大学物理英文版PPT
大学物理课件英文版课件,现代物理An Aperitif of Modern Physics
3
§26.1 Some important discoveries at the end of the 20th century
2. The discovery of X-rays
§26.1 Some important discoveries at the end of the 20th century
J. J. Thomson’s original tube
2
§26.1 Some important discoveries at the end of the 20th century
a. Measured the charge of the cathode rays; b. Make a static electric deflection of the cathode rays; c. Measured the charge to mass ratio of the cathode rays; d. Prove the universal existence of the electron. The charge to mass ratio of electron
Radioactivity occur naturally and have with us on the earth from the very beginning. Henri Becquerel discovered Uranium, Marie Curie discovered Polonium and Radium Ernest Rutherford found that the substances emit several distinct types of radiations. One is a penetrating radiation, dubbed α, that propagates through several centimeters in air and can even penetrate very thin metal foils. Another less penetrating radiation, dubbed β, is easily stopped by even a sheet of paper. Another type, called γ, was discovered in 1900 and is much more penetrating than even the α radiation.
西尔斯当代大学物理双语PPT课件
.
17
轶事:蜘蛛织网和平面直角坐标系的创立
• 据说有一天,笛卡尔生病卧床,病情很重,尽管如 此他还反复思考一个问题:几何图形是直观的,而代数 方程是比较抽象的,能不能把几何图形和代数方程结合 起来?他苦苦思索,拼命琢磨,通过什么样的方法,才 能把“点”和“数”联系起来。突然,他看见屋顶角上 的一只蜘蛛,拉着丝垂了下来。一会功夫,蜘蛛又顺这 丝爬上去,在上边左右拉丝。蜘蛛的“表演”使笛卡尔 的思路豁然开朗。他想,可以把蜘蛛看作一个点。他在 屋子里可以上、下、左、右运动,能不能把蜘蛛的每一 个位置用一组数确定下来呢?他又想,屋子里相邻的两 面墙与地面交出了三条线,如果把地面上的墙角作为起 点,把交出来的三条线作为三根数轴,那么空间中任意 一点的位置就可以在这三根数轴上找到有顺序的三个数。 反过来,任意给一组三个有顺序的数也可以在空间中找 到一点P与之对应,这就是坐标系的雏形。
by describing how to calculate it from other quantities that we can measure.
speed = distance / time
v = d / t (m/s)
An equation must always be dimensionally consistent.
位移
average velocity
平均速度
instantaneous velocity
瞬时速度
acceleration
加速度
confusion
混淆
rectilinear motion
直线运动
.
20
valid
正确的
重邮大学物理英文版-(4)PPT课件
.
3
14.03.2021
3
What force will a positive “test” charge feel if placed into the electric field?
+
.
4
10
4. Calculation
(1). EDue to the System of Point Charges (The
charges are countable ).
FF 1F 2F 3
Q2
E
F
Q0
F1
Q0
F2
Q0
F3
Q0
E1E2E3
QQ 1
rrF12
Q0
F1
Q3 F3
.
6
14.03.2021
6
2. Definition
➢At a point in the given electrostatic field the ratio of the electric field force F on the test point charge q 0 with its electric quantity
E
E
2 x
E
2 y
E
2 z
,
cos E x , cos E y , cos Ez .
E
E
E
.
9
14.03.2021
9
3. Superposition Principle of Electrostatic Field
F F1 F2 F3 Fn
西尔斯当代大学物理双语PPT课件
.
10
1.6 Vector Algebra
a Vector quantity can be expressed by a
• Every physical theory has a range of validity. • No theory has ever regarded as the final truth.
1.2 Idealized Models A model is a simplified version of a physical
Chapter 1 Physical Quantities
and Vectors
.
1
1.1 The nature of physics
• Physics is an experimental science. • Physicists observe the phenomena of nature and try to find patterns and principles that relate these phenomena. These patterns are called physical theories or physical laws, or principles.
ball move in a vacuum.
We ignore the earth’s rotation.
point masses
We make the weight constant.
.
5
1.3 Standards and Units
Physics is an experimental science. Experiments require measurements.
大学物理英文版PPT
4.Units 单位
International System of Units SI: Syst me International d’Unit s 法语 is used in China
mass
m
kg:千克 kilogram
length
L m:米 meter
Time
t s:秒 second
5. Scalar and vector 标量和矢量 : Two types of physical quantities 量 :
主要讲授内容:
经典力学 相对论
电磁学
振动与波动 日常生活
波动光学
热学
量子论简介
puter 计算机科学
Medicine 医学
Physics
Chemistry 化学
Mechanics 机械学
Biology 生物学
Physics: fundamentals and methods.
References 参考书
主要贡献: •发明了望远镜,维护、坚持和发展了哥白尼学说, 发现木星的四个卫星; •摆的等时性、惯性定律、落体运动定律; •运动的合成原理和独立性原理,相对性原理; •方法:实验科学。
§1-1 Frame of Reference Particle 质点
1. Frame of Reference 参照系
C=A+B B
A
B C
A
In Cartesi an coordinate system 直角坐标系 :
A A xiA yjA zk
i,jankd are unit vectors along OX,OY,OZ Y
O
X
Z
《大学物理》英文课件18 Temperature, Heat, and The First Law of Thermodynamics(示)
TT3pp3(27.136K)pp3
T(27.316K)glai sm 0 pp3
Measuring Temperature Calibrate a metal rod to a thermometer Medical thermometer
The Celsius and Fahrenheit Scales
1/ 273.16 K = the size of the Kelvin of the difference between the triple-point temperature of water and absolute zero.
Ice
Triple point cell
Constant-Volume Gas Thermometer
Key concept: Temperature T
Mechanics Newton’s 3 Laws r,v,a,F
Temperature
Kelvin scale; Has lower limit = absolute zero = 10-∞; no upper limit
The Zeroth Law of Thermodynamics
Invar(不胀钢) Fused quartz
α (106/C°) 11 9 3.2 1.2 0.7 0.5
Thermal Expansion
Thermal Expansion
The wonderful behavior of water at 4 0C
Temperature and Heat
Measuring Temperature
1. Set up a temperature scale 2. Standard fixed-point temperature size
大学物理 英语版课件
)θ X
r
P
Right-angled Coordinates System
X-axis or abscissa Y-axis Z-axis 原点 :origin
z y
x
o
象限:quadrant 象限
Polar coordinates system (ρ,θ) Ball coordinates system (R,θ, )
The displacement of A is:
A = 17.7 i 17.7 j km
(a) Similarly, the magnitude of displacement of B is 40 km.
B =| B |= Bx 2 + By 2 = 40 km
tower car ) 60o B
z o
θ
R
y
x
column coordinates system (R, , z )
z
R
r =r= x +y
2
2
Y
Magnitude of the position vector
)θ O X
y θ = arctg x
angular position / direction angle
r
P
Chapter 1
Particle kinematics
What is particle?
Ideal Model
A geometrical point with certain mass
The shape and the size of the body Could be neglected. Mass is the most important
大学物理英文版PPT
Elastic mechanics
When a force is applied to an object, it may under deformation If the force is removed, the object returns to its original shape and size, the deformation is said to be elastic
Polarization refers to the direction of these movements within the plane perpendicular to the direction of promotion
Polarization is a property of electrical waves and is observed in both natural and artistic sources of light
Angular Momentum
Angular Momentum is the rotational equivalent of linear momentum It is defined as the product of an object's mass and its angular velocity, and it is conserved in closed systems
要点一
要点二
Magnetic induction intensity
The magnetic induction intensity or magnetic field strength is the magnet of the magnetic field at a given point in space
物理英文版
Time -averaged net forceWhen a time-varying net force isdifficult to measure, we can use a time-averaged net force as the substitute provided that it would give the same impulse to the particle in sametime interval.When a particle experiences a impact in a veryshort time, the non-impulse forces such as gravitational force and friction force are negligible compared to impulsive force.1f i t t F Fdtt =Δ∑∫J G J G ()F t ∑J G J p F t=Δ=Δ∑JG J G J GTime -averaged net force (continued)For a given amount of momentum change, we can delay the timeinterval to decrease the impulsive force.A baseball player catching a ball can soften the impact by pulling hishand back.Example:Example: Conical Pendulum.A small object of mass m is suspended from a string of length L . The object revolves in a horizontal circle of radium r with constant speed v . Determine the impulse exerted (1) by gravity, (2) by string tension on the object, during the time in which the object has passed half of the circle.Solution: From impulse-momentum theorem212122t net net t J F dt mv mv mv ==−=∫J G J G G G G The impulse exerted by gravity on the object 211222t mg t T r r J mgdt mg mgmg v v ππ====∫J G G G G GThe impulse exerted by string intension on the objectT net mgJ J J =−J G J G J G ()222222224T rmg r g J mv m v vvππ⎛⎞=+=+⎜⎟⎝⎠Impulse-momentum theorem for a system of particlesConsider a system of N interacting particles with masses m 1, m 2, …, m N .For i-th particle : the net external force the internal force exerted by j-th particle For the system of particles :According to Newton’s third law, the internal forces cancel in pairs.The total external force acting on the system:The total momentum of the system:i F J G ijf J G ()i ij iF f dt d p +=JG J G J G()i ij iij iiF f dt d p ≠+=∑∑∑JG J G J Gij ij if ≠=∑∑J G iiF ∑J Gtotiip p =∑JG J G §2Impulse -momentum theorem fora system of particlesImpulse-momentum theorem for a system of particles (continued)zerototd p J GWhich case of collision satisfies the conservation of momentum? Or conservation of component momentum?Example②Example: A wooden block of mass M 1is suspended from a cord of length L attached to a cart of mass M 2which can roll freely on a frictionless horizontal track. A bullet of mass m is fired into the block from left. After the impact of the bullet, the block swings up with the maximum angle of θ. What is the initial speed v of the bullet?Solution:(1)Stage 1:For the systemconsisting of m and M 1, the momentum isconserved in horizontal during a small intervaltime of impact.11()mv M m v =+Example: is suspended vertically with its lowest end§3 Center of MassDescribe the motion of a system of particlesby every motion for individual particles by overall motion in terms of center of mass Center of massFor the system of discretely distributed particles represented by components For the extended object with uniformly distribution of mass CM i i i i i i i i m r m r r m M==∑∑∑G G G CM CM CM i i i i i i ii i m x m y m z x y z M M M ===∑∑∑10CM 10CM lim 1, lim 11, i i N i i N i m N i N i m CM x m x dm x x dm M dm m y y dm z z dm M M →∞=Δ→→∞=Δ→Δ===Δ==∑∫∫∫∑∫∫CM 1r r dm M=∫GGExample: Find the center of mass of a uniform solidhemisphere of radius R and mass M .Solution: From symmetry it is apparent that the center ofmass lies on the z axis. x CM =0, y CM =0.The three-dimensional integral can be treated as an one-dimensional integral. Subdivide the hemisphere into a pile of thin disk .CM 11z zdm z dV M Mρ==∫∫2dV r dzπ=323M R ρπ⎛⎞=⎜⎟⎝⎠022CM 323322003cos sin (sin )233cos sin sin (sin )22313248z R R R d R R d R d R R πππθθθθθθθθθ=−===×=∫∫∫Find r , z in terms of θ.sin cos sin r R z R dz R d θθθθ===−Supplement problem: Find the center of mass of a uniform semicircular plate of radius R and mass M.Applications of center of massFor a system of discrete particlesA cannon shell in a parabolictrajectory explodes in flight,splitting into two fragments. Thefragments follow new paths, butcenter of mass continues on the original parabolic trajectory.For a rigid bodyWe can describe a rigid body as a combination of translational motion of the center of mass and rotational motion about an axis throughthe center of mass.Fig. (a) The motion of the diver is pure translation.Fig. (b) The motion of the diver is translation plus rotation.Example: A rocket is fired into the air. At the moment it reaches its highest point,a horizontal distance d from its starting point, an explosion separates it intotwo parts of equal mass. Part I is stopped in midair by explosion and fallsvertically to Earth. Where does par II land?Solution: After the rocket is fired, the path of the center of mass of the system continues to follow the parabolic trajectory of a projectile acted on only by a constant gravitational force. The center of mass will thus arrive at a point 2d from the starting point. Since the masses of I and II are equal,the center of mass must be midway between them. Therefore, II lands a distance3d from the starting point.Example:Solution II: Treat the two blocks as a whole.External force: exerted by wall on m 2.2CM2122()()d x k l x m m dt −=+2CM 212m x x m m =+2CM12CM 1222()()d x m m k l x m m m dt+−=+2CM 2CM 22120d x m k x l dt m m m ⎛⎞+−=⎜⎟+⎝⎠2CM 122cos m k x l A t m m m φ⎛⎞−=+⎜⎟⎜⎟+⎝⎠。
大学物理高斯定理课件英文版
E S dS
q
0
写成 E q
0 S dS
e.高斯面部分的通量为0。
E dS, cos 0
Chapter 20 Gauss’s Law
第八章静电场
spherical symmetry
1.Spherical shell of uniform charge
计算步骤: a.场对称性分析。
b.选取高斯面。
c.确定面内电荷代数和 q。
d.应用定理列方程求解。
S EdS
cos
q
0
第八章静电场
Chapter 20 Gauss’s Law
高斯面选取的原则
第八章静电场
a.要求电场具有高度对称性。 b.高斯面要经过所研究的场点。 c.高斯面应选取规则形状。 d.面上各点的场强大小相等,方向与高斯面法线方向一致。
algebraic sum of charges enclosed within the
surface.
Chapter 20 Gauss’s Law
1 n
Φe
E dS
S
0
qi
i 1
Discussion
第八章静电场
1) The relation of the source of electric filed and the field (反映场和源 的关系).
第八章静电场
Karl Friedrich Gauss (1777-1835), German mathematician and physicist. He made a lot of contributions in the fields of experimental physics, theoretical physics and mathematics. He made major contributions to the theory of electromagnetism.
重邮大学物理英文版PPT (6)
2) Electrostatic shielding 静电屏蔽 Cavity conductor空腔导体 a)No net charges inside the cavity conductor 空腔导体无净电荷 The external E field has no effect on the space inside the cavity. 外电场对空腔内部无影 响。可将仪器等放入空腔内部 起到屏蔽作用。
尖端放电
5) The surface of the conductor in electrostatic equilibrium is an equi-potential surface and the conductor is an equi-potential body. 处于静电平衡的导体的表面是一等势面,导体是一等势体。 Reasoning: Take one arbitrary path from point A to point B inside the conductor, the E potential difference between the two points is:
的电场是Q+q产生的电场的 的电场是Q+q产生的电场的 Q+q 叠加。 叠加。
*** If connect the external surface of the cavity to the ground, the external E field does not relate to E field inside the cavity. 如果腔外表面接地,则外场不受腔内电 场影响。
2) If the isolated conductor carries a net charge, the net charge resides entirely on its surface. 如果导体本身带有净电荷,那么这些净电荷将全部分布在 导体表面。 + + Reasoning: Gauss’s law
《大学物理》英文课件11 Rolling, Torque, and Angular Momentum
Problem: a uniform ball of mass M = 6.00kg and radius R rolls smoothly from rest down a ramp at angle θ = 30.0o. (a) The ball descends a vertical height h = 1.20m to reach the bottom of the ramp. What is its speed at the bottom? (b) What are the magnitude and direction of the frictional force on the ball as it rolls down the ramp?
The Yo-Yo
When a Yo-Yo rolls down or up the string, its kinetic
energy( translational form (1/2)Mv2com and rotational form(1/2)Icomω2) and potential energy (Mgh) exchange.
Solution: M = 6.00kg, θ = 30.0o, h = 1.20m
(b)
acom,x
gsin
1Icom MR2
gsin
3.50m/s2
12MR2 MR2
5
fs Ico a c R m 2 ,o x m 5 2 M 2a c R 2 R ,o x m 5 2 M c,o x a m 8 .4N 0
a com , x
1
g sin I com
MR
2
90 o , R R0
g
a com , x
《大学物理》英文课件18 Temperature, Heat, and The First Law of Thermodynamics(示)
Mechanics Newton’s 3 Laws r,v,a,F
Temperature
Kelvin scale; Has lower limit = absolute zero = 10-∞; no upper limit
The Zeroth Law of Thermodynamics
《大学物理》英文课件18 Temperature, Heat, and The First Law
of Thermodynamics(示)
Thermodynamics
Thermodynamics: The study of internal energy (thermal energy)
Thermodynamic Laws
Q 2LFm23 .8k 9J
Step 3: 0 oC (liq) →15 oC (liq)
Q 3cwm a(tT efr T i)4.2 5k 5J
Q to tQ 1Q 2Q 33k 0J 0
Sample Problem
Problem: A piece of copper with mass 75 g is heated to 312 0C. The copper is then dropped into a glass beaker containing 220 g water. The heat capacity Cb of the beaker is 45 cal/K .The initial temperature of the water and the beaker is 12 0C. Assuming that there is no energy loss, find the finial temperature of the system.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Volume 1
Introduction
Chapter 1 Kinematics
Chapter 2 Newton’s Laws of Motion Chapter 3 Work and Energy Chapter 4 Momentum
Chapter 5 Rotation of a rigid body
Chapter 6 The Kinetic Theory of Gases
Chapter 7 Fundamentals of Thermodynamics
Introduction
2001.9.11 Catastrophe(大灾难)
宇宙:约1250亿个星系, 每个星系由数千亿个恒星 组成。
银河系 太阳系:地球,星星 看得见的:你我他它 分子 原子 原子核 基本粒子
宇宙半径:~1026 m 银河系:~1044 kg 地球1024 kg
原子核半径:10-15 m
电子质量:10-31 kg
河外星系:1024 m
银河中心系:1020 m 太阳1030 kg:1011 m 月亮:108 m
我们的母亲: 地球
1969年7月16日 美国东部时间9时23分 阿波罗11号发射升空。
三天后 阿姆斯特朗 奥尔德林 柯林斯
Mars(火星)
机遇号
The surface of Mars(火星表面)
Our world and Universe
Universe
Elementary particles
In the view of physics history:
The ancient physics The classical physics The modern physics
5. Scalar and vector(标量和矢量): Two types of physical quantities(量): Scalars: mass, length, speed, temperature….. Vectors: velocity, acceleration, momentum... Vector A( black) : its magnitude(大小) and direction(方向) may be represented by a line OP directed from the initial point O to the terminal(终) point P and denoted(标记) by A OP
C x Ax Bx
Obviously(显然):
C y Ay By
In one dimension In two dimension In three dimension Mechanical motions
(机械运动) Curvilinear motion(曲线)
Rectilinear motion(直线)
r is
y
t1 P
r1
r
t2
r2
x
r r2 r1 That is r x 2 i y2 j x1i y1 j ( x2 x1 )i ( y2 y1 ) j
o
Its magnitude(大小)
4.Units(单位) International System of Units(SI: Systme International d’Units 法语) is used in China mass m kg:千克 kilogram
length
L
m:米 meter
Time
t
s:秒 second
Magnitude: r r x 2 y 2 z 2
cos z r
In the two dimension: r r (t ) x(t )i y(t ) j Its two components (分量) x x( t )
y
P ( x, y )
物 质 世 界
相对论 天体物理 经典物理:力学,热等 量子力学 核物理 量子场论
银河系
相对论 天体物理
量子天体 物理学
史蒂芬.霍金 《时间简史》
Theory
Our world and universe
… The Galaxy Sun: Earth,Planets The body we can see Molecules atoms nuclei elementary particles …
… The general reletivity astrophsics Newton’s Mechanics Heat,Thermodynamics … Electromagnetic Theory Quantum Mechanics Nuclear Physics Quantum Field Theory …
r
y y( t )
消去
o
x
eliminating
y y( x )
Path equation(轨迹方程)
2. Displacement(位移):
Displacement introduced to describe the change in position during a given time interval:
•…………..
Part One Mechanics 力学
Chapter 1 Kinematics
(运动学)质点运动学
第一章 质点运动学(Kinematics)
§1-1 参考系 质点
Frame of reference particle Position vector and displacement
主要讲授内容:
经典力学 相对论 电磁学
振动与波动
日常生活
波动光学
热学
量子论简介
Computer 计算机科学 Mechanics 机械学
Physics
Medicine 医学 Biology 生物学 Chemistry 化学
Physics: fundamentals and methods.
References(参考书)
Circular motion(圆周)
In our teaching, we will mainly deal with(涉及) two dimensional motions: motion in a plane.
§1-2 Position Vector and Displacement
1. Position Vector Position vector r is a vector
3. Time(时刻)and time interval(时间) Time t is a given instant, and time interval(间隔)△t is the difference of two given instants. We use the former to describe (描述) the state of the object, the latter to describe the process.(过程)
Y Z
O
X
In two dimension(维):
Байду номын сангаас
Y
A Ax i Ay j
tg Ay Ax
Ay
O
Ax
X
If A Ax i Ay j and B Bx i B y j , we have: C C x i C y j B A ( Ax Bx )i ( Ay B y ) j
P
o
Addition(加): The two vectors A and B is added in following way: C=A+B B A
A Ax i Ay j Az k
B
C
A
In Cartesian coordinate system(直角坐标系):
i , j and k are unit vectors along OX,OY,OZ
•张达宋 《物理学基本教程》
•李行一等, 《物理学基本教程教学参考书》
•李行一等,《物理学基本教程》习题分析与解答
•张三慧等, 《大学物理学》 •Halliday et.al 《Fundamentals of Physics》 •W. Sears et.al 《University Physics》 •史蒂芬.霍金,《时间简史》 •盛正卯等,《物理学与人类文明》 •B.K.里德雷,《时间、空间和万物》
§1-1 Frame of Reference Particle(质点)
1. Frame of Reference(参照系)
When we discuss the position and the velocity(速度) of an object ,we must answer the questions:
that extents from the origin of the coordinate system to the particle’s position as shown in Figure
z
r
X
P(x,y,z)
Y
r xi yj zk
cos x r cos y r
§1-2 位置矢量 位移 §1-3 速度 加速度
Velocity and acceleration Two types of Problems Circular motion Relative motion
§1-4 两类运动学问题 §1-5 圆周运动及其描述