固体物理考试 复习

合集下载

固体物理复习资料

固体物理复习资料

固体物理复习资料第一章晶体结构1、晶体、非晶体的概念2、常见的几种晶格结构:简单立方晶格、体心立方晶格、面心立方晶格、六角密排晶格、金刚石晶格结构、NaCl晶格结构、CsCl晶格结构、ZnS晶格结构。

3、晶格中最小的重复单元为原胞。

4、简单晶格中,某一个原胞只包含一个原子,所有的原子在几何位置和化学性质上是完全等价的。

简单立方晶格、体心立方晶格和面心立方晶格均为简单晶格。

5、几种简单晶格的原胞基矢及原胞的体积6、复式晶格包含两种或两种以上的等价原子(或离子)。

常见的复式晶格有……7、维格纳—塞茨原胞:由某一个格点为中心,做出其与最近格点和次近格点连线的中垂面,这些中垂面所包围的空间为维格纳—塞茨原胞。

8、实际晶格= 布拉伐格子(理解)+ 基元(理解)9、理解晶列、晶向,会确定晶向指数;10、会确定晶面指数——密勒指数11、理解倒格子及相关内容(第四节)12、按宏观对称的结构划分,晶体分属于7大晶系,共14种布拉伐格子。

13、作业P578 习题1.3 至1.914、第五节、第六节主要掌握作业涉及的内容第二章固体的结合1、一般固体的结合可以概括为离子性结合、共价结合、金属性结合和范德瓦尔结合四种基本形式。

2、作业P579 习题2.1 2.33、原子结合成晶体时,原子的价电子产生重新分布,从而产生不同的结合力,分析离子性结合、共价结合、金属性结合和范德瓦尔结合力的特点。

离子性结合:正、负离子之间靠库仑吸引力作用而相互靠近,当靠近到一定程度时,由于泡利不相容原理,两个离子的闭合壳层的电子云的交叠产生强大的排斥力。

当排斥力和吸引力相互平衡时,形成稳定的离子晶体;共价性结合:靠两个原子各贡献一个电子,形成所谓的共价键;金属性结合:组成晶体时,每个原子的最外层电子为所有原子共有,因此在结合成金属晶体时,失去了最外层(价)电子的原子实“沉浸”在由价电子组成的“电子云”中。

在这种情况下,电子和原子实之间存在库仑作用,体积越小,电子云密度越高,库仑相互作用的库仑能愈低,表现为原子聚合起来的作用。

固体物理总复习

固体物理总复习

一、概念、简答1.晶体:原子排列是十分有规则的,主要体现是原子排列具有周期性,或者称为是长程有序的非晶体:不具有长程周期性准晶体:既区别于晶体又区别于非晶体的固体材料2. 布拉菲格子:实际晶格可以看成为在上述空间格子的每个格点上放有一组原子,他们的相对位移为ar r这个空间格子表征了晶格的周期性,称为布拉菲格子3.原胞:晶格的最小周期性单元晶胞:为了反映晶格的对称性,选取了较大的周期单元,该单元为单胞或晶胞 4.倒格子,倒格子基矢:123231123312123123123a a a a a b 2a []a a 2a []a a2a []a a b a a b a a πππ⨯=∙⨯⨯=∙⨯⨯=∙⨯r r rr r v r r rr r r r r r r r r r r r 根据基矢、、定义三个新的矢量称为倒格子基矢量。

5. 独立对称操作:m 、i 、1、2、3、4、6、6.七个晶系、十四种布拉伐格子:7.第一布里渊区:倒格子原胞8.基矢为1a ai =v v2a aj =v v 3()2a a i j k =++v v v v 的晶体为何种结构;若33()22a a a j k i =++v v v v 又为何种结构?解:计算晶体原胞体积:312300()002222aa a a a a a a a Ω=⋅⨯==r r r由原胞推断,晶体结构属体心立方结构。

若33()22a a a j k i =++v v vv ,则312300()0023222aa a a a a a a a Ω=⋅⨯==r r r由原胞推断,该晶体结构仍属体心立方结构。

9.固体结合的基本形式及基本特点。

(1)离子型结合:是以离子而不是以原子为结合的单位,他们的结合是靠离子之间的库伦吸引作用;(2)共价结合:具有饱和性和方向性; (3)金属性结合:电子的“共有化”;(4)范德瓦耳斯结合:是一种瞬时的电偶极矩的感应作用。

固体物理复习考点

固体物理复习考点

1. 以刚性原子球堆积模型,计算以下各结构的致密度分别为:晶体是由刚性原子球堆积而成,一个晶胞中刚性原子球占据的体积与晶胞体积的比值称为结构的致密度,设 n 为一个晶胞中的刚性原子球数,r 表示刚性原子球半径,V 表示晶胞体积,则致密度ρ=Vrn334π(1)对简立方晶体,任一个原子有6个最近邻,若原子以刚性球堆积,如图1.2所示,中心在1,2,3,4处的原子球将依次相切,因为,,433a V r a ==晶胞内包含1个原子,所以ρ=6)(33234ππ=aa(2)对体心立方晶体,任一个原子有8个最近邻,若原子刚性球堆积,如图1.3所示,体心位置O 的原子8个角顶位置的原子球相切,因为晶胞空间对角线的长度为,,433a V r a ==晶胞内包含2个原子,所以ρ=ππ83)(*2334334=aa(3)对面心立方晶体,任一个原子有12个最近邻,若原子以刚性球堆积,如图1.4所示,中心位于角顶的原子与相邻的3个面心原子球相切,因为3,42a V r a ==,1个晶胞内包含4个原子,所以ρ=62)(*4334234ππ=aa.(4)对六角密积结构,任一个原子有12个最近邻,若原子以刚性球堆积,如图1。

5所示,中心在1的原子与中心在2,3,4的原子相切,中心在5的原子与中心在6,7,8的原子相切,晶胞内的原子O 与中心在1,3,4,5,7,8处的原子相切,即O 点与中心在5,7,8处的原子分布在正四面体的四个顶上,因为四面体的高h =223232c r a ==晶胞体积 V = 222360sin ca ca=,一个晶胞内包含两个原子,所以ρ=ππ62)(*22233234=caa .(5)对金刚石结构,任一个原子有4个最近邻,若原子以刚性球堆积,如图1.7所示,中心在空间对角线四分之一处的O 原子与中心在1,2,3,4处的原子相切,因为,83r a =晶胞体积 3a V =一个晶胞内包含8个原子,所以ρ=163)83(*83334ππ=aa .5.证明在立方晶体中,晶列[hkl ]与晶面(hkl )正交,并求晶面(111l k h ) 与晶面(222l k h )的夹角。

固体物理复习题

固体物理复习题

固体物理复习题一、名词解释1、布拉菲格子2、共价键的方向性和饱和性3、布洛赫波函数4、简单格子和复式格子5、声子6、p3杂化轨道7、费米面8、第一布里渊区9、倒格子二、证明1、只考虑近邻相互作用(待定力常数为)和简谐近似下,试证明一维单原子链晶格振动波的色散关系为:(q)2Minaq2采用周期性边界条件讨论q的取值,并说明它和介质弹性波波矢取值的差异。

2、利用线性谐振子模型证明两个极性分子间的吸引能与它们之间距离的六次方成正比。

3、证明一维晶格的布洛赫定理。

24、证明倒格矢G晶面(h1h2h3),并且G(d为晶面(h1h2h3)的面间距)dE(kG)E(k)E(k)E(k)5、证明能带的对称性:n,nhnn三、简答2、金刚石结构有几支格波几支声学波几支光学波设晶体有N个原胞,晶格振动模式数为多少3、试用能带论阐述导体、绝缘体、半导体中电子在能带中填充的特点.4、原子间的排斥作用和吸引作用有何关系?起主导的范围是什么?5、什么是原胞?什么是单胞?二者有何区别?6、金刚石结构的晶体为何种布拉维格子?配位数是多少?每个原胞有几个原子?该晶体的倒格子是什么类型7、、什么是原子的电离能、亲和能和负电性?8、石墨中是电子还是电子导致石墨的导电性?简述原因。

9、什么是简正模?什么是格波?格波和弹性波之间有什么区别?10、解释布里渊区的物理意义,在布里渊区边界上能带有何特点四、计算1、晶格常数为a的体心立方格子的倒格子为什么格子?并给出晶格常数。

2、一维简单正方晶格,晶格常数为a,每个原胞有一个原子,每个原子只有一个态价电子,使用近束缚紧似,只计入近邻相互作用。

(1)求出电子组成的能带的E(k)函数;(2)求出能带带顶和带底的位置和能量值;如果换成二维结果又如何?如果换成体心立方结果又如何?3、利用线性谐振子模型讨论两个极性分子间的吸引能与它们之间距离的六次方成正比。

4、求金刚石结构的几何结构因子消光条件。

固体物理考试复习

固体物理考试复习

固体物理:研究固态物质的宏观物理性质、内部微观结构、内部各种粒子的相互作用,运动规律,以及宏观性质与微观运动间的联系的科学。

晶体结构的基本特征:原子在三维空间呈周期性排列基元:放置在格点上的原子或原子团称为基元是一个格点所代表的物理实体。

由基元代表点在空间中的周期性排列所形成的晶格称为布拉伐晶格,布拉伐晶格是一种数学上的抽象,是格点在空间中周期性的规则排列,其每个格点是几何等价的。

基元+Bravais晶格=晶体结构简单晶格必须由同种原子组成;反之,由同种原子组成的晶格却不一定是简单晶格.一个晶格中体积最小的周期性结构单元称原胞.空间点阵原胞:空间点阵中最小的重复单元,只含有一个格点,对于同一空间点阵,原胞的体积相等。

晶体学通常选取较大的周期单元来研究晶格结构,为同时反映周期性与对称性,称为晶胞晶面间距愈大该晶面上的原子排列愈密集晶面间距愈小,该晶面上的原子排列愈稀疏对称操作是指一定的几何变换。

如某物体如绕某一轴旋转一定角度或对某一平面作镜象反映等等. 一种晶体可以有多种不同形式的对称操作,描述晶体的对称性的方法就是找出能使它复原的所有对称操作。

对称元素: 对称中心;对称面; 对称轴;象转轴面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

纳米颗粒是指尺寸在1~100nm之间的颗粒,是界于微观和宏观之间的一种物质结构层次.纳米颗粒的结构已经具有大块固体的特征,但是其物理性质却明显不同,具有一系列新的性质.主要原因在于:1 量子尺寸效应:2 表面效应固体是由大量原子组成的,原子又由价电子和离子组成,所以固体实际上是由电子和离子组成的多粒子体系。

由于电子之间、电子与离子以及离子之间的相互作用,要严格求解这种复杂的多体总量是不可能的。

但注意到电子与离子的质量相差很大,离子的运动速度比电子慢得多(3个数量级)可以近似地把电子的运动与离子的运动分开来考虑,这种近似方法称为绝热近似-Born-Oppenheimer近似格波:晶体中所有原子共同参与的一种频率相同的振动,不同原子间有振动位相差,这种振动以波的形式在整个晶体中传播,称为格波光学支格波与声学支格波本质上有何差别?答:是格波不同模式的称呼。

固体物理复习要点

固体物理复习要点

固体物理复习要点名词解释1、基元、布拉伐格子、简单格子。

2、基矢、原胞3、晶列、晶面4、声子5、布洛赫定理(Bloch定理)6、能带能隙、晶向及其标志、空穴7、紧束缚近似、格波、色散关系8、近自由近似9、振动模、12、导带;价带;费米面简单回答题1、倒格子是怎样定义的?为什么要引入倒格子这一概念?2、如果将等体积的刚球分别排成简单立方、体心立方、面心立方结构,则刚球所占体积与总体积之比分别是多少?3、在讨论晶格振动时,常用到Einstein模型和Debye模型,这两种模型的主要区别是什么?以及这两种模型的局限性在哪里?6、叙述晶格周期性的两种表述方式。

7、晶体中传播的格波和普通连续媒质中传播的机械波如声波、水波等有何不同?导致这种不同的根源又是什么?8、晶格热容的爱因斯坦模型和德拜模型各自的假设是什么?两个模型各自的优缺点分别是什么?10、能带理论中的近自由电子近似和紧束缚近似的基本假设各是什么?两种近似方法分别适合何种对象?11、以一维简单晶格和三维简单立方晶格为例,给出它们的第一布里渊区。

12、以简单立方晶格为例,给出它的晶向标志和晶面标志(密勒指数)。

13、试证明任何晶体都不存在宏观的5次对称轴。

14、在运用近自由电子模型计算晶体中电子能级(能带)时为什么同时用到简并微扰和非简并微扰?。

15、给出导体,半导体和绝缘体的能带填充图,并以此为基础说明三类晶体的导电性。

k=)波函数在点群操16、给出简单立方晶格中Γ点(其波矢(0,0,0)作下的变换规律。

17、简要叙述能带的近自由电子近似法和紧束缚近似法的区别。

18、给出Bloch能带理论的基本假设。

24、引入伯恩-卡门条件的理由是什么?25、在布里渊区边界上电子的能带有什么特点?26、原子结合成固体有哪几种基本形式?其本质是什么?27、画出二维正方晶格的第一和第二布里渊区。

计算回答题1、 求六角密排结构的堆积比(刚球所占体积与总体积之比)。

2、 求体心立方结构中具有最大面密度的晶面族,并求出这个最大面密度的表达式。

固体物理 必考

固体物理 必考

西安工业大学物理系应用物理专业固体物理学复习一.填空题1.对比热和电导有贡献的仅是(费米面附近的)电子, 这些电子分别从(格波和外场)获取能量使其跃迁到费密面附近或以外的空状态上。

2. 根据晶胞基矢之间的夹角、长度关系可将晶体分为(7)大晶系,对应的只有(14 )种布拉伐格子。

3. 对晶格常数为a的SC晶体,与正格矢R=a i+2a j+2a k正交的倒格子晶面族的面指数为( 122), 其面间距为(2π∕3a)。

4.典型离子晶体的体积为V, 最近邻两离子的距离为R, 晶体的格波数目为( )。

5.声子是(晶格振动的)能量量子,其能量为(h把w),准动量为(h把q)。

6. 一维简单晶格由N个格点组成, 则一个能带有(N)个不同的波矢状态, 能容纳(2N)个电子。

由于电子的能带是波矢的偶函数, 所以能级有( N/2)个。

可见一个能级上包含(4)个电子。

7.金刚石晶体的结合类型是典型的( 共价键)晶体, 其每个原胞中含有(8 )个原子,它有( 6 )支格波,其中声学支格波有( 3 )支,光学支格波有( 3 )支。

8. 根据化学键的性质,晶体的结合类型可分为(离子晶体,共价晶体,金属,分子晶体,氢键晶体,混合型晶体)。

9. Wigner-Seitz原胞是由(各格矢的垂直平分面)所围成的(包含原点在内的最小封闭)体积。

10. N个电子组成的简并电子气,在T=0K时,电子的平均能量为(3∕5 EF)。

11. 共价结合的基本特征是(饱和性和方向性)。

以共价键形式相结合的原子所能形成的键的数目有一个最大值,每一个键含2个电子,分别来自两个原子;原子只在特定的方向上形成共价键,各个共价键之间有确定的相对取向。

原子在价电子波函数最大的方向上形成共价键,键与键之间的夹角固定。

12. 第一Brillouin区就是倒格子空间的(维格纳赛茨)原胞,每个Brillouin区的体积(等于)倒格子原胞的体积。

13. 六角密积属(六角)晶系, 一个晶胞包含(两个)原子。

固体物理复习资料

固体物理复习资料

简述题:1、对晶体做结构分析时,为仕么不使用可见光?2、温度升高时,衍射角如何变化?X 光波长变化时,衍射角如何变化?3、为什么金属具有延展性而原子晶体和离子晶体却没有延展性?4、试从金属键的结合特性说明,为何多数金属形成密积结构?5、长光学支格波与长声学支格波本质上有何差别?6、绝对零度时还有格波存在吗?若存在,格波间还有能量交换吗?7、何为费米面?金属电子气模型的费米面是何形状?8、为什么组成晶体的粒子(分子、原子或离子)的相互作用力除了吸引力还要有排斥力?排斥力的来源是什么?9、定性说明能带形成的原因。

10、什么是近自由近似?按照近自由近似,禁带是如何产生的?11、解理面往往是面指数低的晶面还是面指数高的晶面?为什么?12、同一温度下,一个光学波的声子数目与一个声学波的声子数目相同吗?为什么?13、什么是紧束缚近似?按照紧束缚近似,禁带是如何产生的?14、什么是逸出功?在热电子发射问题中,逸出功与那些因素有关?15、为什么形成一个空位所需要的能量低于形成一个弗兰克尔缺陷所需要的能量?计算题1、证明:在理想的一维离子晶体晶格中马德隆常数2ln 2=α。

2、证明:在正交、四方和立方晶系中晶面)(hkl 的晶面间距2/1222222)///(-++=c l b k a h d hkl 。

计算硅单晶的111d (晶格常数043.5A a =) 3、画出简单立方中的[213]晶向和(213)晶面。

4、画出面心立方、体心立方中(100)和(110)晶面上的格点排列。

5、分别计算体心立方和面心立方点阵的单胞与原胞的体积比。

6、分别计算SC 、BCC 、FCC 点阵的最大堆积密度。

7、钠(原子量23)具有体心立方结构,晶格常数023.4A a =,试计算钠的密度。

8、证明:BCC 与FCC 互为倒易点阵。

9、计算倒易原胞体积*Ω,并给出与正空间原胞体积Ω之间的关系。

10、设有一维单原子链,原子质量为m ,原子间距为a ,原子间的恢复力常数为β,试给出原子的运动方程及色散关系。

固体物理学考试重点

固体物理学考试重点

固体物理学一:晶体结构1.晶体结构=空间点阵+基元2.晶格:晶体中原子的规则排列简称为晶格。

3.基元:在晶体中适当选取某些原子作为一个基本结构单元,这个基本结构单元称为基元。

4.结点:空间点阵学说中所称的“点子”代表着结构中相同的位置,称为结点。

5.点阵:格点的总体称为点阵。

6晶向:晶体中同一个格点可以形成方向不同的晶列,每一个晶列定义了一个方向,称为晶向。

7.简单格子晶体:基元只有一个原子的晶体,原子与晶格的格点相重合而且每个格点周围的情况都一样。

8.复式格子晶体:基元有两个或两个以上的原子构成的晶体。

9.声子:10.晶胞与原胞的区别:在同一晶格中原胞的选取不是唯一的,但他们的体积都是相等的,而晶胞的体积一般为原胞的若干倍。

11.绝对零度费米能:12.NaCl和CsCl的晶体结构:NaCl:晶胞为面心立方;阴阳离子均构成面心立方且相互穿插而形成;每个阳离子周围紧密相邻有6个阴离子,每个阴离子周围也有6个阳离子,均形成正八面体;每个晶胞中有4个阳离子和4个阴离子,组成为1:1。

CsCl:晶胞为体心立方;阴阳离子均构成空心立方体,且相互成为对方立方体的体心;每个阳离子周围有8个阴离子,每个阴离子周围也有8个阳离子,均形成立方体;每个晶胞中有1个阴离子和1个阳离子,组成为1:1。

13.晶体的结合方式,为什么能结合成晶体?①离子性结合,靠离子间的库伦吸引作用形成晶体;②共价结合,靠两个原子各贡献一个电子形成共价键进而形成晶体;③金属性结合,靠负电子云和正离子实之间的库伦相互作用结合成晶体;④范德瓦尔斯结合,靠瞬时的电偶极矩的感应作用结合成晶体。

14.晶体的结合能与平衡间距?晶体的结合能就是将自由的原子(离子或分子)结合成晶体时所释放的能量;晶体的平衡间距就是14.什么是晶格振动的德拜模型和爱因斯坦模型,其物理意义是什么,为什么德拜模型在低温时能给出较好的结果而爱因斯坦模型给出的结果较差?德拜模型:假设晶体是各向同性的连续弹性介质,格波可以看成连续介质的弹性波。

固体物理总复习资料及答案

固体物理总复习资料及答案

固体物理总复习资料及答案固体物理总复习题⼀、填空题1.原胞是的晶格重复单元。

对于布拉伐格⼦,原胞只包含个原⼦。

2.在三维晶格中,对⼀定的波⽮q ,有⽀声学波,⽀光学波。

3.电⼦在三维周期性晶格中波函数⽅程的解具有形式,式中在晶格平移下保持不变。

4.如果⼀些能量区域中,波动⽅程不存在具有布洛赫函数形式的解,这些能量区域称为 ;能带的表⽰有、、三种图式。

5.按结构划分,晶体可分为⼤晶系,共布喇菲格⼦。

6.由完全相同的⼀种原⼦构成的格⼦,格⼦中只有⼀个原⼦,称为格⼦,由若⼲个布喇菲格⼦相套⽽成的格⼦,叫做格⼦。

其原胞中有以上的原⼦。

7.电⼦占据了⼀个能带中的所有的状态,称该能带为;没有任何电⼦占据的能带,称为;导带以下的第⼀满带,或者最上⾯的⼀个满带称为;最下⾯的⼀个空带称为 ;两个能带之间,不允许存在的能级宽度,称为。

8.基本对称操作包括 , ,三种操作。

9.包含⼀个n重转轴和n 个垂直的⼆重轴的点群叫。

10.在晶体中,各原⼦都围绕其平衡位置做简谐振动,具有相同的位相和频率,是⼀种最简单的振动称为。

11.具有晶格周期性势场中的电⼦,其波动⽅程为。

12.在⾃由电⼦近似的模型中,随位置变化⼩,当作来处理。

13.晶体中的电⼦基本上围绕原⼦核运动,主要受到该原⼦场的作⽤,其他原⼦场的作⽤可当作处理。

这是晶体中描述电⼦状态的模型。

14.固体可分为 , ,。

15.典型的晶格结构具有简⽴⽅结构, , , 四种结构。

16.在⾃由电⼦模型中,由于周期势场的微扰,能量函数将在K= 处断开,能量的突变为。

17.在紧束缚近似中,由于微扰的作⽤,可以⽤原⼦轨道的线性组合来描述电⼦共有化运动的轨道称为,表达式为。

18.爱因斯坦模型建⽴的基础是认为所有的格波都以相同的振动,忽略了频率间的差别,没有考虑的⾊散关系。

19.固体物理学原胞原⼦都在,⽽结晶学原胞原⼦可以在顶点也可以在即存在于。

20.晶体的五种典型的结合形式是、、、、。

固体物理_复习

固体物理_复习

2、共价结合:依靠共用电子对结合,强键;饱和性和方向性 3、金属结合:共有化电子与正离子实库仑作用,强键 4、范德瓦尔斯结合 :瞬时电偶极矩之间的有效吸引作用,弱键
三、基本概念:
平衡间距、结合能、马德隆常数、雷纳德 - 琼斯( LennardJones )势、 sp3杂化、共价键饱和性和方向性、原子的负电 性 四、基本计算 1 、两个粒子之间的相互作用势能,如果分别用吸引势能 和排斥势能来表示,可用幂函数表示 2、平衡间距 3、离子晶体的结合能 4、分子晶体的结合能
五、晶向指数和晶面指数
1.晶向指数[m,n,p] 2.晶面指数(密勒指数)(hkl)
六、倒格子与布里渊区
1. 倒格子: (1)定义(倒易点阵基矢 ) (2)倒格子的重要性质(正倒格子间的关系) 2. 布里渊区(B.Z)
(1)定义
(2)画图
七、三维7大晶系和14种布拉伐格子,二维4大晶系和5种布拉
伐格子
二、点缺陷:在一个或几个晶格常数的线度范围内,使晶体周 期性结构受到破坏或影响的晶体缺陷。
分类:空位(肖特基缺陷 )、间隙原子、弗仑克尔缺陷、杂 质原子 等。 三、线缺陷:位错 1、分类:刃位错、螺位错 2、特征及形成原因 四、面缺陷:堆垛层错
2
m sin( qa qa ) m sin( ) 2 2
二、一维双原子链的晶格振动 1.模型 2.色散关系 3.关于声学波和光学波的讨论
2
mM 4mM 2 [1 1 sin (qa)] 2 mM (m M )
长波极限 声学格波描写元胞内原子的同相运动, 光学格波描写元胞内原子的反相运动。 两支格波最重要的差别:分别描述了原子不同的运动状态 4.q 的取值(第一布里渊区内),在第一布里渊区边界上, 存在格波频率“间隙”。

固体物理期末复习提纲终极版

固体物理期末复习提纲终极版

固体物理期末复习提纲终极版一、晶体的结构与晶胞1.晶体的定义和特点2.晶体的结构指数和晶系3.晶胞的定义和特点4.基元和晶格的概念二、晶体的对称性1.对称元素和操作2.空间群和点群3.空间群的表示方法4.特殊对称性的晶体结构三、晶体的晶格1.晶格的定义和特点2.布拉维格子和布里渊区3.第一布里渊区和倒格子4.倒格子和衍射四、晶体的X射线衍射1.X射线的特点和衍射现象2. Laue方程和Bragg法则3.X射线的衍射仪器4.逆格子和晶体结构的解析五、晶体的晶体缺陷1.点缺陷和芯片2.面缺陷和晶界3.体缺陷和空位4.缺陷的影响和应用六、晶体的晶格振动1.晶格振动的分类和特点2.声子和性质3.声子的产生和吸收4.热导率和声学性质七、电子与能带论1.自由电子气模型2.原子间作用和周期性势能3.能带的形成和分类4.能带的导电性八、半导体与绝缘体1.化学键与共价键2.半导体与绝缘体的能带结构3. pn结的形成和性质4.磁半导体和自旋电子学九、金属与超导体1.金属的电子气模型2.金属的导电性和热传导性3.超导体的发现和性质4.超导体的理论和应用十、晶体的光学性质1.基本光学现象和方程2.介质和折射率3.光在晶体中的传播和偏振4.光学谱和材料应用十一、纳米材料与表面物理1.纳米材料的特点和制备方法2.纳米材料的性质和应用3.表面物理和表面改性4.加工技术和纳米器件这是一个固体物理期末复习的终极版提纲,涵盖了晶体的结构与晶胞、晶体的对称性、晶体的晶格、晶体的X射线衍射、晶体的晶体缺陷、晶体的晶格振动、电子与能带论、半导体与绝缘体、金属与超导体、晶体的光学性质、纳米材料与表面物理等重要内容。

通过按照这个提纲进行复习,可以全面而系统地理解和掌握固体物理学的基本概念和相关知识,为期末考试做好充分的准备。

(完整版)固体物理复习

(完整版)固体物理复习

非晶体——原子的排列没有明确的周期性(短程有序)晶体——原子按一定的周期排列规则的固体(长程有序)准晶体——介于晶体和非晶体之间的新的状态晶体结构最常见的三种立方格子简单立方晶格、面心立方晶格、体心立方晶格,其配位数分别为6、12、8;六角密堆的配位数为12,金钢石结构的配位数为4。

原胞是最小的晶格重复单元。

对于简单晶格,原胞包含1个原子。

若321,,aaa表示某布拉伐格子的基矢(又称正格子基矢),321,,bbb表示该布拉伐格子的倒格子基矢,那么正格子基矢与倒格子基矢之间满足的关系为:。

(教材:p17)画出体心立方、面心立方和六角密堆的原胞,如果各自晶胞的体积为v,则原胞的体积分别为v/2,v/4,v/3晶向晶面画出简单立方晶格的晶向,立方边共有6个不同的晶向由于立方晶格的对称性,以上6个晶向是等效的可以表示为<100>]100[],001[],10[]010[],001[],100[100110111<><><>按结构划分,晶体可以分为7 大晶系,共有 14 布拉伐格子。

若321,,a a a表示某布拉伐格子的基矢(又称正格子基矢),321,,b b b 表示该布拉伐格子的倒格子基矢,那么矢量332211a n a n a n R++=的全部端点的集合构成)100(面等效的晶面数分别为:3个 }100{表示)110(面等效的晶面数分别为:6个 }110{表示)111(面等效的晶面数分别为:4个 }111{表示231123312123123123222a a b a a a a a b a a a a a b a a a πππ⨯=⋅⨯⨯=⋅⨯⨯=⋅⨯2()20()i j ij i j a b i j ππδ==⎧⋅=⎨=≠⎩布拉伐格子,矢量332211b h b h b h G h++=的全部端点的集合构成 倒格子 。

对晶格常数为a 的SC 晶体,与正格矢k a j a i a R22++=正交的倒格子晶面族的面指数为 (122) , 其面间距为 a32π。

固体物理复习

固体物理复习

321a a a ,,⎪⎭⎫ ⎝⎛414141第一章1.固体按其结构的有序程度可分为晶体和非晶体。

晶体:长程有序(分为单晶体和多晶体(微晶))。

非晶体:不具有长程序的特点。

具有短程序。

准晶体:有长程有序性,没有平移对称性。

2. 基元:构成晶体的基本单元。

它可以包含一个或几个原子、离子或分子。

格点:空间抽象出来的代表基元的点。

它可以是基元重心的位置,也可以是基元中任意的点。

布拉维格子(布喇菲格子):格点形成的晶格;晶格(点阵)+基元=晶体结构;晶格是晶体结构周期性的数学抽象,它忽略了晶体结构的具体内容,保留了晶体结构的周期性。

3.晶格平移矢量: ,基矢: 4.原胞(固体物理学原胞):由基矢为棱边,组成的平行六面体形成的晶格结构的最小重复单元。

特点:a. 基矢和原胞选取选取具有多样性。

b. 只在平行六面体的顶角上,面上和内部均无格点,平均每个固体物理学原胞包含1个格点。

C.原胞反映了晶体晶格的周期性。

体积: 5.维格纳-塞茨原胞(简写为WS 原胞),也称为对称原胞: 构造:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即为W--S 原胞。

特点:它是晶体体积的最小重复单元,每个原胞只包含1个格点。

既反映了晶体的周期性,又反映了晶体的一切对称性 。

6.晶胞(结晶学原胞):能直观反映晶体对称性的晶格的重复单元。

基矢选取原则:使三个基矢的方向尽可能地沿着空间对称轴的方向。

模a, b, c 为各轴上的周期,称为晶格常数。

特点:(a )具有明显的对称性和周期性。

(b )晶胞不仅在平行六面体顶角上有格点,面上及内部亦可有格点。

其体积是固体物理学原胞体积的整数倍。

体积: 立方晶系晶胞的体积: 。

(a)简立方SC:晶胞和原胞都包含包含1个格点。

固体物理学原胞的体积(b)体心立方(bcc):平均每个晶胞包含 2个格点。

固体物理学原胞的体积:(c)面心立方(fcc):每个面心立方晶胞包含4个有效格点。

固体物理考试 复习

固体物理考试 复习

1、简立方原胞基矢 体心立方原胞基矢 面心立方原胞基矢kj i a a a a a a321)(2/)(2/)(2/321k j i a a k j i a a k j i a a)(2/)(2/)(2/a 321j i a a i k a a k j a2、试证面心立方的倒格子是体心立方证:设与晶轴a 、b 、c 平行的单位矢量分别为i 、j 、k 。

面心立方正格子的原胞基矢可取为)(2),(2),(2321j i a a i k a a k j a a由倒格子公式得][2,][2,][2213132321a a b a a b a a b 可得倒格基矢为: ),(2),(2),(2321k j i ab k j i a b k j i a b3、考虑晶格中的一个晶面(hkl ),证明:(a ) 倒格矢123h G hb kb lb u r r r r 垂直于这个晶面;(b ) 晶格中相邻两个平行晶面的间距为2hkl hd Gu r;(c ) 对于简单立方晶格有22222a d h k l 。

证明:(a )晶面(hkl )在基矢321a a a 、 、 上的截距为la k a h a 321、 、 。

作矢量: k a h a m 211,l a k a m 322 ,ha l a m 133 显然这三个矢量互不平行,均落在(hkl )晶面上(如右图),且022232132132121321211a a a a a la a a a a k a a a a a h k a h ab l b k b h k a h a G m h同理,有02 h G m ,03 h G m 所以,倒格矢 hkl G h 晶面。

(b )晶面族(hkl )的面间距为:hkl h a h a d 11(c )对于简单立方晶格:212222lk h a22222l k h a d4、一维简单格子,按德拜模型,求出晶格热熔,并讨论高低温极限。

固体物理必考

固体物理必考

西安工业大学物理系应用物理专业固体物理学复习一.填空题1.对比热和电导有贡献的仅是(费米面附近的)电子,这些电子分别从(格波和外场)获取能量使其跃迁到费密面附近或以外的空状态上。

2. 根据晶胞基矢之间的夹角、长度关系可将晶体分为( 7)大晶系,对应的只有(14 )种布拉伐格子.3。

对晶格常数为a的SC晶体,与正格矢R=a i+2a j+2a k正交的倒格子晶面族的面指数为( 122), 其面间距为(2π∕3a)。

4。

典型离子晶体的体积为V,最近邻两离子的距离为R,晶体的格波数目为( ).5.声子是(晶格振动的)能量量子,其能量为(h把w),准动量为(h把q)。

6. 一维简单晶格由N个格点组成, 则一个能带有( N)个不同的波矢状态,能容纳( 2N)个电子。

由于电子的能带是波矢的偶函数, 所以能级有( N/2)个。

可见一个能级上包含( 4)个电子。

7.金刚石晶体的结合类型是典型的( 共价键)晶体,其每个原胞中含有(8 )个原子,它有( 6 )支格波,其中声学支格波有( 3 )支,光学支格波有( 3 )支.8. 根据化学键的性质,晶体的结合类型可分为(离子晶体,共价晶体,金属,分子晶体,氢键晶体,混合型晶体)。

9。

Wigner—Seitz原胞是由(各格矢的垂直平分面)所围成的(包含原点在内的最小封闭)体积。

10. N个电子组成的简并电子气,在T=0K时,电子的平均能量为(3∕5 EF )。

11。

共价结合的基本特征是(饱和性和方向性).以共价键形式相结合的原子所能形成的键的数目有一个最大值,每一个键含2个电子,分别来自两个原子;原子只在特定的方向上形成共价键,各个共价键之间有确定的相对取向。

原子在价电子波函数最大的方向上形成共价键,键与键之间的夹角固定。

12. 第一Brillouin区就是倒格子空间的(维格纳赛茨)原胞,每个Brillouin区的体积( 等于)倒格子原胞的体积.13. 六角密积属(六角 )晶系,一个晶胞包含(两个)原子。

固体物理考试 复习

固体物理考试 复习

1、简立方原胞基矢 体心立方原胞基矢 面心立方原胞基矢kj i a a a a a a===321)(2/)(2/)(2/321k j i a a k j i a a k j i a a-+=+-=++-=⎪⎪⎩⎪⎪⎨⎧+=+=+=)(2/)(2/)(2/a 321j i a a i k a a k j a2、试证面心立方的倒格子就是体心立方证:设与晶轴a 、b 、c 平行的单位矢量分别为i 、j 、k 。

面心立方正格子的原胞基矢可取为)(2),(2),(2321j i a a i k a a k j a a+=+=+= 由倒格子公式得Ω⨯=Ω⨯=Ω⨯=][2,][2,][2213132321a a b a a b a a b πππ 可得倒格基矢为: ),(2),(2),(2321k j i ab k j i a b k j i a b -+=+-=++-=πππ3、考虑晶格中的一个晶面(hkl ),证明:(a ) 倒格矢123h G hb kb lb =++垂直于这个晶面;(b ) 晶格中相邻两个平行晶面的间距为2hkl hd G π=;(c ) 对于简单立方晶格有()22222a d h k l =++。

证明:(a)晶面(hkl )在基矢321a a a 、 、 上的截距为la k a h a 321、 、 。

作矢量: k a h a m 211-=,l a k a m 322-=,ha l a m 133-= 显然这三个矢量互不平行,均落在(hkl )晶面上(如右图),且()()()()022232132132121321211=⎥⎦⎤⎢⎢⎣⎡⨯⋅+⨯⋅+⨯⋅⋅⎪⎪⎭⎫ ⎝⎛-=++⋅⎪⎪⎭⎫⎝⎛-=⋅a a a a a l a a a a a k a a a a a h k a h a b l b k b h k a h a G m h πππ 同理,有02=⋅h G m ,03=⋅h G m 所以,倒格矢()hkl G h ⊥晶面。

固体物理经典复习题及答案

固体物理经典复习题及答案
3 则此轴称为 3 度旋转-反演轴。 21.Байду номын сангаас 度旋转-反演轴 答:若晶体绕某一固定轴转 角度后,再经过中心反演,晶体能自身重合,
则此轴称为 3 度旋转-反演轴。
22.n 度螺旋轴
答:一个 n 度螺旋轴表示绕轴每转 2
角度后,在沿该轴的方向平移 T
n的
n
3 / 118
………………………………………………最新资料推荐………………………………………
点子在空间有规则地做周期性无限重复排列,这些点子的总体称为空 间点阵(布喇菲点阵),即平移矢量 h1d、h2d、h3d 中 n1,n2,n3 取整数时 所对应的点的排列。空间点阵是晶体结构周期性的数学抽象。 6.基元 答:组成晶体的最小基本单元,它可以由几个原子(离子)组成,整个晶体 可以看成是基元的周期性重复排列而构成。 7.格点(结点) 答: 空间点阵中的点子代表着结构中相同的位置,称为结点。 8.固体物理学原胞 答:固体物理学原胞是晶格中的最小重复单元,它反映了晶格的周期性。 取一结点为顶点,由此点向最近邻的三个结点作三个不共面的矢量, 以此三个矢量为边作的平行六面体即固体物理学原胞。固体物理学原 胞的结点都处在顶角位置上,原胞内部及面上都没有结点,每个固体 物理学原胞平均含有一个结点。 9.结晶学原胞 答:使三个基矢的方向尽可能的沿空间对称轴的方向,以这样三个基矢为 边作的平行六面体称为结晶学原胞,结晶学原胞反映了晶体的对称性,
答:若晶体绕某一固定轴转 2 角度后自身重合,则此轴称为 n 度旋转对称 n
轴。 18.4 度旋转对称轴 答:若晶体绕某一固定轴转 900 角度后自身重合,则此轴称为 4 度旋转对称
轴。
19.6 度旋转对称轴 答:若晶体绕某一固定轴转 600 角度后自身重合,则此轴称为 6 度旋转对称
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、简立方原胞基矢 体心立方原胞基矢 面心立方原胞基矢kj i a a a a a a===321)(2/)(2/)(2/321k j i a a k j i a a k j i a a-+=+-=++-=⎪⎪⎩⎪⎪⎨⎧+=+=+=)(2/)(2/)(2/a 321j i a a i k a a k j a2、试证面心立方的倒格子是体心立方证:设与晶轴a 、b 、c 平行的单位矢量分别为i 、j 、k 。

面心立方正格子的原胞基矢可取为)(2),(2),(2321j i a a i k a a k j a a+=+=+= 由倒格子公式得Ω⨯=Ω⨯=Ω⨯=][2,][2,][2213132321a a b a a b a a b πππ 可得倒格基矢为: ),(2),(2),(2321k j i ab k j i a b k j i a b -+=+-=++-=πππ3、考虑晶格中的一个晶面(hkl ),证明:(a ) 倒格矢123h G hb kb lb =++垂直于这个晶面;(b ) 晶格中相邻两个平行晶面的间距为2hkl hd G π=;(c ) 对于简单立方晶格有()22222a d h k l =++。

证明:(a )晶面(hkl )在基矢321a a a 、 、 上的截距为la k a h a 321、 、 。

作矢量: k a h a m 211-=,l a k a m 322-=,ha l a m 133-= 显然这三个矢量互不平行,均落在(hkl )晶面上(如右图),且()()()()022232132132121321211=⎥⎦⎤⎢⎢⎣⎡⨯⋅+⨯⋅+⨯⋅⋅⎪⎪⎭⎫ ⎝⎛-=++⋅⎪⎪⎭⎫⎝⎛-=⋅a a a a a la a a a a k a a a a a h k a h ab l b k b h k a h a G m h πππ同理,有02=⋅h G m ,03=⋅h G m 所以,倒格矢()hkl G h ⊥晶面。

(b )晶面族(hkl )的面间距为:hkl h a h a d 11===(c )对于简单立方晶格:()212222lk h a ++⎪⎭⎫ ⎝⎛=π22222l k h a d ++=4、一维简单格子,按德拜模型,求出晶格热熔,并讨论高低温极限。

解:按照德拜模型,格波的色散关系为w=vq 。

由图色散曲线的对称性可以看出,dw 区间对应两个同样大小的波矢区间dq 。

a /2π对应L/a 个振动模式,单位波矢区间对应有π2/L 个振动模式,dw 围则包含ππdqLdqL dz ==22个振动模式,单位频率区间包含的模式数目定义为模式密度,根据此定义可得模式密度为:vLdw dq L dw dz w D ππ===)(再利用 a L N dw w D w -=⎰00)(式中N 为原子数,a 为晶格常数,得avw π=0 由公式()2//21)(-⎪⎪⎭⎫ ⎝⎛=⎰Tk w T k w B w B v B B medw w D e T k w k C 得其热熔量为 ()⎰-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=mB B w T k w Tk w B B v e dwe T k w v L k C 02//21π作变量变换T k w x B =得 ()⎰Θ-=Tzxx B v D edxx e vT Lk C /0221 π其中B D k w 0=Θ 在高温时x 是小量,上式被积分函数()112≈-zxx ex e因此,晶格的高温热熔量B B V Nk k aLC ==在低温时V D C T ,/∞→Θ中的被积函数按二项式展开成级数()∑∞=-=-1221n nxzxx nexex e 则积分()3122π=-⎰∞z x x e dxx e 此时期热熔量v T k L C B V 32π=5、模式密度计算模式密度的一般表达式:()()()32qV dSg q ωωπ=∇⎰① 德拜近似的模式密度,德拜近似的核心是假定频率正比于q 。

即c ω=q代入①式,容易得到:()()23231422VVg c c cωωπωππ⎛⎫== ⎪⎝⎭ (1) 三维情况模式密度 对于三维情况, ω=c 2q ②在q 空间等频率面为球面,半径为:q =在球面上,()22q d q Cq dq ωω∇===是一个常数,且球面积分为:24ds q π=⎰,因此:()()()()()212333232111422222q q Vds V V V g ds q cq cωπωωωππππ====∇∇⎰⎰③ (2)二维情况模式密度对于二维情况,q 空间也约化为二维空间,其等频面实际为一个圆,圆半径为:q =二维情况下的q 空间中的密度为:A/(2π)2,(这里A 为二维晶格的面积),而且有:()222q d q Cq dq dL qωωπ∇====⎰所以对于ω=c 2q ,二维情况的模式密度为:222()(2)(2)24()q dn A dL A q Ag d Cq Cq πωωπππω====∇⎰④ (3)一维情况模式密度同理,在一维情况下,q 空间有两个等频点+q 和-q 。

仿上面的方法可以得到:1()2(2)(2)2()q dn L dq L g d Cq q ωωππω===⨯=∇⎰⑤ 总之,色散关系为ω=c 2q 的形式时,在三维、二维和一维情况下,模式密度分别与频率ω的½,0,-½次方成比例。

6、已知一维晶格中电子的能带可写成是式中a ),2cos 81cos 87()(22ka ka ma k E +-=晶格常数,m 是电子的质量,求,能带宽度,电子的平均速度,在带顶和带底的电子的有效质量。

解:(1)、当ak π±=,E (k )有最大值,222max2]81)1(87[mama E =+--= 当k=0时,E (k )有最小值0)81187(2min=+-=ma E 所以:maE E E 2min max 2 =-=∆ (2)、)2sin 41(sin ]2sin 41sin [122ka ka ma ka a ka a ma v -=-⋅= (3)、222*/k E m ∂∂= ,因为222222)2cos 21cos ()]([maka a ka a k E K k E k -=∇∂∂=∂∂ 所以当k=0时,带顶,2)21(|222220*ma a ma m k =-== 当ak π±=,带底,m a a maak m 32)2()(22222*-=--=±= π7、用紧束缚近似求出面心立方及晶格s 态原子能级相对应的能带函数 解 面心立方晶格—— s 态原子能级相对应的能带函数0()()s s ik R ss s R NearestE k J J R e ε-⋅==--∑s 原子态波函数具有球对称性0*01()()[()()]()}0s i s i J J R R U V d ϕξξξϕξξ==--->⎰01()s s ik R s s R NearestE k J J e ε-⋅==--∑—— 任选取一个格点为原点—— 最近邻格点有12个12个最邻近格点的位置,,022,,022,,022,,022a a a a a a a a⎧⎪⎪⎪-⎪⎨⎪-⎪⎪⎪--⎩0,,220,,220,,220,,22a a a a a a a a ⎧⎪⎪⎪-⎪⎨⎪-⎪⎪⎪--⎩,0,22,0,22,0,22,0,22aaa a a a aa ⎧⎪⎪⎪-⎪⎨⎪-⎪⎪⎪--⎩ 022s a aR i j k =++ 01()s s ik R s s R NearestE k J J e ε-⋅==--∑ ()(0)22()2(cos sin )(cos sin )2222x y z s x y a ai k i k j k k i j k ik R ai k k y y x x e e k a k a k a k aei i -++⋅++-⋅-+==-- —— 类似的表示共有12项—— 归并化简后得到面心立方s 态原子能级相对应的能带1()4(cos cos cos cos cos cos )222222s s y y x x z z E k J k a k a k a k a k a k a J ε=--++9、电子在周期场中的势能.2221(),2m b x na ω⎡⎤--⎣⎦ na b x na b -≤≤+当 ()V x = 0 , x na b ≤≤-当(n-1)a+b其中a =4b ,ω是常数.(1) 试画出此势能曲线,求其平均值.(2) 用近自由电子近似模型求出晶体的第一个及第二个带隙宽度. 解:(I)题设势能曲线如下图所示.(2)势能的平均值:由图可见,()V x 是个以a 为周期的周期函数,所以111()()()()a a bL b bV x V x V x dx V x dx L a a --===⎰⎰⎰题设4a b =,故积分上限应为3a b b -=,但由于在[],3b b 区间()0V x =,故只需在[],b b -区间积分.这时,0n =,于是2222232111()()2236b b b b bbb b m m V V x dx b x dx b x x m b a a aωωω----⎡⎤==-=-=⎢⎥⎣⎦⎰⎰。

(3),势能在[-2b,2b]区间是个偶函数,可以展开成傅立叶级数200021()cos ,()cos ()cos 2222b b mm mm m m V x V V x V V x xdx V x xdx b b b b bπππ∞=-∞'=+==∑⎰⎰11222102,1()cos2bg g m xE V m E b x dx bbωπ===-⎰第一个禁带宽度以代入上式,利用积分公式()2232cos sin 2cos sin u u mudu mu mu mu mu m m =+-⎡⎤⎣⎦⎰得 22316m b ωπ=1g E 第二个禁带宽度222,2g E V m ==以代入上式,代入上式2222()cosbg m xE b x dx bbωπ=-⎰再次利用积分公式有2222m b ωπ=2g E12、能,结合能,体弹性模量计算正格子与倒格子的关系面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

晶体:构成粒子(原子,分子,集团)周期性排列的固体,具有长程有序性,有固定的熔点,具有自限性,各向异性和解理性特点的固体。

布拉伐点阵:晶体的周期性结构可以看作相同的点在空间周期性无限分布所形成的系统,称为布拉伐点阵。

布拉伐格子:在空间点阵用三组不共面平行线连起来的空间网格称为布拉伐格子。

相关文档
最新文档