考研数学重难点之二阶常系数线性非齐次差分方程的通解分析
2015考研数学一真题解析:二阶常系数非齐次微分方程解的结
二阶常系数非齐次微分方程是考研数学重要考点,命题形式包括二阶常系数非齐次 微分方程求通解、解得结构定理及已知通解求微分方程,2015 考研数学考查了本知识 点,题目和解析如下:
1 1 y e 2 x ( x )e x x 2 3 是二阶常系数非齐次线性微分方程 y ay by ce 的一 设
二阶常系数非齐次线性微分方程解的结构与通解此知识点方法和公式固定, 大家只需按解得 结构原理和求通解公式按部就班解答就可以了,下面文都考研数学老师帮大家复习一下此知识 点。 1.二阶常系数非齐次微分方程定义—形如 y py qy f ( x) (其中 p, q 为常数)的方程。 2.通解的结构— y py qy f ( x) 的通解为 y py qy 0 的通解与其本身一个特解之和。 3.特解求法: 情形一:
f ( x) e x Pm ( x)
设方程的特解结构为: y e Q ( x) ①当 不是特征根时, ②当 是特征单根时, ③当 是特征重根时, 情形二:
x
Q( x) Qm ( x)
; ; .
Q( x) xQm ( x)
Q( x) x 2Qm ( x)
f ( x) e x [ PL ( x) cos x Rn ( x) sin x] y x k e x [ Rm ( x) cos x S m ( x) sin x]
1 2x 1 e 为二阶常系数齐次微分方程 y ay by 0 的解,所以 2 2,1 为特征方程 r ar b 0 的根,从而 a (1 2) 3 , b 1 2 2 ,从而原方程变为
第六节 二阶常系数非齐次线性微分方程的解法
o
x
x
17
h sin pt x = Asin ( k t +ϕ ) + 2 2 k −p
自由振动 强迫振动
当干扰力的角频率 p ≈固有频率 k 时,
h 振 幅 2 将 大! 很 k − p2 • 当 p = k 时, 非齐次特解形式:
而 2r + a ≠ 0 , 则令 Q ( x ) = x Qm ( x ) , 即
y = xQm ( x)e
∗
rxБайду номын сангаас
5
′′ + (2r + a)Q′ + (r 2 + ar + b)Q = Pm ( x) Q
情形3 情形3
(*)
是特征方程的二重 二重根 若 r 是特征方程的二重根, 即 r 2 + ar + b = 0 ,
3x
1 3 3x + x e . 6
10
3x 的通解. 例6 求微分方程 y′′ − 6 y′ + 9 y = x e 的通解.
解
特征方程 λ2 − 6λ + 9 = 0 , 特征根 λ1, 2 = 3 ,
对应齐次方程通解 Y = (C1 + C 2 x ) e 3 x .
是二重特征根, 因为 r = 3 是二重特征根,
y′′ + ay′ + by = f (x) 对应齐次方程 y′′ + ay′ + by = 0
(1) (2)
是方程(1) 的一个特解, (1)的一个特解 定理2 定理2 设 y ∗ ( x ) 是方程 (1) 的一个特解,
7-13 二阶常系数线性差分方程解析
通解为
yx
x( 7 50
1 10
x)
A1 (4) x
A2
三、小结
1.二阶常系数齐次线性差分方程求通解 2.二阶常系数非齐次线性差分方程求通解
练习题
1.求下列差分方程的通解及特解. (1) yx2 4 yx1 16 yx 0,( y0 1, y1 1) (2) yx2 2 yx1 2 yx 0,( y0 2, y1 2)
的和组成:
一 项 是 该 方 程 的 一 个 特解yx, 另一项是对应的齐次差分方程的通解Yx .
即差分方程(2)的通解为y x
Yx
y
x
.
(1) f ( x) c(c为常数),即方程为 yx2 ayx1 byx c
可设
其
特解
形
式为y
x
kxs .
i)当1
a
b
练习题答案
1.(1) yx
4x ( Acos
3
x
B sin
3
x),
yx
4x ( 1 )sin
23 3
x;
(2) yx (
2)x ( Acos x B sin x),
4
4
yx (
2)x 2 cos x 1
4
§7-13 二阶常系数线性差分方程
一、二阶常系数齐次线性差分方程的求解 二、二阶常系数非齐次线性差分方程的求解 三、小结
1.定义
形如yx2 ayx1 byx f ( x)
(其中a, b 0均为常数,f ( x)为已知函数)
二阶常系数非齐次线性微分方程的解法及例题详解
微分算子法:
微分算子法是求解不同类型常系数非齐次线性 微分方程特解的有效方法,使用微分算子法求 解二阶常系数非齐次线性微分方程的特解记忆 较为方便,计算难度也可降低。引入微分算子 d/dx=D,d^2/dx^2=D^2,
则有 y'=dy/dx=Dy,y''=d^2y/dx^2=D^2y
于是y''+p(x)y'+q(x)y=f(x)可化为(D^2+pD+q)y=f(x), 令F(D)=D^2+pD+q,称为算子多项式, F(D)=D^2+pD+q即为F(D)y=f(x),其特解为 y=f(x)/F(D) 。
降阶法:
y'''+p(x)y''+q(x)y'=a0x^n+a1x^(n-1)+…+a(n-1)x+an…… y^(n+1)+py^(n)+qy^(n-1)=a0n!x+a1(n-1)! y^(n+2)+py^(n+1)+qy^(n)=a0n! 令y^n=a0n!/q(q≠0),此时,y^(n+2)=y^(n+1)=0。由
y*= xQk (x) ex
其中Q(x)是与p(x)同次的多项式,k按α不是特 征根、是单特征根或二重特征根,依次取0,1 或2.
将y*代入方程,比较方程两边x的同次幂的系 数(待定系数法),就可确定出Q(x)的系数而 得特解y*。
二阶常系数非齐次的通解
二阶常系数非齐次的通解1. 引言非齐次线性微分方程是研究微分方程中的重要内容之一。
二阶常系数非齐次线性微分方程是其中的一类典型问题,其形式为:$$\frac{d^2y}{dt^2}+a\frac{dy}{dt}+by=f(t)$$其中a,b为常数,f(t)为已知函数。
本文将着重讨论这类微分方程的通解。
2. 齐次线性微分方程的通解为了解决非齐次线性微分方程,首先需要求解其对应的齐次方程:$$\frac{d^2y}{dt^2}+a\frac{dy}{dt}+by=0$$其通解可以表示为:$$y_h(t)=c_1e^{r_1t}+c_2e^{r_2t}$$其中,$r_1$,$r_2$为齐次方程的特征根,$c_1$,$c_2$为任意常数。
根据特征根的不同情况,可以将齐次方程分为三类:两个实根、两个虚根、一个实根和一个重根。
分别讨论如下。
2.1 两个实根当齐次方程的特征方程有两个实根$r_1$和$r_2$时,通解为:$$y_h(t)=c_1e^{r_1t}+c_2e^{r_2t}$$此时,$r_1$和$r_2$可以通过特征方程求得:$$r_1,\ r_2=\frac{-a\pm\sqrt{a^2-4b}}{2}$$如果$a^2<4b$,则$r_1$和$r_2$是两个虚根。
2.2 两个虚根当齐次方程的特征方程有两个虚根时,通解可以表示为:$$y_h(t)=e^{\alpha t}(c_1\cos\beta t+c_2\sin\beta t)$$其中,$\alpha$和$\beta$为实数,可以通过特征方程求得:$$\alpha=-\frac{a}{2},\ \beta=\frac{\sqrt{4b-a^2}}{2}$$ 2.3 一个实根和一个重根当齐次方程的特征方程仅有一个实根$r_1$且其重根时,通解可以表示为:$$y_h(t)=(c_1+c_2t)e^{r_1t}$$其中$c_1$、$c_2$为任意常数。
二阶常系数非齐次线性方程解法
就是微分方程的解
22
下面分三种情况讨论常系数齐次线性方程的通解.
1). 特征方程有两个不相等的实根
p2 4q 0
特征根为
1 p
p2 4q ,
2
2 p
p2 4q ,
2
两个线性无关的特解
y1 e1x ,
y2 e2x ,
得齐次方程的通解为 y C1e1x C2e2x ;
14
定理 5.
分别是方程
y P(x) y Q(x) y fk (x) (k 1, 2,, n )
的特解,
是方程
n
y P(x) y Q(x) y fk (x)
k 1
的特解. (非齐次方程解的叠加原理)
例1
求方程
y x y 1 y 0,(x 1) x 1 x 1
23
2) 特征方程有两个相等实根 则微分方程有一个特解
若 p2 4q 0,则
设另一特解
( u (x) 待定)
代入方程得:
e1 x [(u 21u 12u ) p(u 1u ) q u 0
u ( 2 1 p ) u ( 12 p 1 q ) u 0
数) 是该方程的通解.
例如, 方程
有特解
且
y2 y1
tan
x
常数, 故方程的通解为
11
定理 3. 设 y * (x) 是二阶非齐次方程
①
的一个特解, Y (x) 是相应齐次方程的通解, 则
y Y (x) y *(x)
②
是非齐次方程的通解 .
证: 将 y Y (x) y *(x) 代入方程①左端, 得
二阶常系数非齐次线性微分方程的通解公式
同理计算 可得
B( z) 一 0 .
于 是 由本 文定 理可 知所 求方 程 的通解 为
Y — CI O . S C  ̄+ C ix + 2 n s
sxs xo d —c zs xi d i e cs x o e s xx nIc x sI c n
Cl O X + C2 i x + xsn + S C sn ix
A)刍∞[ 一 s .厂∞出 if ) n
e c。 s
卜 )2c 小一 s 。 i d n [sJ -) z c e厂 s d 。 . (i 一 2 ~ zn 卜 ) 。 d S s 一 j 2 啦c
吉 [ 卜 ) z es i 啦 c — O d 卜 )f sx] i: . nd i
7
式 可分 如下情 形 分别 给 出 : (I )当 , 为 不相 等 的实 根时 ,
Y — Cl a + Cz 十 1 e e
一
∞
叫[ 叫 如 一 [ s i 卜 ) d mr s] & 啦 卜,) r ( sx zf] md l s i厂厂 i如 i [耻 (啦 ] 啦s n 小
c。
其 中 C , 2 任 意常数 . c 为 例 . 求解微 分 方程 1
Y + Y — s c e x.
解 易 知对应 齐 次方 程 的特征 根为
1 一 i , 2一 一 i .
e l 2j 厂 )f e (s ̄ ~ s 卜 c i i d n ~ n l z
一类二阶常系数非齐次线性微分方程通解的求解方法
二阶常系数线性齐次微分方程:+求非齐次方程通解的方法:先求出与其对应的齐次方程+的通解特征方程特征根判断①两个不同的实数根通解②两个相同的实数根通解③为一对共轭复根通解:再求原方程的一个特解齐次方程通解+原方程特解即为原方程的通解+是一个多项式):写出原方程对应的特征方程并求解原方程对应的齐次线性方程通解确定原方程特解形式:也是一个次多项式)而的值要通过和特征方程的解确定或求出和,并将代入原方程,确定未知参数,求出特解。
二阶常系数线性齐次微分方程:y″+py′+qy=f(x)求非齐次方程通解的方法:先求出与其对应的齐次方⇒程y″+py′+qy=0的通解特征方程r2+pr+q=0⇒特征根r1,r2判断△①△=p2−4q>0⇔r1,r2,两个不同的实数根⇒通解y=C1er1x+C2er2x②△=p2−4q=0⇔r1=r2,两个相同的实数根⇒通解y=(C1+C2x)er1x③△=p2−4q=0⇔r1=α+iβ,r2=α−iβ为一对共轭复根⇒通解:y=eαx(C1cosβx+C2sinβx)再求原方程的一个特解y∗;齐次方程通解+原方程特解即为原方程的通解y″+py′+qy=pm(x)eλx(pm是一个多项式)steps1:写出原方程对应的特征方程r2+pr+q=0并求解⇒原方程对应的齐次线性方程通解steps2:确定原方程特解形式:y∗=xkQm(x)eλx(Qm(x)也是一个m次多项式)
Qm(x)={c∈Rm=0ax+bm=1akxk+ak−1xk−1+⋯+a1x+a0m=k而k的值要通过λ和特征方程的解确定k={0,λ≠r1,r21,λ=r1 或r22,λ=r1=r2steps3:求出y∗′和y″,并将y∗,y∗′,y′代入原方程,确定未知参数,求出特解。
齐次方程通解+原方程特解即为原方程的通解。
2015考研数学一真题解析二阶常系数非齐次微分方程解的结构
2015考研数学一真题解析:二阶常系数非齐次微分方程解的结构来源:文都教育二阶常系数非齐次微分方程是考研数学重要考点,命题形式包括二阶常系数非齐次微分方程求通解、解得结构定理及已知通解求微分方程,2015考研数学考查了本知识点,题目和解析如下: 设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,则 ( )A. 3,2,1=-==-a b cB. 3,2,1===-a b cC. 3,2,1=-==a b cD. 3,2,1===a b c【答案】A【分析】此题考查二阶常系数非齐次线性微分方程的逆问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解 【解析】由题意可知,212x e 、13xe -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32x y y y ce '''-+=,再将特解x y xe =代入得1c =-.故选(A )二阶常系数非齐次线性微分方程解的结构与通解此知识点方法和公式固定,大家只需按解得结构原理和求通解公式按部就班解答就可以了,下面文都考研数学老师帮大家复习一下此知识点。
1.二阶常系数非齐次微分方程定义—形如)(x f qy y p y =+'+''(其中q p ,为常数)的方程。
2.通解的结构—)(x f qy y p y =+'+''的通解为0=+'+''qy y p y 的通解与其本身一个特解之和。
3.特解求法:情形一:)()(x P e x f m x λ= 设方程的特解结构为:()x y e Q x λ*= ①当λ不是特征根时,)()(x Q x Q m =; ②当λ是特征单根时, )()(x xQ x Q m =;③当λ是特征重根时,)()(2x Q x x Q m =. 情形二:]sin )(cos )([)(x x R x x P e x f n L x ωωλ+= 设特解结构为 :[()cos ()sin ]k x m m y x e R x x S x x λωω*=+,其中},{n L Max m =, ①当i ωλ+不是特征方程的根时,0=k ;②当i ωλ+是特征方程的根时,1=k ; 代入原方程求出多项式(),()m m R x S x 的系数即可.。
高数二阶常系数非齐次线性微分方程解法及例题详解
强迫振动问题例题
01
解题步骤
02 1. 将外力函数展开为傅里叶级数或三角级数。
03 2. 将展开后的级数代入原方程,得到一系列简单 的一阶或二阶常系数线性微分方程。
强迫振动问题例题
3. 分别求解这些简单方程,得到原方程的通解。
示例:考虑方程 $y'' + 4y = sin t$,首先将 $sin t$ 展开为三角级数,然后代入原方程进行求解,得到通解为 $y(t) = C_1 cos(2t) + C_2 sin(2t) + frac{1}{8} sin t$。
详细描述
自由振动问题通常可以通过求解特征方程得到,特征方程是一元二次方程,其根决定了 微分方程的解的形式。如果特征方程有两个不相等的实根,则微分方程的解为两个独立 的指数函数;如果特征方程有两个相等的实根,则微分方程的解为单一的指数函数;如
果特征方程有一对共轭复根,则微分方程的解为正弦和余弦函数。
强迫振动问题
方程形式与特点
01
02
03
04
05
二阶常系数非齐次线性 该方程具有以下特点 微分方程的一般形式为: $y'' + p(x)y' + q(x)y = f(x)$,其中$p(x)$、 $q(x)$和$f(x)$是已知函 数,$y$是未知函数。
未知函数$y$的最高阶导 系数是常数,不随$x$变 右边的函数$f(x)$是非齐
高数二阶常系数非齐次线 性微分方程解法及例题详 解
• 引言 • 二阶常系数非齐次线性微分方程的解
法 • 常见题型及解题技巧 • 例题详解 • 总结与思考
01
引言
背景介绍
二阶常系数非齐次线性微分方程在自 然科学、工程技术和社会科学等领域 有广泛应用,如物理学、化学、生物 学、经济学等。
考研高等数学重难点的解析
考研高等数学重难点的解析考研高等数学重难点的解析我们在准备考研数学的复习时,需要把高等数学的重难点知识掌握好。
店铺为大家精心准备了考研高等数学重难点的分析,欢迎大家前来阅读。
考研高等数学知识点的总结高等数学:从科目上看,从数一到数三,分量最重的都是高等数学,它在数一、数三中占了56%,在数二中更是占了百分之78%,因此科目上的重头戏在高数。
通过对2013考研数学考纲以及历年真题的分析,新东方在线的老师对高数的重难点进行了梳理、总结:一、函数、极限、连续部分:极限的运算法则、极限存在的准则(单调有界准则和夹逼准则)、未定式的极限、主要的等价无穷小、函数间断点的判断以及分类,还有闭区间上连续函数的性质(尤其是介值定理),这些知识点在历年真题中出现的概率比较高,属于重点内容,但是很基础,不是难点,因此这部分内容一定不要丢分。
二、微分学部分:主要是一元函数微分学和多元函数微分学,其中一元函数微分学是基础亦是重点。
一元函数微分学,主要掌握连续性、可导性、可微性三者的关系,另外要掌握各种函数求导的方法,尤其是复合函数、隐函数求导。
微分中值定理也是重点掌握的内容,这一部分可以出各种各样构造辅助函数的证明,包括等式和不等式的证明,这种类型题目的技巧性比较强,应多加练习。
函数的凹凸性、拐点及渐近线,也是一个重点内容,在近几年考研中常出现。
曲率部分,仅数一考生需要掌握,但是并不是重点,在考试中很少出现,记住相关公式即可。
多元函数微分学,掌握连续性、偏导性、可微性三者之间的关系,重点掌握各种函数求偏导的方法。
多元函数的应用也是重点,主要是条件极值和最值问题。
方向导数、梯度,空间曲线、曲面的切平面和法线,仅数一考生需要掌握,但是不是重点,记忆相关公式即可。
三、积分学部分:一元函数积分学的一个重点是不定积分与定积分的计算。
这个对于有些来说可能不难,但是要想用简便的方法解答还是需要多花点时间的。
在计算过程中,会用到不定积分/定积分的基本性质、换元积分法、分部积分法。
求二阶线性非其次微分方程通解的方法
求二阶线性常系数非齐次微分方程通解的方法摘要:二阶线性常系数非齐次微分方程在常微分方程的理论和应用中占有重要地位,本文提出了三种解法。
一种是课本介绍的常数变易法,先求得对应的齐次微分方程的基本解组,然后求非齐次方程的通解;第二种是对某些特殊类型的非齐次方程,可以运用比较系数法方便求解;第三种是在先求得对应的齐次微分方程一个特解的情况下,将二阶线性常系数非齐次微分方程转化为可降阶的微分方程,得出了一种运算量较小的二阶线性常系数非齐次微分方程通解的一般公式,并用实例证明该方法是可行的。
关键词:二阶常系数非齐次微分方程;通解;特解;基本解组1.引言微分方程和日常生活联系是比较紧密的,在一些天文学、力学、人口发展模型、交通流模型等的求解过程中,经常会导出微分方程。
而二阶常系数线性微分方程作为一类最基础最重要的微分方程,探讨求出它通解的方法就显得至关重要。
本文给出的三种求解二阶线性常系数非齐次微分方程的方法中,常数变易法和降阶法可方便地求出一般方程通解,但要求被积函数可积,当被积函数不可积时可采用数值解法,本文不作详述。
2. 二阶线性常系数非齐次微分方程设二阶线性常系数非齐次微分方程:)(x f qy y p y =+'+'' (1)其中q p ,为实常数, )(x f 为其定义域内连续函数。
则方程(1)对应的齐次线性方程为:y ''0=+'+qy p (2)本文给出了三种求解二阶线性常系数非齐次微分方程的方法: 2.1常数变易法由线性微分方程的相关知识可知,如果已知(1)对应的齐次线性微分方程(2)的基本解组,那么非齐次线性微分方程的任一解可由求积得到。
因此,求非齐次线性微分方程(1)的通解,关键是求出齐次线性微分方程的基本解组。
下面介绍的常数变易法对于高阶线性常系数非齐次微分方程也适用。
考虑n 阶线性常系数非齐次微分方程 :)(1)1(1)(x f y p y p yp y n n n n =+'+++-- (3) 2.1.1求基本解组对于常系数线性微分方程(3),有一种求基本解组的方法——欧拉待定指数函数法(又称为特征根法)。
差分方程的解法及应用
差分方程的解法及应用随着科学技术的不断进步,人类对于数学这一学科的探索和研究也越来越深入。
在数学的众多分支中,差分方程是一种重要的数学工具。
它具有广泛的应用领域,比如利用差分方程可以对物理、化学、生态学和经济学等领域中的一些现象进行建模和预测。
一、差分方程的定义与类型差分方程是一种描述序列之间关系的数学工具。
简单来说,差分方程就是一种具有递推性质的方程。
通过对序列中前一项和后一项之间的差值进行分析,差分方程可以对序列之间的关系进行确定。
根据差分方程的形式,我们可以将其分为线性差分方程和非线性差分方程两种类型。
线性差分方程通常可以表示为:$$a_n=c_1a_{n-1}+c_2a_{n-2}+···+c_ka_{n-k}+F(n)$$其中,$a_n$表示数列中第n项的值,$F(n)$为非齐次项,$c_1,c_2,...,c_k$为系数。
非线性差分方程则不具有这种明显的简洁形式,但是常常可以利用变量代换的方法将其转化为线性差分方程的形式求解。
二、差分方程的求解方法差分方程的解法依赖于方程的类型和系数,不同的差分方程往往需要使用不同的方法进行求解。
1.一阶线性差分方程一阶线性差分方程的形式通常为:$$a_n=c·a_{n-1}+F(n)$$其中,$c$为常数,$F(n)$为非齐次项。
为求解这种类型的差分方程,我们可以采用欧拉定理,得到方程的通解为:$$a_n=A·c^n+\frac{F(n)}{1-c}$$其中$A$是待定系数。
2.二阶常系数线性差分方程二阶常系数线性差分方程的形式通常为:$$a_n=c_1·a_{n-1}+c_2·a_{n-2}+f(n)$$其中$c_1,c_2$为常数,$f(n)$为非齐次项。
为了求解这种类型的差分方程,我们需要先找到其特征方程:$$\lambda^2-c_1\lambda-c_2=0$$然后,我们可以根据该特征方程的根以及非齐次项来计算该方程的通解。
二阶常系数非齐次线性微分方程解法及例题
二阶常系数非齐次线性微分方程解法及例题大家好,今天我们来探讨一下二阶常系数非齐次线性微分方程的解法及一些例题。
我们要明白什么是二阶常系数非齐次线性微分方程。
简单来说,就是一个未知函数y与其导数y关于t的关系式,形式如下:dy/dt + A*y = B*exp(ct)其中,A、B、c是已知常数,t是自变量。
这个方程的解法有很多种,但是我们今天主要讨论两种方法:一种是分离变量法,另一种是特征线法。
我们来看一下分离变量法。
分离变量法的基本思想是把未知函数y看作两个函数的和,一个是指数函数e^(ct),另一个是线性函数y(t)。
这样一来,我们就可以用积分的方法求解这个方程了。
具体步骤如下:1. 把方程改写为:e^(ct) = y(t) B/A*ln|y(t)|2. 对两边取对数:ln|y(t)| = ct ln|y(t)| ln(B/A)3. 对上式两边求积分:∫[0,∞] ln|y(t)| dt = ∫[0,∞] (ct ln|y(t)| ln(B/A)) dt4. 根据积分公式和性质,我们可以得到:y(t) * e^(-bt) = B/A * e^(-bt) * |y(t)|^n + C,其中n是一个待定常数5. 通过比较系数,我们可以得到:y(t) = (B/A)^n * |y(t)|^n6. 这样我们就得到了二阶常系数非齐次线性微分方程的一个特解。
接下来,我们可以通过凑特解的方法得到原方程的通解。
下面我们来看一下特征线法。
特征线法的基本思想是找到一个特征线,使得它与原方程有相同的极值点。
具体步骤如下:1. 对于特征线l:y = x + c,代入原方程得:x + c = x + A*y B*exp(ct) => A*y =B*exp(ct) + c => y = (B/A)*exp(ct) + c/A2. 由于特征线l与原方程有相同的极值点,所以我们可以得到原方程的通解为:y = (B/A)^n * exp(ct) + c/A * (x x0)^n3. 其中,x0是特征线的交点的横坐标,n是待定常数。
二阶常系数非齐次线性微分方程解法及例题
二阶常系数非齐次线性微分方程解法及例题嘿,伙计们!今天我们来聊聊一个非常有趣的话题——二阶常系数非齐次线性微分方程解法及例题。
让我给你简单解释一下这个概念。
你知道吗,微分方程就像是一个神秘的世界,里面有很多奇妙的现象。
而二阶常系数非齐次线性微分方程就是这个世界里的一个谜题。
它的意思是说,这个方程有两个未知数,其中一个未知数的最高次数是2,而且方程中没有齐次项。
听起来好像很难懂,但别担心,我会用最简单的语言来解释给你听。
我们来看一个例子。
假设我们有一个问题:求解下面的二阶常系数非齐次线性微分方程:y'' + 3y' + 2y = x^2这个问题看起来很复杂,但是我们可以用一种叫做“分离变量”的方法来解决。
具体步骤如下:1. 我们把方程中的x^2移到等式左边,得到一个新的方程:y'' + 3y' + 2y x^2 = 02. 然后,我们把这个新方程看作是一个关于y的二次方程。
为了求解这个二次方程,我们可以先求出它的两个根,分别是y1和y2。
3. 我们根据这两个根和原方程的关系,就可以求出x的值。
这个方法虽然看起来有点复杂,但是其实很简单。
只要你掌握了这种方法,就可以轻松地解决很多类似的问题。
当然啦,还有很多其他的方法可以用来解决二阶常系数非齐次线性微分方程,比如“积分因子法”等等。
但是我觉得,还是分离变量的方法最简单、最直观。
好了,现在我们已经知道了如何解决二阶常系数非齐次线性微分方程的问题。
接下来,我要给你讲一个有趣的故事。
从前,有一个叫小明的小男孩,他非常喜欢学习数学。
有一天,他在家里发现了一本旧书,里面记载了很多神奇的数学知识。
其中就包括了二阶常系数非齐次线性微分方程的解法。
小明觉得这个方法非常神奇,于是决定试着去解决一些实际问题。
有一天,小明的爷爷给他出了一道难题:求解下面的二阶常系数非齐次线性微分方程:y''' + 6y'' + 4y' + 3y = x^3小明看了看这个方程,觉得非常有挑战性。
二阶常系数非齐次微分方程的通解
二阶常系数非齐次微分方程的通解要求给出二阶常系数非齐次微分方程的通解,我们先来回顾一下二阶常系数齐次微分方程的通解形式。
对于二阶常系数齐次微分方程:$$\frac{d^2y}{dt^2}+a\frac{dy}{dt}+by=0$$我们可以设其解为$y=e^{rt}$,其中$r$为待定常数。
将$y=e^{rt}$代入上式,得到:$$r^2e^{rt}+are^{rt}+be^{rt}=0$$化简上式,可得:$$r^2+ar+b=0$$这是一个二次方程,我们可以使用求根公式来解得$r_1$和$r_2$。
对于$r_1$和$r_2$为实数的情况,通解形式为:$$y=c_1e^{r_1t}+c_2e^{r_2t}$$其中$c_1$和$c_2$为待定常数。
对于$r_1$和$r_2$为复数的情况,通解形式为:$$y=e^{at}(c_1\cos(bt)+c_2\sin(bt))$$其中$c_1$和$c_2$为待定常数。
接下来我们来讨论二阶常系数非齐次微分方程的通解形式。
对于非齐次微分方程:$$\frac{d^2y}{dt^2}+a\frac{dy}{dt}+by=f(t)$$其中$f(t)$为已知函数,我们首先要找到它的一个特解。
特解可以通过猜测的方法或变异参数法求得。
当特解已知时,我们可以将其带入原方程,然后设通解为特解加上齐次方程的通解。
设特解为$y_p$,齐次方程的通解为$y_c$,则原方程的通解可以表示为:$$y=y_c+y_p$$接下来,我们讨论特解的求解方法。
1.猜测方法:根据非齐次项的形式,我们可以猜测特解的形式,然后将其带入原方程,求解得到特解。
常用的猜测形式有:多项式、指数函数、三角函数、幂函数等。
2.变异参数法:假设特解为$y_p=u(t)y_c$,其中$y_c$为齐次方程的通解,$u(t)$为待定函数,代入原方程得到:$$\frac{d^2(u(t)y_c)}{dt^2}+a\frac{d(u(t)y_c)}{dt}+b(u(t)y_c)=f(t)$$化简后,整理得到:$$y_c\left[\frac{d^2u(t)}{dt^2}+a\frac{du(t)}{dt}+bu(t)\right]+\left[\frac{d^2y_c}{dt^2}+a\frac{dy_c}{dt}+by_c\right]u(t) =f(t)$$由于$\frac{d^2y_c}{dt^2}+a\frac{dy_c}{dt}+by_c=0$,所以上式可化简为:$$y_c\left[\frac{d^2u(t)}{dt^2}+a\frac{du(t)}{dt}+bu(t)\right] = f(t)$$我们可以通过选择合适的$u(t)$,使得$\frac{d^2u(t)}{dt^2}+a\frac{du(t)}{dt}+bu(t)$为一常数或一个已知函数。
二阶常系数非齐次线性微分方程解法及例题
二阶常系数非齐次线性微分方程解法及例题在学习高等数学的过程中,二阶常系数非齐次线性微分方程是一个重要的知识点。
理解和掌握它的解法,对于解决许多实际问题和理论研究都具有重要意义。
首先,我们来了解一下二阶常系数非齐次线性微分方程的一般形式:$y''+ py' + qy = f(x)$,其中$p$、$q$是常数,$f(x)$是一个已知函数。
其解法的关键在于先求出对应的齐次方程的通解,然后再求出非齐次方程的一个特解,最终将两者相加得到非齐次方程的通解。
对于齐次方程$y''+ py' + qy = 0$,我们可以通过特征方程$r^2+ pr + q = 0$来求解。
特征方程的根有三种情况:1、两个不相等的实根$r_1$和$r_2$,此时齐次方程的通解为$y_c= C_1e^{r_1x} + C_2e^{r_2x}$。
2、两个相等的实根$r$,通解为$y_c =(C_1 +C_2x)e^{rx}$。
3、一对共轭复根$\alpha \pm \beta i$,通解为$y_c = e^{\alpha x}(C_1\cos\beta x + C_2\sin\beta x)$。
接下来,我们重点讨论如何求非齐次方程的特解。
根据$f(x)$的形式,通常使用待定系数法来求解。
常见的$f(x)$形式有以下几种:1、$f(x) = P_n(x)e^{\lambda x}$,其中$P_n(x)$是$x$的$n$次多项式。
若$\lambda$不是特征根,设特解为$y_p = Q_n(x)e^{\lambda x}$,其中$Q_n(x)$是与$P_n(x)$同次的待定多项式。
若$\lambda$是特征方程的单根,设特解为$y_p = xQ_n(x)e^{\lambda x}$。
若$\lambda$是特征方程的重根,设特解为$y_p = x^2Q_n(x)e^{\lambda x}$。
2、$f(x) = e^{\lambda x}P_l(x)\cos\omega x + Q_m(x)\sin\omega x$若$\lambda \pm \omega i$不是特征根,设特解为$y_p = e^{\lambda x}R_{l+m}(x)\cos\omega x + S_{l+m}(x)\sin\omegax$,其中$R_{l+m}(x)$和$S_{l+m}(x)$是与$P_l(x)$和$Q_m(x)$同次的待定多项式。
考研数学三类行列式计算分析
考研数学三类行列式计算分析行列式是线*代数的重要考察点,出题比较灵活,考生需熟练掌握。
小编为大家精心准备了考研数学三类行列式计算指南,欢迎大家前来阅读。
对于数值型行列式来说,我们先看低阶行列式的计算,对于二阶或者三阶行列式其是有自己的计算公式的,我们可以直接计算。
三阶以上的行列式,一般可以运用行列式按行或者按列展开定理展开为低阶行列式再进行计算,对于较复杂的三阶行列式也可以考虑先进行展开。
在运用展开定理时,一般需要先利用行列式的*质将行列式化为某行或者某列只有一个非零元的形式,再进行展开。
特殊低阶行列式可以直接利用行列式的*质进行求解。
对于高阶行列式的计算,我们的基本思路有两个:一是利用行列式的*质进行三角化,也就是将行列式化为上三角或者下三角行列式来计算;二是运用按行或者按列直接展开,其中运用展开定理的行列式一般要求有某行或者某列仅有一个或者两个非零元,如果展开之后仍然没有降低计算难度,则可以观察是否能得到递推公式,再进行计算。
其中在高阶行列式中我是用加边法把其最终化为上(下)三角,或者就直接按行或者列直接展开了,展开后有的时候就直接是上或者下三角形行列式了,但有时其还不是上下三阶,可能就要用到递推的类型来处理此类题目了。
总之,我们对于高阶行列式要求不是很高,只要掌握几种常见的情形的计算方法就可以了。
有的时候,对于那些比较特殊的形式,比如范德蒙行列式的类型,我们就直接把它凑成此类行列式,然后利用范德蒙行列式的计算公式就可以了,但是,我们一定要把范德蒙行列式的形式,一阶其计算方法给它掌握住,我们在上课时也给同学们讲解了其记忆的方面,希望同学们课下多多做些练习题进行巩固。
当然对于行列式我们有时可能还会用到克莱默法则和拉普拉斯展开来计算,只是这些都是些特殊的行列式的计算,其有一定的局限*,比如1995年数三就考到了一题用克莱默法则来处理的填空题。
对于抽象型行列式来说,其计算方法就有可能是与后面的知识相结合来处理的。
高数二阶常系数非齐次线性微分方程解法及例题详解
比较两端同类项的系数 得a>>>1 b0 c0d 4 3 9 同类项的系数 得a 1 b0 c0d 4 3 9 因此所给方程的特解为 y* 1 x cos 2 x + 4 sin 2 x 3 9
特解形式 结束
因此所给方程的通解为
y C1e 2 x + C2e3x 1 ( x 2 + 2 x)e 2 x 2
特解形式 首页
二、 结论 f(x)ex[Pl(x)coswx+Pn(x)sinwx]型
二阶常系数非齐次线性微分方程 y+py+qyex[Pl(x)coswx+Pn(x)sinwx] 有形如 y*xkex[R(1)m(x)coswx+R(2)m(x)sinwx] 的特解 其中R(1)m(x)、R(2)m(x)是m次多项式 mmax{l n} 而k 按+iw(或iw)不是特征方程的根或是特征方程的单根依次 取0或1 >>>
下页
例3 求微分方程y+yxcos2x的一个特解 解 齐次方程y+y0的特征方程为r2+10 因为f(x)ex[Pl(x)coswx+Pn(x)sinwx]xcos2x +iw2i不是 特征方程的根 所以所给方程的特解应设为 y*(ax+b)cos2x+(cx+d)sin2x 把它代入所给方程 得 >>> (3ax3b+4c)cos2x(3cx+4a+3d)sin2xxcos2x
下页
结论 二阶常系数非齐次线性微分方程 y+py+qyPm(x)ex 有形如 y*xkQm(x)ex 的特解 其中Qm(x)是与Pm(x)同次的多项式 而k按不是特征 方程的根、是特征方程的单根或是特征方程的的重根依次取 为0、1或2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018考研数学重难点之二阶常系数线性非齐次差分方程的通解分析
差分方程除了用于对离散变量建立离散数学模型外,也可用于将连续变量及其连续数学模型离散化,换句话说,就是将微分方程离散化为差分方程,这对于难以求出精确解的微分方程来说具有重要的作用,事实上微分方程的数值解法就是如此,它通过差分方程来求出微分方程的近似解。
下面本文对二阶常系数线性非齐次差分方程的求解方法做些分析总结,供有兴趣的2018考研的同学拓展思路参考。
一、二阶常系数线性非齐次差分方程的通解
从前面的分析我们看到,二阶常系数线性非齐次差分方程的通解与二阶常系数线性非齐次微分方程的通解有非常相似的结论,比如其通解都是其特解与对应齐次方程的通解之和,而齐次方程的通解可以通过特征根求出,对于几类常见的自由项blob.png类型,包括:多项式、指数函数及二者乘积,其相应差分方程的特解也与微分方程的情形很类似,当然,二者还是有有些差别的,这一点希望大家注意。