数学分析试题解析

合集下载

伍胜健《数学分析》(第1册)配套题库【考研真题+章节题库+模拟试题】【圣才出品】

伍胜健《数学分析》(第1册)配套题库【考研真题+章节题库+模拟试题】【圣才出品】

,使得
存在
,使得
。改变 n 的值,有
[北 取,
依次类推,有 且
而且满足
很明显,
为一个严格单调递减的数列,
3.设{xy}为所有 xy 乘积的集合,其中
,且 x≥0 及 y≥0.证明:
[武汉大学研]
证明:设



,可取
.且使


,∴存在
由③有

由②,④得证
4.设 解:当 当-1≤x<0 时,
.[同济大学研]
第1章 函 数
一、填空题 设 A.0 B.1 C. D. 【答案】B 【解析】
( ).[浙江大学研]
二、解答题
1.使用确界原理证明单调递减的有界数列必有极限。[天津大学研]
证明:确界原理,即有上界的非空集必有上确界,有下界的非空集必有下确界。
设 为单调递减且有界的数列,则由确界原理可知,
存在。下面证该下确界就是 的极限。
由下确界定义:
(1)对任意的 n,有
,当然
成立,这ε为任意小的正数。
(2)对上述任意的ε,存在 N,当 n>N 时,有
。又因为条件(1),所以
成立。
2.设 S 是非空集合,ξ=infS,试证明:若ξ∈S,则 S 中必存在一个严格单调递减的
,使得
京航空航天大学研]
证明:若ξ=infS,即(1)对任意的 x∈S,有 X≥ξ:(2)对任意的ε>0,存在

证明:
,并利用(1),求极限
证明:(1)(i)先设
,由①式,
.[中国人民大学研] ,存在 N>0,当 n>N 时有
特别取 n=N+1,N+2,……

数学分析试题及答案解析

数学分析试题及答案解析

WORD 格式整理2014 ---2015 学年度第二学期 《数学分析 2》A 试卷学院 班级学号(后两位)姓名题号一二三四五六七八总分核分人得分一. 判断题(每小题 3 分,共 21 分)( 正确者后面括号内打对勾,否则打叉 )1.若 f x 在 a,b 连续,则 f x 在 a,b 上的不定积分 f x dx 可表为x af t dt C ( ).2. 若 f x ,g x 为连续函数,则 f x g x dx f x dx g x dx ( ).3. 若f x dx 绝对收敛,g x dx 条件收敛,则 [ f x g x ]dx 必aaa然条件收敛().4. 若f x dx 收敛,则必有级数f n 收敛( ) 1n 15. 若 f n 与 g n 均在区间 I 上内闭一致收敛,则 f ng n 也在区间 I上内闭一致收敛().6. 若数项级数a 条件收敛,则一定可以经过适当的重排使其发散 n n 1于正无穷大( ).7. 任何幂级数在其收敛区间上存在任意阶导数, 并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同().专业资料值得拥有WORD 格式整理二. 单项选择题(每小题 3 分,共 15 分)8.若 f x 在 a,b 上可积,则下限函数axf x dx 在 a,b 上()A.不连续B. 连续C. 可微D. 不能确定9.若g x 在 a,b 上可积,而f x 在 a,b 上仅有有限个点处与g x 不相等,则()A. f x 在 a,b 上一定不可积;B. f x 在 a,b 上一定可积, 但是babf x dxg x dx;aC. f x 在 a,b 上一定可积,并且babf x dxg x dx;aD. f x 在 a,b 上的可积性不能确定 .10.级数n1 1 12nn 1nA. 发散B. 绝对收敛C. 条件收敛D. 不确定11.设u n 为任一项级数,则下列说法正确的是()uA. 若lim u n 0 ,则级数nn一定收敛;un 1B. 若lim 1,则级数u n 一定收敛;n unun 1C. 若N,当n N时有,1,则级数u n 一定收敛;un专业资料值得拥有WORD 格式整理u n 1D. 若 N,当nN 时有, 1,则级数u n 一定发散;u n12. 关于幂级数na n x 的说法正确的是()A. na n x 在收敛区间上各点是绝对收敛的; B. na n x 在收敛域上各点是绝对收敛的;C. na n x 的和函数在收敛域上各点存在各阶导数;D.na n x 在收敛域上是绝对并且一致收敛的;三. 计算与求值(每小题 5 分,共 10分)1 1.lim nnnn 1 n 2nn专业资料值得拥有WORD 格式整理ln sin x13.dx2cos x四. 判断敛散性(每小题 5 分,共 15 分)3 x 12.dx0 1 2x x专业资料值得拥有14.n1 n! n n15.n 1nn1 2nn 1 2专业资料值得拥有五. 判别在数集D上的一致收敛性(每小题 5 分,共 10 分)sin nx16.f n , 1,2 , ,x n Dn专业资料值得拥有WORD 格式整理2n17. D , 2 2,nx六.已知一圆柱体的的半径为R,经过圆柱下底圆直径线并保持与底圆面30 角向斜上方切割,求从圆柱体上切下的这块立体的体积。

第一次月考数学分析

第一次月考数学分析

第一次月考数学分析一、试卷的基本结构整个试卷分三部分,共27个题目,120分。

第一部分为选择题,共12个题目,36分。

第二部分为填空题,填空题共6个题目,18分,第三部分为解答题(有理数的分类、大小比较、计算、应用)共8个题目,66分。

1、题型与题量全卷共有三种题型,27个小题,其中选择题12个,填空题8个,解答题7个。

2、考查的内容及分布从试卷考查的内容来看,覆盖了第一章有理数所列的主要知识点,并且对整章的内容。

对数形结合、动手操作以及空间想象能力、知识迁移能力都作了重点考查。

试卷分析选择题第1题,不外乎倒数、相反数、绝对值、二次根式;第2题,数的大小比较;第3题三线八角;第4题,整式的计算,第5题立体图形的三视图;第6题,二元一次方程的解法,第7题,圆与圆的位置关系,第8题,图形的旋转;第9题解不等式组、一元二次方程解的个数的判别方法;第10题、统计概率,第11、12题,一次函数,二次函数的图象结合的题型选择题相对于整个试卷是比较简单的部分,成绩中等的学生至少能做对8道题目,基础不好的还需要加强。

填空题第13题一般是平方差公式、因式分解;第14题科学计数法;第15题,中位数、众数;第16、17题函数自变量的取值范围, 第18题,考察数学规律。

填空题难度相对于选择题稍有些难度,特别是17,18,道填空题有一定的难度,主要考察的是圆,函数等的知识点,可能有些学生会放弃,但是对于成绩中上的还是能做出来的。

解答题第19题计算题有理数的绝对值、算术平方根、零指数幂这种计算题还是比较简单的。

第20题解-元一次不等式、整式的运算、分式运算法则,平方差公式、一元一次不等式组、分式方程的解法;第21题 几何证明题 考点 平行线的性质, 全等三角形的判定 ,等腰三角形的性质, 直角三角形的性质、三角形全等的判定及三角形的内角和定理;第22题 概率统计 这种类型的题目比较简单,一般都能做出来;第23题 解直角三角形,特殊角的三角函数, 等腰直角三角形的判定、相似三角形的性质及全等的判定,存在性问题;第24题求一次函数的解析式,解二元一次方程组,行程问题;第25题 垂直于弦的直径平分弦, 直角三角函数, 圆周角是圆心角的一半, 三角形外角定理、比例系数的意义,第26题 压轴题一般是动点问题 最近几年都是考的动点,无非是抛物线,或者圆、三角形这两大类。

985院校数学系2019年考研数学分析高等代数试题及部分解答

985院校数学系2019年考研数学分析高等代数试题及部分解答
B 7 ! AB BA
, 2. 定义 Mn.C / 上的变
(1)求变换 T 的特征值. (2)若 A 可对角化,证明 T 也可对角化.
四.(20 分) A 为 n 阶实对称矩阵,令
S D fX jX T AX D 0, X 2 Rng
(1)求 S 为 Rn 中的一个子空间的充要条件并证明. (2)若 S 为 Rn 中的一个子空间,求 di mS .
C pn n
二.(15 分) 设 f .x/ 2 C Œa, b,f .a/ D f .b/,证明 9xn, yn 2 Œa, b, s.t . lim .xn yn/ D n!1 0,且 f .xn/ D f .yn/.
三.(15 分) 证明
Xn .
kD0
1/k
Cnk
k
C
1 m
C
1
D
X m .
kD0
1/k
Cmk
k
C
1 n
C
1
其中m, n是正整数
Y 1
X 1
四.(15 分) 无穷乘积 .1 C an/ 收敛,是否无穷级数 an 收敛?若是,证明这个
nD1
nD1
结论;若不是,请给出反例.
X 1
ż1
五.(15 分) 设 f .x/ D xn ln x,计算 f .x/dx.
0
nD1
六.(15 分) 设定义 .0, C1/ 上的函数 f .x/ 二阶可导,且 lim f .x/ 存在,f 00.x/ 有 x!C1 界,证明 lim f 0.x/ D 0. x!C1
(1)证明存在正交矩阵 P 使得
0
P T AP
D
BB@
a 0
0
1

高数考研试题解析无穷级数的收敛域与收敛半径

高数考研试题解析无穷级数的收敛域与收敛半径

高数考研试题解析无穷级数的收敛域与收敛半径无穷级数是数学分析中的一个重要概念,研究它的收敛域和收敛半径是高数考研试题中常见的一种题型。

在本文中,我们将从收敛域和收敛半径的定义入手,通过例题解析的方式来帮助读者更好地理解和应用这一概念。

无穷级数的收敛域是指使得无穷级数收敛的所有实数x的集合,也称为收敛区间。

而收敛半径则是收敛域的长度,记作R。

在解析无穷级数的收敛域和收敛半径时,常用的方法有根值判别法、比值判别法和积分判别法等。

根值判别法是通过计算无穷级数的通项的n次根的极限值来判断收敛域和收敛半径。

对于一个无穷级数∑(aₙxⁿ),通过计算lim┬(n→∞)⁡(|aₙ|⁄|aₙ₊₁|)的值,当该极限存在且大于0时,收敛半径R=1/lim┬(n→∞)⁡(|aₙ|⁄|aₙ₊₁|);当该极限不存在或为无穷大时,R=0;当该极限等于无穷时,R=+∞。

比值判别法是通过计算无穷级数的通项的绝对值的n+1项与n项的比值的极限值来判断收敛域和收敛半径。

对于一个无穷级数∑(aₙxⁿ),通过计算lim┬(n→∞)⁡(|aₙ₊₁|⁄|aₙ|)的值,当该极限存在且大于0时,收敛半径R=1/lim┬(n→∞)⁡(|aₙ₊₁|⁄|aₙ|);当该极限不存在或为无穷大时,R=0;当该极限等于无穷时,R=+∞。

积分判别法是通过求解无穷级数的通项对应的函数在收敛域上的不定积分的性质来判断收敛域和收敛半径。

对于一个无穷级数∑(aₙxⁿ),令f(x) = ∑(aₙxⁿ),如果f(x)在收敛域上连续,则收敛域包含收敛半径R。

为了更好地理解和应用这些方法,我们接下来通过解析一个具体的考研试题来探讨。

【解析示例】考虑无穷级数∑(n!)⁄(nⁿxⁿ),我们将通过根值判别法、比值判别法和积分判别法来求解它的收敛域和收敛半径。

首先,我们使用根值判别法。

计算通项的n次根的极限值,lim┬(n→∞)⁡(|(n!)⁄(nⁿxⁿ)|⁄|(n+1)!⁄((n+1)ⁿxⁿ₊₁)|)= lim┬(n→∞)⁡((n+1)ⁿ⁺¹⁄nⁿ₊₁) = (1+1/n)ⁿ → 1因此,根值判别法得到的收敛半径为R = 1。

数学分析期末试题A答案doc

数学分析期末试题A答案doc

数学分析期末试题A答案doc2024年数学分析期末试题A及答案一、选择题1、以下哪个函数在 x = 0 处连续? A. $f(x) = x^2$ B. $f(x) = \frac{1}{x}$ C. $f(x) = sin x$ D. $f(x) = e^x$ 答案:D解析:在 x = 0 处,只有选项 D 中的函数 e^x 是连续的。

因此,答案为 D。

2、设 $f(x) = x^2$,则 $f(3x - 2) =$ __________。

A. $x^2$ B. $(3x - 2)^2$ C. $(3x - 2)^3$ D. $(3x - 2)^2 + 1$ 答案:B解析:将 $x$ 替换为 $3x - 2$,得 $f(3x - 2) = (3x - 2)^2$。

因此,答案为 B。

3、下列等式中,错误的是: A. $\int_{0}^{1}x^2dx =\frac{1}{3}x^3|{0}^{1}$ B. $\int{0}^{\pi}\sin xdx = \cosx|{0}^{\pi}$ C. $\int{0}^{2\pi}\sin xdx = 0$ D.$\int_{0}^{1}(2x + 1)dx = (x^2 + x)|_{0}^{1}$ 答案:A解析:等式两边取极限,只有 A 选项等式两边不相等,因此 A 选项是错误的。

4、下列哪个导数是常数函数? A. $y = x^3$ B. $y = \sin x$ C. $y = e^x$ D. $y = log_a(x)$ 答案:C解析:常数函数的导数为零。

在选项中,只有 C 中的函数 e^x 的导数为常数函数,其导数为 $e^x$。

因此,答案为 C。

高一生物期末考试试题及答案doc高一生物期末考试试题及答案doc高一生物期末考试是一次重要的学业水平测试,旨在考察学生在本学期学习生物课程的效果。

以下是本次考试的部分试题及其答案,供大家参考。

一、选择题1、下列哪一种生物不是由细胞构成的? A. 细菌 B. 植物 C. 动物D. 病毒答案:D2、哪一个器官属于消化系统? A. 口腔 B. 食道 C. 胃 D. 大肠答案:C3、在光合作用中,哪一个物质是植物从空气中吸收的? A. 氧气 B. 二氧化碳 C. 葡萄糖 D. 水答案:B二、填空题1、病毒是一种生物,但它不能 _______ 和保持生命活动,必须_______ 在细胞内。

《山东大学数学分析2007-2017年考研真题及答案解析》

《山东大学数学分析2007-2017年考研真题及答案解析》

目录Ⅰ历年考研真题试卷 (2)山东大学2007年招收硕士学位研究生入学考试试题 (2)山东大学2009年招收硕士学位研究生入学考试试题 (3)山东大学2010年招收硕士学位研究生入学考试试题 (5)山东大学2011年招收硕士学位研究生入学考试试题 (6)山东大学2012年招收硕士学位研究生入学考试试题 (7)山东大学2014年招收硕士学位研究生入学考试试题 (8)山东大学2015年招收硕士学位研究生入学考试试题 (10)山东大学2016年招收硕士学位研究生入学考试试题 (12)山东大学2017年招收硕士学位研究生入学考试试题 (14)Ⅱ历年考研真题试卷答案解析 (16)山东大学2007年招收硕士学位研究生入学考试试题答案解析 (16)山东大学2009年招收硕士学位研究生入学考试试题答案解析 (22)山东大学2010年招收硕士学位研究生入学考试试题答案解析 (29)山东大学2011年招收硕士学位研究生入学考试试题答案解析 (34)山东大学2012年招收硕士学位研究生入学考试试题答案解析 (39)山东大学2014年招收硕士学位研究生入学考试试题答案解析 (46)山东大学2015年招收硕士学位研究生入学考试试题答案解析 (52)山东大学2016年招收硕士学位研究生入学考试试题答案解析 (59)山东大学2017年招收硕士学位研究生入学考试试题答案解析 (68)Ⅰ历年考研真题试卷山东大学2007年招收硕士学位研究生入学考试试题科目代码:651科目名称:数学分析(答案必须写在答卷纸上,写在试卷上无效)1.求()sin 0lim cot xx x →2.求222222222222(),: 1.Vx y z x y z dxdydz V a b c a b c ++++=⎰⎰⎰3.求211.n n n x ∞-=∑()0,1x ∈4.证明:20lim sin 0.n n xdx π→∞=⎰5.()()0,()f a f b f x ''==有二阶导数,证明:存在,ξ满足24()()().()f f b f a b a ξ''≥--6.22220(,)0,0.x y f x y x y +≠=+≠⎩,证明:(,)f x y 在(0,0)连续,有有界偏导数,x y f f ''在(0,0)不可微。

高三理科考试试卷分析

高三理科考试试卷分析

(江西师大附中使用)高三理科数学分析一、整体解读试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。

试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。

1.回归教材,注重基础试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。

2.适当设置题目难度与区分度选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。

3.布局合理,考查全面,着重数学方法和数学思想的考察在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。

包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。

这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。

二、亮点试题分析1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满足AB AC →→=,则AB AC →→⋅的最小值为( )A .14-B .12-C .34-D .1-【考查方向】本题主要考查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。

解法较多,属于较难题,得分率较低。

【易错点】1.不能正确用OA ,OB ,OC 表示其它向量。

2.找不出OB 与OA 的夹角和OB 与OC 的夹角的倍数关系。

【解题思路】1.把向量用OA ,OB ,OC 表示出来。

南开大学701数学分析考研真题及解析

南开大学701数学分析考研真题及解析

南开大学考研历年真题解析——701数学分析主编:弘毅考研弘毅教育出品【资料说明】1.命题风格与试题难易南开大学数学分析试题一直很基础,比高代要简单一些,高等代数偶尔还出个压轴题,数学分析最近几年也不出压轴题了,都是常规题,基础题就要占到70%,其它也就算中档题。

例如2012的数学分析试题最后一题也不属于难题,做过裴礼文的《数学分析中的典型问题与方法》再做这题十分简单,利用定义就可以了。

常规一直是南开大学数学分析的风格,没有什么偏题怪题,并且中低档题足够考个110分以上(数学专业的分数线一直不高),这估计大家很喜欢报考。

2.考试题型与分值南开数学分析考试题型全是解答题,没有其它题型。

解答题也就计算题和证明题,计算题比重占的比重也很大,例如2012年就要占到大概50%,其它也不能说全是证明,会有一部分判断,对的证明之,不对的举出反例。

证明题的难度要比计算题相对大一些。

3.各章节的出题比重南开大学数学分析真题的出的变换比较大,每年考的知识点都在变化,这一点和其它一些大学很不一样。

数学分析本来变化就很大,这和其它学科很不一样。

但有一些重要的知识点一定会在某一年考到。

例如,一致连续(2012年考到),一致收敛(2011年考到),广义积分的敛散性判别(2011年考到),重积分曲线积分和曲面积分(每年几乎必考到,例如2008,2009,2010两个题,2011,2012两题),和函数的计算(几乎必考,重中之重)等等。

但其他知识点也绝对不能忽略。

这主要是因为南开试题变换大,今年考的明年不一定不考,今年不考的明年还可能考。

4.重要的已考知识点特别重要的只是点就是求和函数(很重要,经常出,例如2012,2010,2009年等),曲线积分和曲面积分(几乎每年必出),一致连续(2012年考到),一致收敛(重中之重!而且也十分容易考到,这也是数学分析中的重中之重,考到分值就会很大。

例如2011年),求极限(虽然简单,但也几乎每年必出,2003-2012只有2009年没出极限其它年份每年必出极限)。

2022年大连理工大学数学分析考研真题+解析

2022年大连理工大学数学分析考研真题+解析

大连理工大学2022数学分析考研真题试卷简答题(每题6分,共60分)1 1对任意的正整数k,存在正熬数N,当n>N时,有Ia n -al<-)此是否可以什为hm O,n =a的k n-oc, 定义?为什么?2.求f(x )=沪|尤-11在[-1,1]上的极值点与极值3证明J(x)= cos沪在(-OO )+OO)上不一致连续4设f(x )在[a ,叶上至多有第一类间断点证明j位)在[a ,b]上有界5试构造收敛的正项级数〉:an,使得lirn supn 加21仰=+O O”-+3C,It=l 6设封闭曲线f:x 3+沪=3xy,X 2: 0, y之0,求r 所包围区域的面积7设J(x)在[a ,b]上连续,在(a,b)上可微,f(b) > f (a),且J(x)不是一次函数证明存在�E (a, b), 使得!'(�)> J(b ) -f(a) b -aX -!丿8.求极限lim ;t...OO 泸-叨+l2''!J...OO 9设f(x )在(-OO,+OO)上连续,定义g(t)=f 位-t)勺(t )dt求g "'(x)。

10证明函数f 伈)=区n2 x ''·在-泸+2 (-e, e)上有任总阶导数n=l 二计算题(每题10分,共30分)+OO 1设bE凡计算!产cos bxdx.() 2设曲面I:: 9沪+4沪+z2= 1,方向朝外,计符曲而积分j x d ydz + y dzdx + z d 兀dy $ !但+2沪+3丑)}3 设向觉场F(x ,y,z)= 1 沪+沪+z 2+ 2功(兀十!尸+y,z),z>O ,求F的势函数,三证明题(每题12分,共60分)1设f(x)是[0,+o o )上的连续可微的凸函数,定义h(x)=J 。

:'f (l ) d t , X > 0时证明.h(兀)是冗(0, +oo)上的凸函数2设儿(沈)均在[a ,b]上可微,n = 1, 2, 3, • • 且存在正常数!V I >0,使得I J :1(x)I � M, n = 1, 2, 3, •• •, XE [a ,b]若函数列{f )l ,位)}在[a ,b]上逐点收敛证明函数列{儿(尤)}在Ia,bl上一致收敛3设B,C都是n阶实的常数矩阵,且C是非奇异的定义映射f 厌'i---t 脱'l 为f位)=Cx+B(x @x)这里xox定义为兀0兀=(叶,马`,点)T E贮.证明f 的值域至少包含一个内点.4设f (午)在[a ,,b]上有二阶连续导数,且f(a ) = f (b) = 0,证明max |f(午)|三(b -a )2 max |f r 心扛51)8 心还/15设瓜)住[a,+oo )上单调递减JI广义积分「00f(x) d 扎.收敛证明lim叶(:r ;)= 0 "x->+oo (a:) I大连理工大学 2022 年数学分析考研试题解答-简答题(每题6分,共60分)1对任意的正整数k,存在正整数N,当n>N时有, � Ia n -al<-,此是否可以作为k lim a n = a的定n➔oo 义?为什么? 1 解答可以一方面,若Jim 钰=a,那么对任意的正桴数k,取e=- > 0,则存在正整数1V,当n>N ')心k 时,有回-al<c: =-、k 1 另一方面,若对任意的正整数k,存在正整数N,当n>N时,有I仰-a|< -特别地,对任意的€> 0, l l k 任取大丁-的正整数ko,则存在正整数No,当九>No时.有I a n -al<—< e这就说明Jim a 九=a 0 k () 1➔OO 2求f(x)= X 旬x -11在[一1月上的极伯点与极伯解答当XE[一1,11[t,l ,有j(x)= X 灯1-x) = xi一xi,显然J(x)在[一1月上连续,在[一1,0)U (0月可导,且2压)=曰5 2 1 3 -- -卢=-曰(2-5x ).3 3由此可知土XE (-1 0)时2l'(x) < 0当X �2 (0; �)时f'(动>0,当x 2E q ,l )时f '(x )< 0所以f位)在(-1,0]严格递减在f 』严格递增)在[r 1]严格递减丁是0和5分别为J 的极小值占与极大值点且极小值为J (O)= 0,极大值为f (勹=:(:)令口但是3证明f(x)= cos产在(-:::,0,+00)上不一致连续解答取(-:::,0,+00)中的数列X n = ✓:玩兄加=v'2吓+1r(n=l,2,··),由于( -7f lim (X n -如)=lim � = 0. 九:=...oc ,~·,•. .,,., n ➔00 ✓芦+J2n7f十7f ,浊¥[j(Xn)-f(如)]=,抑�(cos(2n1r )一c os (2n1r + 1r)] = 2 =/= 0所以J位)仕(-oo,+oo)上不一致连续4设f(x)在[a,b]上至多有第一类间断点,证明:f(x)在(a,bJ上有界 D 解答对任意的1、oE [a, b ],由已知,J位)在xo处存在左极限与右极限(端点只考虑单侧极限),进而由极限的局部有界性,存在0:,:0>0与M 吓>0,使得`X E (xo -O re o'xo + D x o) n la, b ]时,有l f (x )I :s; M立。

高二数学联赛二试真题分析代数

高二数学联赛二试真题分析代数

本讲收录了1998年以来所有的联赛二试代数真题二试代数向来是联赛的必考内容甚至在最近10年中最少有4年占两道.从以往试题来看,二试代数问题往往偏于对学生代数功力的考察,其主要类型为不等式(占50%)、方程组求解等代数经典问题(占30%)以及数列相关问题(占20%).在08年前只考三道题的时候,为了尽可能全面考察四大板块,经常还出现代数与数论、组合相交叉的综合性问题,不等式问题占的比重相对较小.从09年开始变为四道题之后,四道题分别考察四个独立的内容成为可能,这也使以前联赛问题总是与其它主流竞赛问题“不像”这个问题得以解决.但是这明显让绝大部分未进行过专业数论、组合板块训练的同学失去对竞赛的兴趣和信心(因为最后两道题很难得分,前面的题目也不一定就能拿到高分).为了解决这个问题,从今年开始又将一试分数调整到120分,相应地二试从每题50分变到两道40分题加上两道50分题.虽然从理论上说,二试的两道40分题可能为四个板块中任意两种,但因为数论与组合常规下总是较难,所以绝大部分情况下二试问题结构为第一题平几与第二题代数40分,第三题数论与第四题组合各50分.在不与数论、组合发生交叉的情况下,代数问题仍以不等式为主(也可能以递归数列形式出现的不等式),但不排除其它两种可能.下面的例习题也将按此比例大致分配.考虑到代数部分极可能为40分题,因此其难度不会太大;但联赛代数历年来也不会命那些只要简单的几步即可完成的题,总是会出现较大的计算量(一般在20行内难以完成)以实现分步给分.如果是不太难的不等式,则总是会出现两问或“两头堵”以增加难度,实现选拔功能.板块一 不等式与极值不等式是联赛二试改为四道题之后代数部分最主要的题型,其解决方法多样,内容繁多,且基本没有通法,需要考生创造性地解决问题.以下内容为联赛考察重点:1、 均值不等式,在用均值的时候往往需要根据取等条件来凑配相应的系数;2、 柯西不等式,特别要注意柯西不等式的几个重要变形特别是主动变形即222221211111()()ni i n nn ni i ii i i ni i i i ii a b a ba b a b======≥⇔≥∑∑∑∑∑∑二试代数概述例题精讲第1讲二试真题分析(1)代数右方这个式子的诸i b 往往是根据题目特点主动构造的.3、 对离散量或整值问题按照逐步调整(或磨光变换)方法得到极值;4、 有时需要用到其它的重要不等式(如排序,切比雪夫不等式等),但用的不多;5、 由于三元轮换对称不等式的普通变式基本已经被研究透彻,且容易被暴力破解;新的三元不等式往往极难,因此这种几年前的主流不等式问题近年来已越来越少见. 6、 利用某方法(如构造某函数并利用增减性、求导等)得到局部不等式并求和得证的问题近年较多见,其主要难点在于局部不等式的右方为何种形式难以想到.根据单墫、陈计等不等式专家的观点,不等式问题最关键的是培养大小的感觉,也就是说做不等式问题第一步不是考虑用哪个不等式,而是对题目中各变量对大小的影响有一个较明晰的感觉并将这种感觉细化与具体化.这种感觉需要长期的培养与练习,一般可以通过固定其它变量单独看某变量变化的方法来进行.【例1】 (2010年第3题)给定整数2n >,设正实数12,,,n a a a 满足1,1,2,,k a k n ≤=,记12,1,2,,kk a a a A k n k+++==.求证:1112n nk k k k n a A ==--<∑∑. 【解析】 由01k a <≤知,对11k n ≤≤-,有110,0kniii i k ak an k ==+<≤<≤-∑∑。

2022年新高考Ⅰ数学试卷评析

2022年新高考Ⅰ数学试卷评析
2013年,教育部启动了普通高中课程修订工作。本次修 订深入总结21世纪以来我国普通高中课程改革的宝贵经验, 充分借鉴国际课程改革的优秀成果,努力将普通高中课程方 案和课程标准修订成既符合我国实际情况,又具有国际视野 的纲领性教学文件,构建具有中国特色的普通高中课程体系。
数学教育承载着落实立德树人根本任务、发展素质教育 的功能。高中数学课程是义务教育阶段后普通高级中学的主 要课程,具有基础性、选择性和发展性。
2017
新教材
2019
新高考
2020
新课程
新课程 3+3
新课标
2017
新教材
2019
新高考
2020
新课程
新高考
《课程标准》和《高考评价体系》,是高考的方向和依据
2019年国务院办公厅发布《关于新时代推进普通高中育 人方式改革的指导意见》规定,考试命题要以普通高中课程 标准和高校人才选拔要求为依据,实施普通高中新课程的省 份不再制定考试大纲。
函数与导数
12
解答题
解析几何
12
2021新高考1卷
知识点
分值
集合
5
复数
5
立体几何
5
三角函数和平 面向量
5
解析几何
5
三角函数和平 面向量
5
函数与导数
5
概率统计
5
概率统计
5
三角函数和平 面向量
5
解析几何
5
立体几何
5
函数与导数
5
解析几何
5
函数与导数
5
数列
5
数列
10
概率统计
12
三角函数和平 面向量
12

(完整版)数学分析试题及答案解析,推荐文档

(完整版)数学分析试题及答案解析,推荐文档

∑⎰ ⎰ ⎰ 2014 ---2015 学年度第二学期《数学分析 2》A 试卷一. 判断题(每小题 3 分,共 21 分)(正确者后面括号内打对勾,否则打叉)1.若 f (x )在[a ,b ]连续,则 f (x )在[a ,b ]上的不定积分⎰ f (x )dx 可表为x f(t )dt + C ( ).a2.若 f (x ), g (x )为连续函数,则⎰ f (x )g (x )dx = [⎰f (x )dx ]⋅ [⎰g (x )dx ().+∞+∞3.若 f (x )dx 绝对收敛, ⎰ g (x )dx 条件收敛,则aa+∞[ f(x )- g (x )]dx 必然条件收敛().a+∞ 4. 若f (x )dx 收敛,则必有级数∑ f (n )收敛( )1n =15. 若{f n }与{g n }均在区间 I 上内闭一致收敛,则{f n + g n }也在区间 I上内闭一致收敛( ).∞6. 若数项级数 a n 条件收敛,则一定可以经过适当的重排使其发散n =1于正无穷大( ).7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题 3 分,共 15 分)1. 若 f(x )在[a ,b ]上可积,则下限函数af (x )dx 在[a ,b ]上()xA. 不连续B. 连续C.可微D.不能确定⎰ ⎰∞⎰ ⎰ ⎰ ⎰ ∑ 2. 若 g (x )在[a ,b ]上可积,而 f (x )在[a ,b ]上仅有有限个点处与 g (x )不相等,则( )A. f (x )在[a ,b ]上一定不可积;B. f (x )在[a , b ]上一定可积,但是bf (x )dx ≠ bg (x )dx ;aaC. f (x )在[a , b ]上一定可积,并且 b f (x )dx = bg (x )dx ;aaD. f (x )在[a ,b ]上的可积性不能确定.∞3. 级数 n =11 + (- 1)n -1 n n2 A. 发散 B.绝对收敛 C.条件收敛 D. 不确定4. 设∑u n 为任一项级数,则下列说法正确的是( )A. 若lim u n →∞= 0 ,则级数∑u n一定收敛;B. 若lim un +1 = < 1,则级数∑u 一定收敛;n →∞ u nC. 若∃ N ,千D. 若∃ N ,千 n > N 千千n > N 千千千u n +1 n< 1,则级数∑u n 一定收敛; u n> 1,则级数∑u n 一定发散;5. 关于幂级数∑ a n x n 的说法正确的是()A. ∑ a n x n 在收敛区间上各点是绝对收敛的;B. ∑ a n x n 在收敛域上各点是绝对收敛的;C. ∑ a n x n 的和函数在收敛域上各点存在各阶导数;千 u n +1u n nx ⎰⎰ D. ∑ a n x n 在收敛域上是绝对并且一致收敛的;三.计算与求值(每小题 5 分,共 10 分) 1. lim 1n (n + 1)(n + 2) (n + n ) n →∞ n2. ln (sin x )dx cos 2 x四. 判断敛散性(每小题 5 分,共 15 分)1. dx 01 + + x 2∞∑2. ∑ n ! n =1 n n∞ 3. n =1(- 1)nn 2n1 + 2n五. 判别在数集 D 上的一致收敛性(每小题 5 分,共 10 分)1. f n(x )= sin nx n, n =1,2 , D = (- ∞,+∞)∑2. n D xn= (- ∞, - 2]⋃[2, + ∞)六.已知一圆柱体的的半径为 R ,经过圆柱下底圆直径线并保持与底圆面300 角向斜上方切割,求从圆柱体上切下的这块立体的体积。

解析几道以迭代数列为背景的高考题

解析几道以迭代数列为背景的高考题

解析几道以迭代数列为背景的高考题薛红利(长春第六中学ꎬ吉林长春130000)摘㊀要:迭代数列的极限是数学分析中的重要内容ꎬ而以迭代数列为背景的高考试题不在少数.文章先介绍数列的有关知识和迭代数列的极限ꎬ然后深度解析高考试题的高数背景.关键词:高考题ꎻ数列ꎻ迭代数列ꎻ极限ꎻ高数背景中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2024)04-0028-03收稿日期:2023-11-05作者简介:薛红利(1972.5-)ꎬ女ꎬ吉林省安图人ꎬ本科ꎬ中学高级教师ꎬ从事高中数学教学研究.㊀㊀高考题一般都是大学老师命制的ꎬ所以高考题尤其是高考压轴题ꎬ有高等数学背景也是常有的事.这就要求一线教师不仅要会做高考压轴题ꎬ还要弄清楚高考压轴题的高数背景ꎬ这样才能看清试题的命制思路和背景ꎬ才能更好地服务于教学.1预备知识定义㊀称xn+1=f(xn)ꎬn=1ꎬ2ꎬ 为迭代数列ꎬ称其中的f(x)为迭代函数.(以下均假设f与n无关)[1].定理1㊀设数列{xn}满足迭代公式xn+1=f(xn)ꎬn=1ꎬ2ꎬ ꎬ且已知limnңɕxn=cꎬlimnңɕf(xn)=f(c)ꎬ则极限c是方程f(x)=x的根(即f(x)的不动点).㊀注㊀条件limnңɕf(xn)=f(c)在f(x)于点c处连续时就成立.定理的证明是显然的ꎬ但定理提供了一种方法ꎬ即在研究迭代数列时ꎬ先假设它收敛ꎬ看极限是什么ꎬ然后再证明这就是该数列的极限.定理2㊀设函数f(x)在区间I上单调ꎬ数列{xn}满足迭代公式xn+1=f(xn)ꎬnɪN∗ꎬ且xnɪIꎬnɪN∗ꎬ则只有两种可能:(1)当f(x)为单调递增时ꎬ{xn}为单调数列ꎻ(2)当f(x)为单调递减时ꎬ{xn}的子列{x2n-1}和{x2n}是具有相反单调性的两个单调子列.其几何解释如下图:图1㊀定理2几何解释2高考试题及其背景分析例1[2]㊀(2014年重庆卷理)设a1=1ꎬan+1=a2n-2an+2+b(nɪN∗).(1)若b=1ꎬ求a2ꎬa3及数列{an}的通项公式ꎻ(2)若b=-1ꎬ问:是否存在实数c使得a2n<c<a2n+1对所有nɪN∗成立?证明你的结论.82解析㊀(1)a2=2ꎬa3=2+1ꎬan=n-1+1. (2)解法1㊀设f(x)=(x-1)2+1-1ꎬ则an+1=f(an).令c=f(c)ꎬ即c=(c-1)2+1-1ꎬ解得c=14.下面用数学归纳法加强命题:a2n<c<a2n+1<1.当n=1时ꎬa2=f(1)=0ꎬa3=f(0)=2-1ꎬ所以a2<c<a3<1成立.假设当n=k(kȡ1)时命题成立ꎬ即a2k<c<a2k+1<1.因为f(x)在(-ɕꎬ1]上单调递减ꎬ所以c=f(c)>f(a2k+1)>f(1)=a2.所以1>c>a2k+2>a2.所以c=f(c)<f(a2k+2)<f(a2)=a3<1.所以c<a2k+3<1.因此a2(k+1)<c<a2(k+1)+1<1ꎬ即当n=k+1时命题也成立.综上ꎬ存在c=14使a2n<c<a2n+1对一切nɪN∗成立.背景分析㊀在解法1中ꎬ为何设f(x)=x2-2x+2-1?又为何设c=f(c)呢?本题以迭代数列为背景ꎬ考查迭代数列的极限.由定理1ꎬ先求出f(x)的不动点ꎬ即令c=f(c)ꎬ再证明a2n<c<a2n+1对一切nɪN∗成立.考查函数f(x)=x2-2x+2-1ꎬ易知f(x)在[0ꎬ1]上单调递减ꎬ且当xɪ[0ꎬ1]时ꎬ有f(x)ɪ[0ꎬ1]成立.因为a1=1ɪ[0ꎬ1]ꎬ由数学归纳法可知anɪ[0ꎬ1].根据f(x)在[0ꎬ1]上单调递减ꎬ且anɪ[0ꎬ1]ꎬ知本题的高数背景是定理2的情况(2)ꎬ即{a2n}和{a2n-1}是两个具有相反单调性的数列.利用极限知识求出它们的极限即可ꎬ具体操作如下:计算可知ꎬa2=f(a1)=0ꎬa3=f(a2)=2-1.即有a1>a3成立.又因为f(x)在[0ꎬ1]上单调递减ꎬ所以a2=f(a1)<f(a3)=a4.同理可得ꎬa3=f(a2)>f(a4)=a5.一直下去ꎬ可得:a1>a3> >a2n-1>a2n+1(nɪN∗)ꎬa2<a4< <a2n<a2n+2(nɪN∗).即{a2n-1}ꎬ{a2n}分别是两个单调有界的数列ꎬ利用单调有界定理可得:limnңɕa2n=Aꎬlimnңɕa2n+1=Bꎬ且a2n<Aꎬa2n+1>B(nɪN∗).实际上ꎬ这里A=B=14.下面利用数列极限知识计算AꎬB的值.因为a2n+1=a22n-2a2n+2-1ꎬa2n+2=a22n+1-2a2n+1+2-1ꎬ对以上两式两边取极限ꎬ可得B=A2-2A+2-1ꎬA=B2-2B+2-1.解得A=B=14.因此存在c=14使得a2n<c<a2n+1对一切nɪN∗成立.解法2㊀当b=-1时由题意ꎬ得(an+1+1)2=(an-1)2+1.从而得到(a2n+1+1)2=(a2n-1)2+1.①假设存在实数c使得a2n<c<a2n+1对所有的nɪN∗都成立ꎬ又an+1+1ȡ1ꎬ则(a2n+1)2<(c+1)2<(a2n+1+1)2.由①式得(a2n+1)2<(c+1)2<(a2n-1)2+1.由(a2n+1)2<(a2n-1)2+1ꎬ解得a2n<14.由①式得(a2n+1+1)2=(a2n-14)2-32a2n+1516+1>-32a2n+1516+1>-32ˑ14+1516+1=2516.解得a2n+1>14.综上ꎬ得a2n<14<a2n+1.故存在c=14使得a2n<c<a2n+1对一切nɪN∗成立.92例2㊀(2012年大纲全国卷理)函数f(x)=x2-2x-3.定义数列{xn}如下:x1=2ꎬxn+1是过两点P(4ꎬ5)ꎬQn(xnꎬf(xn))的直线PQn与x轴的交点的横坐标.(1)证明:2ɤxn<xn+1<3ꎻ(2)求数列{xn}的通项公式.解析㊀由题意得xn+1=4xn+3xn+2.(1)参考答案用的是数学归纳法.(2)xn=3-43 5n-1+1.过程略背景分析㊀由x1=2ꎬxn+1=4-5xn+2知ꎬ2ɤxn<4.由于f(x)=4x+3x+2=4-5x+2在[2ꎬ4)上单调递增ꎬ根据定理2的情形(1)ꎬ知数列{xn}单调递增.由单调有界定理ꎬ知limnңɕxn存在ꎬ不妨设limnңɕxn=Aꎬ则limnңɕxn+1=A.对xn+1=4xn+3xn+2两边取极限ꎬ得A=4A+3A+2ꎬ即(A+1)(A-3)=0ꎬ解得A=-1(舍)ꎬA=3.所以2ɤxn<xn+1<3.例3㊀设数列{an}满足:a1=1ꎬan+1=b1+anꎬnɪN∗.(1)若b=-14ꎬ令bn=an+12ꎬ求数列{bn}的通项公式ꎻ(2)若b=1ꎬ问:是否存在实数c使得a2n<c<a2n+1对所有nɪN∗成立?证明你的结论.解析㊀(1)bn=36n-4.(2)方法类似于例1的解法2.背景分析㊀由于数列为正项数列ꎬ因此迭代函数f(x)=11+x在(0ꎬ1]上单调递减ꎬ且anɪ(0ꎬ1].由c=f(c)求出不动点ꎬ得c=5-12.根据以上分析ꎬ其高数背景是定理2的情形(2)ꎬ即需证子列{a2n}和{a2n-1}分别单调ꎬ且收敛于同一极限c.a2=11+1=12ꎬa3=11+a2=23<a1=1.即0<a3<a1=1由f(x)在(0ꎬ1]上单调递减ꎬ得a2=f(a1)<f(a3)=a4.即0<a2<a4<1.进而ꎬa3=f(a2)>f(a4)=a5ꎬa4=f(a3)<f(a5)=a6ꎬ一直下去ꎬ可得a2<a4<a6< <a2n<a2n+2ꎬa1>a3>a5> >a2n-1>a2n+1.即{a2n-1}ꎬ{a2n}分别是两个单调有界的数列ꎬ故limnңɕa2n=Aꎬlimnңɕa2n+1=Bꎬ且a2n<Aꎬa2n+1>B(nɪN∗).因为a2n+1=11+a2nꎬa2n+2=11+a2n+1ꎬ对以上两式两边取极限ꎬ可得B=11+A且A=11+Bꎬ解得A=B=5-12.3结束语站得高ꎬ才能看得远.作为教师ꎬ应该具备一定的高等数学知识ꎬ这其实就是我们大学本科四年学习的基本功ꎬ这样ꎬ遇到压轴题才能轻松应对ꎬ游刃有余.在具体操作上ꎬ可先分析出试题的高数背景ꎬ获得答案ꎬ这时就得到了解题的方向ꎬ然后再用高中知识和方法去书写解题过程.由此可见ꎬ掌握一定的高数知识ꎬ弄清楚高考题的高数背景和命制思路是非常必要的.参考文献:[1]王晖.数列很重要㊀综合常考到[J].中学生理科应试ꎬ2020(12):5-10.[2]李鸿昌.高考题的高数探源与初等解法[M].合肥:中国科学技术大学出版社ꎬ2022.[责任编辑:李㊀璟]03。

2013年暨南大学数学分析考研真题讲解及分析

2013年暨南大学数学分析考研真题讲解及分析

最主要的策略——历年试题、笔记、热点问题考研不同于其他的考试,它有着独特的考 试形式和内容,因此复习也应该有相应的方法和节奏。认真研究历年试题,分析出题方向和 特点,这是专业课备考的关键。这里强调两点:一是分析试题这项工作要提早,因为这对你 看各种考研书籍和资料有重要的指导意义;另外不仅要思考,还要动笔,要认认真真把每一 道考研题落实到字面上,你会发现很多原来没有想到过的东西。同时,这种训练可以避免真 正考试时因时间仓促和心理压力带来的表达上的不成熟。 有些学校的部分专业没有指定的参考书目, 这样真题就更为重要了。 真题不是拿来做完 了事的,要从命题人的角度、命题者的思路去推测出题偏好,推测这个院系的教学风格。 考 生复习时, 每复习一遍或每过一段时间, 就应该拿出真题研究一下, 结合年内的行业热点 (无 论是文科还是理科, 其核心期刊总会反映年度热点问题) 和近期理论界的研究争论焦点进行 分析。事实证明,考生对专业真题的钻研确实可以让考生猜到那么几十分的题目。专业课的 真题,要训练对分析题的解答,把自己的答案切切实实写在纸上,不要打腹稿(这样有时候 感觉自己给分点都答到了, 实际上却相差很远) , 再反复对照自己和参考答案 (如果有的话) 的差别,分析答题角度,揣摩命题人意图,并用同一道题在相隔一定时间后反复训练,慢慢 完善自己此类题型的解答方法。 历年题是专业课的关键, 而融会贯通则是关键中的关键。 考研的专业课考题大体有两种 类型,一种是认知性质的考题,另一种是理解与应用型的,而且以后一种居多。因此,同学 们在复习时绝不能死记硬背条条框框, 而应该看清条条框框背后所包含的东西, 并且加以灵 活运用。在复习时,首先要把基本概念、基本理论弄懂,然后要把它们串起来,多角度、 多 层次地进行思维和理解。 由于专业的各门功课之间有着内在的相关性, 如果能够做到融会贯 通,无论对于理解还是记忆,都有事半功倍的效果。考生完全可以根据历年的考题,在专业 课本中划出历年涉及的重点,有针对性、有侧重点地进行复习。 针对笔记、 真题以及热点问题, 下面的提纲可能会比较快速地让考生朋友掌握以上的内 容:1 专业课笔记一般来说,大部分高校的专业课都是不开设专业课辅导班的,这一点在 05年的招生简章中再次明确。因此对于外校考生,尤其是外地区考生,也就是那些几乎不可 能来某高校听课的考生,专业课笔记尤为重要。可以说,笔记是对指定参考书最好的补充。 如果条件允许,这个法宝一定要志在必得。在具体操作上,应先复习书本,后复习笔记, 再 结合笔记来充实参考书。笔记的搜集方法,一般来说,有的专业比较热门,可以在市面上买 到它的出版物;有的专业笔记在网上也可能搜集到,这需要考生多花一些时间;还有的专业 由于相对冷门,那么考生就需要和该专业的同学建立联系,想办法把笔记弄到手。 2 专业课历年真题真题是以前的考试题,是专业课的第一手资料,它更是法宝中的法

数学分析面试真题答案解析

数学分析面试真题答案解析

数学分析面试真题答案解析是数学基础课程中非常重要的一门学科。

它对于培养学生的逻辑思维能力、分析问题的能力以及解决实际问题的能力有着重要的作用。

所以,在面试过程中,问题经常是考察学生数学思维能力的一个重要方面。

以下是一些常见的面试真题及其解析,希望能对读者有所帮助。

一、求极限1. 计算极限$\lim_{x\to 0}\frac{\sin x}{x}$。

解析:要计算这个极限,可以利用泰勒展开的思想。

根据泰勒级数展开,有$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} -\cdots$。

因此,原极限可以改写为$\lim_{x\to 0}\frac{x -\frac{x^3}{3!} + \frac{x^5}{5!} - \cdots}{x}$。

显然,当$x\to0$时,分子和分母同时趋于0,所以可以使用洛必达法则,即对分子和分母同时求导,有$\lim_{x\to 0}(1 - \frac{x^2}{2!} +\frac{x^4}{4!} - \cdots) = 1$。

2. 计算极限$\lim_{n\to\infty}\frac{n}{\sqrt[n]{n!}}$。

解析:我们可以利用中的极限性质,即$\lim_{n\to\infty}\sqrt[n]{n!} =\lim_{n\to\infty}\frac{n}{\sqrt[n]{n!}}$。

所以,原极限可以改写为$\lim_{n\to\infty}\sqrt[n]{n!}$。

根据Stirling公式,$\lim_{n\to\infty}\frac{\sqrt{2\pin}\left(\frac{n}{e}\right)^n}{n!} = 1$。

所以,原极限为1。

二、连续与可导1. 设$f(x)$在$x_0$处连续,且$\lim_{x\to x_0}f'(x)$存在,证明$f(x)$在$x_0$处可导。

解析:由题意可知,$\lim_{x\to x_0}f'(x) = L$存在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014 ---2015学年度第二学期《数学分析2》A 试卷学院 班级 学号(后两位) 姓名一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()⎰dx x f 可表为()C dt t f xa+⎰( ).2.若()()x g x f ,为连续函数,则()()()[]()[]⎰⎰⎰⋅=dx x g dx x f dx x g x f ( ).3. 若()⎰+∞adx x f 绝对收敛,()⎰+∞adx x g 条件收敛,则()()⎰+∞-adx x g x f ][必然条件收敛( ). 4. 若()⎰+∞1dx x f 收敛,则必有级数()∑∞=1n n f 收敛( )5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ).6. 若数项级数∑∞=1n n a 条件收敛,则一定可以经过适当的重排使其发散于正无穷大( ).7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( ).二. 单项选择题(每小题3分,共15分)1.若()x f 在[]b a ,上可积,则下限函数()⎰ax dx x f 在[]b a ,上( )A.不连续B. 连续C.可微D.不能确定2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相等,则( )A. ()x f 在[]b a ,上一定不可积;B. ()x f 在[]b a ,上一定可积,但是()()⎰⎰≠babadx x g dx x f ;C. ()x f 在[]b a ,上一定可积,并且()()⎰⎰=bab adx x g dx x f ;D. ()x f 在[]b a ,上的可积性不能确定.3.级数()∑∞=--+12111n n n nA.发散B.绝对收敛C.条件收敛D. 不确定4.设∑n u 为任一项级数,则下列说法正确的是( ) A.若0lim =∞→n n u ,则级数∑nu 一定收敛;B. 若1lim1<=+∞→ρnn n u u ,则级数∑n u 一定收敛;C. 若1,1<>∃+nn u uN n N ,时有当,则级数∑n u 一定收敛;D. 若1,1>>∃+n n u uN n N ,时有当,则级数∑n u 一定发散;5.关于幂级数∑n n x a 的说法正确的是( ) A. ∑nnxa 在收敛区间上各点是绝对收敛的;B. ∑n n x a 在收敛域上各点是绝对收敛的;C. ∑nn xa 的和函数在收敛域上各点存在各阶导数; D. ∑nnxa 在收敛域上是绝对并且一致收敛的;三.计算与求值(每小题5分,共10分) 1. ()()()nn n n n n n+++∞→Λ211lim2. ()⎰dx x x 2cos sin ln四. 判断敛散性(每小题5分,共15分)1.dx xx x ⎰∞+++-021132.∑∞=1!nn n n3.()nnnnn21211+-∑∞=五. 判别在数集D 上的一致收敛性(每小题5分,共10分) 1.()()+∞∞-===,,2,1,sin D n nnxx f n Λ2. (][)∞+⋃-∞-=∑,22,2D xn n六.已知一圆柱体的的半径为R ,经过圆柱下底圆直径线并保持与底圆面030 角向斜上方切割,求从圆柱体上切下的这块立体的体积。

(本题满10分)七. 将一等腰三角形铁板倒立竖直置于水中(即底边在上),且上底边距水表面距离为10米,已知三角形底边长为20米,高为10米,求该三角形铁板所受的静压力。

(本题满分10分)八. 证明:函数()∑=3cos nnxx f 在()∞+∞-,上连续,且有连续的导函数.(本题满分9分)2014 ---2015学年度第二学期《数学分析2》B 卷 • 答案学院 班级 学号(后两位) 姓名一、判断题(每小题3分,共21分,正确者括号内打对勾,否则打叉)1.✘2.✔3.✘4. ✔5. ✔6. ✔7. ✔ 二.单项选择题(每小题3分,共15分) 1. B ; 2.C ; 3.A ; 4.D; 5.B三.求值与计算题(每小题5分,共10分)1.dx ex x x xnn ⎰+∞→31223sin lim解:由于⎰⎰≤+≤310310223sin 0dx x dx e x x x n xn-------------------------3分而03111limlim 131=+=+∞→∞→⎰n n n n n dx x---------------------------------4分故由数列极限的迫敛性得:0sin lim31223=+⎰∞→dx ex x x xnn-------------------------------------5分 2. 设()x x x f sin sin 2=,求()dx x f xx ⎰-1 解:令 t x 2sin = 得()dx x f xx ⎰-1=()()t d t f tt 2222sin sin sin 1sin ⎰-----------------2分=tdt t ttt t cos sin 2sin cos sin ⎰=⎰tdt t sin 2-----------------------------------4分=2cos 2sin t t t C -++=C ----------------5分四.判别敛散性(每小题5分,共10分)1.dx xx ⎰-121arctan解:()241arctan lim1arctan 1lim 012211π=+=---→-→xx xx x x x Θ-------3分且 121<=p ,∴由柯西判别法知, 瑕积分dx xx ⎰-121arctan 收敛 -------------------------5分2.()∑∞=2ln ln 1n nn解:时当00,,ln lim n n N n n n >∈∃+∞=+∞→Θ有 2ln e n > -----------------------------2分从而 当0n n >()2ln 1ln 1n n n<-------------------------------4分由比较判别法 ()∑∞=2ln ln 1n nn 收敛----------------------------5分五.判别在所示区间上的一致收敛性(每小题5分,共15分)1. ()()∞+==+=,0,2,1,12D n n x x f n Λ解:极限函数为()()D x x x f x f n n ∈==∞→lim -----------------------2分又 ()()nx n x n x nx x f x f n 11/11222<++=-+=---------3分 ()()10sup n x Df x f x n∈∴<-≤从而0sup lim =-∴∞→f f n n故知 该函数列在D 上一致收敛. -------------------------5分2.]1,1[,3sin2-=∑D x nn解:因当 D x ∈ 时,()nn n n x x u ⎪⎭⎫⎝⎛≤=323sin 2--------------2分而 正项级数 ∑⎪⎭⎫⎝⎛n32收敛, -----------------------------4分由优级数判别法知,该函数列在D 上一致收敛.-------------5分 3.()()∑+∞∞-=+-,,12D nxn解:易知,级数()∑-n1的部分和序列{}n S 一致有界,---2分 而 对()n x x V D x n +=∈∀21, 是单调的,又由于 ()()∞→→≤+=∈∀n nn x x V D x n 011,2,------------------4分所以()⎭⎬⎫⎩⎨⎧+=n x x v n 21在D 上一致收敛于0,从而由狄利克雷判别法可知,该级数在D 上一致收敛。

------5分六. 设平面区域D 是由圆222=+y x ,抛物线2x y =及x 轴所围第一象限部分,求由D 绕y 轴旋转一周而形成的旋转体的体积(本题满分10分)解:解方程组⎩⎨⎧==+2222xy y x 得圆222=+y x 与抛物线2x y =在第一象限 的交点坐标为:()1,1, ---------------------------------------3分则所求旋转体得体积为:()⎰⎰--=1122ydy dy y V ππ -------------------------------7分=------------------ =76π ------------------------------------------------------10分 七.现有一直径与高均为10米的圆柱形铁桶(厚度忽略不计),内中盛满水,求从中将水抽出需要做多少功?(本题满分10分)解:以圆柱上顶面圆圆心为原点,竖直向下方向为x 轴正向建立直角坐标系 则分析可知做功微元为:dx x xdx dW νπνπ2552=⋅⋅= --------------------------------5分 故所求为:⎰=10215dx x W νπ-------------------------------------8分 =1250πν =12250π(千焦)-----------------------------------10分八.设()()Λ2,1=n x u n 是],[b a 上的单调函数,证明:若()∑a u n 与()∑b u n 都绝对收敛,则()∑x u n 在],[b a 上绝对且一致收敛. (本题满分9分) 证明:()()Λ2,1=n x u n 是],[b a 上的单调函数,所以有()()()b u a u x u n n n +≤ ------------------------------4分又由()∑a u n 与()∑b u n 都绝对收敛,所以()()[]∑+b u a u nn收敛,--------------------------------------7分由优级数判别法知:()∑x u n在],[b a 上绝对且一致收敛.--------------------------------2013 ---2014学年度第二学期《数学分析2》A 试卷学院 班级 学号(后两位) 姓名一. 判断题(每小题2分,共16分)(正确者后面括号内打对勾,否则打叉)1.若)(x f 在[a,b]上可导,则)(x f 在[a,b]上可积. ( )2.若函数)(x f 在[a,b]上有无穷多个间断点,则)(x f 在[a,b]上必不可积。

相关文档
最新文档