1)及a2=b2+c2-2bc cos A得,a2=2bc cos A,所以2bc=31.因为b2+c2=2a2=50,所以(b+c)2=b2+c2+2bc=81,得b+c=9,所以△ABC的周长l=a+b+c=14.题型二正弦定理、余弦定理的简单应用命题点1三角形的形状判断例2(1)在△ABC中,角A,B,C所对的边分别是a,b,c,若c-a cos B=(2a-b)cos A,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形答案D解析因为c-a cos B=(2a-b)cos A,C=π-(A+B),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A ,所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A ,所以cos A (sin B -sin A )=0,所以cos A =0或sin B =sin A ,所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰三角形或直角三角形.(2)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,c -a 2c =sin 2B2,则△ABC 的形状为()A .直角三角形B .等边三角形C .等腰三角形或直角三角形D .等腰直角三角形答案A解析由cos B =1-2sin 2B2,得sin 2B 2=1-cos B2,所以c -a 2c =1-cos B 2,即cos B =a c .方法一由余弦定理得a 2+c 2-b 22ac=ac ,即a 2+c 2-b 2=2a 2,所以a 2+b 2=c 2.所以△ABC 为直角三角形,但无法判断两直角边是否相等.方法二由正弦定理得cos B =sin A sin C,又sin A =sin(B +C )=sin B cos C +cos B sin C ,所以cos B sin C =sin B cos C +cos B sin C ,即sin B cos C =0,又sin B ≠0,所以cos C =0,又角C 为△ABC 的内角,所以C =π2,所以△ABC 为直角三角形,但无法判断两直角边是否相等.延伸探究将本例(2)中的条件“c -a 2c=sin 2B 2”改为“sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ”,试判断△ABC 的形状.解因为sin A sin B =a c ,所以由正弦定理得a b =ac,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc ,所以由余弦定理得cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.思维升华判断三角形形状的两种思路(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)化角:通过三角恒等变换,得出内角的关系,从而判断三角形的形状.此时要注意应用A +B +C =π这个结论.命题点2三角形的面积例3(2022·浙江)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知4a =5c ,cos C =35.(1)求sin A 的值;(2)若b =11,求△ABC 的面积.解(1)由正弦定理a sin A =c sin C,得sin A =a ·sin Cc.因为cos C =35,所以sin C =45,又a c =54,所以sin A =5sin C 4=55(2)由(1)知sin A =55,因为a =5c 4<c ,所以0<A <π2,所以cos A =255,所以sin B =sin(A +C )=sin A cos C +sin C cos A =55×35+45×255=11525.因为b sin B =csin C,即1111525=c 45,所以c =45,所以S △ABC =12bc sin A =12×11×45×55=22.思维升华三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.命题点3与平面几何有关的问题例4(2023·厦门模拟)如图,已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,b (1+cos C )=3c sin ∠ABC 且△ABC 的外接圆面积为49π3.(1)求边c 的长;(2)若a =5,延长CB 至M ,使得cos ∠AMC =217,求BM .解(1)设△ABC 的外接圆半径为R ,由题意πR 2=49π3,解得R =733.由题意及正弦定理可得sin ∠ABC (1+cos C )=3sin C sin ∠ABC ,因为sin ∠ABC ≠0,所以1+cos C =3sin C ,即1,因为0<C <π,所以C -π6∈-π6,C -π6=π6,即C =π3.故c =2R sin C =2×733×32=7.(2)因为a =5,c =7,C =π3,故cos C =12=25+b 2-492×5×b ,得b 2-5b -24=0,解得b =8(b =-3舍去).在△ABC 中,由余弦定理可得cos ∠ABC =52+72-822×5×7=17,所以sin ∠ABC =437.由cos ∠AMC =217得sin ∠AMC =277.故sin∠BAM=sin(∠ABC-∠AMC)=sin∠ABC cos∠AMC-cos∠ABC sin∠AMC=107 49,在△ABM中,由正弦定理可得BMsin∠BAM=ABsin∠AMB,则BM=7277×10749=5.思维升华在平面几何图形中研究或求与角有关的长度、角度、面积的最值、优化设计等问题时,通常是转化到三角形中,利用正、余弦定理通过运算的方法加以解决.在解决某些具体问题时,常先引入变量,如边长、角度等,然后把要解三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,再解方程即可.若研究最值,常使用函数思想.跟踪训练2(1)(多选)(2023·合肥模拟)已知△ABC的内角A,B,C所对的边分别为a,b,c,下列四个命题中正确的是()A.若a cos A=b cos B,则△ABC一定是等腰三角形B.若b cos C+c cos B=b,则△ABC是等腰三角形C.若acos A=bcos B=ccos C,则△ABC一定是等边三角形D.若B=60°,b2=ac,则△ABC是直角三角形答案BC解析对于A,若a cos A=b cos B,则由正弦定理得sin A cos A=sin B cos B,∴sin2A=sin2B,则2A=2B或2A+2B=180°,即A=B或A+B=90°,则△ABC为等腰三角形或直角三角形,故A错误;对于B,若b cos C+c cos B=b,则由正弦定理得sin B cos C+sin C cos B=sin(B+C)=sin A=sin B,即A=B,则△ABC是等腰三角形,故B正确;对于C,若acos A=bcos B=ccos C,则由正弦定理得sin Acos A=sin Bcos B=sin Ccos C,则tan A=tan B=tan C,即A=B=C,即△ABC是等边三角形,故C正确;对于D,由于B=60°,b2=ac,由余弦定理可得b2=ac=a2+c2-ac,可得(a-c)2=0,解得a=c,可得A=C=B,故△ABC是等边三角形,故D错误.(2)在①b2+2ac=a2+c2;②cos B=b cos A;③sin B+cos B=2这三个条件中任选一个填在下面的横线中,并解决该问题.已知△ABC的内角A,B,C的对边分别为a,b,c,,A=π3,b=2,求△ABC的面积.解若选①,则由b2+2ac=a2+c2,得2ac=a2+c2-b2.由余弦定理得cos B =a 2+c 2-b 22ac =2ac 2ac =22.因为B ∈(0,π),所以B =π4.由正弦定理得a sin A =b sin B,即asin π3=2sin π4,解得a = 3.因为C =π-A -B =π-π3-π4=5π12,所以sin C =sin 5π12==sin π6cos π4+cos π6sin π4=6+24,所以S △ABC =12ab sin C =12×3×2×6+24=3+34.若选②,因为cos B =b cos A ,A =π3,b =2,所以cos B =b cos A =2cos π3=22.因为B ∈(0,π),所以B =π4.由正弦定理得a sin A =b sin B,即asin π3=2sin π4,解得a = 3.因为C =π-A -B =π-π3-π4=5π12,所以sin C =sin 5π12==sin π6cos π4+cos π6sin π4=6+24,所以S △ABC =12ab sin C =12×3×2×6+24=3+34.若选③,则由sin B +cos B =2,得2sin =2,所以 1.因为B ∈(0,π),所以B +π4∈所以B +π4=π2,所以B =π4.由正弦定理得a sin A =bsin B,即asin π3=2sin π4,解得a = 3.因为C =π-A -B =π-π3-π4=5π12,所以sin C =sin 5π12==sin π6cos π4+cos π6sin π4=6+24,所以S △ABC =12ab sin C =12×3×2×6+24=3+34.(3)(2022·重庆八中模拟)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,在①c (sin A -sin C )=(a -b )(sin A +sin B );②2b cos A +a =2c ;③233ac sin B =a 2+c 2-b 2三个条件中任选一个,补充在下面问题中,并解答.①若,求角B 的大小;②求sin A +sin C 的取值范围;③如图所示,当sin A +sin C 取得最大值时,若在△ABC 所在平面内取一点D (D 与B 在AC 两侧),使得线段DC =2,DA =1,求△BCD 面积的最大值.解①若选①,因为c (sin A -sin C )=(a -b )(sin A +sin B ),由正弦定理得c (a -c )=(a -b )(a +b ),整理得a 2+c 2-b 2=ac ,所以cos B =a 2+c 2-b 22ac =ac 2ac =12,又0<B <π,所以B =π3.若选②,因为2b cos A +a =2c ,由余弦定理得2b ·b 2+c 2-a 22bc +a =2c ,化简得,a 2+c 2-b 2=ac ,所以cos B =a 2+c 2-b 22ac =ac 2ac =12,又0<B <π,所以B =π3.若选③,因为233ac sin B =a 2+c 2-b 2,由余弦定理得233ac sin B =2ac cos B ,化简得tan B =3,又0<B <π,所以B =π3.②由①得,A +C =2π3,则0<A <2π3,sin A +sin C =sin A +=32sin A +32cos A =3sin 又π6<A +π6<5π6,所以12<sin 1,则sin A +sin C ,3.③当sin A +sin C 取得最大值时,A +π6=π2,解得A =π3,又B =π3,所以△ABC 为等边三角形,令∠ACD =θ,∠ADC =α,AB =AC =BC =a ,则由正弦定理可得a sin α=1sin θ,所以sin α=a sin θ.又由余弦定理得,a 2=22+12-2×2×1×cos α,所以a 2cos 2θ=a 2-a 2sin 2θ=cos 2α-4cos α+4,所以a cos θ=2-cos α.S △BCD =12×a ×=32a cos θ+12a sin θ=32(2-cos α)+12sin α=3+≤3+1,当且仅当α=∠ADC =5π6时等号成立,所以△BCD 面积的最大值为3+1.课时精练1.在△ABC 中,C =60°,a +2b =8,sin A =6sin B ,则c 等于()A.35B.31C .6D .5答案B解析因为sin A =6sin B ,则由正弦定理得a =6b ,又a +2b =8,所以a =6,b =1,因为C =60°,所以由余弦定理c 2=a 2+b 2-2ab cos C ,即c 2=62+12-2×6×1×12,解得c =31.2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若(a +b )(sin A -sin B )=(b +c )sin C ,a =7,则△ABC 外接圆的直径为()A .14B .7C.733D.1433答案D 解析已知(a +b )(sin A -sin B )=(b +c )sin C ,由正弦定理可得(a +b )(a -b )=(b +c )c ,化简得b 2+c 2-a 2=-bc ,所以cos A =b 2+c 2-a 22bc =-bc 2bc=-12,又因为A ∈(0,π),所以A =2π3,所以sin A =sin2π3=32,设△ABC 外接圆的半径为R ,由正弦定理可得2R =asin A =732=1433,所以△ABC 外接圆的直径为1433.3.(2022·北京模拟)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若3a sin B =b cos A ,且b =23,c =2,则a 的值为()A .27B .2C .23-2D .1答案B解析由已知及正弦定理得,3sin A sin B =sin B cos A 且sin B ≠0,可得tan A =33,又0<A <π,所以A =π6,又b =23,c =2,所以由余弦定理a 2=b 2+c 2-2bc cos A =16-12=4,解得a =2.4.(2023·枣庄模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,A =60°,b =1,S △ABC =3,则a +b +csin A +sin B +sin C等于()A.2393B.2633C.833D .23答案A解析由三角形的面积公式可得S △ABC =12bc sin A =34c =3,解得c =4,由余弦定理可得a =b 2+c 2-2bc cos A =13,设△ABC 的外接圆半径为r ,由正弦定理得a sin A =b sin B =csin C=2r ,所以a +b +c sin A +sin B +sin C =2r (sin A +sin B +sin C )sin A +sin B +sin C=2r =asin A =1332=2393.5.(2023·马鞍山模拟)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B +sin C )2=sin 2A +(2-2)sin B sin C ,2sin A -2sin B =0,则sin C 等于()A.12B.32C.6-24 D.6+24答案C解析在△ABC 中,由(sin B +sin C )2=sin 2A +(2-2)sin B sin C 及正弦定理得(b +c )2=a 2+(2-2)bc ,即b 2+c 2-a 2=-2bc ,由余弦定理得cos A =b 2+c 2-a 22bc=-22,而0°<A <180°,解得A =135°,由2sin A -2sin B =0得sin B =22sin A =12,显然0°<B <90°,则B =30°,C =15°,所以sin C =sin(60°-45°)=sin 60°cos 45°-cos 60°sin 45°=6-24.6.(2023·衡阳模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos B (a cos C +c cos A )=b ,lg sin C =12lg 3-lg 2,则△ABC 的形状为()A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形答案C解析∵2cos B (a cos C +c cos A )=b ,∴根据正弦定理得,2cos B (sin A cos C +cos A sin C )=sin B ,∴2cos B sin(A +C )=sin B ,∴2cos B sin(π-B )=sin B ,即2cos B sin B =sin B ,∵B ∈(0,π),∴sin B ≠0,∴cos B =12,∴B =π3.∵lg sin C =12lg 3-lg 2,∴lg sin C =lg32,∴sin C =32,∵C ∈(0,π),∴C =π3或2π3,∵B =π3,∴C ≠2π3,∴C =π3,∴A =B =C =π3,即△ABC 为等边三角形.7.(2022·全国甲卷)已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB取得最小值时,BD =.答案3-1解析设BD =k (k >0),则CD =2k .根据题意作出大致图形,如图.在△ABD 中,由余弦定理得AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB =22+k 2-2×2k k 2+2k +4.在△ACD 中,由余弦定理得AC 2=AD 2+CD 2-2AD ·CD cos ∠ADC =22+(2k )2-2×2×2k ·12=4k 2-4k +4,则AC 2AB 2=4k 2-4k +4k 2+2k +4=4(k 2+2k +4)-12k -12k 2+2k +4=4-12(k +1)k 2+2k +4=4-12(k +1)(k +1)2+3=4-12k +1+3k +1.∵k +1+3k +1≥23(当且仅当k +1=3k +1,即k =3-1时等号成立),∴AC 2AB 2≥4-1223=4-23=(3-1)2,∴当ACAB取得最小值3-1时,BD =k =3-1.8.(2023·宜春模拟)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b sin C +c sin B =4a sin B sin C ,b 2+c 2-a 2=8,则△ABC 的面积为.答案233解析∵b sin C +c sin B =4a sin B sin C ,sin B sin C >0,结合正弦定理可得sin B sin C +sin C sin B =4sin A sin B sin C ,∴sin A =12,∵b 2+c 2-a 2=8,结合余弦定理a 2=b 2+c 2-2bc cos A ,可得2bc cos A =8,∴A 为锐角,且cos A =32,从而求得bc =833,∴△ABC 的面积为S =12bc sin A =12×833×12=233.9.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b cos C =(2a -c )cos B .(1)求B ;(2)若b =3,sin C =2sin A ,求△ABC 的面积.解(1)由正弦定理,得sin B cos C =2sin A cos B -cos B sin C ,即sin B cos C +cos B sin C =2sin A cos B ,∴sin(B +C )=2sin A cos B ,∴sin A =2sin A cos B ,又∵sin A ≠0,∴cos B =12,∵B 为三角形内角,∴B =π3.(2)∵sin C =2sin A ,∴由正弦定理得c =2a ,∴由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+4a 2-2a 2=9,即3a 2=9,∴a =3,c =23,∴△ABC 的面积为S =12ac sin B =12×3×23×32=332.10.(2023·湖州模拟)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知3b a sin B .(1)求角A 的大小;(2)若b ,a ,c 成等比数列,判断△ABC 的形状.解(1)∵3b a sin B ,由诱导公式得3b cos A =a sin B ,由正弦定理得3sin B cos A =sin A sin B ,∵sin B ≠0,∴3cos A =sin A ,即tan A =3,∵A ∈(0,π),∴A =π3.(2)∵b ,a ,c 成等比数列,∴a 2=bc ,由余弦定理得cos A =b 2+c 2-a 22bc =b 2+c 2-bc 2bc=12,即b 2+c 2-bc =bc ,∴(b -c )2=0,∴b =c ,又由(1)知A =π3,∴△ABC 为等边三角形.11.(多选)对于△ABC ,有如下判断,其中正确的是()A .若cos A =cosB ,则△ABC 为等腰三角形B .若A >B ,则sin A >sin BC .若a =8,c =10,B =60°,则符合条件的△ABC 有两个D .若sin 2A +sin 2B <sin 2C ,则△ABC 是钝角三角形答案ABD解析对于A ,若cos A =cos B ,则A =B ,所以△ABC 为等腰三角形,故A 正确;对于B ,若A >B ,则a >b ,由正弦定理a sin A =b sin B=2R ,得2R sin A >2R sin B ,即sin A >sin B 成立,故B 正确;对于C ,由余弦定理可得b =82+102-2×8×10×12=84,只有一解,故C 错误;对于D ,若sin 2A +sin 2B <sin 2C ,则根据正弦定理得a 2+b 2<c 2,cos C =a 2+b 2-c 22ab <0,所以C为钝角,所以△ABC 是钝角三角形,故D 正确.12.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,sin A sin B sin C =18,△ABC 的面积为2,则下列选项错误的是()A .abc =162B .若a =2,则A =π3C .△ABC 外接圆的半径R =22D ≥32sin C 答案B解析由题可得12ab sin C =2,则sin C =4ab,代入sin A sin B sin C =18,得4sin A sin B ab =18,即R 2=8,即R =22,C 正确;abc =8R 3sin A sin B sin C =1282×18=162,A 正确;若a =2,则sin A =a 2R =242=14,此时A ≠π3,B 错误;因为sin A >0,sin B >0,所以(sin A +sin B )2≥4sin A sin B ,所以(sin A +sin B )2(sin A sin B )2≥4sin A sin B ,由sin A sin B sin C =18,得4sin A sin B=32sin C ,所以(sin A +sin B )2(sin A sin B )2≥32sin C ,即≥32sin C ,D 正确.13.(2023·嘉兴模拟)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知c sin A =3a cos C ,c =23,ab =8,则a +b 的值是.答案6解析∵c sin A =3a cos C ,根据正弦定理得sin C sin A =3sin A cos C ,∵sin A ≠0,故tan C =3,∵C ∈(0,π),∴C =π3,再由余弦定理得cos C =a 2+b 2-c 22ab =(a +b )2-2ab -c 22ab =12,代入c =23,ab =8,得a +b =6.14.在△ABC 中,已知AB =4,AC =7,BC 边的中线AD =72,那么BC =.答案9解析在△ABD 中,结合余弦定理得cos ∠ADB =BD 2+AD 2-AB 22BD ·AD,在△ACD 中,结合余弦定理得cos ∠ADC =CD 2+AD 2-AC 22CD ·AD,由题意知BD =CD ,∠ADB +∠ADC =π,所以cos ∠ADB +cos ∠ADC =0,所以BD 2+AD 2-AB 22BD ·AD +CD 2+AD 2-AC 22CD ·AD =0,2×72CD 2×72CD 0,解得CD =92,所以BC =9.15.(多选)(2023·珠海模拟)已知△ABC 满足sin A ∶sin B ∶sin C =2∶3∶7,且△ABC 的面积S △ABC =332,则下列命题正确的是()A .△ABC 的周长为5+7B .△ABC 的三个内角A ,B ,C 满足关系A +B =2C C .△ABC 的外接圆半径为2213D .△ABC 的中线CD 的长为192答案ABD解析因为△ABC 满足sin A ∶sin B ∶sin C =2∶3∶7,所以a ∶b ∶c =2∶3∶7,设a =2t ,b =3t ,c =7t ,t >0,利用余弦定理cos C =a 2+b 2-c 22ab =4t 2+9t 2-7t 212t 2=12,由于C ∈(0,π),所以C =π3.对于A ,因为S △ABC =332,所以12ab sin C =12·2t ·3t ·32=332,解得t =1.所以a =2,b =3,c =7,所以△ABC 的周长为5+7,故A 正确;对于B ,因为C =π3,所以A +B =2π3,故A +B =2C ,故B 正确;对于C ,利用正弦定理c sin C =732=2213=2R ,解得R =213,所以△ABC 的外接圆半径为213,故C 错误;对于D ,如图所示,在△ABC 中,利用正弦定理732=2sin A ,解得sin A =217,又a <c ,所以cos A =277,在△ACD 中,利用余弦定理CD 2=AC 2+AD 2-2AC ·AD ·cos A =9+74-2×3×72×277=194,解得CD =192,故D 正确.16.如图,△ABC 的内角A ,B ,C 的对边分别是a ,b ,c .已知a 2+c 2=b 2+ac ,则B =.若线段AC 的垂直平分线交AC 于点D ,交AB 于点E ,且BC =4,DE = 6.则△BCE 的面积为.答案π323解析在△ABC 中,由余弦定理知cos B =a 2+c 2-b 22ac,而a 2+c 2=b 2+ac ,∴cos B =12,又0<B <π,则B =π3,在△BCE 中,设∠CEB =θ,则CE sin π3=BC sin θ,可得CE =23sin θ,又AC 的垂直平分线交AC 于点D ,交AB 于点E ,则∠ECA =∠EAC =θ2,∴sin θ2=DE CE =2sin θ2,可得cos θ2=22,而0<θ<π,故θ2=π4,即θ=π2.∴CE =23,BE =2,故△BCE 的面积为12·CE ·BE =23.。

新课标人教版高三数学第一轮复习全套教学案

新课标人教版高三数学第一轮复习全套教学案

新课标人教版高三数学第一轮复习全套教学案引言本教学案旨在帮助高三学生进行数学第一轮复,以应对新课标人教版高考数学考试。

以下是教学案的详细内容。

目标1. 复并巩固高三数学的核心知识点。

2. 提供高质量的练题和解析,以帮助学生熟悉考试形式和题型,提高解题能力。

3. 培养学生的数学思维和分析能力,以便他们能够在考试中灵活应用知识。

教学内容教学内容主要包括以下部分:1. 数系与代数- 实数与复数- 集合与命题- 数列与数列极限- 等差数列与等比数列2. 函数与方程- 函数与方程基本概念- 一次函数与二次函数- 指数与对数- 三角函数与三角方程3. 解析几何与向量- 平面与空间几何- 二次曲线与常平面- 直线与平面的位置关系- 向量与向量运算4. 概率与统计- 随机事件与概率- 离散型随机变量与连续型随机变量- 统计与抽样调查- 相关与回归分析教学方法为了最有效地进行数学复,我们将采用以下教学方法:1. 系统性研究:按照教学内容的顺序进行研究,逐步巩固知识点。

2. 理论与实践相结合:注重理论知识的讲解,并提供大量的练题和解析,以帮助学生巩固理论知识并提高解题能力。

3. 互动教学:鼓励学生积极参与课堂讨论和提问,激发学生的研究兴趣和数学思维。

4. 小组合作研究:安排学生进行小组合作研究,提倡彼此讨论和合作解题,培养学生的团队合作精神和交流能力。

教学评估为了评估学生的研究效果和掌握程度,我们将采用以下评估方法:1. 阶段性测试:安排定期的阶段性测试,检验学生对各个知识点的理解和掌握情况。

2. 作业批改:及时批改学生的作业,给予针对性的指导和建议。

3. 课堂互动评估:评估学生在课堂上的积极参与程度和表现。

4. 模拟考试:进行模拟考试,让学生体验真实考试环境,以便他们熟悉考试形式和提高应试能力。

结语通过本教学案的实施,相信学生们在第一轮数学复习中将取得良好的成绩。

希望学生们能够认真学习、勤于练习,并与老师和同学们积极合作,共同进步。

2025年高考数学一轮复习(新高考版)第1章 §1.1 集 合

2025年高考数学一轮复习(新高考版)第1章 §1.1 集 合
√A.0是任何数域的元素 √B.若数域F有非零元素,则2 023∈F
C.集合P={x|x=3k,k∈Z}为数域
√D.有理数集为数域
对于A,若a∈F,则a-a=0∈F,故A正确; 对于 B,若 a∈F 且 a≠0,则 1=aa∈F,2=1+1∈F,3=1+2∈F, 依此类推,可得 2 023∈F,故 B 正确; 对于 C,P={x|x=3k,k∈Z},3∈P,6∈P,但36∉P,故 P 不是数域,故 C 错误; 对于 D,若 a,b 是两个有理数,则 a+b,a-b,ab,ab(b≠0)都是有 理数,所以有理数集是数域,故 D 正确.
命题点2 利用集合的运算求参数的值(范围)
例4 (2023·衡水模拟)已知集合A={x|y=ln(1-x2)},B={x|x≤a},若
(∁RA)∪B=R,则实数a的取值范围为
A.(1,+∞)
√B.[1,+∞)
C.(-∞,1)
D.(-∞,1]
由题可知A={x|y=ln(1-x2)}={x|-1<x<1}, ∁RA={x|x≤-1或x≥1}, 所以由(∁RA)∪B=R,得a≥1.
(2)设全集U=R,A={x|-2≤x<4},B={x|y= x+2},则图中阴影部分 表示的集合为 A.{x|x≤-2} B.{x|x>-2}
√C.{x|x≥4}
D.{x|x≤4}
观察Venn图,可知阴影部分的元素由属于B而不属于A的元素构成, 所以阴影部分表示的集合为(∁UA)∩B. ∵A={x|-2≤x<4},U=R, ∴∁UA={x|x<-2或x≥4}, 又B={x|y= x+2 }⇒B={x|x≥-2}, ∴(∁UA)∩B={x|x≥4}.
√A.[1,4)
C.[4,+∞)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三一轮复习 5.4 数列求和 (检测教师版)时间:50分钟 总分:70分班级: 姓名:一、 选择题(共6小题,每题5分,共30分)1.已知等差数列{a n }的前n 项和为S n ,S 5=-20,则-6a 4+3a 5=( ) A.-20 B.4 C.12 D.20【答案】C【解析】 因为S 5=-20,所以S 5=5a 3=-20,∴a 3=-4,∴-6a 4+3a 5=-6(a 1+3d )+3(a 1+4d )= -3(a 1+2d )=-3a 3=12.2.(2012·大纲全国)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( )A.100101B.99101C.99100D.101100【答案】A【解析】 由S 5=5a 3及S 5=15得a 3=3,∴d =a 5-a 35-3=1,a 1=1,∴a n =n ,1a n a n +1=1n (n +1)=1n -1n +1,所以数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和T 100=1-12+12-13+…+1100-1101=1-1101=100101,故选A.3.数列{a n }满足:a 1 =1,且对任意的m ,n ∈N *都有:a m +n =a m +a n+mn ,则1a 1+1a 2+1a 3+…+1a 2 008=( )A.2 0072 008 B.2 0071 004 C.2 0082 009 D.4 0162 009【答案】D【解析】法一 因为a n +m =a n +a m +mn ,则可得a 1=1,a 2=3,a 3=6,a 4=10,则可猜得数列的通项a n =n (n +1)2,∴1a n=2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,∴1a 1+1a 2+1a 3+…+1a 2 008=2⎝ ⎛⎭⎪⎫1-12+12-13+…+12 008-12 009=2⎝ ⎛⎭⎪⎫1-12 009=4 0162 009.故选D.法二 令m =1,得a n +1=a 1+a n +n =1+a n +n ,∴a n +1-a n =n +1, 用叠加法:a n =a 1+(a 2-a 1)+…+(a n -a n -1)=1+2+…+n =n (n +1)2, 所以1a n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1.于是1a 1+1a 2+…+1a 2 008=2⎝ ⎛⎭⎪⎫1-12+2⎝ ⎛⎭⎪⎫12-13+…+2⎝ ⎛⎭⎪⎫12 008-12 009=2⎝ ⎛⎭⎪⎫1-12 009=4 0162 009,故选D. 4.设a 1,a 2,…,a 50是以-1,0,1这三个整数中取值的数列,若a 1+a 2+…+a 50=9且(a 1+1)2+(a 2+1)2+…+(a 50+1)2=107,则a 1,a 2,…,a 50当中取零的项共有( ) A.11个 B.12个 C.15个 D.25个【答案】A【解析】 (a 1+1)2+(a 2+1)2+…+(a 50+1)2=a 21+a 22+…+a 250+2(a 1+a 2+…+a 50)+50=107,∴a 21+a 22+…+a 250=39,∴a 1,a 2,…,a 50中取零的项应为50-39=11(个),故选A.5.中,a 1=1,a 2=2,且a n +2-a n =1+(-1)n (n ∈N +),则S 100=( ) A.1 300 B. 2 600 C.0 D.2 602【答案】B【解析】原问题可转化为当n 为奇数时,a n +2-a n =0;当n 为偶数时,a n +2-a n =2.进而转化为当n 为奇数时,为常数列{1};当n 为偶数时,为首项为2,公差为2的等差数列.所以S 100=S 奇+S 偶=50×1+(50×2+50×492×2)=2 600.6.已知定义在R 上的函数f (x )、g (x )满足f (x )g (x )=a x ,且f ′(x )g (x )<f (x )g ′(x ),f (1)g (1)+f (-1)g (-1)=52,若有穷数列⎩⎨⎧⎭⎬⎫f (n )g (n )(n ∈N *)的前n 项和等于3132,则n =( )A.5B.6C.7D.8【答案】A【解析】令h (x )=f (x )g (x )=a x,∵h ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2<0,∴h (x )在R 上为减函数,∴0<a <1.由题知,a 1+a -1=52,解得a =12或a =2(舍去),∴f (n )g (n )=⎝ ⎛⎭⎪⎫12n,∴有穷数列⎩⎨⎧⎭⎬⎫f (n )g (n )的前n 项和S n=12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1-⎝ ⎛⎭⎪⎫12n =3132,∴n =5.二、填空题(共4小题,每题5分,共20分)7.已知实数a 1,a 2,a 3,a 4构成公差不为零的等差数列,且a 1,a 3,a 4构成等比数列,则此等比数列的公比等于________.【答案】 12【解析】设公差为d ,公比为q .则a 23=a 1·a 4,即(a 1+2d )2=a 1(a 1+3d ), 解得a 1=-4d ,所以q =a 3a 1=a 1+2d a 1=12.8.(2013·辽宁14)已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________.【答案】63【解析】 因为x 2-5x +4=0的两根为1和4,又数列{a n }是递增数列,所以a 1=1,a 3=4,所以q =2.所以S 6=1·(1-26)1-2=63.9.已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使得S n >0的n 的最大值为________.【答案】19【解析】 由a 11a 10<-1得a 11+a 10a 10<0,由它们的前几项和S n 有最大值,可得公差d <0,∴a 10>0,a 10+a 11<0,a 11<0,∴a 1+a 19=2a 10>0,a 1+a 20=a 10+a 11<0,使得S n >0的n 的最大值为19,10.已知向量a =(2,-n ),b =(S n ,n +1),n ∈N *,其中S n 是数列{a n }的前n 项和,若a ⊥b ,则数列⎩⎨⎧⎭⎬⎫a n a n +1a n +4的最大项的值为________.【答案】19【解析】 依题意得a·b =0,即2S n =n (n +1),S n =n (n +1)2.当n ≥2时,a n =S n -S n -1=n (n +1)2-n (n -1)2=n ;又a 1=1,因此a n =n ,a n a n +1a n +4=n (n +1)(n +4)=n n 2+5n +4=1n +4n +5≤19,当且仅当n =4n,n ∈N *,即n =2时取等号,因此数列⎩⎨⎧⎭⎬⎫a n a n +1a n +4的最大项的值是19.三、解答题(共2小题,每题10分,共20分)11.(2015·天津18)已知数列{a n }满足a n +2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列. (1)求q 的值和{a n }的通项公式;(2)设b n =log 2a 2na 2n -1,n ∈N *,求数列{b n }的前n 项和.【答案】见解析【解析】 (1)由已知,有(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4), 即a 4-a 2=a 5-a 3,所以a 2(q -1)=a 3(q -1),又因为q ≠1, 故a 3=a 2=2,由a 3=a 1q ,得q =2.当n =2k -1(k ∈N *)时,a n =a 2k -1=2k -1=2n -12;当n =2k (k ∈N *)时,a n =a 2k =2k =2n2.所以,{a n }的通项公式为a n =⎩⎨⎧2n -12,n 为奇数,2n 2,n 为偶数.(2)由(1)得b n =log 2a 2n a 2n -1=n2n -1,n ∈N *.设{b n }的前n 项和为S n ,则S n =1×120+2×121+3×122+…+(n -1)×12n -2+n ×12n -1, 12S n =1×121+2×122+3×123+…+(n -1)×12n -1+n ×12n . 上述两式相减得:12S n =1+12+122+…+12n -1-n 2n =1-12n1-12-n 2n =2-22n-n 2n ,整理得,S n =4-n +22n -1,n ∈N *.所以,数列{b n }的前n 项和为4-n +22n -1,n ∈N *.12.设函数f (x )=23+1x (x >0),数列{a n }满足a 1=1,a n =f ⎝ ⎛⎭⎪⎫1a n -1,n ∈N *,且n ≥2.(1)求数列{a n }的通项公式;(2)对n ∈N *,设S n =1a 1a 2+1a 2a 3+1a 3a 4+…+1a n a n +1,若S n ≥3t 恒成立,求实数t 的取值范围. 【答案】见解析【解析】 (1)由a n =f ⎝ ⎛⎭⎪⎫1a n -1得a n -a n -1=23,n ∈N *,n ≥2, 所以{a n }是等差数列,又因为a 1=1,所以a n =1+(n -1)×23=2n +13.(2)由a n =2n +13得a n +1=2n +33.所以1a n a n +1=9(2n +1)(2n +3)=92⎝ ⎛⎭⎪⎫12n +1-12n +3.∴S n =1a 1a 2+1a 2a 3+1a 3a 4+…+1a n a n +1=92⎣⎢⎡13-15+15-17+17-19+…⎦⎥⎤+12n +1-12n +3=92⎝ ⎛⎭⎪⎫13-12n +3=3n2n +3. 由S n ≥3t 得t ≤n 2n +3,又⎩⎨⎧⎭⎬⎫n 2n +3递增,所以n =1时,n 2n +3有最小值为15,所以t ≤15.即t 的取值范围为1,5⎛⎤-∞ ⎥⎝⎦.评分标准:65分以上为能力超强 60~65分为能力强 55~60分为能力较强 50~55分为能力一般 50分以下为能力差凡事发生,必有利我!因为凡事都是我赋予它意义,它才对我有意义。

相关文档
最新文档