高考数学一轮复习 第四章 平面向量 4.1 平面向量的概念及线性运算

合集下载

4.1平面向量的概念及其线性运算

4.1平面向量的概念及其线性运算

第四章平面向量、数系的扩充与复数的引入第一节平面向量的概念及其线性运算2019考纲考题考情1.向量的有关概念2.向量的线性运算三角形法则平行四边形法则(1)a(2)((三角形法则a(1)|λa|=|λ||a|;向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b =λa。

1.若P为线段AB的中点,O为平面内任一点,则OP→=12(OA→+OB→)。

2.OA →=λOB →+μOC →(λ,μ为实数),若点A ,B ,C 共线,则λ+μ=1。

3.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件。

要特别注意零向量的特殊性。

一、走进教材1.(必修4P 86例4改编)已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________。

(用a ,b 表示)解析 如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b 。

答案 b -a -a -b2.(必修4P 118A 组T 2(3)改编)在平行四边形ABCD 中,若|AB →+AD→|=|AB →-AD →|,则四边形ABCD 的形状为________。

解析 如图,因为AB →+AD →=AC →,AB →-AD →=DB →,所以|AC →|=|DB →|。

由对角线长相等的平行四边形是矩形可知,四边形ABCD 是矩形。

答案 矩形二、走近高考3.(2018·全国卷Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( )A .34AB →-14AC → B .14AB →-34AC →C .34AB →+14AC →D .14AB →+34AC →解析 如图所示,EB →=ED →+DB →=12AD →+12CB →=12×12(AB →+AC →)+12(AB →-AC →)=34AB →-14AC →,故选A 。

平面向量的概念及其线性运算课件-2025届高三数学一轮复习

平面向量的概念及其线性运算课件-2025届高三数学一轮复习
变条件)点C在线段AB上,且 = ,则=______,
3

8
=______.
【解析】由已知画图如下,
5
3
由图形知= ,=- .
8
8
3
核心考点·分类突破
考点一 平面向量的基本概念




1.(2023·北京模拟)设a,b是非零向量,则“ = ”是“a=b”的(
[例4](1)(一题多法)(2023·连云港模拟)设e1,e2是两个不共线的向量,已知= 2e1ke2,=e1+3e2,=2e1-e2,若三点A,B,D共线,则k的值为(
B.-2m+3n
C.3m+2n
D.2m+3n
【解析】选B.如图,
1
1
1
1
因为=+=+ =+ (-)=+ - ,
2
2
2
2
1
3
所以 = -,即=3-2=3n-2m.
2
2
3.(共线与模的关系不明确致误)已知非零向量a,b,那么“a=λb”是“|a+b|=|a|-|b|”
a的积的运算
相反
当λ<0时,λa与a的方向______;
当λ=0时,λa=___
0
λ(μa)=(λμ)a;(λ+μ)a
=λa+μa;
λ(a+b)=λa+λb
微点拨 对平面向量加法抓住“共起点”或“首尾相连”.对平面向量减法应抓住“共起
点,连两终点,指向被减向量的终点”.
3.共线向量定理
b=λa
向量b与非零向量a共线的充要条件是:存在唯一一个实数λ,使得______.

2020版《微点教程》高考人教A版文科数学一轮复习文档:第四章 第一节 平面向量的概念及其线性运算 含答案

2020版《微点教程》高考人教A版文科数学一轮复习文档:第四章 第一节 平面向量的概念及其线性运算 含答案
答案A
1.(配合例2使用)已知P为△ABC所在平面内一点, + + =0,| |=| |=| |=2,则△ABC的面积等于( )
A. B.2
C.3 D.4
解析由| |=| |得,△PBC是等腰三角形,取BC的中点为D,则PD⊥BC,又 + + =0,所以 =-( + )=-2 ,所以PD= AB=1,且PD∥AB,故AB⊥BC,即△ABC是直角三角形,由| |=2,PD=1可得| |= ,则| |=2 ,所以△ABC的面积为 ×2×2 =2 。故选B。
三角形法则
a-b=a+(-b)
数乘
求实数λ与向量a的积的运算
(1)|λa|=|λ||a|;
(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0
λ(μa)=(λμ)a;
(λ+μ)a=λa+μa;
λ(a+b)=λa+λb
3.共线向量定理
向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa。
定义
备注
向量
既有大小又有方向的量;向量的大小叫做向量的长度(或称模)
平面向量是自由向量
零向量
长度为零的向量,其方向是任意的
记作0
单位向量
长度等于1个单位的向量
非零向量a的单位向量为±
平行向量
方向相同或相反的非零向量
0与任一向量平行或共线
共线向量
方向相同或相反的非零向量,又叫做共线向量
相等向量
长度相等且方向相同的向量
答案(1)A(2)D
考点三共线定理及应用微点小专题
方向1:共线定理
【例3】已知e1,e2是两个不共线的向量,若a=2e1-e2与b=e1+λe2共线,则λ=( )

【恒心】高考数学(理科)一轮复习突破课件004001-平面向量的概念及其线性运算

【恒心】高考数学(理科)一轮复习突破课件004001-平面向量的概念及其线性运算
向量 a(a≠0)与 b 共线的充要条件是存在唯一一个实数 λ,使 b=λa 得__________.
|λ||a|
1、对共线向量的理解
(1)若向量 a,b 共线,则向量 a,b 的方向相同.( ) (2)若 a∥b,b∥c,则 a∥c.( ) (3)(2013· 郑州调研改编)设 a 与 b 是两个不共线向量,且 1 向量 a+λb 与 2a-b 共线,则 λ=- .( ) 2 (4)(2013· 陕西卷改编)设 a,b 为向量,则“|a· b|=|a|· |b|”是 “a∥b”的充分必要条件.( )
解 由题意知,在平行四边形 OADB 中, → =1BC → =1BA → =1(OA → -OB → )=1(a-b) =1a-1b, BM 3 6 6 6 6 6 1 1 1 5 → → → 则OM=OB+BM=b+ a- b= a+ b. 6 6 6 6 2→ 2 → → 2 2 2 → ON= OD= (OA+OB)= ( a+b)= a+ b, 3 3 3 3 3 → ON → OM → 2(a b) 1a 5b 1a 1b. MN = - = + - - = - 3 6 6 2 6
一是同向,二是反向, 反向时 a=-|a|a0,
故②③也是假命题.
综上所述,假命题的个数是 3.
考 点
平面向量的线性运算
→ → =b, 【例 2】 如图,在平行四边形 OADB 中,设OA=a,OB → =1BC → ,CN → =1CD → .试用 a,b 表示OM → ,ON → 及MN →. BM 3 3
规律方法
平面向量的有关概念
训练 1 设 a0 为单位向量,①若 a 为平面内的某个向量,则 a=|a|a0;②若 a 与 a0 平行,则 a=|a|a0;③若 a 与 a0 平行且 |a|=1,则 a=a0.上述命题中,假命题的个数是( D ). A.0 B.1 C.2 D.3

平面向量的概念及线性运算-高考数学复习

平面向量的概念及线性运算-高考数学复习

相反 的向量;
目录
(6)平行向量:方向相同或
相反 的非零向量,也叫做共线向
量,规定:零向量与任意向量平行.
提醒
单位向量有无数个,它们大小相等,但方向不一定相
同;与向量 a 平行的单位向量有两个,即向量

||

||
和-
.
目录
2. 向量的线性运算
向量运算
定义
法则(或几何意义)
运算律
加法
求两个向量
b =5( a + b )=5 ,∴ , 共线.
又它们有公共点 B ,∴ A , B , D 三点共线.
目录
(2)试确定实数 k ,使 ka + b 和 a + kb 共线.
解:∵ ka + b 与 a + kb 共线,
∴存在实数λ,使 ka + b =λ( a + kb ),即 ka + b =λ a +λ kb ,
=(

目录
1
解析:如图所示,∵ D 为 BC 的中点,∴ = ( +
2
2
1
1
),∵ =2 ,∴ = = + ,
3
3
3
1பைடு நூலகம்
1
1
∴ = - = -( + )=- +
3
3
3
2
,故选A.
3
目录
解题技法
目录
1.
1
若 P 为线段 AB 的中点, O 为平面内任一点,则 = ( +
2
).
2.
1
若 G 为△ ABC 的重心,则 + + =0; = ( +
3
).
3. =λ +μ (λ,μ为实数),若点 A , B , C 共线,则λ

2014高考一轮复习课件4.1平面向量的基本概念及线性运算

2014高考一轮复习课件4.1平面向量的基本概念及线性运算

•2.下列给出的命题正确的是( ) •A.零向量是唯一没有方向的向量 •B.平面内的单位向量有且仅有一个 •C.a与b是共线向量,b与c是平行向量,则 a与c是方向相同的向量 •D.相等的向量必是共线向量
•【解析】 零向量方向任意,而不是没有方 向,故A错;平面内单位向量有无数个,故B 错;若b=0,b与a、c都平行,但a、c不一 定共线,故C错;相等的向量方向相同,必是 共线向量,故D正确. •【答案】 D
a b 【解析】 表示与a同向的单位向量, 表示与b同向 |a| |b| a b 的单位向量,只要a与b同向,就有 = ,观察选择项易知 |a| |b| C满足题意.
•【答案】 C
给出下列四个命题: ①若|a|=|b|,则a=b或a=-b; → → ②若AB=DC,则四边形ABCD为平行四边形; ③若a与b同向,且|a|>|b|,则a>b; ④λ ,μ为实数,若λa=μb,则a与b共线. 其中假命题的个数为( ) A.1 B.2 C.3 D.4
→ → → → 1.(人教A版教材习题改编)化简OP -QP +MS +QM 的 结果为( ) → A.OM → B.SM → C.PS → D.OS
【解析】
→ → → → → → → OP -QP +MS +QM =(OP +PQ )+(QM +
→ → → → MS)=OQ+QS=OS.
•【答案】 D
•从近两年高考试题来看,平面向量的概念, 线性运算及向量共线是高考命题的重点,常 与平面向量基本定理、平面向量的数量积交 汇命题,多以客观题形式呈现.在求解过程 中,不要忽视零向量的特殊性.
易错辨析之八 忽视零向量的特殊性致误 (2013· 杭州模拟)下列命题正确的是( ) A.向量a、b共线的充要条件是有且仅有一个实数λ , 使b=λa → → → B.在△ABC中,AB+BC+CA=0 C.不等式||a|-|b||≤|a+b|≤|a|+|b|中两个等号不可能 同时成立 D.向量a、b不共线,则向量a+b与向量a-b必不共线

2015高考数学(理)一轮复习考点突破课件:4.1平面向量的概念及线性运算

2015高考数学(理)一轮复习考点突破课件:4.1平面向量的概念及线性运算

针对训练 1.给出下列命题: (1)两个具有公共终点的向量,一定是共线向量. (2)两个向量不能比较大小,但它们的模能比较大小. (3)λa=0(λ 为实数),则 λ 必为零. (4)λ,μ 为实数,若 λa=μb,则 a 与 b 共线. 其中错误命题的个数为 ( A.1 C.3 B.2 D.4 )
→ → → ∴BD=BC+CD=2a+8b+3(a-b) → =2a+8b+3a-3b=5(a+b)=5AB. → → ∴AB、BD共线,又∵它们有公共点 B, ∴A、B、D 三点共线.
(2)∵ka+b 与 a+kb 共线, ∴存在实数 λ,使 ka+b=λ(a+kb), 即 ka+b=λa+λkb. ∴(k-λ)a=(λk-1)b. ∵a、b 是不共线的两个非零向量, ∴k-λ=λk-1=0, ∴k2-1=0.∴k=± 1.
的概念理解不清,混淆它们之间的关系,导致错解.
2λ+2μ=2k, 由 -3λ+3μ=-9k.
得 λ=-2μ.
故存在这样的实数 λ、μ,只要 λ=-2μ,就能使 d 与 c 共线.
易错易混:概念理解不清致误 【典例】 (2014· 郑州模拟)已知向量 a,b 不共线,且 c=λa+b, d=a+(2λ-1)b,若 c 与 d 同向,则实数 λ 的值为________. 【规范解答】 由于 c 与 d 同向,所以 c=kd(k>0),
1 → → → → → → BF=AF-AB=AD+DF-AB=b+2a-a 1 =b- a,连接 BD,因为 G 是△CBD 的重心, 2
1→ 1 → 2 1 → 所以CG=3 CA=-3AC=-3(a+b). 2
• 【归纳提升】 (1)解题的关键在于搞清构成三角形的三个问题间的 相互关系,能熟练地找出图形中的相等向量,并能熟练运用相反向 量将加减法相互转化. • (2)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的 位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简 结果.

高考一轮复习 平面向量的概念与线性运算教案 理 教案

高考一轮复习 平面向量的概念与线性运算教案 理 教案

某某省东北师X大学附属中学2015届高考一轮复习平面向量的概念与线性运算教案理知识梳理:[阅读必修四第二章]1.向量的有关概念(1).向量:既有 ,又有的量叫向量;通常记为 ;长度为的向量是零向量,记作: ; 的向量,叫单位向量.(2).平行向量(或共线向量)记作: ;规定:零向量与任何向量 .(3).相等向量:(4).相反向量:2.向量加法与减法(1).向量加法按法则或法则;向量加运算律:交换律:;结合律:(2).向量减法作法:(1). 实数与向量a的积是一个向量,记作,它的长度与方向规定如下:长度:方向:(2).运算律4.共线定理:5.平面向量基本定理:6.基底:二、题型探究探究一:平面向量的基本概念例1.给出下列命题:①若|a|=|b|,则a=b;=是四边形ABCD为平行四边形的②若A,B,C,D是不共线的四点,则AB DC充要条件;③若a=b,b=c,则a=c;④a=b的充要条件是|a|=|b|且a//b;⑤若a//b,b//c,则a//c;其中正确的序号是。

=。

因此,AB DC③正确;∵a=b,∴a,b的长度相等且方向相同;又b=c,∴b,c的长度相等且方向相同,∴a,c的长度相等且方向相同,故a=c。

④不正确;当a//b且方向相反时,即使|a|=|b|,也不能得到a=b,故|a|=|b|且a//b不是a=b的充要条件,而是必要不充分条件;⑤不正确;考虑b=0这种特殊情况;综上所述,正确命题的序号是②③。

点评:本例主要复习向量的基本概念。

向量的基本概念较多,因而容易遗忘。

为此,复习时一方面要构建良好的知识结构,另一方面要善于与物理中、生活中的模型进行类比和联想。

例2:设0a为单位向量,(1)若a为平面内的某个向量,则a=|a|·0a;(2) 若a与a0平行,则a=|a|·0a;(3)若a与0a平行且|a|=1,则a=0a。

上述命题中,假命题个数是()A.0 B.1 C.2 D.3解析:向量是既有大小又有方向的量,a与|a|0a模相同,但方向不一定相同,故(1)是假命题;若a与0a平行,则a与0a方向有两种情况:一是同向二是反向,反向时a=-|a|0a,故(2)、(3)也是假命题。

高三理科数学第一轮复习§4.1:平面向量的概念及其线性运算

高三理科数学第一轮复习§4.1:平面向量的概念及其线性运算

第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
解析
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
解析
第四章:平面向量与解三角形 Biblioteka 4.1:平面向量的概念及其线性运算
解析
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
解析
解析
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
提示
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
解析
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
解析
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
解析
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
解析
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算
解析
解析
第四章:平面向量与解三角形 §4.1:平面向量的概念及其线性运算

新高考数学一轮复习考点知识专题讲解与练习 19 平面向量的概念及线性运算

新高考数学一轮复习考点知识专题讲解与练习 19 平面向量的概念及线性运算

新高考数学一轮复习考点知识专题讲解与练习第四章平面向量、复数考点知识总结19平面向量的概念及线性运算高考概览高考在本考点的常考题型为选择题和填空题,分值为5分,中、低等难度考纲研读1.了解向量的实际背景2.理解平面向量的概念,理解两个向量相等的含义3.理解向量的几何表示4.掌握向量加法、减法的运算,并理解其几何意义5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义6.了解向量线性运算的性质及其几何意义一、基础小题1.给出下列等式:①0-a=-a;②-(-a)=a;③a+(-a)=0;④a+0=a;⑤a -b=a+(-b).其中正确的个数是()A.2 B.3 C.4 D.5答案D解析 由零向量和相反向量的性质,知①②③④⑤均正确.2. 如图,在正六边形ABCDEF 中,BA →+CD →+EF →=( )A .0 B.BE → C.AD → D.CF →答案 D解析 由图知BA →+CD →+EF →=BA →+AF →+CB →=CB →+BF →=CF →.3.给出下列命题:①向量AB →的长度与向量BA →的长度相等;②向量a 与b 平行,则a 与b 的方向相同或相反;③|a |+|b |=|a +b |⇔a 与b 方向相同;④若非零向量a ,b 的方向相同或相反,则a +b 与a ,b 之一的方向相同.其中叙述错误的命题的个数为( )A .1B .2C .3D .4答案 C解析 对于②,当a =0时,不成立;对于③,当a ,b 之一为零向量时,不成立;对于④,当a +b =0时,a +b 的方向是任意的,它可以与a ,b 的方向都不相同.故选C.4.已知向量a ,b 不共线,且c =λa +b ,d =a +(2λ-1)b ,若c 与d 反向共线,则实数λ的值为( )A .1B .-12C .1或-12D .-1或-12答案 B解析 由于c 与d 反向共线,则存在实数k 使c =k d (k <0),于是λa +b =k [a +(2λ-1)b ].整理得λa +b =k a +(2λk -k )b .由于a ,b 不共线,所以有⎩⎨⎧ λ=k ,2λk -k =1,整理得2λ2-λ-1=0,解得λ=1或λ=-12.又因为k <0,所以λ<0,故λ=-12.5.已知a ,b 是不共线的向量,AB →=λa +2b ,AC →=a +(λ-1)b ,λ,μ∈R ,若A ,B ,C 三点共线,则λ=( )A .1B .-2C .-2或1D .-1或2答案 D解析 ∵A ,B ,C 三点共线,∴AB →∥AC →,∴存在实数m 使得AB →=m AC →,则λa +2b =m [a +(λ-1)b ],∵a ,b 不共线,∴⎩⎨⎧λ=m ,2=m (λ-1),解得λ=2或-1.故选D. 6.已知在四边形ABCD 中,O 是四边形ABCD 内一点,OA →=a ,OB →=b ,OC →=c ,OD →=a -b +c ,则四边形ABCD 的形状为( )A .梯形B .正方形C .平行四边形D .菱形答案 C解析 因为OD →=a -b +c ,所以AD →=c -b ,又BC →=c -b ,所以AD →∥BC →且|AD →|=|BC→|,所以四边形ABCD 是平行四边形.故选C.7.已知△ABC 中,AD →=2DC →,E 为BD 的中点,若BC →=λAE →+μAB →,则λ-2μ的值为( )A .2B .6C .8D .10答案 C解析 由已知得,BC →=BA →+AC →=BA →+32AD →=BA →+32(AE →+ED →)=BA →+32(2AE →+BA →)=3AE →-52AB →,所以λ=3,μ=-52,所以λ-2μ=8.8.设e 1,e 2是平面内两个不共线的向量,AB →=(a -1)e 1+e 2,AC →=b e 1-2e 2(a >0,b >0),若A ,B ,C 三点共线,则1a +2b 的最小值是( )A .2B .4C .6D .8答案 B解析 因为a >0,b >0,若A ,B ,C 三点共线,设AB →=λAC →,即(a -1)e 1+e 2=λ(b e 1-2e 2),因为e 1,e 2是平面内两个不共线向量,所以⎩⎨⎧a -1=λb ,1=-2λ,解得λ=-12,a -1=-12b ,即a +12b =1,则1a +2b =⎝ ⎛⎭⎪⎫1a +2b ⎝ ⎛⎭⎪⎫a +12b =1+1+b 2a +2a b ≥2+2b 2a ·2a b =2+2=4,当且仅当b 2a =2a b ,即a =12,b =1时取等号,故1a +2b 的最小值为4.故选B.9.(多选)已知向量a ,b 是两个非零向量,在下列四个条件中,一定能使a ,b 共线的是( )A .2a -3b =4e 且a +2b =-2eB .存在相异实数λ,μ,使λa -μb =0C .x a +y b =0(其中实数x ,y 满足x +y =0)D .已知梯形ABCD ,其中AB →=a ,CD →=b答案 AB解析 对于A ,∵向量a ,b 是两个非零向量,2a -3b =4e ,且a +2b =-2e ,∴a =27e ,b =-87e ,此时能使a ,b 共线,故A 正确;对于B ,存在相异实数λ,μ使λa -μb =0,要使非零向量a ,b 是共线向量,由共线定理可知成立,故B 正确;对于C ,x a +y b =0(其中实数x ,y 满足x +y =0),如果x =y =0,则不能使a ,b 共线,故C 错误;对于D ,已知梯形ABCD 中,AB →=a ,CD →=b ,如果AB ,CD 是梯形的上下底,则正确,否则错误.故选AB.10.(多选)已知等边三角形ABC 内接于⊙O ,E 为边BC 的中点,D 为线段OA 的中点,则BD →=( )A.23BA →+16BC →B.43BA →-16BC →C.BA →+13AE →D.23BA →+13AE →答案 AC解析 如图所示,BD →=BA →+AD →=BA →+13AE →=BA →+13(AB →+BE →)=BA →-13BA →+13×12BC→=23BA →+16BC →.故选AC.11.(多选)已知P 为△ABC 所在平面内一点,AB →+PB →+PC →=0,|AB →|=|PB →|=|PC →|=2,则( )A .△ABC 是直角三角形B .△ABC 是等腰三角形C .△ABC 的面积为23D .△ABC 的面积为3答案 AC解析 由|PB →|=|PC →|得,△PBC 是等腰三角形,取BC 的中点D ,连接PD ,则PD⊥BC ,又AB →+PB →+PC →=0,所以AB →=-(PB →+PC →)=-2PD →,所以PD =12AB =1,且PD∥AB ,故AB ⊥BC ,即△ABC 是直角三角形,由|PB →|=2,|PD →|=1可得|BD →|=3,则|BC→|=23,所以△ABC 的面积为12×2×23=2 3.12.已知A 1,A 2,A 3为平面上三个不共线的定点,平面上点M 满足A 1M →=λ(A 1A 2→+A 1A 3→)(λ是实数),且MA 1→+MA 2→+MA 3→是单位向量,则这样的点M 有________个.答案 2解析 由题意得,MA 1→=-λ(A 1A 2→+A 1A 3→),MA 2→=MA 1→+A 1A 2→,MA 3→=MA 1→+A 1A 3→,所以MA 1→+MA 2→+MA 3→=(1-3λ)(A 1A 2→+A 1A 3→),设D 为A 2A 3的中点,则(1-3λ)·(A 1A 2→+A 1A 3→)为与A 1D →共起点且共线的一个向量,显然直线A 1D 与以A 1为圆心的单位圆有两个交点,故这样的点M 有2个,即符合题意的点M 有2个.二、高考小题13.(2022·全国Ⅰ卷)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( ) A.34AB →-14AC → B.14AB →-34AC →C.34AB →+14AC →D.14AB →+34AC →答案 A解析 如图,在△ABC 中,根据向量的运算法则,可得EB →=AB →-AE →=AB →-12AD →=AB →-14(AB →+AC →)=34AB →-14AC →.故选A.14.(2015·全国Ⅰ卷)设D 为△ABC 所在平面内一点,BC →=3CD →,则( )A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →答案 A解析 AD →=AB →+BD →=AB →+BC →+CD →=AB →+43BC →=AB →+43(AC →-AB →)=-13AB →+43AC →.故选A.15.(2015·北京高考)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________.答案 12 -16解析 如图,在△ABC 中,MN →=MA →+AB →+BN →=-23AC →+AB →+12BC →=-23AC →+AB →+12(AC →-AB →)=12AB →-16AC →.∴x =12,y =-16.三、模拟小题16.(2022·辽宁东北育才学校三模)在△ABC 中,若AB →+AC →=4AP →,则CP →=( ) A.34AB →-14AC → B .-34AB →+14AC →C.14AB →-34AC → D .-14AB →+34AC →答案 C解析 由题意得AB →+AC →=4AP →=4(AC →+CP →),解得CP →=14AB →-34AC →.故选C.17.(2022·广东茂名市高三期中)已知向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ为( )A .2B .1 C.12 D.14答案 C解析 因为λa +b 与a +2b 平行,则存在k ∈R ,使得λa +b =k (a +2b ),因为向量a ,b 不平行,则⎩⎨⎧k =λ,2k =1,解得λ=12.故选C. 18.(2022·山西太原高三模拟)平面向量a ,b 共线的充要条件是( )A .a ·b =|a ||b |B .a ,b 两向量中至少有一个为零向量C .∃λ∈R ,b =λaD .存在不全为零的实数λ1,λ2,λ1a +λ2b =0答案 D解析 对于A ,a ·b =|a ||b |成立时,说明两个非零向量的夹角为零度,但是两个非零向量共线时,它们的夹角可以为平角,故A 错误;对于B ,两个非零向量也可以共线,故B 错误;对于C ,只有当a 不是零向量时才成立,故C 错误;对于D ,当平面向量a ,b 共线时,若a =0,则存在λ1≠0,λ2=0,λ1a +λ2b =0,若a ≠0,则存在一个λ,使得b =λa 成立,令λ=-λ1λ2(λ2≠0),则b =-λ1λ2a ,所以λ1a +λ2b =0,因此存在不全为零的实数λ1,λ2,λ1a +λ2b =0;当存在不全为零的实数λ1,λ2,λ1a +λ2b =0成立时,若实数λ1,λ2都不为零,则有a =-λ2λ1b 成立,显然a ,b 共线,若实数λ1,λ2有一个为零,不妨设λ1=0,则有λ2b =0⇒b =0,所以平面向量a ,b 共线,所以D 正确.故选D.19.(2022·安徽高三二模)△ABC 中,D 是BC 的中点,点E 在边AC 上,且满足3AE →=AC →,BE 交AD 于点F ,则BF →=( )A .-34AB →+14AC → B.34AB →-14AC →C .-13AB →+23AC →D .-23AB →+13AC →答案 A解析 由题设画出几何示意图,设BF →=λBE →,AF →=μAD →,∵BE →=AE →-AB →=13AC →-AB →,∴BF →=λBE →=λ3AC →-λAB →,∵AD →=12(AB →+AC →),∴AF →=μAD →=μ2(AB →+AC →).由AB →+BF →=AF→知(1-λ)AB →+λ3AC →=μ2(AB →+AC →),∴⎩⎪⎨⎪⎧ 1-λ=μ2,λ3=μ2,得⎩⎪⎨⎪⎧λ=34,μ=12,∴BF →=34BE →=14AC →-34AB →.故选A.20. (2022·滨海县八滩中学高三期中)如图,在△ABC 中,D 是BC 的中点,H 是AD 的中点,过H 作一直线分别与边AB ,AC 交于M ,N 两点,若AM →=xAB →,AN →=yAC →,则x +4y 的最小值为( )A.52B.73C.94D.14 答案 C解析 因为D 是BC 中点,所以AD →=12AB →+12AC →,由题知,AB →=1x AM →,AC →=1y AN →,AD →=2AH →, 所以2AH →=12x AM →+12y AN →,AH →=14x AM →+14y AN →,因为M ,H ,N 三点在同一直线上,所以14x +14y =1.x +4y =(x +4y )⎝ ⎛⎭⎪⎫14x +14y =14⎝ ⎛⎭⎪⎫5+x y +4y x ,因为x >0,y >0,所以由基本不等式得x y +4yx ≥2x y ·4y x =4,所以x +4y ≥94,当且仅当x =34,y =38时等号成立.故选C.21.(2022·湖南天心长郡中学高三月考)在△ABC 中,D 为三角形所在平面内一点,且AD →=13AB →+12AC →,则S △BCDS △ACD=( )A.16B.12C.13D.23 答案 B解析 如图,设AD 交BC 于E ,且AE →=xAD →=x 3AB →+x 2AC →,由B ,E ,C 三点共线可得 x 3+x 2=1⇒x =65,∴AE →=25AB →+35AC →,∴25(AE →-AB →)=35(AC →-AE →)⇒2BE →=3EC →.设S △CED =2y ,则S △BED =3y ,∴S △BCD =5y .又AE →=65AD →⇒AD →=5DE →,∴S △ACD =10y ,∴S △BCDS △ACD =5y 10y =12.故选B.22.(多选)(2022·福建龙岩高三月考)瑞士数学家欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:“三角形的外心、垂心和重心都在同一直线上,而且外心和重心的距离是垂心和重心距离之半.”这就是著名的欧拉线定理.设△ABC 中,点O ,H ,G 分别是外心、垂心、重心,BC 边的中点为D ,则下列四个结论中错误的是( )A.GH →=2OG →B.GA →+GB →+GC →=0 C.AH →=3OD → D.OA →=OB →=OC → 答案 CD解析 如图,由题意,得GH →=2OG →,故A 正确;∵D 为BC 的中点,G 为△ABC 的重心,∴AG →=2GD →,GB →+GC →=2GD →=-GA →,∴GA →+GB →+GC →=0,故B 正确;∵AG →=2GD →,GH →=2OG →,∠AGH =∠DGO ,∴△AGH ∽△DGO ,∴AH →=2OD →,故C 错误;向量OA →,OB →,OC →的模相等,方向不同,故D 错误.故选CD.23.(2022·江苏省高三一模)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC ,若DE →=λ1CB →+λ2CA →(λ1,λ2为实数),则λ1+λ2=________.答案 -23解析 因为AD =12AB ,BE =23BC ,所以DE →=DB →+BE →=12AB →+23BC →=12(CB →-CA →)-23CB →=-16CB →-12CA →,所以λ1=-16,λ2=-12,则λ1+λ2=-23.一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.(2022·银川摸底)已知向量a =2e 1-3e 2,b =2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存在这样的实数λ,μ,使向量d =λa +μb 与c 共线?解 ∵d =λ(2e 1-3e 2)+μ(2e 1+3e 2) =(2λ+2μ)e 1+(-3λ+3μ)e 2,要使d 与c 共线,则应有实数k ,使d =k c , 即(2λ+2μ)e 1+(-3λ+3μ)e 2=2k e 1-9k e 2, 即⎩⎨⎧2λ+2μ=2k ,-3λ+3μ=-9k ,得λ=-2μ. 故存在这样的实数λ,μ,只要λ=-2μ,就能使d 与c 共线.2. (2022·内江市市中区天立学校高三月考)如图所示,在▱ABCD 中,AB →=a ,AD →=b ,BM =23BC ,AN =14AB .(1)试用向量a ,b 来表示DN →,AM →; (2)AM 交DN 于O 点,求AO ∶OM 的值.解 (1)∵AN =14AB ,∴AN →=14AB →=14a ,DN →=AN →-AD →=14a -b ,∵BM =23BC ,∴BM →=23BC →=23b ,∴AM →=AB →+BM →=a +23b .(2)∵A ,O ,M 三点共线,设AO →=λAM →=λa +2λ3b ,∵D ,O ,N 三点共线, ∴DO →=μDN →,AO →-AD →=μAN →-μAD →,∴AO →=μAN →+(1-μ)AD →=μ4a +(1-μ)b .∵a ,b 不共线,∴⎩⎪⎨⎪⎧λ=μ4,2λ3=1-μ,解得⎩⎪⎨⎪⎧λ=314,μ=67,∴AO →=314AM →,OM →=1114AM →,∴AO ∶OM =3∶11.3. (2022·河南安阳模拟)如图,已知△ABC 的面积为14,D ,E 分别为边AB ,BC 上的点,且AD ∶DB =BE ∶EC =2∶1,AE 与CD 交于点P .设存在λ和μ,使AP →=λAE →,PD →=μCD →,AB →=a ,BC →=b .(1)求λ及μ; (2)用a ,b 表示BP →; (3)求△P AC 的面积. 解 (1)由于AB →=a ,BC →=b ,则AE →=a +23b ,DC →=13a +b ,AP →=λAE →=λ⎝ ⎛⎭⎪⎫a +23b ,DP →=μDC →=μ⎝ ⎛⎭⎪⎫13a +b ,AP →=AD →+DP →=23AB →+DP →,∴23a +μ⎝ ⎛⎭⎪⎫13a +b =λ⎝ ⎛⎭⎪⎫a +23b , ∴λ=23+13μ,① 23λ=μ,②由①②,得λ=67,μ=47.(2)BP →=BA →+AP →=-a +67×⎝ ⎛⎭⎪⎫a +23b =-17a +47b .(3)由|PD →|∶|CD →|=μ=47, 得S △P AB =47S △ABC =8,由|PE →|∶|AE →|=1-λ=17, 得S △PBC =17S △ABC =2,∴S △P AC =S △ABC -S △P AB -S △PBC =14-8-2=4.。

《4.1第一节 平面向量的概念及其线性运算》 教案

《4.1第一节 平面向量的概念及其线性运算》  教案

③若 a 与 a0 平行且|a|=1,则 a=a0.上述命题中,假命题的个数是( A.0 B.1 C.2 D.3
)
7 / 27
【答案】D 【解析】向量是既有大小又有方向的量,a 与|a|a0 的模相同,但方向不一定相同,故①是假命题;若
a 与 a0 平行,则 a 与 a0 的方向有两种情况:一是同向,二是反向,反向时 a=-|a|a0,故②③也是假命 题.综上所述,假命题的个数是 3.
23 / 27
证明:任取一点 O, KL = OL - OK . ∵K、L 为 MN、PQ 的中点. 1 1 ∴ OK =2( OM + ON ), OL =2( OP + OQ ). 又∵M,N,P,Q 分别为 AB,CD,BC,DE 中点, 1 1 ∴ OM =2( OA + OB ), ON =2( OC + OD ), 1 1 OP =2( OB + OC ), OQ =2( OD + OE ). 1 ∴ KL = OL - OK =2[-( OM + ON )+( OP + OQ )] 1 = [-( OA + OB + OC + OD )+( OB + OC + OD + OE )] 4 1 1 =4(- OA + OE )=4 AE .
复习预习 1.我们已经学习过位移、速度、力等,你能总结出它们的特点吗?特点为________________________________. 2.在学习三角函数线时,我们已经学习过有向线段了,你还记得吗? 所谓有向线段就是________________________,三角函数线都是_____________.
8 / 27
【例题 2】 【题干】如图,在△OAB 中,延长 BA 到 C,使 AC=BA,在 OB 上取点 D,使 DB= OB.设 OA =a,

高考一轮第四章 第一节 平面向量的概念及其线性运算ppt

高考一轮第四章  第一节  平面向量的概念及其线性运算ppt

返回
返回
1.下列给出的命题正确的是
A.零向量是唯一没有方向的向量 B.平面内的单位向量有且仅有一个
(
)
C.a与b是共线向量,b与c是平行向量,则a与c是方向 相同的向量
D.相等的向量必是共线向量
答案: D
返回
2.如右图所示,向量a-b等于 A.-4e1-2e2 B.-2e1-4e2
(
)
C.e1-3e2
返回
[巧练模拟]———————(课堂突破保分题,分分必保!)
2.(2012· 盘锦模拟)已知等差数列{an}的前 n 项和为 Sn,若 M、N、P 三点共线,O 为坐标原点,且 ON = a15 OM +a6 OP (直线 MP 不过点 O),则 S20 等于 ( A.10 C.20 B.15 D.40 )
求两个
加法 向量和 的运算
(1)交换律:a+b=
三角形 法则
b+a .
(2)结合律:(a+b)+c = a+(b+c) .
平行四边形 法则
返回
向量
运算
定义 求a与b的相反
法则(或几何意义)
运算律
减法
向量-b的和的
运算叫做a与b 的差 三角形 法则
返回
向量
运算
定义
法则(或几何意义)
运算律
(1)|λa|= |λ||a| ;
A.充分不必要条件
C.充要条件
B.必要不充分条件
D.既不充分也不必要条件
解析:“a+2b=0”⇒“a∥b”,但“a∥b” ¿ “a+2b=0”, 所以“a+2b=0”是“a∥b”的充分不必要条件.
答案: A 返回
5.(2012· 南通月考)设e1,e2是两个不共线向量,已知 AB = 2e1-8e2, CB =e1+3e2, CD =2e1-e2.

2022届高考数学一轮复习 第四章 第一节 平面向量的概念及线性运算课时作业 理(含解析)北师大版

2022届高考数学一轮复习 第四章 第一节 平面向量的概念及线性运算课时作业 理(含解析)北师大版

第一节平面向量的概念及线性运算授课提示:对应学生用书第315页[A组基础保分练]1.如图所示,在正六边形ABCDEF中,BA→+CD→+EF→=()A.0 B.BE→C.AD→D.CF→解析:由题图知BA→+CD→+EF→=BA→+AF→+CB→=CB→+BF→=CF→.答案:D2.设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则OA→+OB→+OC→+OD→等于()A.OM→B.2OM→C.3OM→D.4OM→解析:OA→+OB→+OC→+OD→=(OA→+OC→)+(OB→+OD→)=2OM→+2OM→=4OM→.答案:D3.(2021·合肥模拟)已知A,B,C三点不共线,且点O满足16OA→-12OB→-3OC→=0,则()A.OA→=12AB→+3AC→B.OA→=12AB→-3AC→C.OA→=-12AB→+3AC→D.OA→=-12AB→-3AC→解析:对于A,OA→=12AB→+3AC→=12(OB→-OA→)+3(OC→-OA→)=12OB→+3OC→-15OA→,整理,可得16OA→-12OB→-3OC→=0,这与题干中条件相符合.答案:A4.已知e1,e2是不共线向量,a=m e1+2e2,b=n e1-e2,且mn≠0.若a∥b,则mn等于()A .-12B .12C .-2D .2解析:∵a ∥b ,∴a =λb ,即m e 1+2e 2=λ(n e 1-e 2),则⎩⎪⎨⎪⎧λn =m ,-λ=2,故m n=-2.答案:C5.(2021·潍坊模拟)若M 是△ABC 内一点,且满足BA →+BC →=4BM →,则△ABM 与△ACM 的面积之比为( )A .12B .13C .14D .2解析:设AC 的中点为D ,则BA →+BC →=2BD →,于是2BD →=4BM →,从而BD →=2BM →,即M 为BD的中点,于是S △ABM S △ACM =S △ABM 2S △AMD =BM 2MD =12.答案:A6.如图所示,在等边△ABC 中,O 为△ABC 的重心,点D 为BC 边上靠近B 点的四等分点.若OD →=xAB→+yAC →,则x +y =( )A .112 B .13C .23 D .34解析:设点E 为BC 的中点,连接AE (图略),可知O 在AE 上,由OD →=OE →+ED →=13AE →+14CB →=16(AB →+AC →)+14(AB →-AC →)=512AB →-112AC →,故x =512,y =-112,x +y =13. 答案:B7.如图所示,已知∠B =30°,∠AOB =90°,点C 在AB 上,OC ⊥AB .若用OA →和OB →来表示向量OC→,则OC →=_________.解析:易知OC →=OA →+AC →=OA →+14AB →=OA →+14(OB →-OA →)=34OA →+14OB →. 答案:34OA →+14OB →8.(2021·邯郸模拟)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=_________.解析:由于λa +b 与a +2b 平行,所以存在μ∈R ,使得λa +b =μ(a +2b ),即(λ-μ)a +(1-2μ)b =0,因为向量a ,b 不平行,所以λ-μ=0,1-2μ=0,解得λ=μ=12.答案:129.经过△OAB 重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,求1n +1m的值.解析:设OA →=a ,OB →=b ,则OG →=13(a +b ), PQ →=OQ →-OP→=n b -m a , PG →=OG →-OP →=13(a +b )-m a =⎝ ⎛⎭⎪⎫13-m a +13b .由P ,G ,Q 共线得,存在实数λ使得PQ →=λPG →, 即n b -m a =λ⎝ ⎛⎭⎪⎫13-m a +13λb ,则⎩⎪⎨⎪⎧-m =λ⎝ ⎛⎭⎪⎫13-m ,n =13λ,消去λ,得1n +1m=3.10.在如图所示的方格纸中,向量a ,b ,c 的起点和终点均在格点(小正方形顶点)上.若c 与x a +y b (x ,y 为非零实数)共线,求xy的值.解析:设e 1,e 2分别为水平方向(向右)与竖直方向(向上)的单位向量,则向量c =e 1-2e 2,a =2e 1+e 2,b =-2e 1-2e 2,由c 与x a +y b 共线,得c =λ(x a +y b ),所以e 1-2e 2=2λ(x -y )e 1+λ(x -2y )e 2,所以⎩⎪⎨⎪⎧2λ(x -y )=1,λ(x -2y )=-2,所以⎩⎪⎨⎪⎧x =3λ,y =52λ,所以x y 的值为65.[B 组 能力提升练]1.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:若a +b =0,则a =-b ,所以a ∥b .若a ∥b ,则a +b =0不一定成立,故前者是后者的充分不必要条件. 答案:A2.(2021·丹东五校协作体联考)P 是△ABC 所在平面上的一点,满足PA →+PB →+PC →=2AB→,若S △ABC =6,则△PAB 的面积为( )A .2B .3C .4D .8解析:因为PA →+PB →+PC →=2AB →=2(PB →-PA →),所以3PA →=PB →-PC →=CB →,所以PA →∥CB →,且方向相同.所以S △ABC S △PAB =BC AP =|CB →||PA →|=3,所以S △PAB =S △ABC3=2.答案:A3.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD交于点F ,若AC →=a ,BD →=b ,则AF →等于( ) A .14a +12b B .23a +13bC .12a +14b D .13a +23b解析:如图所示,AF →=AD →+DF →,由题意知,AD →=12a +12b ,AB →=12a -12b ,DE ∶BE =1∶3=DF ∶AB ,所以DF →=13AB →.所以AF →=AD →+DF →=12a +12b +13⎝ ⎛⎭⎪⎫12a -12b =23a +13b .答案:B4.如图所示,AB 是圆O 的一条直径,C ,D 是半圆弧的两个三等分点,则AB →=( )A .AC →-AD →B .2AC →-2AD → C .AD →-AC → D .2AD →-2AC →解析:连接CD (图略),因为C ,D 是半圆弧的两个三等分点,所以CD ∥AB ,且AB =2CD ,所以AB →=2CD →=2(AD →-AC →)=2AD →-2AC →.答案:D5.在△ABC 中,AD →=2DB →,CD →=13CA →+λCB→,则λ=_________. 解析:∵A ,D ,B 共线,∴13+λ=1,∴λ=23.答案:236.(2021·包头模拟)如图所示,在△ABC 中,AH ⊥BC 交BC 于点H ,M 为AH 的中点.若AM →=λAB →+μAC →,则λ+μ=_________.解析:因为AM →=12(AB →+BH →)=12[AB →+x (AB →-AC →)]=12[(1+x )AB →-xAC →],又因为AM→=λAB →+μAC →,所以1+x =2λ,2μ=-x ,所以λ+μ=12. 答案:127.设e 1,e 2是两个不共线向量,已知AB →=2e 1-8e 2,CB →=e 1+3e 2,CD →=2e 1-e 2. (1)求证:A ,B ,D 三点共线;(2)若BF →=3e 1-k e 2,且B ,D ,F 三点共线,求k 的值.解析:(1)证明:由已知得BD →=CD →-CB→=(2e 1-e 2)-(e 1+3e 2)=e 1-4e 2. 因为AB →=2e 1-8e 2,所以AB →=2BD →.又AB →,BD →有公共点B ,所以A ,B ,D 三点共线. (2)由(1)可知BD →=e 1-4e 2,且BF →=3e 1-k e 2, 由B ,D ,F 三点共线得BF →=λBD →, 即3e 1-k e 2=λe 1-4λe 2, 得⎩⎪⎨⎪⎧λ=3,-k =-4λ,解得k =12. [C 组 创新应用练]1.(2021·郑州模拟)如图所示,A ,B 分别是射线OM ,ON 上的点,给出下列向量:①OA→+2OB →;②12OA →+13OB →;③34OA →+13OB →;④34OA →+15OB →;⑤34OA →-15OB →.若这些向量均以O 为起点,则终点落在阴影区域内(包括边界)的有( )A .①②B .②④C .①③D .③⑤解析:在ON 上取点C ,使得OC =2OB ,以OA ,OC 为邻边作平行四边形OCDA (图略),则OD →=OA →+2OB →,其终点不在阴影区域内,排除A ,C ;取线段OA 上一点E ,使AE =14OA ,作EF ∥OB ,交AB 于点F ,则EF =14OB ,由于EF <13OB ,所以34OA →+13OB →的终点不在阴影区域内,排除选项D . 答案:B2.在△ABC 中,∠A =60°,∠A 的平分线交BC 于点D .若AB =4,且AD →=14AC →+λAB →(λ∈R ),则AD 的长为_________.解析:因为B ,D ,C 三点共线,所以14+λ=1,解得λ=34,如图所示,过点D 分别作AC ,AB 的平行线交AB ,AC 于点M ,N ,则AN →=14AC →,AM →=34AB →,因为△ABC 中,∠A =60°,∠A 的平分线交BC 于点D ,所以四边形AMDN 是菱形,因为AB =4,所以AN =AM =3,AD =33. 答案:333.如图所示,在正六边形ABCDEF 中,P 是△CDE 内(包括边界)的动点,设AP →=αAB →+βAF →(α,β∈R ),则α+β的取值范围是_________.解析:当P 在△CDE 内时,直线EC 是最近的平行线,过D 点的平行线是最远的,所以α+β∈⎣⎢⎡⎦⎥⎤AN AM ,AD AM =[3,4].答案:[3,4]。

高考数学复习第4章平面向量第1讲平面向量及其线性运算

高考数学复习第4章平面向量第1讲平面向量及其线性运算

向量-b 的和的 减法
运算叫做 a 与 b
的差
三角形法则
运算律 a-b=a+(-b)
(续表) 向量 运算
定义
法则(或几何意义)
运算律
(1)|λa|=___|λ_|_|a_|__; (2)当λ>0 时,λa 的
数乘 求实数λ与向量 a 的积的运算
方向与 a 的方向相 同;当λ<0 时,λa 的 方向与 a 的方向相
量的个数为( B )
A.1
B.2
C. B.
4.如图 4-1-1,在正六边形 ABCDEF 中,B→A+C→D+E→F= (D )
图 4-1-1
A.0
B.B→E
C.A→D
D.C→F
考点 1 平面向量的基本概念
例 1:(1)(多选)下列命题正确的有( ) A.若|a|=|b|,则 a=b B.若 A,B,C,D 是不共线的四点,则A→B=D→C是四边形 ABCD 为平行四边形的充要条件 C.若 a=b,b=c,则 a=c D.若 a∥b,b∥c,则 a∥c
选 A.
答案:A
【规律方法】(1)相等向量具有传递性,非零向量的平行也 具有传递性.(2)共线向量即为平行向量,它们均与起点无关. (3)向量可以平移,平移后的向量与原向量是相等向量.解题时, 不要把它与函数图象的平移混为一谈.(4)非零向量 a 与|aa|的关系: |aa|是与 a 同方向的单位向量.
λ(μa)=___λ_μ_a___; (λ+μ)a=λa+μa; λ(a+b)=_λ_a_+__λ_b_
反;当λ=0 时,λa
=____0____
3.共线向量定理 向量 a(a≠0)与 b 共线的充要条件是存在唯一一个实数λ, 使得 b=λa.

高三数学一轮复习平面向量复习教案和学案

高三数学一轮复习平面向量复习教案和学案

1、向量的概念及运算 一、考纲要求:(1)平面向量的实际背景及基本概念通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示;(2)向量的线性运算①通过实例,掌握向量加、减法的运算,并理解其几何意义; ②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义;③了解向量的线性运算性质及其几何意义.(3)平面向量的基本定理及坐标表示了解平面向量的基本定理及其意义;二、知识梳理:1.向量的概念①向量既有大小又有方向的量。

向量一般用c b a ,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB .几何表示法AB ,a ;坐标表示法),(y x j y i x a =+= 。

向量的大小即向量的模(长度),记作|AB |.即向量的大小,记作|a|。

向量不能比较大小,但向量的模可以比较大小.②零向量长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行.零向量a =0 ⇔|a|=0。

由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。

(注意与0的区别)③单位向量 模为1个单位长度的向量,向量0a 为单位向量⇔|0a |=1。

④平行向量(共线向量)方向相同或相反的非零向量。

任意一组平行向量都可以移到同一直线上,方向相同或相反的向量,称为平行向量,记作a ∥b 。

由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。

数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的.⑤相等向量长度相等且方向相同的向量.相等向量经过平移后总可以重合,记为b a =。

大小相等,方向相同),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x 。

高考理科第一轮课件(4.1平面向量的概念及线性运算)

高考理科第一轮课件(4.1平面向量的概念及线性运算)

(2)选D.向量的共线与向量的平行是同义的,故A正确;根据 相反向量的概念可得B正确;由向量相等的概念可知C正确;当 两向量的模相等时,方向不一定相同.故D不正确. (3)①不正确,虽然终点相同,但两个向量也可 能不共线,如图,a,b不共线;②不正确,向量不 能比较大小;③不正确,当λ=μ=0时,a与b可为 任意向量,不一定共线.综上①②③都不正确. 答案:①②③

【规范解答】(1)选A.∵ AB BC CA=0, + + ∴ 2AD 2BE+2CF 0, + =
即 AD BE CF 0. + + = (2)选D.由题意得 PA PB PC PC PA, + + = -
即 PB =-2PA 2AP. =
)
4.如图,正六边形ABCDEF中, +CD EF =( BA +
(A)0 (B) BE (C) AD (D) CF




)
【解析】选D.BA CD EF CD DE EF CE EF CF. + + = + = + =


【解析】①正确;②数与向量的积为向量,而不是数,故不正
确;③当a=b时|a|=|b|且a∥b,反之不成立,故错误;④当 a,b不同向时不成立,故错误. 答案:①
考向 2 平面向量的线性运算
【典例2】(1)如图,
D,E,F分别是△ABC的边AB,
BC,CA的中点,则(
A AD+BE+CF=0 B BD-CF+DF=0 C AD+CE-CF=0 D BD-BE-FC=0




平面向量 高三 一轮复习(完整版)

平面向量 高三 一轮复习(完整版)

题记:向量由于具有几何形式与代数形式的“双重身份”,使它成为高中数学知识的一个交汇点,成为多项内容的媒介.一、平面向量的概念及其线性运算 【例1】判断下列命题的真假:1、有向线段就是向量,向量就是有向线段;2、非零向量a 与非零向量b 平行,则a 与b 的方向相同或相反;3、向量AB →与向量CD →共线,则A 、B 、C 、D 四点共线; 4、若向量a 与b 同向,且|a |>|b |,则a >b ;5、若向量|a |=|b |,则a 与b 的长度相等且方向相同或相反;6、对于任意向量|a |=|b |,且a 与b 的方向相同,则a =b ;7、由于零向量0方向不确定,故0不能与任意向量平行;8、起点不同,但方向相同且模相等的几个向量是相等向量;9、向量与的长度相等;10、两个相等向量若起点相同,则终点必相同; 11、只有零向量的模等于0; 12、共线的单位向量都相等; 13、向量与是两平行向量;14、与任一向量都平行的向量为向量; 15、若AB =DC ,则A 、B 、C 、D 四点构成平行四边形;16、设O 是正三角形ABC 的中心,则向量AB 的长度是OA 长度的3倍;17、在坐标平面上,以坐标原点O 为起点的单位向量的终点P 的轨迹是单位圆; 18、凡模相等且平行的两向量均相等;19、与共线的等价条件可以是存在一个实数λ,使=λ或=λ;20、设,,是任意的非零平面向量且互不共线,则a b a b +>+21、下列命题中:其中正确的是_____________① →→→→→→→⋅-⋅=-⋅c a b a c b a )(;② →→→→→→⋅⋅=⋅⋅c b a c b a )()(;③ 2()a b →→-2||a →=22||||||a b b →→→-⋅+; ④ 若0=⋅→→b a ,则0=→a 或0=→b ;⑤若,a b c b ⋅=⋅ 则a c =⑥22a a = ;⑦2a b ba a⋅=; ⑧222()a b a b ⋅=⋅ ; ⑨222()2a b a a b b -=-⋅+二、平面向量平行定理(共线定理)(1)若//(0)a b b ≠⇒(2)若a b λ=共线定理作用(1) (2)【例2】设两个非零向量a 与b不共线,(1)若,28,3().AB a b BC a b CD a b =+=+=-求证:A..B.D 三点共线;(2) 试确定实数k,使ka b + 和a kb +共线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【步步高】(浙江通用)2017版高考数学一轮复习第四章平面向量4.1 平面向量的概念及线性运算1.向量的有关概念名称定义备注向量既有大小又有方向的量;向量的大小叫做向量的长度(或称模)平面向量是自由向量零向量长度为0的向量;其方向是任意的记作0单位向量长度等于1个单位的向量非零向量a的单位向量为±a|a|平行向量方向相同或相反的非零向量0与任一向量平行或共线共线向量方向相同或相反的非零向量又叫做共线向量相等向量长度相等且方向相同的向量两向量只有相等或不等,不能比较大小相反向量长度相等且方向相反的向量0的相反向量为02.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c) 减法求a与b的相反向量-b的和的运算叫做a与a-b=a+(-b)b 的差三角形法则数乘求实数λ与向量a 的积的运算(1)|λa |=|λ||a |; (2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0(1)λ(μa )=(λμ)a ;(2)(λ+μ)a =λa +μa ;(3)λ(a +b )=λa +λb3.共线向量定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa . 【知识拓展】1.若P 为线段AB 的中点,O 为平面内任一点,则OP →=12(OA →+OB →).2.若A 、B 、C 是平面内不共线的三点,则PA →+PB →+PC →=0⇔P 为△ABC 的重心. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)向量与有向线段是一样的,因此可以用有向线段来表示向量.( × ) (2)|a |与|b |是否相等与a ,b 的方向无关.( √ ) (3)若a ∥b ,b ∥c ,则a ∥c .( × )(4)向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( × ) (5)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( √ ) (6)△ABC 中,D 是BC 中点,则AD →=12(AC →+AB →).( √ )1.给出下列命题:①零向量的长度为零,方向是任意的;②若a ,b 都是单位向量,则a =b ;③向量AB →与BA →相等.则所有正确命题的序号是( ) A .① B .③ C .①③ D .①②答案 A解析 根据零向量的定义可知①正确;根据单位向量的定义可知,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等,故②错误;向量AB →与BA →互为相反向量,故③错误.2.如图所示,向量a -b 等于( )A .-4e 1-2e 2B .-2e 1-4e 2C .e 1-3e 2D .3e 1-e 2答案 C解析 由题图可得a -b =BA →=e 1-3e 2.3.(2015·课标全国Ⅰ)设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →答案 A解析 ∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3AD →,∴AD →=-13AB →+43AC →.4.已知A ,B ,C 三点在同一条直线l 上,O 为直线l 外一点,若pOA →+qOB →+rOC →=0,p ,q ,r ∈R ,则p +q +r 等于( )A .-1B .0C .1D .3答案 B解析 ∵A ,B ,C 三点在同一条直线l 上,∴存在实数λ使AB →=λAC →,∴OB →-OA →=λ(OC →-OA →), 即(λ-1)OA →+OB →-λOC →=0.∵pOA →+qOB →+rOC →=0,∴p =λ-1,q =1,r =-λ, ∴p +q +r =0.5.(教材改编)已知▱ABCD 的对角线AC 和BD 相交于O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________(用a ,b 表示).答案 b -a -a -b解析 如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b .题型一 平面向量的概念例1 下列命题中,正确的是________.(填序号) ①有向线段就是向量,向量就是有向线段;②向量a 与向量b 平行,则a 与b 的方向相同或相反; ③向量AB →与向量CD →共线,则A 、B 、C 、D 四点共线; ④两个向量不能比较大小,但它们的模能比较大小. 答案 ④解析 ①不正确,向量可以用有向线段表示,但向量不是有向线段,有向线段也不是向量; ②不正确,若a 与b 中有一个为零向量,零向量的方向是不确定的,故两向量方向不一定相同或相反;③不正确,共线向量所在的直线可以重合,也可以平行;④正确,向量既有大小,又有方向,不能比较大小;向量的模均为实数,可以比较大小. 思维升华 (1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.(4)非零向量a 与a |a |的关系:a|a |是与a 同方向的单位向量.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是( ) A .0 B .1 C .2 D .3答案 D解析 向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3. 题型二 平面向量的线性运算 命题点1 向量的线性运算例2 (1)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →等于( ) A.BC → B.12AD → C.AD →D.12BC → (2)在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →等于( ) A.23b +13c B.53c -23b C.23b -13c D.13b +23c 答案 (1)C (2)A解析 (1)EB →+FC →=12(AB →+CB →)+12(AC →+BC →)=12(AB →+AC →)=AD →. (2)∵BD →=2DC →,∴AD →-AB →=BD →=2DC →=2(AC →-AD →), ∴3AD →=2AC →+AB →, ∴AD →=23AC →+13AB →=23b +13c .命题点2 根据向量线性运算求参数例3 (1)在△ABC 中,已知D 是AB 边上的一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ等于( )A.23B.13 C .-13D .-23(2)在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫0,13C.⎝ ⎛⎭⎪⎫-12,0 D.⎝ ⎛⎭⎪⎫-13,0 答案 (1)A (2)D解析 (1)∵AD →=2DB →,即CD →-CA →=2(CB →-CD →),∴CD →=13CA →+23CB →,∴λ=23.(2)设CO →=yBC →, ∵AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →) =-yAB →+(1+y )AC →.∵BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合), ∴y ∈⎝ ⎛⎭⎪⎫0,13,∵AO →=xAB →+(1-x )AC →,∴x =-y ,∴x ∈⎝ ⎛⎭⎪⎫-13,0. 思维升华 平面向量线性运算问题的常见类型及解题策略(1)向量加法或减法的几何意义.向量加法和减法均适合三角形法则.(2)求已知向量的和.一般共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.(3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较求参数的值.如图,一直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E ,F 两点,且交对角线AC 于K ,其中,AE →=25AB →,AF →=12AD →,AK →=λAC →,则λ的值为( )A.29 B.27 C.25 D.23答案 A解析 ∵AE →=25AB →,AF →=12AD →,∴AB →=52AE →,AD →=2AF →.由向量加法的平行四边形法则可知,AC →=AB →+AD →,∴AK →=λAC →=λ(AB →+AD →)=λ⎝ ⎛⎭⎪⎫52AE →+2AF → =52λAE →+2λAF →, 由E ,F ,K 三点共线,可得λ=29,故选A.题型三 共线定理的应用例3 设两个非零向量a 与b 不共线,(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A 、B 、D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线. (1)证明 ∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), ∴BD →=BC →+CD →=2a +8b +3(a -b ) =2a +8b +3a -3b =5(a +b )=5AB →. ∴AB →、BD →共线,又∵它们有公共点B , ∴A 、B 、D 三点共线.(2)解 ∵k a +b 和a +k b 共线, ∴存在实数λ,使k a +b =λ(a +k b ), 即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b . ∵a 、b 是两个不共线的非零向量,∴k -λ=λk -1=0,∴k 2-1=0.∴k =±1.思维升华 (1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系.当两向量共线且有公共点时,才能得出三点共线.(2)向量a 、b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立,若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a 、b 不共线.(1)已知向量AB →=a +3b ,BC →=5a +3b ,CD →=-3a +3b ,则( )A .A ,B ,C 三点共线 B .A ,B ,D 三点共线 C .A ,C ,D 三点共线D .B ,C ,D 三点共线(2)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.答案 (1)B (2)12解析 (1)∵BD →=BC →+CD →=2a +6b =2(a +3b )=2AB →, ∴BD →、AB →共线,又有公共点B , ∴A ,B ,D 三点共线.故选B. (2)DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →) =-16AB →+23AC →,∵DE →=λ1AB →+λ2AC →,∴λ1=-16,λ2=23,故λ1+λ2=12.10.方程思想在平面向量线性运算中的应用典例 (14分)如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b .试用a 和b 表示向量OM →.思维点拨 (1)用已知向量来表示另外一些向量是用向量解题的基本要领,要尽可能地转化到平行四边形或三角形中去求解.(2)既然OM →能用a 、b 表示,那我们不妨设出OM →=m a +n b . (3)利用向量共线建立方程,用方程的思想求解. 规范解答解 设OM →=m a +n b ,则AM →=OM →-OA →=m a +n b -a =(m -1)a +n b . AD →=OD →-OA →=12OB →-OA →=-a +12b .[3分]又∵A 、M 、D 三点共线,∴AM →与AD →共线. ∴存在实数t ,使得AM →=tAD →, 即(m -1)a +n b =t ⎝ ⎛⎭⎪⎫-a +12b .[5分] ∴(m -1)a +n b =-t a +12t b .∴⎩⎪⎨⎪⎧m -1=-t ,n =t 2,消去t 得,m -1=-2n ,即m +2n =1.① [7分]又∵CM →=OM →-OC →=m a +n b -14a =⎝ ⎛⎭⎪⎫m -14a +n b ,CB →=OB →-OC →=b -14a =-14a +b .又∵C 、M 、B 三点共线,∴CM →与CB →共线.[10分] ∴存在实数t 1,使得CM →=t 1CB →,∴⎝ ⎛⎭⎪⎫m -14a +n b =t 1⎝ ⎛⎭⎪⎫-14a +b , ∴⎩⎪⎨⎪⎧m -14=-14t 1,n =t 1.消去t 1得,4m +n =1. ②由①②得m =17,n =37,∴OM →=17a +37b .[14分]温馨提醒 (1)本题考查了向量的线性运算,知识要点清楚,但解题过程复杂,有一定的难度.(2)易错点是找不到问题的切入口,想不到利用待定系数法求解.(3)数形结合思想是向量加法、减法运算的核心,向量是一个几何量,是有“形”的量,因此在解决向量有关问题时,多数习题要结合图形进行分析、判断、求解,这是研究平面向量最重要的方法与技巧.如本题易忽视A 、M 、D 三点共线和B 、M 、C 三点共线这个几何特征.(4)方程思想是解决本题的关键,要注意体会.[方法与技巧]1.向量的线性运算要满足三角形法则和平行四边形法则,做题时,要注意三角形法则与平行四边形法则的要素.向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”. 2.证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.3.对于三点共线有以下结论:对于平面上的任一点O ,OA →,OB →不共线,满足OP →=xOA →+yOB →(x ,y ∈R ),则P ,A ,B 共线⇔x +y =1.[失误与防范]1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性.2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误.A 组 专项基础训练 (时间:30分钟)1.设O 是正方形ABCD 的中心,则向量AO →,BO →,OC →,OD →是( ) A .相等的向量 B .平行的向量 C .有相同起点的向量 D .模相等的向量答案 D解析 这四个向量的模相等.2.设a 0,b 0分别是与a ,b 同向的单位向量,则下列结论中正确的是( ) A .a 0=b 0 B .a 0·b 0=1 C .|a 0|+|b 0|=2 D .|a 0+b 0|=2 答案 C解析 因为是单位向量,所以|a 0|=1,|b 0|=1.3.在四边形ABCD 中,AB ∥CD ,AB =3DC ,E 为BC 的中点,则AE →等于( )A.23AB →+12AD →B.12AB →+23AD →C.56AB →+13AD →D.13AB →+56AD → 答案 A解析 BC →=BA →+AD →+DC →=-23AB →+AD →,AE →=AB →+BE →=AB →+12BC →=AB →+12⎝ ⎛⎭⎪⎫AD →-23AB →=23AB →+12AD →. 4.已知平面内一点P 及△ABC ,若PA →+PB →+PC →=AB →,则点P 与△ABC 的位置关系是( ) A .点P 在线段AB 上 B .点P 在线段BC 上 C .点P 在线段AC 上 D .点P 在△ABC 外部答案 C解析 由PA →+PB →+PC →=AB →得PA →+PC →=AB →-PB →=AP →,即PC →=AP →-PA →=2AP →,所以点P 在线段AC 上.5.已知点O 为△ABC 外接圆的圆心,且OA →+OB →+OC →=0,则△ABC 的内角A 等于( ) A .30° B .60° C.90° D.120° 答案 B解析 由OA →+OB →+OC →=0,知点O 为△ABC 的重心, 又∵O 为△ABC 外接圆的圆心, ∴△ABC 为等边三角形,A =60°.6.已知O 为四边形ABCD 所在平面内一点,且向量OA →,OB →,OC →,OD →满足等式OA →+OC →=OB →+OD →,则四边形ABCD 的形状为________. 答案 平行四边形解析 由OA →+OC →=OB →+OD →得OA →-OB →=OD →-OC →, 所以BA →=CD →.所以四边形ABCD 为平行四边形.7.设点M 是线段BC 的中点,点A 在直线BC 外,BC →2=16,|AB →+AC →|=|AB →-AC →|,则|AM →|=________. 答案 2解析 由|AB →+AC →|=|AB →-AC →|可知, AB →⊥AC →,则AM 为Rt△ABC 斜边BC 上的中线, 因此,|AM →|=12|BC →|=2.8.(2015·北京)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________.答案 12 -16解析 MN →=MC →+CN →=13AC →+12CB → =13AC →+12(AB →-AC →) =12AB →-16AC →, ∴x =12,y =-16.9.在△ABC 中,D 、E 分别为BC 、AC 边上的中点,G 为BE 上一点,且GB =2GE ,设AB →=a ,AC →=b ,试用a ,b 表示AD →,AG →.解 AD →=12(AB →+AC →)=12a +12b .AG →=AB →+BG →=AB →+23BE →=AB →+13(BA →+BC →)=23AB →+13(AC →-AB →) =13AB →+13AC → =13a +13b . 10.设两个非零向量e 1和e 2不共线.(1)如果AB →=e 1-e 2,BC →=3e 1+2e 2,CD →=-8e 1-2e 2,求证:A 、C 、D 三点共线; (2)如果AB →=e 1+e 2,BC →=2e 1-3e 2,CD →=2e 1-k e 2,且A 、C 、D 三点共线,求k 的值. (1)证明 ∵AB →=e 1-e 2,BC →=3e 1+2e 2, CD →=-8e 1-2e 2,∴AC →=AB →+BC →=4e 1+e 2 =-12(-8e 1-2e 2)=-12CD →,∴AC →与CD →共线.又∵AC →与CD →有公共点C ,∴A 、C 、D 三点共线.(2)解 AC →=AB →+BC →=(e 1+e 2)+(2e 1-3e 2)=3e 1-2e 2,∵A 、C 、D 三点共线, ∴AC →与CD →共线,从而存在实数λ使得AC →=λCD →, 即3e 1-2e 2=λ(2e 1-k e 2),得⎩⎪⎨⎪⎧3=2λ,-2=-λk ,解得λ=32,k =43.B 组 专项能力提升 (时间:15分钟)11.设a ,b 不共线,AB →=2a +p b ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线,则实数p 的值是( )A .-2B .-1C .1D .2 答案 B解析 ∵BC →=a +b ,CD →=a -2b , ∴BD →=BC →+CD →=2a -b .又∵A ,B ,D 三点共线,∴AB →,BD →共线. 设AB →=λBD →,∴2a +p b =λ(2a -b ),∴2=2λ,p =-λ,∴λ=1,p =-1.12.如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →等于( )A .a -12bB.12a -bC .a +12bD.12a +b 答案 D解析 连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a .13.设G 为△ABC 的重心,且sin A ·GA →+sin B ·GB →+sin C ·GC →=0,则B 的大小为( ) A .45° B .60° C .30° D .15°答案 B解析 ∵G 是△ABC 的重心,∴GA →+GB →+GC →=0,GA →=-(GB →+GC →),将其代入sin A ·GA →+sinB ·GB →+sinC ·GC →=0,得(sin B -sin A )GB →+(sin C -sin A )GC →=0.又GB →,GC →不共线,∴sin B -sin A =0,sin C -sin A =0,则sin B =sin A =sin C .根据正弦定理知b =a =c , ∴△ABC 是等边三角形,则角B =60°.故选B.14.在▱ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →=____________.(用a ,b 表示)答案 -14a +14b解析 由AN →=3NC →得AN →=34AC →=34(a +b ),AM →=a +12b ,所以MN →=AN →-AM →=34(a +b )-⎝ ⎛⎭⎪⎫a +12b =-14a +14b .15.如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m的值为________.答案 3解析 设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b ),PQ →=OQ →-OP →=n b -m a ,PG →=OG →-OP →=⎝ ⎛⎭⎪⎫13-m a +13b ,由P ,G ,Q 三点共线得,存在实数λ,使得PQ →=λPG →,即n b -m a =λ⎝ ⎛⎭⎪⎫13-m a +13λb ,从而⎩⎪⎨⎪⎧-m =λ⎝ ⎛⎭⎪⎫13-m ,n =13λ,消去λ得1n +1m=3.。

相关文档
最新文档