15《运筹学》(第四版)连续动态规划介绍

合集下载

运筹学动态规划

运筹学动态规划

运筹学动态规划第7章动态规划动态规划是Bellman 在1957年提出的解多阶决策问题的方法,在那个时期,线性规划很流行,它是研究静态问题的,而Bellman 提出的解多阶决策问题的方法适用于动态问题,相对于线性规划研究静态问题,取名动态规划。

动态规划方法应用范围非常广泛,方法也比较简单。

动态规划是将一个多阶决策问题分解为一系列的互相嵌套的一步决策问题,序贯求解使问题得到简化。

动态规划问题按照问题的性质可以分为确定性的和随机性的,按决策变量的和状态变量的取值可以分为离散型的和连续型的。

此外还有依据时间变量连续取值还是离散取值又分为连续时间动态规划问题和离散时间动态规划问题。

本章重点讨论离散时间确定性动态规划问题,包括状态变量和决策变量连续取值和离散取值两种情况。

7.1解多阶决策问题的动态规划法1.多阶决策问题的例(1)最优路径问题—多阶决策问题的例为了直观,先从最优路径问题谈起,它可以看作一个多阶决策过程。

通过最优路径问题的解可以看到用动态规划法解多阶决策问题的基本思想。

考虑图7-1所示的最优路径问题。

一汽车由S 点出发到终点F ,P 和Q 是一些可以通过的点。

图中两点间标出的数字是汽车走这一段路所需的时间(单位为小时)。

最优路径问题是确定一个路径,使汽车沿这条路径由S 点出发达到F 点所用时间最短。

最优路径问题可以看作一个多阶决策问题,由S 到城市甲是第1个阶段,第1个结点P 1或第2个结点Q 1做为第1阶段可以通过的两个站点,由城市甲到城市乙是第2阶段,这个阶段是从P 1或Q 1到P 2或Q 2,由城市乙到城市丙是第3阶段,这个阶段是从P 2或Q 2到P 3或Q 3,由城市丙的P 3或Q 3到F 做为第四阶段。

(2)最优路径问题的解对最优路径问题,存在一个非常明显的原理,即最优路径的一部分还是最优路径。

换句话说,如果SQ P Q F 123是所求的最优路径,那么,汽车从这一路径上的任何一点,例如P 2,出发到F 的最优路径必为P Q F 23。

运筹学之动态规划

运筹学之动态规划

运筹学之动态规划摘要:动态规划是运筹学的一个分支, 是一种解决多阶段决策过程最优化的数学方法, 它把复杂的多阶段决策问题分解成一系列相互联系的较容易解决的单阶段决策问题,通过解决一系列单阶段决策问题来解决多阶段决策问题。

以寻求最优决策序列的方法。

动态规划研究多阶段决策过程的总体优化, 即从系统总体出发, 要求各阶段决策所构成的决策序列使目标函数值达到最优。

在经济管理方面, 动态规划可以用来解决最优路径问题、资源分配问题、生产调度问题、库存问题、装载问题、排序问题、设备更新问题、生产过程最优控制问题等等, 所以它是现代经济管理中的一种重要的决策方法。

关键字:运筹学、动态规划、最优化原理运筹学作为一门新兴科学, 其应用范围是十分广泛的。

对于不同类型问题, 运筹学都有着不同的解决方法,因而形成了许分支学科。

它们虽然各有特性, 但在运用系统观念分析问题,并对问题建立模型求解这两点上都是共同的。

以下主要介绍运筹学在经济管理和物流方面的应用。

一、运筹学在经济管理中的应用在经济管理中, 常用的运筹学方法有线性规划和动态规划。

1.动态规划:动态规划是解决多阶段决策过程最优化问题的一种方法,也是现代企业管理中的一种重要决策方法,可用于最优路径问题、资源分配问题、资源分配的问题、生产计划和库存问题、投资问题、装载问题、排序问题及生产过程的最优控制等,用动态规划方法比用其他方法求解更为方便。

应用动态规划方法可以很好的简化一些较复杂的最优化问题的求解,特别是在解决无法用解析数学表达的离散性问题时具有明显的优点。

虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。

二、动态规划的基本原理1.动态规划的最优化原理及其应用20世纪50年代初,美国数学家贝尔曼(R.Bellman)等人在研究一类多阶段决策过程(multistep decision process)的优化问题时,提出了解决动态规划问题的核心,著名的最优化原理(principle of optimality),把多阶段过程化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法,从而建立了数学规划的另一分支——动态规划(Dynamic Programming)。

运筹学教案动态规划

运筹学教案动态规划

运筹学教案动态规划一、教学目标1. 了解动态规划的基本概念及其在运筹学中的应用。

2. 掌握动态规划的基本原理和方法,能够解决实际问题。

3. 学会使用动态规划解决最优化问题,提高解决问题的效率。

二、教学内容1. 动态规划的基本概念动态规划的定义动态规划与分治法的区别2. 动态规划的基本原理最优解的性质状态转移方程边界条件3. 动态规划的方法递推法迭代法表格法4. 动态规划的应用背包问题最长公共子序列最短路径问题三、教学方法1. 讲授法:讲解动态规划的基本概念、原理和方法。

2. 案例分析法:分析实际问题,引导学生运用动态规划解决问题。

3. 编程实践法:让学生动手编写代码,加深对动态规划方法的理解。

四、教学准备1. 教材:《运筹学导论》或相关教材。

2. 课件:动态规划的基本概念、原理、方法及应用案例。

3. 编程环境:为学生提供编程实践的平台,如Python、C++等。

五、教学过程1. 引入:通过一个实际问题,引出动态规划的概念。

2. 讲解:讲解动态规划的基本原理和方法。

3. 案例分析:分析实际问题,展示动态规划的应用。

4. 编程实践:让学生动手解决实际问题,巩固动态规划方法。

5. 总结:对本节课的内容进行总结,强调动态规划的关键要点。

6. 作业布置:布置相关练习题,巩固所学知识。

六、教学评估1. 课堂讲解:评估学生对动态规划基本概念、原理和方法的理解程度。

2. 案例分析:评估学生运用动态规划解决实际问题的能力。

3. 编程实践:评估学生动手实现动态规划算法的能力。

4. 课后作业:评估学生对课堂所学知识的掌握情况。

七、教学拓展1. 研究动态规划与其他优化方法的联系与区别。

2. 探讨动态规划在运筹学其他领域的应用,如库存管理、生产计划等。

3. 了解动态规划在、数据挖掘等领域的应用。

八、教学反思1. 反思本节课的教学内容、方法和过程,确保符合教学目标。

2. 考虑学生的反馈,调整教学方法和节奏,提高教学效果。

3. 探讨如何将动态规划与其他运筹学方法相结合,提高解决问题的综合能力。

14《运筹学》(第四版)动态规划基本概念

14《运筹学》(第四版)动态规划基本概念
(0) (1)确定允许误差 ε1 0 ε 2 0,选初始近似点 X R,并令 k: 0
(2)确定起作用约束指标集
J ( X ( k ) ) j g j ( X ( k ) ) 0,1 j l
①若 J ( X
(k )
2


X (k )
(k ) ) ,而且 f ( X ) ε1 ,停止迭代,得点
第三章 动态规划(Dynamic Programming)
主讲人:莫 莉
moli@
2015 年 6 月
水电与数字化工程学院 莫 莉
前节回顾

罚函数法

加入时间维度

引例

可行方向法
动态规划基本概念
离散动态规划
水电与数字化工程学院
莫 莉
前节回顾
可行方向法的迭代步骤如下:
②若 J ( X
(k )
(k ) ) ,但 f ( X ) ε1 ,则取搜索方向
2
D( k ) f ( X ( k ) ) ,然后转向第(5)步。
③若J ( X ( k ) ) ,转下一步。
水电与数字化工程学院
莫 莉
前节回顾
(3) 求解线性规划
min (k ) T f ( X ) D (k ) T (k ) g ( X ) D , j J ( X ) j 1 di 1, i 1, 2, ,n
水电与数字化工中障碍函数的构造

仿照外点法,通过函数叠加的办法来改造原目标函数,使得改 造后的目标函数(称为障碍函数)具有这种性质:在可行域R的 内部与其边界面较远的地方,障碍函数与原来的目标函数f(X)

运筹学——动态规划

运筹学——动态规划

优子策略。该原理的具体解释是,若某一全过程
最优策略为:
p1
(s1 )
{u1
(s1 ),
u 2
(s2
),
,
u
k
(sk
),
u
n
(sn
)}
则对上述策略中所隐含的任一状态而言,
第k子过程上对应于该状态的最优策略必然包
含在上述全过程最优策略p1*中,即为
pk
(sk
)
{u
k
(sk
),
u
k 1
(sk
1
),
2.正确地定义状态变量sk,使它既能正确地描述过 程的状态,又能满足无后效性.动态规划中的状 态与一般控制系统中和通常所说的状态的概念是 有所不同的,动态规划中的状态变量必须具备以 下三个特征:
20
2021/7/26
(1)要能够正确地描述受控过程的变化特征。 (2)要满足无后效性。即如果在某个阶段状态已经给定,那么在
sk 1 Tk (sk ,uk (sk ))
上式称为多阶段决策过程的状态转移方程。有些问题的 状态转移方程不一定存在数学表达式,但是它们的状态 转移,还是有一定规律可循的。
12
2021/7/26
(六) 指标函数 用来衡量策略或子策略或决策的效果的某种数量
指标,就称为指标函数。它是定义在全过程或各 子过程或各阶段上的确定数量函数。对不同问题 ,指标函数可以是诸如费用、成本、产值、利润 、产量、耗量、距离、时间、效用,等等。
7
2021/7/26
(二)状态、状态变量和可能状态集 1.状态与状态变量。用以描述事物(或系统)在某特 定的时间与空间域中所处位置及运动特征的量,称 为状态。反映状态变化的量叫做状态变量。状态变 量必须包含在给定的阶段上确定全部允许决策所需 要的信息。按照过程进行的先后,每个阶段的状态 可分为初始状态和终止状态,或称输入状态和输出 状态,阶段k的初始状态记作sk,终止状态记为sk+1 。但为了清楚起见,通常定义阶段的状态即指其初 始状态。

运筹学教材课件(第四章动态规划)

运筹学教材课件(第四章动态规划)

最优解的存在性
对于多阶段决策问题,如果每个 阶段的决策空间是有限的,则存 在最优解。
最优解的唯一性
对于某些多阶段决策问题,可能 存在多个最优解。在这种情况下, 我们需要进一步分析问题的性质 和约束条件,以确定最优解的个 数和性质。
最优解的稳定性
在某些情况下,最优解可能受到 参数变化的影响。我们需要分析 最优解的稳定性,以确保最优解 在参数变化时仍然保持最优。
VS
详细描述
排序问题可以分为多种类型,如冒泡排序 、快速排序、归并排序等。动态规划可以 通过将问题分解为子问题,逐一求解最优 解,最终得到全局最优解。在排序问题中 ,动态规划可以应用于求解最小化总成本 、最大化总效益等问题。
04
动态规划的求解方法
逆推法
逆推法
从问题的目标状态出发,逆向推算出达到目标状态的 最优决策,直到达到初始状态为止。
案例二:投资组合优化问题
要点一
总结词
要点二
详细描述
投资组合优化问题是动态规划在金融领域的重要应用,通 过合理配置资产,降低投资风险并提高投资收益。
投资组合优化问题需要考虑市场走势、资产特性、风险偏 好等多种因素,通过动态规划的方法,可以确定最优的投 资组合,使得投资者在风险可控的前提下,实现收益最大 化。
详细描述
在背包问题中,给定一组物品,每个物品都有一定的重量和价值,要求在不超过背包容量的限制下, 选择总价值最大的物品组合。通过动态规划的方法,可以将背包问题分解为一系列子问题,逐一求解 最优解。
排序问题
总结词
排序问题是动态规划应用的另一个重要 领域,主要涉及到将一组元素按照一定 的顺序排列,以达到最优的目标。
本最小化和效率最大化。
感谢您的观看

运筹学动态规划

运筹学动态规划
状态转移方程为 sk1 sk yk xk 阶段指标函数:vk ( sk , xk , yk ) qk yk pk xk
基本方程为:
fk ( sk ) max{qk yk pk xk fk1 ( sk1 )}

0 yk sk 0 xk H sk yk
f1(s1 )

max
0 x1 s1
{4
x1

2s22 }

max
0 x1 s1
{4
x1

2( s1

x1 )2 }
max{4s1 ,2s12} 200
第14页 共64页
上述最短路线的计算过程可用图直观表示(标 号法),如图4-3所示,结点上方矩形内的数字表 示该点到终点的最短距离。
5
A 18
13
B1 3
7
B2
16
13
C1 6
10 3
C2
9
3
C3
4
C4
12
7
D1
2
6
D2 1
3
D3
8
图4-3
7
E1 3
该点到G点的最短距离
4
F1 4
E2 2
5
6
E3
9
例4-3 分配投资问题的逆序求解
基本方程为:

fk
( sk
)

max { g 0 xk sk
k
(
xk
)

fk 1 ( sk 1 )}
f4 (s4 ) 0
sk+1 = sk – xk
g1(x1)= 4x1
g2(x2)= 9x2

运筹学-动态规划

运筹学-动态规划
例7.1是一个四阶段决策问题,一般可分为四步:
运筹学-动态规划
●逆序法求解最短路问题
第一步,从K=4开始
状态变量S4可取两种状态D1, D2,它们到E点的距离 分别为4和3,这也就是由D1和D2到终点E 的最短距离, 即
f4(D1)=4, f4(D2)=3.
1 S1
2
3
4
Байду номын сангаас
S2
S3
S4
运筹学-动态规划
1
2
3
4
2)、状态 ( state) 各阶段开始时的出发点称作状态。
描述各阶段状态的变量,称作状态变量,用sk 表示。
在例7.1 中,第一阶段的状态为 A ,第二阶段的状态为城市 B1,B2 和 B3。所以状态变量 S1 的集合 S1={A},S2 的集合是 S2={B1,B2,B3}, 依次有 S3={C1,C2,C3}, S4={D1,D2} 。
C3 ,如果我们选择,从C2走,则此时的决策变量可表示x2(B1)=C2。
1
2
3
4
4)、策略( Policy)
在各阶段决策确定以后,整个问题的决策序列就构成了一个策略,
用P1n(s1)表示。
如对于例7.1总共可有18个策略,但最优策略只有一个。
1
2
3
4
运筹学-动态规划
5)、目标函数
用于衡量所选定策略优劣的数量指标称作目标函数。
第七章 动态规划
7.1 动态规划问题和基本概念 7.2 动态规划的基本原理 7.3 动态规划的应用
引言
动态规划与多阶段决策:
多阶段决策是指这样一类特殊的活动过程, 它们可以按时间顺序分 解成若干相互联系的阶段, 每个阶段都要作出决策, 全部过程的决策是 一个决策序列, 所以多阶段决策问题又称为序贯决策问题。

运筹学:第4章 动态规划 动态规划第1节

运筹学:第4章 动态规划 动态规划第1节
?阶段指标k阶段状态下决定决策后所产生的效益记为?指标函数各阶段的总效益相应于由阶段k状态出发到终点的后部子策略pkn的指标函数记为?由阶段k状态sk出发到终点的所有可能的后部子策略产生的指标函数中最优者称最优指标函数记为??kkkxsts1????kkkkxsvv?knkknknpsvv?????knkknkkpsoptvsf?kksf?说明状态转移策略阶段指标指标函数?问题
opt {v k(sk
x k D k (sk )
1) 0,k
,x k ) n,n

fk 1(sk 1
1, ,2,1
)}
n
指标函数为阶段指标之 和,即 V kn v i(si ,xi )

i k
fk(sk )
fn 1(sn
opt {v k(sk
x k D k (sk )
1) 1,k
,x k ) n,n
P* 14
AB2C 1D1E
f1 19
最短路 最短距离
• 总结以上求解过程,可用如下递推方程表示
fk(s k
)
x
k
min
D k (sk
{v
)
k(s
k
,x
k
)
fk 1(sk 1 )}
f5(s5 ) 0,k 4,3,2,1
一般动态规划基本(逆序递推)方程表示为:
fk(sk )
fn 1(sn
表示两点间距离。现需选一条由A到E的旅行路线, 使总距离最短。
• 以上两个例子代表了这样一种特殊的决策 过程,该过程可分为互相联系的若干阶段, 每一阶段都需做出决策,从而形成全过程 的决策。这种把一个问题看作一个前后关 联具有链状结构的多阶段过程称为多阶段 决策过程,也称序贯决策过程,相应的问 题称为多阶段决策问题。

运筹学动态规划

运筹学动态规划

运筹学动态规划运筹学是一门综合运筹学、优化学、决策学和统计学等多学科知识的学科,它的核心内容是对决策问题进行建模和分析,并通过数学方法进行求解和优化。

动态规划是运筹学中的一种重要方法,它通过将问题划分为相互重叠的子问题,并通过解决子问题的最优解来求解原问题的最优解。

下面将详细介绍运筹学中的动态规划方法。

动态规划方法的核心思想是将原问题分解为若干个相互重叠的子问题,并通过求解子问题的最优解来求解原问题的最优解。

为了可以使用动态规划方法,必须满足以下两个条件:子问题的最优解可以作为原问题的最优解的一部分;子问题之间必须具有重叠性,即一个子问题可以被多次使用。

动态规划方法的具体步骤如下:首先,将原问题分解为若干个子问题,并定义出每个子问题的状态和状态转移方程;其次,通过迭代求解每个子问题的最优解,直到求解出原问题的最优解;最后,根据子问题的最优解和状态转移方程,得到原问题的最优解。

动态规划方法的应用非常广泛,可以用于求解各种各样的优化问题。

例如,在物流配送中,可以使用动态规划方法求解最短路径问题;在生产计划中,可以使用动态规划方法求解最优生产计划;在股票投资中,可以使用动态规划方法求解最优投资策略等。

动态规划方法的优点是可以通过求解子问题的最优解来求解原问题的最优解,避免了穷举法的复杂性。

此外,动态规划方法还可以通过引入一定的约束条件,来对问题进行更精确的建模和求解。

然而,动态规划方法也存在一些局限性。

首先,动态规划方法要求问题能够满足子问题的最优解可以作为原问题的最优解的一部分,这限制了动态规划方法的应用范围。

其次,动态规划方法通常需要建立较为复杂的状态转移方程,并进行复杂的计算,使得算法的实现和求解过程比较困难。

综上所述,动态规划是运筹学中的一种重要方法,通过将问题划分为相互重叠的子问题,并通过解决子问题的最优解来求解原问题的最优解。

动态规划方法的优点是可以高效地求解优化问题,但同时也存在一些局限性。

运筹学教案动态规划

运筹学教案动态规划

运筹学教案动态规划教案章节一:引言1.1 课程目标:让学生了解动态规划的基本概念和应用领域。

让学生掌握动态规划的基本思想和解决问题的步骤。

1.2 教学内容:动态规划的定义和特点动态规划的应用领域动态规划的基本思想和步骤1.3 教学方法:讲授法:介绍动态规划的基本概念和特点。

案例分析法:分析动态规划在实际问题中的应用。

教案章节二:动态规划的基本思想2.1 课程目标:让学生理解动态规划的基本思想。

让学生学会将问题转化为动态规划问题。

2.2 教学内容:动态规划的基本思想状态和决策的概念状态转移方程和边界条件2.3 教学方法:讲授法:介绍动态规划的基本思想。

练习法:通过练习题让学生学会将问题转化为动态规划问题。

教案章节三:动态规划的求解方法3.1 课程目标:让学生掌握动态规划的求解方法。

让学生学会使用动态规划算法解决问题。

3.2 教学内容:动态规划的求解方法:自顶向下和自底向上的方法动态规划算法的实现:表格化和递归化的方法3.3 教学方法:讲授法:介绍动态规划的求解方法。

练习法:通过练习题让学生学会使用动态规划算法解决问题。

教案章节四:动态规划的应用实例4.1 课程目标:让学生了解动态规划在实际问题中的应用。

让学生学会使用动态规划解决实际问题。

4.2 教学内容:动态规划在优化问题中的应用:如最短路径问题、背包问题等动态规划在控制问题中的应用:如控制库存、制定计划等4.3 教学方法:讲授法:介绍动态规划在实际问题中的应用。

案例分析法:分析实际问题,让学生学会使用动态规划解决实际问题。

教案章节五:总结与展望5.1 课程目标:让学生总结动态规划的基本概念、思想和应用。

让学生展望动态规划在未来的发展。

5.2 教学内容:动态规划的基本概念、思想和应用的总结。

动态规划在未来的发展趋势和挑战。

5.3 教学方法:讲授法:总结动态规划的基本概念、思想和应用。

讨论法:让学生讨论动态规划在未来的发展趋势和挑战。

教案章节六:动态规划的优化6.1 课程目标:让学生了解动态规划的优化方法。

运筹学课程动态规划课件

运筹学课程动态规划课件

5 A
3
1 B1 3
6
8 B2 7
6
C1 6 8
3 C2 5
3 C3 3
84 C4
2 D1
2
D2 1 2
3 D3
3
E1 3
5 5 E2 2
6 6
E3
F1 4
G 3 F2
1
2
3 4 运筹学课程动态规划
5
6
7
示例5(生产与存储问题):
某工厂生产并销售某种产品。已知今后四个月市场需求 预测及每月生产j个单位产品的费用如下:
上一个阶段的决策直接影响下一个阶段的决策
运筹学课程动态规划
8
示例6(航天飞机飞行控制问题):
由于航天飞机的运动的环境是不断变化的,因 此就要根据航天飞机飞行在不同环境中的情况, 不断地决定航天飞机的飞行方向和速度(状态), 使之能最省燃料和实现目的(如软着落问题)。
运筹学课程动态规划
9
所谓多阶段决策问题是指一类活动过程,它可以分为若 干个相互联系的阶段,在每个阶段都需要作出决策。这 个决策不仅决定这一阶段的效益,而且决定下一阶段的 初
1 6
C3
D1
10
E
D2
6
运筹学课程动态规划
12
以上求从A到E的最短路径问题,可以转化为四个性质完
全相同,但规模较小的子问题,即分别从 Di 、 Ci 、Bi、
A到E的最短路径问题。
第四阶段:两个始点 D 1 和 D 2 ,终点只有一个;
本阶段始点 (状态)
D1 D2
本阶段各终点(决策) E 10 6
cj30j
j0 j1,2,6
月1 2 3
4
需求 2 3 2

运筹学教案动态规划ppt课件

运筹学教案动态规划ppt课件

(uk ,u2un )
注: 指标函数的含义是多样的,如:距离、 利润、成本、产品产量、资源消耗等。
最优化原理与动态规划问题基本方程
最优化原理
“作为全过程的最优策略具有这样的性质: 无论过去的状态和决策如何,对于前面决策所形 成的状态(即该最优策略上某一状态)而言,余 下的诸决策必须构成以此状态为初始状态的最优 策略。
3 A5
4
1 阶段
B
9
1
5
4
B
3
2
5
1 B
3
7
2
阶段
C1
1
5
D
1
4
8
C
4
2 D6
E 1
1
2
6
29
F
2 E
4 C
4
3
2
3
阶段
7
D
3
5
4 阶段
2
5 阶段
状态与状态变量
状态: 表示每个阶段开始时所处的自然状 况或客观条件,又称为不可控因素,是阶段的特 征,通常一个阶段有若干个状态。
如:前例,第一阶段状态为点A,第二阶段 的状态有B1,B2,B3三个状态。
但是要受到维数限制。
求解动态规划问题的过程: (1)将问题过程划分恰当阶段,选择阶段
变量k.。 正确(描2过)程正的确演选变择,状又态要变满量足x无k. 后应效注性意。:既能够
(3)正确选择决策变量uk,确定允许集合 。 (4)正确写出状态转移方程 xk+1= Tk(xk, uk)。 (5) 列出按阶段可分的准则函数V1,n ,要 满足几个性质。
概述
▪ 动态规划为运筹学的一个分支,是用于求解 多个阶段决策过程的最优化数学方法。

大学运筹学经典课件第五章动态规划

大学运筹学经典课件第五章动态规划

生产计划问题的动态规划解法
根据生产阶段和生产量的不同组合,构建动 态规划模型进行求解。
经典案例
多阶段生产问题、批量生产计划问题等。
图像处理与计算机视觉中的应用
图像处理中的动态规划应用
通过动态规划算法对图像进行分割、边缘检测、特征提取等 操作。
计算机视觉中的动态规划应用
在目标跟踪、立体视觉、光流计算等领域,利用动态规划求 解最优路径或策略。
决策的无后效性
在动态规划中,每个阶段的决策只与 当前状态有关,而与过去的状态和决 策无关。
边界条件与状态转移方程
边界条件
动态规划问题的边界条件通常指的是问题的初始状态和终止 状态。
状态转移方程
描述问题状态之间转移关系的方程,通常根据问题的具体性 质建立。通过状态转移方程,可以逐步推导出问题的最优解 。
应用领域
03
适用于具有时序性和阶段性特点的问题,如资源分配、任务调
度、路径规划等。
动态规划与人工智能的融合应用
强化学习
结合动态规划和强化学习算法, 通过智能体与环境交互学习最 优决策策略,实现自适应的动
态规划求解。
深度学习
利用深度学习模型强大的特征 提取和表达能力,对动态规划 中的状态转移和决策规则进行
经典案例
图像分割中的最短路径算法、立体匹配中的动态规划算法等 。
06
动态规划的扩展与前沿研究
随机动态规划
随机动态规划模型
描述随机环境下多阶段决策 问题的数学模型,涉及期望 总收益最大化或期望总成本
最小化。
求解方法
通过引入状态转移概率和决 策规则,将随机动态规划问 题转化为确定性动态规划问 题求解,常用方法有值迭代
自顶向下的求解方法(记忆化搜索)

运筹学(第四版):第8章 动态规划的基本方法

运筹学(第四版):第8章 动态规划的基本方法
第89章动态规划的基本方法和应用在生产和科学实验中有一类活动的过程由于它的特殊性可将过程分为若干个互相联系的阶段在它的每一个阶段都需要作出决策从而使整个过程达到最好的活动效果
五 动态规划
第8章 动态规划的基本方法 第9章 动态规划应用举例
1
动态规划
什么是动态规划
解决多阶段决策过程最优化的一种数学方法。
f6 (F1)
f6 (F2 )
min
3 5
4
3
7
其相应的决策为 us (E1) F1
这说明,由E1至终点G的最短距离为7,其最短路线是
E1 F1 G16 Nhomakorabea第2节 动态规划的基本思想和基本方程
同理,从E2和E3出发,则有
f5
(E2
)
min
d5 d5
(E2 (E2
, ,
F1 ) F2 )
(2) 过程和它的任一子过程的指标是它所包含的各阶段的指标的乘积。即
n
这时就可写成
Vk,n (sk , uk ,, sn1) v j (s j , u j )
jk
Vk,n (sk , uk ,, sn1) vk (sk , uk )Vk1,n (sk1, uk1,, sn1)
指标函数的最优值,称为最优值函数,记为
18
第2节 动态规划的基本思想和基本方程
为了找出最短路线,再按计算的顺序反推之,可求出最优决策函数序列
uk ,即由
u1( A) B1, u2 (B1) C2 , u3 (C2 ) D1, u4 (D1) E2 , u5 (E2 ) F2 , u6 (F2 ) G
组成一个最优策略。因而,找出相应的最短路线为
23
第2节 动态规划的基本思想和基本方程

运筹学第四章动态规划

运筹学第四章动态规划
B2
7
7
5
8
4
3
B1
4
C1
8
C4
4
D1
3
5 E1
4
6
D2 2
F
3
1
3 E2
D3
解:(逆序解法)
(1)从k=5开始,到终点的路长
f 5 ( E1 ) 4, f 5 ( E2 ) 3
(2)k=4, 状态有3个D1,D2,D3,到终点的最短路长
d ( D1 , E1 ) f5 ( E1 )
资数额才能使总收益最大?
解:求x1,x2,x3,使
max z 4 x1 9 x2 2 x
2
3
x1 x2 x3 10
s.t.
xi 0 (i 1,2,3)
本例可转化为3阶段的决策问题。
4.2 动态规划的基本概念和基本原理
一、动态规划的基本概念
(1)阶段:将问题按时间或空间特征分解成若干相互联系

∗2 (1 ) = 1
(1 , 2 ) + 1 (1 )
3+4
2 (2 ) = min
= min
=7
(2 , 2 ) + 1 (2 )

8+5
∗2 (2 ) = 1
(1 , 3 ) + 1 (1 )
6+4
2 (3 ) = min
= min
= 10
uk

f 0 ( s1 ) 0
顺序解法与逆序解法在本质上没有区别。
当问题给定了一个初始状态和一个终止状态时
,两种方法都可以用。
4.3 动态规划模型的建立与求解

运筹学 第05章 动态规划

运筹学 第05章 动态规划
每个阶段有一个输入状态和一个输出状态 一般把输入状态称为该阶段的阶段状态
多阶段决策过程(2) 多阶段决策过程
uk 代表k 阶段对第k 子问题进行的决策,称uk为k 阶段的决策变量,uk的一组确定的取值称为一个 决策 rk 表示k 阶段从状态xk 出发做决策uk 之后产生的 后果,称为k 阶段的阶段效应
所有可能的fn ( xn )都已求出
根据 xn = Tn1( xn1, un1 ) ,就阶段n-1的所有可能状 态 xn1 ∈ Xn1 计算 u'n1 (xn1) 和 fn1( xn1 ) 余者类推,直到阶段1
un1
动态规划问题求解步骤(3) 动态规划问题求解步骤
通过状态转移方程顺序求出最优决策序列 和最优路线

fk ( xk ) = opt ⊕ ri ( xi , ui ')
n uk ,Lun i=k ,
执行条件最优策略时的阶段状态序列称为 条件最优路线,表示为{xk, xk+1',…, xn', xn+1'} 条件最优路线
贝尔曼函数(3) 贝尔曼函数
动态规划方法的原理就是建立起fk(xk )与 fk+1(xk+1 )之间的递推关系,然后逐步求出所 有的fk(xk )
fn+1(xn+1 ) ≡ 0
un
fn ( xn ) = rn ( xn , u'n (xn ))
必须就阶段n的所有可能状态 xn ∈ Xn计算 u'n (xn )和 fn ( xn )
动态规划问题求解步骤(2) 动态规划问题求解步骤
k=n-1时,
fn1( xn1 ) = opt{rn ( xn1, un1 ) ⊕ fn ( xn )}
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水电与数字化工程学院
莫 莉
前节回顾
基本概念
• 状态(每阶段初始的出发点)
• 最短路问题中,各个节点就是状态 • 生产库存问题中,库存量是状态 • 物资分配问题中,剩余的物资量是状态
• 控制变量(决策变量)
• 最短路问题中,走哪条路 • 生产库存问题中,各阶段的产品生产量 • 物资分配问题中,分配给每个地区的物资量
u3U 3 ( x3 )
v3 ( x3 , u3 )
u3
f 4 ( x4 )
因有 U 3 ( x3 ) 2,3,4,又 4 x3 8,故可得到下表的计算结果。
U k ( xk ) {uk 2 uk 4}, (k 1,2,3,4) 状态转移方程:xk+1= xk-uk
若用 vk ( xk , uk ) 表示 k 阶段派出的巡逻队数为u k 时,该阶段的部位的预 期损失值,
水电与数字化工程学院 莫 莉
2.1 引例
设用 f k ( xk ) 表示 k阶段状态为 x k,以此出发采用最优子策略到过
莫 莉
P44-1.1(1),1.3,1.4 P45-1.6(1)(2)
P74-2.3(1)(2),2.7 P75-2.8 P187-7.3,7.4,7.5 P187-7.7,7.13 P188-7.13(3),7.17 P189-7.21,7.23 P211-8.2,8.3
第3次作业 第4次作业
水电与数字化工程学院
的警卫巡逻。对每个部位可分别派出2~4支巡逻队,并且派出
巡逻队数的不同,各部位预期在一段时期内可能造成的损失有
差别,具体数字见下表。问该警卫部门应往各部位分别派多少
巡逻队,使总的预期损失为最小。
部位 预期损失 巡逻队数 2 3 4 A 18 14 10 B 38 35 31 C 24 22 21 D 34 31 25
动态规划所解决的问题:多阶段问题
动态规划的核心:
在于将问题公式化,也可以说 ,动态规划是将多阶段决策问 题进行公式化的一种技术。
动态规划的优缺点:
适用范围广,模型算法一体化,方便编程。 由于没有统一的标准模型,使得动态规划的应用
难度增加 。
水电与数字化工程学院 莫 莉
前节回顾
动态规划根据多阶段决策过程的时间参量类
水电与数字化工程学院
u 4 U 4 ( x4 )
min
v4 ( x4 , u4 )
f 5 ( x5 )
u 4 U 4 ( x4
min
v4 ( x4 , u4 ) )
莫 莉
f 4 ( x4 )
u 4 U 4 ( x4
min
v4 ( x4 , u4 ) )
部位 预期损失 巡逻队数 2 3 4
第三章 动态规划(Dynamic Programming)
主讲人:莫 莉
moli@
2015 年 6 月
水电与数字化工程学院 莫 莉
前节回顾

引例

多种应用

引例

动态规划基本概念
离散动态规划
动态规划优劣
经营管理中的应用
水电与数字化工程学院
莫 莉
前节回顾
型可以分为离散型决策过程和连续型决策过程;
根据决策过程的演变性态又可以分为确定型决策
过程和随机型过程。组合起来有下列类型:
离散确定型、离散随机型、连续确定型、连
续随机型。本章主要介绍离散确定型决策过程。
水电与数字化工程学院
莫 莉
前节回顾
例. (最短路径问题) 下图表示从起点A到终点E之间各点的距离。 求A到E的最短路径。
A 18 14 10
2.1 引例 B C D
38 35 31 24 22 21 34 31 25
因 U 4 ( x4 ) 2,3,4,又 x 4的可能值为 2 x 4 6,故由已知数据,可得
下表的结果。 再联合考虑对 C 、 D 两个部位派巡逻队,即 k 3。这时有
f 3 ( x3 ) min
前节回顾

引例

多种应用
ቤተ መጻሕፍቲ ባይዱ

引例

动态规划基本概念
离散动态规划
动态规划优劣
经营管理中的应用
水电与数字化工程学院
莫 莉
第三章 动态规划
1 2 基本概念介绍 离散动态规划★
3
连续动态规划
4
在水库调度中的应用
水电与数字化工程学院
莫 莉
2.1 引例
例某警卫部门共有12支巡逻队,负责4个要害部位 A, B ,C , D
水电与数字化工程学院
莫 莉
2.1 引例
解: 阶段数:把12支巡逻队往各部 位派遣看成依次分四个阶段。
部位 预期损失 巡逻队数 2 3 4 A 18 14 10 B 38 35 31 C 24 22 21 D 34 31 25
状态变量:xk表示每个阶段初
拥有的可派遣的巡逻队数。 集合为:
决策变量:uk表示对各部位派出的巡逻队数,各阶段允许的决策
程结束时的预期损失值,则有:
f k ( xk ) min {vk ( xk , uk ) f k 1 ( xk 1 )}
u k U k ( xk )
k 4,则上式可写为: 采用后向算法,先考虑给 D 部位派巡逻队,
f 4 ( x4 )
f 5 ( x5 ) 0
f 4 ( x4 )
• 阶段的编号与递推的方向
• 一般采用反向递推,所以阶段的编号也是逆向的 • 当然也可以正向递推
水电与数字化工程学院 莫 莉
作业
参照公共邮箱的电子版教材中的页码,完成第3次、第4次作 业,于2015年6月17日完成。
序号
第1次作业 第2次作业
课后作业
页码、题号
备注
图解法,基解,单纯形法 大 M法
对偶问题,对偶问题性质求最优解 对偶单纯形法 判定凸规划,斐波那契法,0.618法 最速下降法,共轭梯度法 变尺度法,Kuhn-Tucker条件 SUMT外点法,SUMT内点法 最短路线
B1 4
4
2
1 6 7 2 8
C1
8
6
D1 7 C2 5
10
E
A
2
3
B2
4
3 1
C3 1 6 B3 7 5
D2
6
3
水电与数字化工程学院
B4
莫 莉
前节回顾
用穷举法的计算量:
如果从A到E的站点有k个,除A、E之外每站有3个位
置则总共有3k条路径; 计算各路径长度总共要进行3k-1 次比较。随着 k 的值增加时,需要进行的加法和比较的 次数将迅速增加; 例如当 k=20时,加法次数为 4.2550833966227×1015 次,比较 1.3726075472977×1014 次。若用1亿次/秒的计 算机计算需要约508天。
相关文档
最新文档