大学物理分章节题库-有答案

合集下载

大学物理第三章课后习题答案

大学物理第三章课后习题答案

r3
, k 为常量。试求两粒子相距为 r 时的势能,设力为零的
r = a cos ωt i + b sin ωt j , r 式中 a , b , ω 是正值常数,且 a ≻ b 。
(1)说明这质点沿一椭圆运动,方程为

x2 y 2 + = 1; a2 b2
(2)求质点在 A 点 (a ,0) 时和 B 点 (0, b ) 时的动能; (3)当质点从 A 点到 B 点,求力 F 所做的功,并求 F 的分力 Fx i 和 Fy j 所做的 功; (4) F 力是不是保守力? 12 . 如果物体从髙为 h 处静止下落,试求(1)时间为自变量; 12. (2)高度为自变量, 画出它的动能和势能图线,并证明两曲线中动能和势能之和相等。 . 一质量为 m 的地球卫星,沿半径为 3R e 的轨道运动, R e 为地球的半径,已知 13 13. 地球的质量为 M e ,求(1)卫星的动能; (2)卫星的引力势能; (3)卫星的机械 能。 . 如图所示, 14 14. 小球在外力作用下, 由静止开始从 A 点出发做匀加速运动,到达 B 点时撤消外力,小球 无摩擦的冲上竖直的半径为 R 的半圆环, 到达最高 点 C 时,恰能维持在圆环上做圆周运动,并以此速 度抛出而刚好落回到原来的出发点 A 处, 如图试求 小球在 AB 段运动的加速度为多大? . 如图所示,有一自动卸货矿车,满载时的质量 15 15. 为 M ,从与水平倾角 α = 30° 斜面上的点 A 由静 止下滑。设斜面对车的阻力为车重的 0.25 倍, 矿 车下滑距离 l 时,矿车与缓冲弹簧一道沿斜面运 动。当矿车使弹簧产生最大压缩形变时,矿车自 动卸货, 然后矿车借助弹簧的弹性力作用, 使之返回原位置 A 在装货。试问要完成这 一过程,空载时车的质量与满载时车的质 量之比应为多大? . 半径为 R 的光滑半球状圆塔的顶点 A 16 16. 上,有一木块 m ,今使木块获得水平速度

大学物理 I(力学、相对论、电磁学)_北京交通大学中国大学mooc课后章节答案期末考试题库2023年

大学物理 I(力学、相对论、电磁学)_北京交通大学中国大学mooc课后章节答案期末考试题库2023年

大学物理 I-(力学、相对论、电磁学)_北京交通大学中国大学mooc 课后章节答案期末考试题库2023年1.如图所示,一斜面固定在卡车上,一物块置于该斜面上。

在卡车沿水平方向加速起动的过程中,物块在斜面上无相对滑动。

此时斜面对物块的摩擦力的冲量的方向[ ]。

【图片】参考答案:沿斜面向上或向下均有可能2.如图所示,假设物体沿着竖直面上圆弧形轨道下滑,轨道是光滑的且固定在地面上,物体在从A至C的下滑过程中,下面哪个说法是正确的?[ ]【图片】参考答案:轨道支持力的大小不断增加3.一个质点在某一运动过程中,所受合力的冲量为零,则[ ]。

参考答案:质点的动量的增量为零_质点的动量不一定守恒4.关于质点系内各质点间相互作用的内力做功问题,以下说法中正确的是[ ]。

参考答案:一对内力所做的功之和一般不为零,但不排斥为零的情况5.下列说法中正确的是[ ]。

参考答案:系统内力不改变系统的动量,但内力可以改变系统的动能6.静止在原点处的某质点在几个力作用下沿着曲线【图片】运动。

若其中一个力为【图片】,则质点从O点运动到【图片】点的过程中,力【图片】所做的功为[ ]。

参考答案:12J7.质量为m=0.01kg的质点在xOy平面内运动,其运动方程为【图片】,则在t=0 到t=2s 时间内,合力对其所做的功为[ ]。

参考答案:2J8.如图所示,质量为M半径为R的圆弧形槽D置于光滑水平面上。

开始时质量为m的物体C与弧形槽D均静止,物体 C 由圆弧顶点 a 处下滑到底端 b 处的过程中,分别以地面和槽为参考系,M与m之间一对支持力所做功之和分别为[ ]。

【图片】参考答案:=0;=09.对质点系有以下几种说法:① 质点系总动量的改变与内力无关;② 质点系总动能的改变与内力无关;③ 质点系机械能的改变与保守内力无关;④ 质点系总势能的改变与保守内力无关。

在上述说法中[ ]。

参考答案:①和③是正确的10.质量分别为【图片】和【图片】的两个小球,连接在劲度系数为k的轻弹簧两端,并置于光滑的水平面上,如图所示。

大学物理试题库(含答案)

大学物理试题库(含答案)

大学物理试题库(含答案)一 卷1、(本题12分)1mol 单原子理想气体经历如图所示的过程,其中ab 是等温线,bc 为等压线,ca 为等容线, 求循环效率2、(本题10分) 一平面简谐波沿 x 方向传播,振幅为20cm ,周期为4s ,t=0时波源在 y 轴上的位移为10cm ,且向y 正方向运动。

(1)画出相量图,求出波源的初位相并写出其振动方程; (2)若波的传播速度为u ,写出波函数。

3、(本题10分)一束光强为I 0的自然光相继通过由2个偏振片,第二个偏振片的偏振化方向相对前一个偏振片沿顺时针方向转了300 角,问透射光的光强是多少?如果入射光是光强为I 0的偏振光,透射光的光强在什么情况下最大?最大的光强是多少?4、(本题10分)有一光栅,每厘米有500条刻痕,缝宽a = 4×10-4cm ,光栅距屏幕1m , 用波长为6300A 的平行单色光垂直照射在光栅上,试问:(1)(2) 第一级主极大和第二级主极大之间的距离为多少?5、(本题10分)用单色光λ=6000A 做杨氏实验,在光屏P处产生第五级亮纹,现将折射率n=1.5的玻璃片放在其中 一条光路上,此时P 处变成中央亮纹的位置,则此玻璃片 厚度h 是多少?6、(本题10分)一束波长为λ的单色光,从空气垂直入射到折射率为n 的透明薄膜上,在膜的上下表面,反射光有没有位相突变?要使折射光得到加强,膜的厚度至少是多少?7、(本题10分) 宽度为0~a 的一维无限深势阱波函数的解为)sin(2x an a n π=ψ 求:(1)写出波函数ψ1和ψ2 的几率密度的表达式 (2)求这两个波函数几率密度最大的位置8、(本题10分)实验发现基态氢原子可吸收能量为12.75eV 的光子。

试问:(1)氢原子吸收该光子后会跃迁到哪个能级?P 2P a(2)受激发的氢原子向低能级跃迁时,可能发出哪几条谱线?请定性画出这些能级和跃迁。

9、(本题 10分)请写出n=2的8个量子态(n , l , m l , m s )。

大学物理题库通用版-第11章-波动光学--光的干涉(含答案解析)

大学物理题库通用版-第11章-波动光学--光的干涉(含答案解析)

大学物理题库通用版11、波动光学 光的干涉一、选择题(共15题)1.如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2.路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于 (A) )()(111222t n r t n r +-+(B) ])1([])1([211222t n r t n r -+--+(C) )()(111222t n r t n r ---(D) 1122t n t n - [ ]2.在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等.(B) 传播的路程相等,走过的光程不相等.(C) 传播的路程不相等,走过的光程相等.(D) 传播的路程不相等,走过的光程不相等. [ ]3.如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1<n 2> n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①与②示意)的光程差是(A) 2n 2 e . (B) 2n 2 e -λ / 2. (C) 2n 2 e -λ . (D) 2n 2 e -λ / (2n 2).[ ]4.如图所示,波长为λ的平行单色光垂直入射在折射率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为e ,而且n 1>n 2>n 3,则两束反射光在相遇点的相位差为(A) 4πn 2 e / λ. (B) 2πn 2 e / λ. (C) (4πn 2 e / λ) +π. (D) (2πn 2 e / λ) -π. [ ]P S 1S 2 r 1 n 1 n 2 t 2 r 2 t 1n 3n 1 λ5.如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2>n 3,λ1为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为 (A) 2πn 2e / ( n 1 λ1). (B)[4πn 1e / ( n 2 λ1)] + π. (C) [4πn 2e / (n 1 λ1) ]+ π. (D) 4πn 2e / ( n 1 λ1). [ ]6.一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ). [ ]7. 两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的(A) 间隔变小,并向棱边方向平移.(B) 间隔变大,并向远离棱边方向平移.(C) 间隔不变,向棱边方向平移.(D) 间隔变小,并向远离棱边方向平移. [ ]8.用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则(A) 干涉条纹的宽度将发生改变.(B) 产生红光和蓝光的两套彩色干涉条纹.(C) 干涉条纹的亮度将发生改变.(D) 不产生干涉条纹. [ ]9.把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d ,双缝到屏的距离为D (D >>d ),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是(A) λD / (nd ) (B) n λD /d .(C) λd / (nD ). (D) λD / (2nd ). [ ]10.在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于图中O 处.现将光源S 向下移动到示意图中的S '位置,则 (A) 中央明条纹也向下移动,且条纹间距不变.(B) 中央明条纹向上移动,且条纹间距不变. (C) 中央明条纹向下移动,且条纹间距增大. (D) 中央明条纹向上移动,且条纹间距增大. [ ]11.在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃n 1λ1 S S '纸中光程比相同厚度的空气的光程大2.5 λ,则屏上原来的明纹处(A) 仍为明条纹;(B) 变为暗条纹;(C) 既非明纹也非暗纹;(D) 无法确定是明纹,还是暗纹.[]12.在牛顿环实验装置中,曲率半径为R的平凸透镜与平玻璃扳在中心恰好接触,它们之间充满折射率为n的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为λ,则反射光形成的干涉条纹中暗环半径r k的表达式为(A) r k =Rkλ.(B) r k =nRk/λ.(C) r k =Rknλ.(D) r k =()nRk/λ.[]13.把一平凸透镜放在平玻璃上,构成牛顿环装置.当平凸透镜慢慢地向上平移时,由反射光形成的牛顿环(A)向中心收缩,条纹间隔变小.(B)向中心收缩,环心呈明暗交替变化.(C)向外扩张,环心呈明暗交替变化.(D)向外扩张,条纹间隔变大.[]14.如图a所示,一光学平板玻璃A与待测工件B之间形成空气劈尖,用波长λ=500 nm (1 nm=10-9 m)的单色光垂直照射.看到的反射光的干涉条纹如图b所示.有些条纹弯曲部分的顶点恰好与其右边条纹的直线部分的连线相切.则工件的上表面缺陷是(A) 不平处为凸起纹,最大高度为500 nm.(B) 不平处为凸起纹,最大高度为250 nm.(C) 不平处为凹槽,最大深度为500 nm.(D) 不平处为凹槽,最大深度为250 nm.[]15.在迈克耳孙干涉仪的一条光路中,放入一折射率为n,厚度为d的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n-1 ) d.(B) 2nd.(C) 2 ( n-1 ) d+λ / 2.(D) nd.(E) ( n-1 ) d.[]二、填空题(共15题)1. 在双缝干涉实验中,两缝分别被折射率为n1和n2的透明薄膜遮盖,二者的厚度均为e.波长为λ的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差∆φ=________.图b2. 如图所示,假设有两个同相的相干点光源S 1和S 2,发出波长为λ的光.A 是它们连线的中垂线上的一点.若在S 1与A 之间插入厚度为e 、折射率为n 的薄玻璃片,则两光源发出的光在A 点的相位差∆φ=_2π (n -1) e / λ_.若已知λ=500 nm ,n =1.5,A 点恰为第四级明纹中心,则e =_____nm .(1 nm =10-9 m)3. 如图所示,两缝S 1和S 2之间的距离为d ,媒质的折射率为n =1,平行单色光斜入射到双缝上,入射角为θ,则屏幕上P 处,两相干光的光程差为___ ______.4.在双缝干涉实验中,所用光波波长λ=5.461×10–4 mm ,双缝与屏间的距离D =300 mm ,双缝间距为d =0.134 mm ,则中央明条纹两侧的两个第三级明条纹之间的距离为________ _______.5.用波长为λ的单色光垂直照射折射率为n 的劈形膜形成等厚干涉条纹,若测得相邻明条纹的间距为l ,则劈尖角θ=________.6.把双缝干涉实验装置放在折射率为n 的媒质中,双缝到观察屏的距离为D ,两缝之间的距离为d (d <<D ),入射光在真空中的波长为λ,则屏上干涉条纹中相 邻明纹的间距是_____________.7.用λ=600 nm 的单色光垂直照射牛顿环装置时,从中央向外数第4个(不计中 央暗斑)暗环对应的空气膜厚度为____________.(1 nm=10-9 m)8.用波长为λ的单色光垂直照射折射率为n 2的劈形膜(如图)图中各部分折射率的关系是n 1<n 2<n 3.观察反射光的干涉条纹,从劈形膜顶开始向右数第5条暗条纹中心所对应的厚度e =____________.9.波长为λ的平行单色光,垂直照射到劈形膜上,劈尖角为θ,劈形膜的折射率为n ,第三条暗纹与第六条暗之间的距离是______.10. 一束波长为λ=600 nm (1 nm=10-9 m)的平行单色光垂直入射到折射率为n =1.33的透明薄膜上,该薄膜是放在空气中的.要使反射光得到最大限度的加强,薄膜最小厚度应为________________nm .11.波长为λ的平行单色光垂直照射到劈形膜上,劈尖角为θ,劈形膜的折射率为n ,第k 级明条纹与第k +5级明纹的间距是__________.12.波长λ=600 nm 的单色光垂直照射到牛顿环装置上,第二个明环与第五个明环所对应的空气膜厚度之差为____nm .(1 nm=10-9 m)n 1n 2n 313.折射率分别为n 1和n 2的两块平板玻璃构成空气劈尖,用波长为λ的单色光垂直照射.如果将该劈尖装置浸入折射率为n 的透明液体中,且n 2>n >n 1,则劈尖厚度为e 的地方两反射光的光程差的改变量是_______.14.如图所示,在双缝干涉实验中SS 1=SS 2,用波长为λ的光照射双缝S 1和S 2,通过空气后在屏幕E 上形成干涉条纹.已知P 点处为第三级明条纹,则S 1和S 2到P 点的光程差为___3λ ____.若将整个装置放于某种透明液体中,P 点为第四级明条纹,则该液体的折射率n =________.15.已知在迈克耳孙干涉仪中使用波长为λ的单色光.在干涉仪的可动反射镜移动距离d 的过程中,干涉条纹将移动__________条. 三、计算题(共5题)1.白色平行光垂直入射到间距为a =0.25 mm 的双缝上,距D =50 cm 处放置屏幕,分别求第一级和第五级明纹彩色带的宽度.(设白光的波长范围是从400nm 到760nm .这里说的“彩色带宽度” 指两个极端波长的同级明纹中心之间的距离.) (1 nm=10-9 m)2.在双缝干涉实验中,波长λ=550 nm 的单色平行光垂直入射到缝间距a =2×10-4 m 的双缝上,屏到双缝的距离D =2 m .求:(1) 中央明纹两侧的两条第10级明纹中心的间距;(2) 用一厚度为e =6.6×10-5 m 、折射率为n =1.58的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处?(1 nm = 10-9 m)3.用波长为500 nm (1 nm=10-9 m)的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上.在观察反射光的干涉现象中,距劈形膜棱边l = 1.56 cm 的A 处是从棱边算起的第四条暗条纹中心.(1) 求此空气劈形膜的劈尖角θ;(2) 改用600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹还是暗条纹?(3) 在第(2)问的情形从棱边到A 处的范围内共有几条明纹?几条暗纹?2分4.图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸表面的曲率半径是R =400 cm .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30 cm . (1) 求入射光的波长. (2) 设图中OA =1.00 cm ,求在半径为OA 的范围内可观察到的明环数目.5.用波长λ=500 nm 的平行光垂直照射折射率n =1.33的劈形膜,观察反射光的等厚干涉条纹.从劈形膜的棱算起,第5条明纹中心对应的膜厚度是多少? P E光的干涉习题答案一、选择题1、B ;2、C ;3、B ;4、A ;5、C ;6、B ;7、A ;8、D ;9、A ;10、B ;11、B ;12、B ;13、B ;14、B ;15、A二、填空题1、 2π(n 1 – n 2) e / λ2、4×103 nm3、d sin θ +(r 1-r 2)4、7.33 mm5、nl 2λ6、D λ / (dn )7、1.2=2λ μm8、249n λ9、3λ / (2n θ)10、113nm11、5λ / (2n θ)12、900 nm13、2 ( n – 1) e – λ /214、1.3315、2d /λ三、计算题1解:由公式x =kD λ / a 可知波长范围为∆λ时,明纹彩色宽度为∆x k =kD ∆λ / a2分 由 k =1可得,第一级明纹彩色带宽度为∆x 1=500×(760-400)×10-6 / 0.25=0.72 mm2分 k =5可得,第五级明纹彩色带的宽度为∆x 5=5·∆x 1=3.6 mm1分2解:(1) ∆x =20 D λ / a2分 =0.11 m2分 (2) 覆盖云玻璃后,零级明纹应满足(n -1)e +r 1=r 22分 设不盖玻璃片时,此点为第k 级明纹,则应有r 2-r 1=k λ 2分所以 (n -1)e = k λ k =(n -1) e / λ=6.96≈7 零级明纹移到原第7级明纹处 2分3解:(1) 棱边处是第一条暗纹中心,在膜厚度为e 2=21λ处是第二条暗纹中心,依此可知第四条暗纹中心处,即A 处膜厚度 e 4=λ23 ∴ ()l l e 2/3/4λθ===4.8×10-5 rad 5分(2) 由上问可知A 处膜厚为 e 4=3×500 / 2 nm =750 nm对于λ'=600 nm 的光,连同附加光程差,在A 处两反射光的光程差为λ'+2124e ,它与波长λ'之比为0.321/24=+'λe .所以A 处是明纹 3分 (3) 棱边处仍是暗纹,A 处是第三条明纹,所以共有三条明纹,三条暗纹.4解:(1) 明环半径 ()2/12λ⋅-=R k r 2分()Rk r 1222-=λ=5×10-5 cm (或500 nm) 2分 (2) (2k -1)=2 r 2 / (R λ) 对于r =1.00 cm , k =r 2 / (R λ)+0.5=50.5 3分 故在OA 范围内可观察到的明环数目为50个. 1分5解: 明纹, 2ne +λ21=k λ (k =1,2,…) 3分 第五条,k =5,ne 2215λ⎪⎭⎫ ⎝⎛-==8.46×10-4 mm 2分。

大学物理题库-质点运动学习题与答案解析

大学物理题库-质点运动学习题与答案解析

第一章 质点运动学一、选择题:1、在平面上运动的质点,如果其运动方程为j bt i at r22+= (其中b a ,为常数),则该质点作[ ](A ) 匀速直线运动 (B ) 变速直线运动 (C ) 抛物线运动 (D ) 一般曲线运动2、质点以速度124-⋅+=s m t v 作直线运动,沿质点运动方向作ox 轴,并已知s t 3=时,质点位于m x 9=处,则该质点的运动方程为[ ](A) t x 2= (B) 2214t t x += (C) 123143-+=t t x (D) 123143++=t t x3、某雷达刚开机时发现一敌机的位置在j i 96+处,经过3秒钟后,该敌机的位置在ji612+处,若i 、j分别表示直角坐标系中y x ,的单位矢量,则敌机的平均速度为[ ](A )j i 36+ (B )j i 36-- (C )j i -2 (D )j i+-2 4、质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2πR /T , 2πR/T . (B) 0 , 2πR /T(C) 0 , 0. (D) 2πR /T , 0. [ ]5、一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为v ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有:(A )v v v,v == (B )v v v,v =≠(C )v v v,v ≠≠(D )v v v,v ≠=[ ] 6、一运动质点的位置矢量为)y ,x (r,其速度大小为[ ](A)dt dr (B )dt r d (C )dt r d (D )dt r d (E )22)()(dt dydt dx +7、某物体的运动规律为t kv dtdv2-=,式中的k 为大于零的常数,当0=t 时,初速度为0v ,则速度v 与时间t 的函数关系是:[ ](A )0221v kt v += (B ) 0221v kt v +-=(C ) 021211v kt v += (D ) 021211v kt v +-=8、一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A) 等于零. (B) 等于-2 m/s .(C) 等于2 m/s . (D) 不能确定. [ ] 9、质点作曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,S 表示路程,a 表示切向加速度,下列表达式中,(1) a t = d /d v , (2) v =t r d /d , (3) v =t S d /d , (4) t a t =d /d v.(A) 只有(1)、(4)是对的. (B) 只有(2)、(4)是对的. (C) 只有(2)是对的.(D) 只有(3)是对的. [ ] 10、一质点在运动过程中,0=dtr d ,而=dtdv常数,这种运动属于[ ] (A )初速为零的匀变速直线运动; (B )速度为零而加速度不为零的运动; (C )加速度不变的圆周运动; (D )匀变速率圆周运动。

大学物理题库第二章(一)南京工程学院

大学物理题库第二章(一)南京工程学院

1【单选题】质量分别为m A和m B (m A>m B)、速度分别为和(v A> v B)的两质点A和B,受到相同的冲量作用,则•A、A的动量增量的绝对值比B的小.•B、A的动量增量的绝对值比B的大.•C、A、B的动量增量相等.•D、A、B的速度增量相等.正确答案:C2【单选题】质量为m的小球,沿水平方向以速率v与固定的竖直壁作弹性碰撞,设指向壁内的方向为正方向,则由于此碰撞,小球的动量增量为•A、mv.•B、0.•C、2mv•D、-2mv正确答案:D3【单选题】质量为20 g的子弹沿X轴正向以500 m/s的速率射入一木块后,与木块一起仍沿X轴正向以50 m/s的速率前进,在此过程中木块所受冲量的大小为•A、9 N·s .•B、-9 N·s.•C、10 N·s.•D、-10 N·s.正确答案:A4【单选题】{质量为m的质点,以不变速率v沿图中正三角形ABC的水平光滑轨道运动.质点越过A角时, 作用于质点的冲量的大小为:}•A、mv.•B、•C、•D、2mv.正确答案:C5【单选题】一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块, 其中一块作自由下落,则另一块着地点(飞行过程中阻力不计)•A、比原来更远.•B、比原来更近.•C、仍和原来一样远.•D、条件不足,不能判定.正确答案:A6【单选题】在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)()A、总动量守恒.B、总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.C、总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.D、总动量在任何方向的分量均不守恒.正确答案:C7【单选题】一质点在几个外力同时作用下运动时,下述哪种说法正确? •A、质点的动量改变时,质点的动能一定改变.•B、质点的动能不变时,质点的动量也一定不变.•C、外力的冲量是零,外力的功一定为零.•D、外力的功为零,外力的冲量一定为零.正确答案:C8【单选题】已知两个物体A和B的质量以及它们的速率都不相同,若物体A的动量在数值上比物体B的大,则A的动能E KA与B的动能E KB之间()•A、E KB一定大于E KA.•B、E KB一定小于E KA.•C、E KB=E KA.•D、不能判定谁大谁小.正确答案:D9【简答题】质量m=1 kg的物体,在坐标原点处从静止出发在水平面内沿x轴运动,其所受合力方向与运动方向相同,合力大小为F=3+2x (SI),那么,物体在开始运动的3 m内,合力所作的功W=___________J。

大学物理第七章习题及答案

大学物理第七章习题及答案

第七章 振动学基础一、填空1.简谐振动的运动学方程是 。

简谐振动系统的机械能是 。

2.简谐振动的角频率由 决定,而振幅和初相位由 决定。

3.达到稳定时,受迫振动的频率等于 ,发生共振的条件 。

4.质量为10-2㎏的小球与轻质弹簧组成的系统,按20.1cos(8)3x t ππ=-+的规律做运动,式中t 以s 为单位,x 以m 为单位,则振动周期为 初相位 速度最大值 。

5.物体的简谐运动的方程为s ()x A in t ωα=-+,则其周期为 ,初相位6.一质点同时参与同方向的简谐振动,它们的振动方程分别为10.1cos()4x t πω=+,20.1cos()4x t πω=-,其合振动的振幅为 ,初相位为 。

7.一质点同时参与两个同方向的简谐振动,它们的振动方程分别为)4cos(06.01πω+=t x ,250.05cos()4x t πω=+,其合振动的振幅为 ,初相位为 。

8.相互垂直的同频率简谐振动,当两分振动相位差为0或π时,质点的轨迹是 当相位差为2π或32π时,质点轨迹是 。

二、简答1.简述弹簧振子模型的理想化条件。

2.简述什么是简谐振动,阻尼振动和受迫振动。

3.用矢量图示法表示振动0.02cos(10)6x t π=+,(各量均采用国际单位).三、计算题7.1 质量为10×10-3㎏的小球与轻质弹簧组成的系统,按X=0.1cos (8πt+2π/3)的规律做运动,式中t 以s 为单位,x 以m 为单位,试求:(1)振动的圆频率,周期,初相位及速度与加速度的最大值;(2)最大恢复力,振动能量;(3)t=1s ,2s ,5s ,10s 等时刻的相位是多少?(4)画出振动的旋转矢量图,并在图中指明t=1s ,2s ,5s ,10s 等时刻矢量的位置。

7.2 一个沿着X 轴做简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示,如果在t=0时刻,质点的状态分别为:(1)X 0=-A ;(2)过平衡位置向正向运动;(3)过X=A/2处向负向运动;(4)过X=2A处向正向运动。

大学物理题库-牛顿定律习题与答案解析

大学物理题库-牛顿定律习题与答案解析

7-2 图第二章 牛顿定律一、选择题:1、如图2-1所示,滑轮、绳子的质量均忽略不计,忽略一切摩擦阻力,物体A 的质量A m 大于物体B 的质量B m 。

在A 、B 运动过程中弹簧秤的读数是:[ ](A )g m m B A )(+ (B )g m m B A )(- (C )g m m m m B A B A -4 (D )g m m m m BA BA +42、在升降机的天花板上拴一轻绳,其下端系有一重物。

当升降机以加速度a 上升时,绳中的张力正好等于所能承受的最大张力的一半;当绳子刚好被拉断时升降机上升的加速度为:[ ] (A )a 2 (B ))(2g a + (C )g a +2 (D )g a +3、如图2-7所示,一竖立的圆筒形转笼,其半径为R ,绕中心轴o o '轴旋转,一物块A 紧靠在圆筒的内壁上,物块与圆筒间的摩擦系数为μ,要使A 不落下,则圆筒旋转的角速度ω至少应为:[ ](A )Rgμ (B )g μ (C )Rgμ (D )R g4、如图2-8所示,质量为m作用力的大小为:[ ](A )θsin mg (B )θcos mg(C )θcos mg (D )θsin mg5、光滑的水平桌面上放有两块相互接触的滑块,质量分别为m 1和m 2,且m 1<m 2 .今对两滑块施加相同的水平作用力,如图所示.设在运动过程中,两滑块不离开,则两滑块之间的相互作用力N 应有 (A) N =0. (B) 0 < N < F .(C) F < N <2F. (D) N > 2F. [ ]6、质量为m 的小球,放在光滑的木板和光滑的墙壁之间,并保持平衡,如图所示.设木板和墙壁之间的夹角为α,当α逐渐增大时,小球对木板的压力将(A) 增加.(B) 减少. (C) 不变.(D) 先是增加,后又减小.压力增减的分界角为α=45°.Bm 1-2 图A8-2 图9-2 图 [ ]7、水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ.现加一恒力F 如图所示.欲使物体A 有最大加速度,则恒力F与水平方向夹角θ 应满足(A) sin θ =μ. (B) cos θ =μ. (C) tg θ =μ. (D) ctg θ =μ. [ ] 8、在作匀速转动的水平转台上,与转轴相距R 处有一体积很小的工件A ,如图所示.设工件与转台间静摩擦系数为μs ,若使工件在转台上无滑动,则转台的角速度ω应满足(A) Rgs μω≤. (B) Rgs 23μω≤. (C) R gs μω3≤. (D)Rg s μω2≤. [ ]9、一个圆锥摆的摆线长为l ,摆线与竖直方向的夹角恒为θ,如图所示.则摆锤转动的周期为 (A)g l. (B) gl θcos . (C) g l π2. (D) gl θπcos 2 . [ ]10、光滑的内表面半径为10 cm 的半球形碗,以匀角速度ω绕其对称OC 旋转.已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4 cm ,则由此可推知碗旋转的角速度约为 (A) 10 rad/s . (B) 13 rad/s .(C) 17 rad/s (D) 18 rad/s . [ ]二、填空题:1、已知质量为m 的质点沿x 轴受力为)2(+=x k F ,其中k 为常数。

大学物理题库-第8章-电磁感应习题(含答案解析)

大学物理题库-第8章-电磁感应习题(含答案解析)

第八章 电磁感应一 选择题1、 (130101104)一圆形线圈的一半放在分布于方形区域内的匀强磁场B中,另一半位于磁场之外,如图13-2所示。

欲使圆线圈中产生逆时针方向的感应电流,应使[ ](A )线圈向右平移 (B )线圈向上平移 (C )线圈向左平移 (D )磁场强度减弱2、(130201202) 如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc回路中的感应电动势ε和a 、c 两点间的电势差U a – U c 为 (A)ε=0,U a – U c =221l B ω.(B) ε=0,U a – U c =221l B ω-.(C) ε=2l B ω,U a – U c =221l B ω.(D) ε=2l B ω,U a – U c =221l B ω-. [ ]3、(130201204)如图13-4所示,在圆柱形空间内有一磁感应强度为B的均匀磁场,其变化率为dt dB 。

若在图中a 、b 两点间放置一直导线ab 和弯曲导线ab ,下列说法中正确的是[ ] (A )电动势只在ab 中产生 (B )电动势只在ab 中产生(C )ab 和ab 中都产生电动势,且大小相等(D )ab 中的电动势小于ab 中的电动势.4、(130201205)均匀磁场被局限在圆柱形空间内,且随时间变化。

图13-22所示为圆柱形截面,M 、N 分别为圆柱形空间内、外两点,M E 、N E 分别表示这两点的有旋电场强度大小,则 [ ](A )0=M E , 0=N E (B )0=M E ,0≠N E (C )0≠M E ,0≠N E (D ) 0≠M E ,0=N E5、 (130301203)已知圆环式螺线管的自感系数为L ,若将该螺线管锯成两个半环式的螺线管,则两个半环螺线管的自感系数[ ](A )都等于2/L (B )一个大于2/L ,另一个小于2/L (C )都大于2/L (D )都小于2/LB⨯⨯⨯⨯⨯⨯⨯⨯⨯图13-2⨯⨯⨯Bb ⨯⨯⨯⨯a 图13-4 N⨯⨯B⨯⨯M 图13-22Ba bclω6、 (130401101)用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m =(A) 只适用于无限长密绕螺线管. (B) 只适用于单匝圆线圈. (C) 只适用于一个匝数很多,且密绕的螺绕环.(D) 适用于自感系数L一定的任意线圈. [ ]7、(130401102)真空中一根无限长直导线上通有电流强度为I 的电流,则距导线垂直距离为a 的空间某点处的磁能密度为[ ] (A )200)2(21a I πμμ (B )200)2(21a I πμμ (C )20)2(21a I πμ (D )200)2(21aI μμ 8、(130401201) 有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为r 1和r 2.管内充满均匀介质,其磁导率分别为μ1和μ2.设r 1∶r 2=1∶2,μ1∶μ2=2∶1,当将两只螺线管串联在电路中通电稳定后,其自感系数之比L 1∶L 2与磁能之比W m 1∶W m 2分别为: (A) L 1∶L 2=1∶1,W m 1∶W m 2 =1∶1. (B) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶1. (C) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶2.(D) L 1∶L 2=2∶1,W m 1∶W m 2 =2∶1. [ ] 9、(130401301)两根无限长的平行导线,其间距离为d ,与电源组成回路如图13-21所示,已知导线上的电流为I ,两根导线横截面半径均为0r ,设用L 表示两导线回路单位长度的自感系数,则沿导线单位长度的空间总磁能0W 为[ ](A )221LI (B )rdr r d I r I LI ππμπμ2])(22[2120002+-+⎰∞(C )∞ (D )rdI LI ln 22102πμ+10、(130501101)对位移电流,有下述四种说法,请指出哪一种说法正确.(A) 位移电流是指变化电场. (B) 位移电流是由线性变化磁场产生的. (C) 位移电流的热效应服从焦耳─楞次定律.(D) 位移电流的磁效应不服从安培环路定理. [ ]11、 如图,平板电容器(忽略边缘效应)充电时,沿环路L 1的磁场强度H 的环流与沿环路L 2的磁场强度H的环流两者,必有:(A) >'⎰⋅1d L l H ⎰⋅'2d L l H . (B) ='⎰⋅1d L l H ⎰⋅'2d L l H.(C) <'⎰⋅1d L l H⎰⋅'2d L l H. (D)0d 1='⎰⋅L l H. [ ]二 填空题1、如图所示,在一长直导线L 中通有电流I ,ABCD 为一矩形线圈,它与L 皆在纸面内,且AB 边与L 平行. (1) 矩形线圈在纸面内向右移动时,线圈中感应电动势方 向为________________________________.2r d图13-21I LADC BHL 1L 2(2) 矩形线圈绕AD 边旋转,当BC 边已离开纸面正向外运 动时,线圈中感应动势的方向为_________________________.2、(130102201)半径为r 的小绝缘圆环,置于半径为R 的大导线圆环中心,二者在同一平面内,且r <<R .在大导线环中通有正弦电流(取逆时针方向为正)I =I 0sin ωt ,其中ω、I 0为常数,t 为时间,则任一时刻小线环中感应电动势(取逆时针方向为正)为_________________________________.3、(130202201)长为l 的金属直导线在垂直于均匀磁场的平面内以角速度ω转动.如果转轴在导线上的位置是在____________,整个导线上的电动势为最大,其值为____________;如果转轴位置是在____________,整个导线上的电动势为最小,其值为____________.4、(130202203)如图13-23所示,半径为R 的圆弧abc 在磁感应强度为B的均匀磁场中沿x轴向右移动,已知︒=∠=∠150cox aox ,若移动速度为v,则在圆弧abc 中的感应电动势为 。

《大学物理》各章练习题库

《大学物理》各章练习题库

《大学物理》各章练习题库第一章 质点运动学姓名:__________ 学号:_________ 专业及班级:_________1. 某质点的运动方程为6533+-=t t x (SI),则该质点作( )(A)匀加速直线运动,加速度为正值; (B)匀加速直线运动,加速度为负值; (C)变加速直线运动,加速度为正值; (D)变加速直线运动,加速度为负值。

2.一质点沿直线运动,其运动方程为)(62SI t t x -=,则在t 由0至4s 的时间间隔内, 质点的位移大小为:( )A m 6;B m 8;C m 10;D m 12。

3.下列说法正确的是( )A. 在圆周运动中,加速度的方向一定指向圆心B. 匀速率圆周运动的速度和加速度都恒定不变C. 物体作曲线运动时,速度方向一定在运动轨道的切向方向,法向分速度恒等于零,因此其法向加速度也一定等于零D. 物体作曲线运动时,必定有加速度,加速度的法向分量一定不等于零4.某人以4km/h 的速率向东前进时,感觉风从正北吹来,如将速率增加一倍,则感觉风从东北方向吹来。

实际风速与风向为( )A. 4km/h ,从北方吹来B. 4km/h ,从西北方吹来C. 4√2km/h ,从东北方吹来D. 4√2km/h ,从西北方吹来5.沿半径为R 的圆周运动,运动学方程为 212t θ=+ (SI) ,则t时刻质点的法向加速度大小为n a = 。

6.在XY 平面内有一运动的质点,其运动方程为)(5sin 55cos 5SI j t i t r+=,则t 时刻其速度=v_____________________________。

7.灯距地面高度为h 1,一个人身高为h 2,在灯下以匀速率v 沿水平直线行走,如图所示.他的头顶在地上的影子M 点沿地面移动的速度为v M = 。

8.质点P 在水平面内沿一半径为1m 的圆轨道转动,转动的角速度ω与时间t 的关系为2kt =ω,已知t =2s 时,质点P 的速率为16m/s ,试求t=1s 时,质点P 的速率与加速度的大小。

大学物理第7章电场题库答案(含计算题答案)

大学物理第7章电场题库答案(含计算题答案)

大学物理第7章电场题库答案(含计算题答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN9题图 第七章 电场填空题 (简单)1、两无限大平行平面的电荷面密度分别为σ+和σ+,则两无限大带电平面外的电场强度大小为σε ,方向为 垂直于两带电平面并背离它们 。

2、在静电场中,电场强度E 沿任意闭合路径的线积分为 0 ,这叫做静电场的 环路定理 。

3、静电场的环路定理的数学表达式为 0l E dl =⎰ ,该式可表述为 在静电场中,电场强度的环流恒等于零 。

4、只要有运动电荷,其周围就有 磁场 产生;5、一平行板电容器,若增大两极板的带电量,则其电容值会 不变 ;若在两极板间充入均匀电介质,会使其两极板间的电势差 减少 。

(填“增大”,“减小”或“不变”)6、在静电场中,若将电量为q=2×108库仑的点电荷从电势V A =10伏的A 点移到电势V B = -2伏特的B 点,电场力对电荷所作的功A ab = 92.410⨯ 焦耳。

(一般)7、当导体处于静电平衡时,导体内部任一点的场强 为零 。

8、电荷在磁场中 不一定 (填一定或不一定)受磁场力的作用。

9、如图所示,在电场强度为E 的均匀磁场中,有一半径为R 的半球面,E 与半球面轴线的夹角为α。

则通过该半球面的电通量为 2cos B R πα-⋅ 。

10、真空中两带等量同号电荷的无限大平行平面的电荷面密度分别为σ+和σ+,则两无限大带电平面之间的电场强度大小为 0 ,两无限大带电平面外的电场强度大小为σε 。

11、在静电场中,电场力所做的功与 路径 无关,只与 起点 和 终点位置 有关。

12、由高斯定理可以证明,处于静电平衡态的导体其内部各处无 净电荷 ,电荷只能分布于导体 外表面 。

因此,如果把任一物体放入空心导体的空腔内,该物体就不受任何外 电场的影响,这就是 静电屏蔽 的原理。

(一般)13、静电场的高斯定理表明静电场是 有源 场, (一般)14、带均匀正电荷的无限长直导线,电荷线密度为λ。

大学物理试题库及答案详解考试必备-分章节题库

大学物理试题库及答案详解考试必备-分章节题库

第一章 质点运动学1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( )(A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r(C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s(D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s(2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v(C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P ′点,各量关系如图所示, 其中路程Δs =PP ′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故ts t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x . 下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解 tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r 表示速度矢量;在自然坐标系中速度大小可用公式ts d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D). 1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t.下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的(C) 只有(2)是对的 (D) 只有(3)是对的分析与解 td d v 表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;tr d d 在极坐标系中表示径向速率v r (如题1 -2 所述);t s d d 在自然坐标系中表示质点的速率v ;而td d v 表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1 -4 一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).*1 -5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v 0 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( )(A) 匀加速运动,θcos 0v v = (B) 匀减速运动,θcos 0v v =(C) 变加速运动,θcos 0v v = (D) 变减速运动,θcos 0v v =(E) 匀速直线运动,0v v =分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为22h l x -=,其中绳长l 随时间t 而变化.小船速度22d d d d h l t llt x -==v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θl h l cos /0220v v v =-=,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C).讨论 有人会将绳子速率v 0按x 、y 两个方向分解,则小船速度θcos 0v v =,这样做对吗?1 -6 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小;(2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx 来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x 两式计算. 解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx 得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t x v 2s0.422m.s 36d d -=-==t t x a 1 -7 一质点沿x 轴方向作直线运动,其速度与时间的关系如图(a)所示.设t =0 时,x =0.试根据已知的v -t 图,画出a -t 图以及x -t 图.分析根据加速度的定义可知,在直线运动中v-t曲线的斜率为加速度的大小(图中AB、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a-t图上是平行于t轴的直线,由v-t 图中求出各段的斜率,即可作出a-t图线.又由速度的定义可知,x-t曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t图应是一直线,而匀变速直线运动所对应的x–t 图为t的二次曲线.根据各段时间内的运动方程x=x(t),求出不同时刻t的位置x,采用描数据点的方法,可作出x-t图.解将曲线分为AB、BC、CD 三个过程,它们对应的加速度值分别为2s m 20-⋅=--=AB A B AB t t a v v (匀加速直线运动) 0=BC a (匀速直线运动)2s m 10-⋅-=--=CD C D CD t t a v v (匀减速直线运动) 根据上述结果即可作出质点的a -t 图[图(B)].在匀变速直线运动中,有2021t t x x ++=v 由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作1s m 20-⋅=v 的匀速直线运动, 其x -t 图是斜率k =20的一段直线[图(c)].1 -8 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求:(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;*(4) 2 s 内质点所走过的路程s .分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,可根据其定义计算.其中对s 的求解用到积分方法,先在轨迹上任取一段微元d s ,则22)d ()d (d y x s +=,最后用⎰=s s d 积分求s.解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -= 这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置.(3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x 其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r 而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r*(4) 如图(B)所示,所求Δs 即为图中PQ 段长度,先在其间任意处取AB 微元d s ,则22)d ()d (d y x s +=,由轨道方程可得x x y d 21d -=,代入d s ,则2s内路程为 m 91.5d 4d 402=+==⎰⎰x x s s Q P1 -9 质点的运动方程为23010t t x +-=22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t tx x 6010d d +-==v t ty y 4015d d -==v 当t =0 时, v o x =-10 m ·s-1 , v o y =15 m ·s-1 ,则初速度大小为120200s m 0.18-⋅=+=y x v v v 设v o 与x 轴的夹角为α,则23tan 00-==x yαv v α=123°41′(2) 加速度的分量式为2s m 60d d -⋅==t a x x v , 2s m 40d d -⋅-==ta y y v 则加速度的大小为222s m 1.72-⋅=+=y x a a a 设a 与x 轴的夹角为β,则32tan -==x y a a β β=-33°41′(或326°19′)1 -10 一升降机以加速度1.22 m ·s-2上升,当上升速度为2.44 m ·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v 20221gt t h y -+=v 当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v v s 705.02=+=ag h t (2) 螺丝相对升降机外固定柱子下降的距离为m 716.021202=+-=-=gt t y h d v 解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-= s 705.02=+=ag h t (2) 由于升降机在t 时间内上升的高度为2021at t h +='v 则 m 716.0='-=h h d1 -11 一质点P 沿半径R =3.0 m 的圆周作匀速率运动,运动一周所需时间为20.0s,设t =0 时,质点位于O 点.按(a )图中所示Oxy 坐标系,求(1) 质点P 在任意时刻的位矢;(2)5s时的速度和加速度.分析 该题属于运动学的第一类问题,即已知运动方程r =r (t )求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O ′x ′y ′坐标系,并采用参数方程x ′=x ′(t )和y ′=y ′(t )来表示圆周运动是比较方便的.然后,运用坐标变换x =x 0 +x ′和y =y 0 +y ′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1)如图(B)所示,在O ′x ′y ′坐标系中,因t Tθπ2=,则质点P 的参数方程为t TR x π2sin =',t TR y π2cos -=' 坐标变换后,在O x y 坐标系中有t T R x x π2sin ='=, R t TR y y y +-=+'=π2cos 0 则质点P 的位矢方程为j i r ⎪⎭⎫ ⎝⎛+-+=R t T R t T R π2cos π2sin j i )]π1.0(cos 1[3)π1.0(sin 3t t -+=(2) 5s时的速度和加速度分别为j j i r )s m π3.0(π2sin π2π2cos π2d d 1-⋅=+==t TT R t T T R t v i j i r a )s m π03.0(π2cos )π2(π2sin )π2(d d 222222-⋅-=+-==t TT R t T T R t 1 -12 地面上垂直竖立一高20.0 m 的旗杆,已知正午时分太阳在旗杆的正上方,求在下午2∶00 时,杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至20.0 m ?分析 为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.解 设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s =h tg ωt ,下午2∶00 时,杆顶在地面上影子的速度大小为132s m 1094.1cos d d --⋅⨯===tωωh t s v 当杆长等于影长时,即s =h ,则s 606034πarctan 1⨯⨯===ωh s ωt 即为下午3∶00 时.1 -13 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m ·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m ·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=t t a 0d d 0v v v 得 03314v v +-=t t (1) 由 ⎰⎰=tx x t x 0d d 0v得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m ·s-1代入(1) (2)得v 0=-1 m ·s-1,x 0=0.75 m .于是可得质点运动方程为75.0121242+-=t t x 1 -14 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v 后再两边积分. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v v B A ta -==d d (1) 用分离变量法把式(1)改写为t B A d d =-vv (2) 将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v v v v v得石子速度 )1(Bt e BA --=v 由此可知当,t →∞时,BA →v 为一常量,通常称为极限速度或收尾速度. (2) 再由)1(d d Bt e BA t y --==v 并考虑初始条件有 t e BA y t Bt y d )1(d 00⎰⎰--= 得石子运动方程)1(2-+=-Bt e BA tB A y 1 -15 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m ·s-2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即20021t a t x x x x ++=v 和20021t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下.解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==t t t t 000)d 46(d d j i a v v j i t t 46+=v 又由td d r =v 及初始条件t =0 时,r 0=(10 m)i ,积分可得 ⎰⎰⎰+==tt rr t t t t 00)d 46(d d 0j i r v j i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2y =2t 2消去参数t ,可得运动的轨迹方程3y =2x -20 m 这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示.1 -16 一质点在半径为R 的圆周上以恒定的速率运动,质点由位置A 运动到位置B,OA 和OB 所对的圆心角为Δθ.(1) 试证位置A 和B 之间的平均加速度为)Δ(/)Δcos 1(22θR θa v -=;(2) 当Δθ分别等于90°、30°、10°和1°时,平均加速度各为多少? 并对结果加以讨论.分析 瞬时加速度和平均加速度的物理含义不同,它们分别表示为td d v =a 和t ΔΔv =a .在匀速率圆周运动中,它们的大小分别为Ra n 2v =,t a ΔΔv = ,式中|Δv |可由图(B)中的几何关系得到,而Δt 可由转过的角度Δθ 求出.由计算结果能清楚地看到两者之间的关系,即瞬时加速度是平均加速度在Δt →0 时的极限值.解 (1) 由图(b)可看到Δv =v 2 -v 1 ,故θΔcos 2Δ212221v v v v -+=v)Δcos 1(2θ-=v而vv θR s t ΔΔΔ== 所以θR θt a Δ)cos Δ1(2ΔΔ2v -==v(2) 将Δθ=90°,30°,10°,1°分别代入上式,得R a 219003.0v ≈,Ra 229886.0v ≈ R a 239987.0v ≈,Ra 24000.1v ≈ 以上结果表明,当Δθ→0 时,匀速率圆周运动的平均加速度趋近于一极限值,该值即为法向加速度R2v . 1 -17 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t=1.0s 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即tΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ. 解 (1) 由参数方程x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 222220.4d d d d )(-⋅-=+=s m ty t x t则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v 则m 17.112==na ρv 1 -18 飞机以100 m ·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =vt , y =1/2 gt 2飞机水平飞行速度v =100 m ·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gy x v(2) 视线和水平线的夹角为 o 5.12arctan==xy θ (3) 在任意时刻物品的速度与水平轴的夹角为 vv v gt αx y arctan arctan == 取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t 2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a n 1 -19 如图(a)所示,一小型迫击炮架设在一斜坡的底端O 处,已知斜坡倾角为α,炮身与斜坡的夹角为β,炮弹的出口速度为v 0,忽略空气阻力.求:(1)炮弹落地点P 与点O 的距离OP ;(2) 欲使炮弹能垂直击中坡面.证明α和β必须满足αβtan 21tan =并与v 0 无关. 分析 这是一个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原理,建立一个恰当的坐标系,将运动分解的话,求解起来并不容易.现建立如图(a)所示坐标系,则炮弹在x 和y 两个方向的分运动均为匀减速直线运动,其初速度分别为v 0cos β和v 0sin β,其加速度分别为g sin α和gcos α.在此坐标系中炮弹落地时,应有y =0,则x =OP .如欲使炮弹垂直击中坡面,则应满足v x =0,直接列出有关运动方程和速度方程,即可求解.由于本题中加速度g 为恒矢量.故第一问也可由运动方程的矢量式计算,即20g 21t t +=v r ,做出炮弹落地时的矢量图[如图(B)所示],由图中所示几何关系也可求得OP (即图中的r 矢量).(1)解1 由分析知,炮弹在图(a)所示坐标系中两个分运动方程为αgt βt x sin 21cos 20-=v (1) αgt βt y cos 21sin 20-=v (2) 令y =0 求得时间t 后再代入式(1)得)cos(cos sin 2)sin sin cos (cos cos sin 2220220βααg ββαβααg βx OP +=-==v v 解2 做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有βgt αt βαsin 212πsin 2πsin 20=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛--v r从中消去t 后也可得到同样结果.(2) 由分析知,如炮弹垂直击中坡面应满足y =0 和v x =0,则0sin cos 0=-=αgt βx v v (3)由(2)(3)两式消去t 后得αβsin 21tan = 由此可知.只要角α和β满足上式,炮弹就能垂直击中坡面,而与v 0 的大小无关.讨论 如将炮弹的运动按水平和竖直两个方向分解,求解本题将会比较困难,有兴趣读者不妨自己体验一下.1 -20 一直立的雨伞,张开后其边缘圆周的半径为R ,离地面的高度为h ,(1) 当伞绕伞柄以匀角速ω旋转时,求证水滴沿边缘飞出后落在地面上半径为g ωh R r /212+=的圆周上;(2) 读者能否由此定性构想一种草坪上或农田灌溉用的旋转式洒水器的方案?分析 选定伞边缘O 处的雨滴为研究对象,当伞以角速度ω旋转时,雨滴将以速度v 沿切线方向飞出,并作平抛运动.建立如图(a)所示坐标系,列出雨滴的运动方程并考虑图中所示几何关系,即可求证.由此可以想像如果让水从一个旋转的有很多小孔的喷头中飞出,从不同小孔中飞出的水滴将会落在半径不同的圆周上,为保证均匀喷洒对喷头上小孔的分布还要给予精心的考虑.解 (1) 如图(a)所示坐标系中,雨滴落地的运动方程为t ωR t x ==v (1)h gt y ==221 (2) 由式(1)(2)可得 g h ωR x 2222= 由图(a)所示几何关系得雨滴落地处圆周的半径为22221ωgh R R x r +=+= (2) 常用草坪喷水器采用如图(b)所示的球面喷头(θ0 =45°)其上有大量小孔.喷头旋转时,水滴以初速度v 0 从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同一水平面上.则以φ角喷射的水柱射程为gR 2sin 0v = 为使喷头周围的草坪能被均匀喷洒,喷头上的小孔数不但很多,而且还不能均匀分布,这是喷头设计中的一个关键问题.1 -21 一足球运动员在正对球门前25.0 m 处以20.0 m ·s-1 的初速率罚任意球,已知球门高为3.44 m .若要在垂直于球门的竖直平面内将足球直接踢进球门,问他应在与地面成什么角度的范围内踢出足球? (足球可视为质点)分析 被踢出后的足球,在空中作斜抛运动,其轨迹方程可由质点在竖直平面内的运动方程得到.由于水平距离x 已知,球门高度又限定了在y 方向的范围,故只需将x 、y 值代入即可求出.解 取图示坐标系Oxy ,由运动方程θt x cos v =, 221sin gt θt y -=v 消去t 得轨迹方程222)tan 1(2tan x θg θx y +-=v以x =25.0 m,v =20.0 m ·s-1 及3.44 m ≥y ≥0 代入后,可解得71.11°≥θ1 ≥69.92°27.92°≥θ2 ≥18.89°如何理解上述角度的范围?在初速一定的条件下,球击中球门底线或球门上缘都将对应有两个不同的投射倾角(如图所示).如果以θ>71.11°或θ <18.89°踢出足球,都将因射程不足而不能直接射入球门;由于球门高度的限制,θ 角也并非能取71.11°与18.89°之间的任何值.当倾角取值为27.92°<θ <69.92°时,踢出的足球将越过门缘而离去,这时球也不能射入球门.因此可取的角度范围只能是解中的结果.1 -22 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt ts -==0d d v v 其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为R )(402222bt b a a a a t tn -+=+=v 其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v = (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为 bs s s t 2200v =-= 因此质点运行的圈数为bRR s n π4π220v == 1 -23 一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =2.0s 时测得轮缘一点的速度值为4.0 m ·s-1.求:(1) 该轮在t ′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2 得比例系数322s rad 2-⋅===Rtt ωk v 所以 22)(t t ωω==则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω2s rad 0.24d d -⋅='==t tωα 2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+= ()()2222s m 01.1-⋅=+=R ωR αa 在2.0s内该点所转过的角度 rad 33.532d 2d 203202200====-⎰⎰t t t t ωθθ 1 -24 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为22s 2s m 30.2-=⋅==ωr a t n2s 2s m 80.4d d -=⋅==tωr a t t (2) 当22212/t n t a a a a +==时,有223n t a a =,即 ()()422212243t r rt = 得 3213=t此时刻的角位置为 rad 15.3423=+=t θ(3) 要使t n a a =,则有 ()()422212243t r rt =t =0.55s1 -25 一无风的下雨天,一列火车以v 1=20.0 m ·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v 2 .(设下降的雨滴作匀速运动)分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得1o 12s m 36.575tan -⋅==v v 1 -26 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足hl αarctan ≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.解 由122v v v -='[图(b)],有θθαcos sin arctan 221v v v -= 而要使hl αarctan ≥,则 hl θθ≥-cos sin 221v v v ⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v 1 -27 一人能在静水中以1.10 m ·s-1的速度划船前进.今欲横渡一宽为1.00 ×103 m 、水流速度为0.55 m ·s-1 的大河.(1) 他若要从出发点横渡该河而到达正对岸的一点,那么应如何确定划行方向? 到达正对岸需多少时间? (2)如果希望用最短的时间过河,应如何确定划行方向? 船到达对岸的位置在什么地方?分析 船到达对岸所需时间是由船相对于岸的速度v 决定的.由于水流速度u 的存在, v 与船在静水中划行的速度v ′之间有v =u +v ′(如图所示).若要使船到达正对岸,则必须使v 沿正对岸方向;在划速一定的条件下,若要用最短时间过河,则必须使v 有极大值.解 (1) 由v =u +v ′可知v '=u αarcsin,则船到达正对岸所需时间为 s 1005.1cos 3⨯='==αd d t v v (2) 由于αcos v v '=,在划速v ′一定的条件下,只有当α=0 时, v 最大(即v =v ′),此时,船过河时间t ′=d /v ′,船到达距正对岸为l 的下游处,且有m 100.52⨯='='=v d u t u l 1 -28 一质点相对观察者O 运动, 在任意时刻t , 其位置为x =vt , y =gt 2 /2,质点运动的轨迹为抛物线.若另一观察者O ′以速率v 沿x 轴正向相对于O 运动.试问质点相对O ′的轨迹和加速度如何?。

大学物理(题库)含答案

大学物理(题库)含答案

06章一、填空题(一)易(基础题)1、热力学第二定律的微观实质可以理解为:在孤立系统内部所发生的不可逆过程,总是沿着境增大的方向进行。

2、热力学第二定律的开尔文表述和克劳修斯表述是等价的,表明在自然界中与热现象有关的实际宏观过程都是不可逆的,开尔文表述指出了的过程是不可逆的,而克劳修斯表述指出了热传导的过程是不可逆的.3、一定量的某种理想气体在某个热力学过程中,外界对系统做功240J,气体向外界放热620J,则气体的内能减少(填增加或减少),E l E产-380J»4、一定量的理想气体在等温膨胀过程中,内能不变,吸收的热量全部用于对处界做功。

5、一定量的某种理想气体在某个热力学过程中,对外做功120J.气体的内能增量为280J,则气体从外界吸收热量为400.1,6、在孤立系统内部所发生的过程,总是由热力学概率小的宏观状态向热力学概率大的宏观状态进行。

7、一定量的单原子分子理想气体在等温过程中,外界对它作功为200J.则该过程中需吸热-200J.补充1、一定量的双原子分子理想气体在等温过程中,外界对它作功为200J.则该过程中需吸热-200J.补充2、一定量的理想气体在等温膨胀过程中.吸收的热量为500J»理想气体做功为. 500J o补充3、一定量的理想气体在等温压缩过程中,放出的热量为300J,理想气体做功为. -300I,8、要使一热力学系统的内能增加,可以通过做功或热传递两种方式,或者两种方式兼用来完成。

9、一定量的气体由热源吸收热量2-66xlO5J,内能增加4・18xl0",则气体对外作功L10、工作在71和27C之间的卡诺致冷机的致冷系数为14,工作在7C和27C之间的卡诺热机的循环效率为 6.67%o(二)中(一般综合题)1、2mol单原子分子理想气体,经一等容过程后,温度从200K上升到500K,则气体吸收的热量为一7.48x103.2、气体经历如图2所示的一个循环过程,在这个循环中,外界传给气体的净热量是90J°3、一热机由温度为727C的高温热源吸热,向温度为527C的低温热源放热。

大学物理第9章题库答案

大学物理第9章题库答案

第九章 电磁场填空题 〔简单〕1、在竖直放置的一根无限长载流直导线右侧有一与其共面的任意形状的平面线圈,直导线中的电流由上向下,当线圈以垂直于导线的速度背离导线时,线圈中的感应电动势 ,当线圈平行导线向上运动时,线圈中的感应电动势 。

〔填>0,<0,=0〕〔设顺时针方向的感应电动势为正〕(<0, =0)2、磁场的高斯定律说明磁场是 ,因为磁场发生变化而引起电磁感应,是不同于回路变化时产生的 。

相同之处是 。

〔无源场,动生电动势,磁通量发生改变〕3、只要有运动电荷,其周围就有 产生;而法拉弟电磁感应定律说明,只要 发生变化,就有 产生。

〔磁场,磁通量,感应电动势〕4、一磁铁自上向下运动,穿过一闭合导体回路,〔如图7〕,当磁铁运动到a 处和b处时,回路中感应电流的方向分别是 和 。

〔逆时针,顺时针〕5、电磁感应就是由 生 的现象,其主要定律为 ,其中它的方向是由 定律来决定,即 。

〔磁,电,电磁感应定律,楞次,见p320〕6、当穿过某回路中的磁通量发生变化时,电路中 (填肯定或不肯定)产生感应电流;电路中 (填肯定或不肯定)产生感应电动势。

(不肯定, 肯定)7、在电磁感应中,感应电动势的大小与闭合回路的磁通量 成正比。

〔对时间的变化率〕8、在竖直放置的一根无限长载流直导线右侧有一与其共面的任意形状的平面线圈,直导线中的电流由上向下,当线圈平行导线向下运动时,线圈中的感应电动势 , 当线圈以垂直于导线的速度靠近导线时,线圈中的感应电动势 。

〔填>0,<0,=0〕〔设顺时针方向的感应电动势为正〕(=0,>0)9、将条形磁铁插入与冲击电流计串连的金属环中,有-5q=2.010c ⨯的电荷通过电流计,假设连接电流计的电路总电阻25R =Ω,则穿过环的磁通量的变化=∆ΦWb 。

〔4510q R --⨯=-⨯〕10、电磁波是变化的 和变化的 在空间以肯定的速度传播而形成的。

大学物理考试试题库经典版(含答案)

大学物理考试试题库经典版(含答案)

第一章 质点运动学基本要求:1、掌握位矢、位移、速度、加速度、角速度和角加速度等物理量。

2、能计算速度、加速度、角加速度、切向加速度和法向加速度等。

教学重点:位矢、运动方程,切向加速度和法向加速度。

教学难点:角加速度、切向加速度和法向加速度。

主要内容:本章首先从描述物体机械运动的方法问题入手,阐述描述运动的前提——质点理想模型、时间和空间的量度,参照系坐标系。

其次重点讨论描写质点和刚体运动所需要的几个基本物理量(如位移、速度、加速度、角速度、角加速度等)及其特性(如相对性、瞬时性、矢量性)。

(一)时间和空间研究机械运动,必然涉及时间、空间及其度量.我们用时间反映物体运动的先后顺序及间隔,即运动的持续性.现行的时间单位是1967年第13届国际计量大会规定的,用铯(133Cs )原子基态的两个超精细能级间跃迁相对应的辐射周期的9 192 631 770倍为1秒.空间反映物质的广延性.空间距离为长度,长度的现行单位是1983年10月第17届国际计量大会规定的,把光在真空中1/299 792 458秒内走过的路程定义为1米.(二)参照系和坐标系宇宙间任何物质都在运动,大到地球、太阳等天体,小到分子、原子及各种基本粒子,所以说,物质的运动是普遍的、绝对的,但对运动的描述却是相对的.比如,在匀速直线航行的舰船甲板上,有人放开手中的石子,他看到石子作自由落体运动,运动轨迹是一条直线,而站在岸边的人看石子作平抛运动,运动轨迹是一条抛物线.这是因为他们站在不同的物体上.因此,要描述一个物体的运动,必须先确定另一个物体作为标准,这个被选作标准的物体叫参照系或参考系.选择哪个物体作为参照系,主要取决于问题的性质和研究的方便.在研究地球运动时,多取太阳为参照系,当研究地球表面附近物体的运动时,一般以地球为参照系.我们大部分是研究地面上物体的运动,所以,如不特别指明,就以地球为参照系. (三)质点实际的物体都有一定的大小和形状,物体上各点在空中的运动一般是不一样的.在某些情况下,根据问题的性质,如果物体的形状和大小与所研究的问题关系甚微,以至可以忽略其大小和形状,这时就可以把整个物体看作一个没有大小和形状的几何点,但是它具有整个物体的质量,这种具有质量的几何点叫质点.必须指出质点是一种理想的物理模型.同样是地球,在研究它绕太阳公转时,把它看作质点,在研究它的自转时,又把它看作刚体. (四)速度0d limd t t t∆→∆==∆r r v速度v 是矢量,其方向沿t 时刻质点在轨迹上A 处的切线,它的单位是m ·s -1.(五)加速度220d d lim d d t t t t ∆→∆===∆v v ra加速度a 是速度v 对时间的一阶导数,或者是位矢r 对时间的二阶导数.它的单位是m ·s -2. (六)圆周运动圆周运动是最简单、最基本的曲线运动,2d ,d n vv a a tRτ==习题及解答: 一、填空题1. 一质点作半径为R 的匀速圆周运动,在此过程中质点的切向加速度的方向 改变 ,法向加速度的大小 不变 。

大学物理 (力学、相对论、电磁学)_北京交通大学中国大学mooc课后章节答案期末考试题库2023年

大学物理 (力学、相对论、电磁学)_北京交通大学中国大学mooc课后章节答案期末考试题库2023年

大学物理 I-(力学、相对论、电磁学)_北京交通大学中国大学mooc 课后章节答案期末考试题库2023年1.一质点由静止出发做R=2m的圆周运动,切向加速度,则此质点的角加速度大小a和角速度大小w可以写成[ ]。

答案:2.一质点做斜抛运动,如图所示。

忽略空气阻力。

测得在轨道A点的速度大小为v0,其方向与水平方向夹角为30°。

则此质点运动轨迹在A点处的曲率半径为[ ]。

答案:3.一架质量为M(包含炮弹质量)的战斗机水平飞行,速度为V0。

发现目标后,以相对机身v的速度向正前方发射出一枚炮弹(质量为m)。

发射后飞机的飞行速度V满足以下哪个式子?[ ]答案:4.两质点P、Q最初相距1m,都处于静止状态。

P的质量为0.2kg,而Q的质量为0.4kg。

P和Q以9N的恒力相互吸引。

若没有外力作用在该系统上,则两质点将在离P点的初位置多远的地方相互撞击?[ ]答案:0.67 m5.粒子的势能曲线(Ep-x曲线)如图所示,若粒子从b运动到d,则粒子所受到的力f(x)的方向为[ ]。

答案:向左(x轴的负方向)6.质量为m的小球系在绳的一端,另一端穿过光滑水平面上的光滑的圆孔。

开始小球在水平面内作圆周运动,半径为r1,然后向下拉绳,使小球的运动轨迹为半径r2的圆周。

小球在这一过程中下面哪个叙述是正确的?[ ]答案:对圆心的角动量守恒7.将细绳绕在一个具有水平光滑轴的飞轮边缘上,在绳端挂一质量为m的重物,飞轮的角加速度为a。

绳子与轮子之间无相对滑动。

若以拉力2mg代替重物拉绳时,飞轮的角加速度[ ]。

大于2a8.质量分别为m和2m、半径分别为r和2r的两个均匀圆盘,同轴地粘在一起,可以绕通过盘心且垂直盘面的水平光滑固定轴转动,圆盘边缘都绕有绳子,绳子下端都挂一质量为m的重物。

若绳子与圆盘之间无相对滑动,则盘的角加速度的大小为[ ]。

9.一静止的均匀细棒,长为L、质量为M,可绕通过棒的端点且垂直于棒长的光滑固定轴O在水平面内转动,一质量为m、速率为v的子弹在水平面内沿与棒垂直的方向射入并穿出棒的自由端,设穿过棒后子弹的速率为v/2,则此时棒的角速度应为[ ]。

大学物理第10章题库答案2(最新修改)

大学物理第10章题库答案2(最新修改)

第十章一、填空题易:1、质量为0.10kg 的物体,以振幅1cm 作简谐运动,其角频率为110s -,则物体的总能量为, 周期为 。

(4510J -⨯,0.628s )易:2、一平面简谐波的波动方程为y 0.01cos(20t 0.5x)ππ=-( SI 制),则它的振幅为 、角频率为 、周期为 、波速为 、波长为 。

(0.01m 、20π rad/s 、 0.1s 、 40m/s 、4m )易:3、一弹簧振子系统具有1.0J 的振动能量,0.10m 的振幅和1.0m/s 的最大速率,则弹簧的倔强系数为 ,振子的振动角频率为 。

(200N/m ,10rad/s )易:4、一横波的波动方程是y = 0.02cos2π(100t – 0.4X)( SI 制)则振幅是_________,波长是_ ,频率是 ,波的传播速度是 。

(0.02m ,2.5m ,100Hz ,250m.s -1)易:5、两个谐振动合成为一个简谐振动的条件是 。

(两个谐振动同方向、同频率)易:6、产生共振的条件是振动系统的固有频率与驱动力的频率 (填相同或不相同)。

(相同)易:7、干涉相长的条件是两列波的相位差为π的 (填奇数或偶数)倍。

(偶数)易:8、弹簧振子系统周期为T 。

现将弹簧截去一半,仍挂上原来的物体,作成一个新的弹簧振子,则其振动周期为 T 。

(T )易:9、作谐振动的小球,速度的最大值为,振幅为,则振动的周期为;加速度的最大值为。

(34π,2105.4-⨯) 易:10、广播电台的发射频率为 。

则这种电磁波的波长为 。

(468.75m )易:11、已知平面简谐波的波动方程式为 则时,在X=0处相位为 ,在处相位为 。

(8.4π,8.40π)易:12、若弹簧振子作简谐振动的曲线如下图所示,则振幅;圆频率;初相。

(0.1m,2π,2π-)中:13、一简谐振动的运动方程为2x 0.03cos(10t )3ππ=+( SI 制),则频率ν为 、周期T 为 、振幅A 为 ,初相位ϕ为 。

大学物理第5章题库(含答案)

大学物理第5章题库(含答案)

05章 气体动理论一、填空题 (一)易(基础题)1、一定质量的气体处于平衡态,则气体各部分的压强 相等 (填相等或不相等),各部分的温度 相等 (填相等或不相等)。

2、根据能量按自由度均分原理,设气体分子为刚性分子,分子自由度为i ,则当温度为T时,(1)一个分子的平均能量为(平均总动能) 12i kT ⋅;(2)ν摩尔理想气体的内能为2i RT ν⋅ ;(3)一个双原子分子的平均转动动能为 kT 。

3、对于单原子分子理想气体,①32RT 代表的物理意义为: 1mol 单原子分子理想气体的内能; ②R 23代表的物理意义为:单原子分子理想气体的定体摩尔热容 。

4、自由度数为i 的一定量的刚性分子理想气体,其体积为V,压强为p 时,其内能E=2iPV 。

5.两瓶不同种类的理想气体,它们温度相同,压强也相同,但体积不同,则它们分子的平均平动动能 相同,单位体积内分子的总平动动能 相同。

(均填相同或不相同) 6.一定量的某种理想气体,装在一个密闭的不变形的容器中,当气体的温度升高时,气体分子的平均动能 增大 ,气体分子的密度 不变 ,气体的压强 增大 ,气体的内能 增大 。

(均填增大、不变或减少)7、理想气体的压强公式为 P nkT = ,理想气体分子的平均平动动能与温度的关系为 32k kT ε=。

8、有两瓶气体,一瓶是氧气,另一瓶是氢气(均视为刚性分子理想气体),若它们的压强、体积、温度均相同,则氧气的内能是氢气的▁▁1▁▁倍。

9、一容器内贮有气体,其压强为1atm,温度为27ºC,密度为31.3kg m -⋅,则气体的摩尔质量为__33210-⨯____1kg mol -⋅,由此确定它是__氧____气.10、()Nf d u u 表示的物理意义是 表示速率分布在~d υυυ+内的分子数 ------------------------------------。

11、21()f d u u u u ò表示的物理意义是 表示速率分布在12~υυ范围内的分子数占总分子数的比率.12、在相同条件下,氧原子的平均动能是氧分子的平均动能的___35___倍.(二)中(一般综合题)1、如图1所示,两条曲线分别表示相同温度下,氢气和氧气分子的速率分布曲线,则a 表示▁氧▁▁气分子的速率分布曲线;b 表示▁▁氢▁气分子的速率分布曲线。

大学物理(力学 )_南京航空航天大学中国大学mooc课后章节答案期末考试题库2023年

大学物理(力学 )_南京航空航天大学中国大学mooc课后章节答案期末考试题库2023年

大学物理(力学相对论热学电磁学)_南京航空航天大学中国大学mooc课后章节答案期末考试题库2023年1.关于力距有以下几种说法:(1)内力矩不会改变刚体对某个定轴的角动量;(2)作用力和反作用力对同一轴的力矩之和必为零;(3)质量相等形状和大小不同的两个刚体,在相同力矩作用下,它们的角加速度一定相等。

在上述说法中:答案:(1)、(2)是正确的2.一容器装着一定量的某种气体,下述几种说法哪一种对?答案:容器内各部分压强相等,且各部分密度也相同,这状态一定是平衡态3.一块铜板垂直于磁场方向放在磁感强度正在增大的磁场中时,铜板中出现的涡流(感应电流)将答案:减缓铜板中磁场的增加4.一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统答案:对转轴的角动量守恒5.假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的答案:角动量守恒,动能守恒,动量不守恒6.一人站在转台中心,设转轴光滑,人的两手各握一重物并伸直,如图3-6所示。

以人、转台和重物为系统,在人向自身胸部收回双手的过程中,有以下4种说法: (1) 系统的转动惯量减小; (2) 系统转动的角速度增大; (3) 系统的角动量保持不变; (4) 系统的转动动能保持不变。

以上说法中正确的是【图片】答案:(1)(2)(3)7.一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O旋转,初始时静止。

现有一个小球自左方垂直打击细杆,如图3-7所示。

设小球与细杆的碰撞为非弹性碰撞。

以杆和球为系统,在碰撞过程中系统的【图片】答案:对转轴O的角动量守恒8.关于力矩有以下几种说法: (1)对某个定轴而言,内力矩不会改变刚体的角动量; (2)作用力和反作用力对同一轴的力矩之和必为零; (3)质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等。

上述说法中正确的是答案:(1)(2)9.均匀细杆OM能绕O轴在竖直平面内自由转动,如图3-12所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理力学部分:1.一个质点在做圆周运动时,则有(B )。

A .切向加速度一定改变,法向加速度也改变B .切向加速度可能不变,法向加速度一定改变C .切向加速度可能不变,法向加速度不变D .切向加速度一定改变,法向加速度不变2. 对功的概念有以下几种说法:(1)保守力作正功时,系统内相应的势能增加;(2)质点运动经一闭合路径,保守力对质点作的功为零;(3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零。

下列说法正确的是(C )。

A .(1)(2)是正确的B .(2)(3)是正确的C .只有(2)是正确的D .只有(3)是正确的3. 下列情况不可能出现的是(D )。

A. 物体具有加速度而速度为零B. 物体速率恒定,但速度仍发生改变C. 物体速率恒定,但加速度却在变化D. 物体速度恒定,但速率却在变化4. 如图所示,在边长为a 的四边形顶点上,分别固定着质量为m 的四个质点,以 OZ 为转轴(转轴到四边形近边的距离为a ,且与四边形平面平行),该系统的转动惯量为:(D )。

A. 4ma 2B. 6ma 2C. 8ma 2D. 10ma 25. 质量为m 的质点在oxy 平面内运动,运动方程为cos()sin()r a t i b t j ωω=+,其中ω、、b a 为常数,则(C )。

A. 质点所受合力方向保持不变B. 质点所受到的合力始终背离原点C. 质点所受到的合力始终指向原点D. 无法确定质点所受合力的方向6. 对质点系中的内力以下说法正确的是(D )。

A. 任何性质的内力均会引起质点系机械能的改变B. 内力不引起质点系总动能的改变C. 内力成对出现、大小相等,故内力对质点系不作功D. 内力不引起质点系总动量的改变7. 飞轮作匀变速转动时,其边缘上的一点(D )。

A. 不具有向心加速度B. 不具有切向加速度C. 其加速度是个恒矢量D. 加速度随时间不断变化8. 一人手握哑铃坐在无摩擦的转台上,以一定的角速度转动。

若把两手伸开,使转动惯量变为原来 Z O a a的两倍,则(D )。

A. 角速度变为原来的一半,转动动能变为原来的四分之一B. 角速度变为原来的一半,转动动能不变C. 角速度变为原来的一半,转动动能变为原来的二倍D. 角速度、转动动能均变为原来的一半9. 已知质点的运动方程为326t t =+r i j ,则(C )。

A .质点的轨迹为圆B .质点的加速度为一恒矢量C .s t 1=时质点的速度大小为26s m /D .s t 1=时质点的加速度大小为62s m /10. 关于力矩的说法正确的是(B )。

A .刚体受到一力矩作用,则其角速度一定增大B .力矩是改变刚体转动状态的原因C .作用在刚体上的合力不为零,则合力矩一定不为零D .刚体受到一力矩作用,则其角速度一定减小11. 关于力矩下列说法正确的是(B )。

A. 定轴转动的刚体,力矩不会改变刚体的角速度B. 一对作用力与反作用力对同一轴的力矩之和一定为零C. 质量相等、形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同D. 刚体所受的合外力越大,力矩就越大12. 下面说法正确的是(B )。

A .保守内力作功对系统的动能无贡献B .保守内力作功对系统的机械能无贡献C .保守力作功与质点的运动路径有关D .保守内力会引起系统总动量的变化13. 下列说法正确的是(C )。

A .圆周运动的质点其位移的大小与其路程相等B .质点平均速度的方向与瞬时速度的方向始终一致C .质点作圆周运动其切向加速度可能不变D .质点作圆周运动其切向加速度必然为零14. 质点作匀速率圆周运动,取其圆心为坐标原点,则其(C )。

A .位矢与速度垂直,位矢与加速度垂直B .位矢与速度不垂直,位矢与加速度垂直C .位矢与速度垂直,速度与加速度垂直D .位矢与速度不垂直,速度与加速度垂直15. 如图所示,质量为m 的物体用平行于斜面的细绳连结并置于光滑的斜面上,若斜面向左方作加速运动,当物体恰脱离斜面时,它的加速度大小为(C )。

A.θsin gB.θtan gC.θcot gD.θcos g16. 一运动质点在某瞬时位于位矢 ),(y x r 的端点处,其速度大小为(D )。

A. t r d dB. t r d dC. t r d dD. 22)d d ()d d (ty t x + 17. 如图所示,质量为m 的小球悬挂于加速度为a 的小车内,加速度保持不变且水平向右。

在小球相对于车箱静止后,则绳子对小球的拉力大小为(D )。

A.maB.mgC.)(22g a m +D.22g a m +18. 物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中(A )。

A.它受到的轨道的作用力的大小不断增加B.它受到的合外力不变,速率不断增加C.它受到的合外力大小变化,方向永远指向圆心D.它的加速度方向永远指向圆心,速率保持不变19. 质点起初位于P 点其位矢为j i r 62+-=P ,后移动到Q 点其位矢为j i 42+,则质点的位移为(A )。

A .j i 24-B .j i 85+-C .j i 63+D .j i 24+-20. 半径为0.2m 的飞轮转速为每分钟150转,因受到制动而均匀减速,经30s 停止转动,则在此时间段内飞轮所转的圈数为(C )圈。

A. 10B. 30C. 37.5D. 4521. 长为l ,质量为m 的细杆,可绕通过其一端并垂直于杆的水平轴转动。

已知它经过最低位置时的角速度为ω,不计摩擦力和空气阻力,重力加速度为g ,则质心能升高的最大高度为(B )。

A. g ω21 B. g l 622ω C. gl 2ω D. g l 3ω 22. 有两个同样的物体,处于同一位置,其中一个自由落体,另一个沿斜面无摩擦的自由滑下,它们到达地面的时间和速率分别是(D )。

A .同时,相等B .同时,不相等C .不同时,不相等D .不同时,相等简谐振动:1. 如图表示t = 0时的简谐波的波形图,波沿x 轴正方向传播,则x =0处质点振动的初相位为(C )。

A. 0B. 4πC. 2π-D. 2π 2. 在驻波中,两个相邻波节间各质点的振动(B )。

A . 振幅相同,相位相同B . 振幅不同,相位相同C . 振幅相同,相位不同D . 振幅不同,相位不同3. 关于两个简谐运动的合成,说法正确的是:(A )。

A. 同频率同方向的两个简谐运动的合运动仍是简谐运动B. 同频率的两个简谐运动的合运动仍是简谐运动C. 同方向的两个简谐运动的合运动仍是简谐运动D. 任意两个简谐运动的合运动仍是简谐运动4. 一振子的两个分振动方程为t x 3cos 41=,)3cos(22π+=t x 。

则其合振动方程应为(D )。

A. )3cos(4π+=t xB. )3cos(4π-=t xC. )3cos(2π-=t xD. t x 3cos 2=5. 下面几种说法,正确的是(C )。

A. 在波传播方向上的振动质点,其振动位相总是与波源的位相相同。

B. 在波传播方向上的振动质点,其振动位相总是比波源的位相超前。

C. 在波传播方向上的振动质点,其振动位相总是比波源的位相落后。

D. 无法确定波传播方向上的振动质点与波源的位相关系。

6. 一沿x 方向做振幅为A 简谐运动的质点,t =0时质点运动状态为过2A x =处向负向运动,则质点的初位相为(A )。

A.3π B.3π- C.32π D.32π- 7. 一做沿y 方向做振幅为A 简谐运动的质点,t =0时质点运动状态为过2A y =处向负向运动,则质点的初位相为(C )。

A .3π B .3π- C .4π D .4π- 8. 已知两个简谐振动的运动方程为t x 3cos 71=(cm ),)3(c o s 22π+=t x (cm ),则其合振动方程应为o(B )。

A .t x 3cos 4=(cm )B .t x 3cos 5=(cm )C .)3(cos 5π+=t x (cm )D .)3(cos 4π+=t x (cm )9. 一弹簧振子,质点质量为2.5×10-4kg ,其运动学方程为)5cos(06.0π+=t x ,x 的单位为m ,t 的单位为s ,则(C )。

A . 振幅为5 mB . 初位相为5t +πC . 周期为s 52π D . 初始时刻位移为0.06m10. 已知两个简谐振动的运动方程为t x 3cos 51=(m ),)3(cos 32π+=t x (m ),则其合振动方程应为( B )。

A . t x 3cos 4=B . t x 3cos 2=C . )3(cos 2π+=t xD . )3(cos 4π+=t x11. 关于驻波下列说法正确的是( C )。

A . 相邻两波腹之间的距离为/2λB . 相邻两波腹之间的距离为/4λC . 相邻两波节之间的距离为/4λD . 相邻两波节之间的距离为λ12. 一小球和轻弹簧相连,沿x 轴作振幅为A 的简谐运动。

若t =0时,小球的运动状态为过x =A/2位置向x 轴负方向运动,则小球的振动表达式为(A )。

A . ⎪⎭⎫ ⎝⎛+=3cos A πωt x B . ⎪⎭⎫ ⎝⎛-=3cos A πωt x C . ⎪⎭⎫ ⎝⎛+=32cos A πωt x D . ⎪⎭⎫ ⎝⎛-=32cos A πωt x 13. 机械波的波方程为=0.05cos(6 +0.06)y t x ππ,式中y 和x 的单位为m ,t 的单位为s ,则(C )。

A . 波长为5 mB . 波速为10s m /C . 周期为s 31 D . 波沿x 轴正方向传播 14. 在驻波中,相邻两波腹之间的距离为(A )。

A . /2λB . /4λC . λD . 2λ 光学部分:1. 在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于图中O 处,现将光源S 向下移动,则(A )。

A. 中央明纹向上移动,且条纹间距不变B. 中央明纹向上移动,且条纹间距增大C. 中央明纹向下移动,且条纹间距增大D. 中央明纹向下移动,且条纹间距不变2. 三个偏振片1P 、2P 与3P 堆叠在一起,1P 与3P 的偏振化方向相互垂直,2P 与1P 的偏振化方向间的夹角为45︒,强度为0I 的自然光入射于偏振片1P ,并依次通过偏振片1P 、2P 与3P ,则通过三个偏振片后的光强为(C )。

A. 0I /16B. 30I /8C. 0I /8D. 0I /43. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(C )。

A. 使屏靠近双缝B. 把两个缝的宽度稍微调窄C. 使两缝的间距变小D. 改用波长较小的单色光源4. 一束强度为0I 的自然光照射于偏振片1P ,透射光又透过偏振片2P ,若1P 和2P 偏振方向之间的夹角为60︒,则最终的透射光的光强为(B )。

相关文档
最新文档