数字人体心率检测仪的设计

合集下载

数字人体心率检测仪的设计

数字人体心率检测仪的设计

数字人体心率检测仪的设计1.设计思路本课题研究的是数字人体心率监测仪的设计,我所设计的检测仪,它使用方便,只需将手指端轻轻放在传感器上,即可实时显示出你的每分钟脉搏次数,特别适合体育训练和外出旅游等场合使用。

采用红外光学检测法,摒弃了不便于运动状态下测量脉搏的听诊器和吸附在人体上的电极等老式测量方法。

检测的基本原理是:随着心脏的搏动,人体组织半透明度随之改变:当血液送到人体组织时,组织的半透明度减小:当血液流回心脏,组织则半透明度增大。

这种现象在人体组织较薄的手指尖,耳垂等部位最为明显。

因此,本心率检测仪将红外发光二极管产生的红外线照射到人体的上述部位,并用装在该部位的另一侧或旁边的红外光电管来检测机体组织的透明程度并把它转换成电信号。

由于此信号的频率与人体每分钟的脉搏次数成正比,故只要把它转换成脉冲并进行整形,计数和显示,即可实时的测出脉搏的次数。

心率与脉搏的联系:心率与脉搏在身体正常的时候是相等的。

在房颤等心脏疾病时候可出现不等。

因此心率测量问题可以转化为脉搏的测量,而脉搏的测量有更容易实现的特点,在实际应用中得到更广泛的运用。

本检测仪的有效测量范围为50次—199次/分钟。

2 方案设计2.1 心率采集处理电路心率采集处理电路如图1-1所示。

该部分电路主要由脉搏次数红外检测采集电路模块、信号抗干扰电路模块、信号整形电路模块等三个主要的电路模块组成。

其中,红外线发射管D1和红外线接收管Q1组成了红外检测采集电路:R2与C1、C2与C3、R4与C4和ICA共同工程了信号抗干扰电路组,他们分别承担了对信号的低通滤波、干扰光线的光电隔离、参与高频干扰的滤除等任务。

另外,I CB、C5与R10、ICC则共同组成了信号整形电路模块。

图1光电式脉搏波传感器的原理其原理是利用光电信号来测量脉搏容量的变化。

当血管内容量变化时,组织对光的吸收程度相对发生变化,利用光电传感器可测出这种变化,该变化反映出血液动脉的基本参数情况。

数字心率计设计资料

数字心率计设计资料

数字心率计设计说明书1、程设计任务书2.说明书正文2.1:任务分析与方案设计心率计是用来测量一个人心脏在单位时间跳动次数的电子仪器。

心脏的收缩和舒张引起血压的变化,不同年龄段和不同健康状况的人正常血压范围有较大差异,但是收缩压和舒张压的差值却大致都在40mmHg~50mmHg 范围内。

基于此,可以利用压力传感器将人体血压的变化转化成电压的变化,再通过滤波、放大、整形后得到方波,由模拟转化成数字后再进行后续处理。

现提出两种计数方案: 1)定时计数在一定时间内对脉冲信号进行计数。

由于任务要求在短时间内测出1分钟心脏跳动的次数,则需要对整形后的方波信号进行倍频;又由于测量误差要求≤±4次/分钟,则最多可以4倍频,此时,测量时间为15s 。

电路模块方框图:2)定数计时在定数的脉冲信号持续时间内,对标准时钟信号进行计数,再通过转换得到心率值。

如设置标准时钟信号周期为0.1s ,在6个脉冲信号持续时间内(即5个心脏跳动周期)对标准时钟信号进行计数,设计数值为N ,则心率为3000/N 。

计算过程如下:每个脉冲周期To=0.1N/5 s ,则心率S=60/To=3000/N(次/分钟)。

电路模块方框图:方案一的测量时间长,测量误差也较大,且测量误差与测量时间成反比关系;但是计数值即为心率值,电路实现较为简单。

方案二测量时间短,测量误差也小;但是计数后的值还需要进行除法转换后才是心率值,电路实现较为复杂,成本也较高,故采用方案一。

2.2:电路设计,元器件参数计算及选择2.2.1:传感器的选择传感器的选择需要综合考虑各项性能参数,这些性能参数要能满足测量要求,现对传感器的各项性能参数以及任务要求分析如下:1)线性度指传感器输出与输入之间成线性的程度。

任务要求是测量心脏跳动的次数,而并未要求测量出血压值,故只需要得到一个个脉冲输出即可,对其量值没有太大要求,故系统对传感器线性度要求不高。

2)灵敏度灵敏度是传感器在稳态下输出变化量对输入变化量的比值。

基于单片机的心率测试仪设计

基于单片机的心率测试仪设计

基于单片机的心率测试仪设计心率测试仪是一种用来测量人体心率的设备,它使用单片机技术来实现数据处理和显示功能。

本文将介绍基于单片机的心率测试仪的设计原理、硬件组成以及软件实现。

一、设计原理心率测试仪的设计原理是通过测量人体的心电信号来计算心率。

心电信号是由心脏产生的微弱电流,可以通过电极贴在人体皮肤上进行测量。

传感器将心电信号转换为模拟电压信号,然后经过滤波处理和放大处理后,再经过A/D转换,转换为数字信号供单片机处理。

单片机通过计算心电信号的周期来得到心率值,并将结果显示在液晶屏上。

二、硬件组成1.单片机:选择一款适用的单片机,如STM32系列的单片机,具有高性能和丰富的外设接口,以满足心率测试仪的需求。

2.心电信号传感器:选择一款专门用于心电信号测量的传感器,如AD8232芯片,可以提供可靠的心电信号采集。

3.滤波器:使用滤波器对心电信号进行滤波处理,去除杂散信号,只保留心电信号的频率分量。

4.放大器:为了增强心电信号的幅度,需要使用放大器来对滤波后的信号进行放大处理,方便后续的A/D转换。

5.A/D转换器:将放大后的模拟信号转换为数字信号,供单片机进一步处理。

三、软件实现1.心电信号采集与处理:通过传感器采集心电信号,并经过滤波和放大处理,得到滤波后的模拟信号。

2.A/D转换:将模拟信号通过A/D转换器转换为数字信号,供单片机处理。

3.心率计算:单片机通过计算心电信号的周期来得到心率值,可以使用峰值检测算法或阈值判定算法来实现。

4.数据显示:将计算得到的心率值通过串口或并口发送到液晶屏上进行显示,可以设计显示界面,包括心率值、时间等信息。

总结:基于单片机的心率测试仪设计主要包括硬件组成和软件实现两个部分。

硬件组成包括单片机、心电信号传感器、滤波器、放大器、A/D 转换器和液晶屏等。

软件实现包括心电信号采集与处理、A/D转换、心率计算和数据显示等。

通过合理的设计和编程,可以实现一个功能完善的心率测试仪。

数字人体心率检测仪的设计

数字人体心率检测仪的设计

数字人体心率检测仪的设计0 引言目前检测心率的仪器虽然很多,但是能实现精确测量、数据上传PC机并且具有声光报警等多种功能的便携式全数字心率测量装置很少。

本文介绍的数字人体心率检测仪可以在人体的手、腕、臂等部位均能准确测量出心跳次数,同时还具有掉电存储、测量数据上传PC机及声光报警等多项功能。

1 系统组成及工作原理系统组成如图1所示,本设计以单片机为主控信号,外辅少量硬件电路,完成数据处理、记忆、显示、通信等功能。

首先,在系统开机时通过键盘设定系统的工作方式,然后,将压电陶瓷片检测到人体心跳信号经过放大、滤波及整形处理后输入给单片机,单片机对测量的数据进行处理,送显示电路显示,同时通过通信电路将测量数据上传PC机,记忆电路主要用来存储测量数据,实现掉电存储功能,声光报警电路在测量数据超过正常范围(如大于180次/min或小于45次/min)时进行报警以提醒医生注意。

2 系统硬件电路设计2.1 传感器及信号处理电路传感器及信号处理电路如图2所示。

检测心率脉冲信号的传感器采用压电陶瓷(在压电陶瓷片上安装一海面垫以传递脉冲信号);将采集到的心率信号经过由CD4069的3个非门组成3级放大电路进行放大,然后通过由R4、R5、C5及R7、R8、C6构成的2级梯形滤波电路进行滤波处理,即可获得人体心率范围的信号(约在0.66Hz-3.33Hz之间);再通过由二极管D1、D2和R6构成的检测电路以及由U1F、U1D、U1E这3个非门构成的整形电路处理后,就可得到单片机所需要的标准的0-5V脉冲信号。

2.2 键盘电路键盘电路如图3所示。

因为I/O够用,所以4个按键分别接到单片机的P1.2、P1.3、P1.4、P1.5上,采用查询方式进行工作,K1、K2、K3及K4依次分别完成开始测量、查询、存测量结构及清除记忆数据等操作。

2.3 显示电路显示电路如图4所示,采用动态显示方式,图中2片74LS373的数据输入端均接在89C51单片机的P0口上,单片机通过P1.0和P1.3给2片74LS373提供片选信号,从而实现分时选择2片74LS373工作,分别传送段码和位码。

毕业论文心率测试仪设计

毕业论文心率测试仪设计

毕业论文心率测试仪设计引言心率是衡量人体各项生理功能的重要指标之一,它是指每分钟心脏跳动的次数。

正常人的心率在60~100次/分之间,而运动、精神紧张、药物等因素均会影响心率的变化。

因此,检测心率对于个人健康的监测、生理学研究、体育锻炼的指导等具有重要意义。

本文介绍了一种心率测试仪的设计方案,它能够简单、准确地检测出人体心率,便于人们随时随地监测自己的身体状况。

一、硬件设计本设计采用Arduino Uno控制板作为主控制芯片,具有易于编程、低功耗等优点,提供了丰富的I/O接口,能够满足各种传感器的接口需求。

硬件部分主要由Arduino Uno主控板、心率传感器、LED数码管组成。

1. Arduino Uno控制板Arduino Uno控制板基于ATmega328P单片机设计,具有14个数字输入/输出端口、6个模拟输入端口、16MHz晶振等特点。

通过连接USB接口,可以实现与计算机的数据通信,方便程序库的调用、程序烧写等操作。

在本设计中,Arduino Uno控制板扮演着数据采集、处理、显示的角色。

2. 心率传感器心率传感器的核心是一颗红外LED和一颗光敏元件,利用反射光测量血液流动的速度和微小变化。

在本设计中,采用的是MAX30100模块,它集成了红外LED、光敏元件、接收、放大电路等,具有高精度、低功耗、抗干扰等优点,可以实现较为精准的心率检测。

3. LED数码管LED数码管是一种常用的数字显示器件,具有工作稳定、显示清晰、占用空间小等特点,十分适合用于心率测试仪。

在本设计中,采用的是TYC516-022A模块,它由4个共阴极的数码管和芯片组成,可以显示0~9999范围内的数字。

二、软件设计1. 软件框架设计本设计的软件部分采用Arduino编程,使用C/C++语言编写程序。

程序框架如下:a. 初始化:包括引脚配置、传感器初始化、数码管显示初始化等。

b. 循环检测:在该循环中完成心率的检测和数据处理,并将数据显示至数码管。

数字心率计课程设计

数字心率计课程设计

数字心率计课程设计目录1.摘要 (1)2.方案原理介绍 (2)2.1 方案设计与论证 (2)3.总体方案介绍 (3)4.单元电路的设计与选择 (4)4.1 脉搏检测电路的设计 (4)4.2 信号放大电路的设计及参数计算 (5)4.3 信号滤波电路的设计及参数计算 (7)4.4 整形电路的设计与参数计算 (8)4.5 倍频电路 (10)4.6 时基电路 (11)4.7 逻辑控制电路 (12)4.8 计数、锁存和显示电路 (14)4.9 报警电路设计 (18)5.总体电路的绘制 (18)5.1 电路总图 (18)5.2 元器件清单 (19)6.心得体会 (19)7.参考文献 (21)数字心率计1 摘要对于医院的危重病人,或者在其他一些特殊场合,需对人的心心率进行连续检测,本课题即针对这一需求,设计一台简易的心率检测仪。

课题的思路是用压力传感器检测病人手腕部的脉搏跳动,压力传感器的输出信号经一系列电路处理,形成可用于检测的脉冲信号,再经电路处理,最终由数码管显示其数值,并根据被测对象情况判断其健康状态,以报警信号显示。

关键词:传感器,滤波器,放大器,显示电路,报警电路2 方案原理介绍2.1 方案设计与论证正常人的脉搏次数是每分钟60~90次(婴儿为90~120次,老年人则为100~150次), 这种频率信号属于低频范畴.因此,脉搏测试仪是用来测量低频信号的装置,它的基本功能要求是:要把人体的脉搏数(振动)转换成电信号,这就需要借助传感器。

对转换后的电信号要进行放大、滤波和整形处理,以保证后续电路能正常对其进行进一步的加工和处理。

脉搏测试仪要能在15秒左右测出脉搏跳动次数,并作出是否报警的判断。

报警的上、下限及对象选择可以通过多路开关调节。

总之,脉搏测试仪的核心是要对低频信号在固定的短时间计数,最后以数字形式显示出来。

可见,脉搏测试仪的主要组成部分是计数器和数字显示器。

2.1.1 方案设计脉搏测试仪的上述功能要求,可采用了三种不同的方案来实现:方案一:把转换为电信号的脉搏信号,在单位时间N内(如15秒)进行计数,完成后将计数结果通过乘法器乘以系数60/N(如60÷15=4)并用数字显示其计算后的值,从而得到每分钟的脉搏数。

心率测量仪设计

心率测量仪设计

目录摘要 (1)引言 (1)1.设计要求 (2)2.设计过程 (2)2.1 总体方案设计 (2)2.2 单元电路设计 (3)2.3 总体电路及工作原理 (10)3.装调与测试 (11)3.1 电路板的制作 (11)3.2 电路板的焊接 (11)3.3 测试 (11)总结 (12)参考文献 (12)数字式心率测量仪设计姓名:吴贺学号:20075042067单位:物理电子工程学院专业:电子信息工程指导老师:周胜海职称:副教授摘要:对于医院的危重病人,或者在其他一些特殊场合,需对人的心率进行连续检测。

本设计针对这一需求,设计了一台简易的数字心率测试仪。

设计的思路是用压力传感器检测病人手腕部的脉搏跳动,把脉搏信号转化为电信号,压力传感器的输出信号经一系列电路处理,形成了可用于检测的脉冲信号。

再经电路处理,最终由数码管显示其数值。

关键词:心率;计数器;放大器;传感器;显示电路;译码器。

Design of a Digital Heart Rate MeterAbstract:For some serious patients in hospital, or in some special occasions, heart rate is needed for continuous detection. this design according to the requirements, design a simple digital heartbeat tester. The thought of the design is to use a pressure sensor to detect the pulse flop of the patients, the pulse signals are converted to electrical signals, the output signal of pressure sensor is dealed with a series of circuit processing, the pulse signal which can be used to test is formed. After dealing with the circuit, finally the digital tube shows its value.Key Words:heart rate; counter;amplifier ; sensor;show circuit ; decoder.引言心率是用来描述心动周期的专业术语,是指心脏每分钟跳动的次数,以第一声音为准。

心率计毕业设计

心率计毕业设计

心率计毕业设计心率计毕业设计随着现代社会的快节奏和高压力生活方式,人们对健康的关注度越来越高。

心率作为一个重要的生理指标,对于人体的健康状况有着重要的影响。

因此,设计一款心率计成为了一个备受关注的毕业设计课题。

一、设计目标在设计心率计之前,首先需要明确设计的目标。

心率计的主要目标是测量用户的心率,并将数据以可视化的方式展示出来。

除此之外,心率计还需要具备以下功能:1. 高精度测量:心率计需要能够准确地测量用户的心率,以保证数据的可靠性。

2. 数据存储与分析:心率计需要能够存储用户的心率数据,并能够对数据进行分析,以便用户了解自己的心率变化趋势。

3. 实时监测:心率计需要能够实时监测用户的心率,并能够及时提醒用户心率异常。

4. 舒适便捷:心率计需要设计成舒适便捷的佩戴方式,以便用户能够长时间佩戴并进行心率监测。

二、硬件设计心率计的硬件设计主要包括传感器、处理器、存储器和显示器等组件。

传感器是心率计的核心部件,用于测量用户的心率。

常见的心率传感器有光电式传感器和压力式传感器。

光电式传感器利用光电效应测量心率,而压力式传感器则通过测量血液流动的压力变化来测量心率。

根据实际需求和成本考虑,选择适合的传感器。

处理器负责对传感器采集的数据进行处理和分析,并将结果存储到存储器中。

处理器的选择应考虑功耗低、运算速度快的特点,以保证心率计的性能。

存储器用于存储用户的心率数据,可以选择内置存储器或外置存储器,根据实际需求选择合适的存储器容量。

显示器用于展示用户的心率数据,可以选择LED显示屏或OLED显示屏等。

LED显示屏具有低功耗、高亮度等特点,而OLED显示屏则具有高对比度、高刷新率等特点。

根据实际需求选择合适的显示器。

三、软件设计心率计的软件设计主要包括数据处理和用户界面设计两个方面。

数据处理模块负责对传感器采集的心率数据进行处理和分析,以得到用户的心率数值。

该模块需要具备高精度的算法和数据处理能力,以保证心率计的准确性。

数字人体心率检测仪的设计

数字人体心率检测仪的设计

数字人体心率检测仪与智能手环、智能手表等设备的竞争关系 数字人体心率检测仪在医疗、运动、健康管理等领域的应用优势 数字人体心率检测仪与专业医疗设备的比较分析 数字人体心率检测仪在未来的发展趋势和前景展望
智能化:随着人 工智能技术的不 断发展,数字人 体心率检测仪将 更加智能化,能 够实现更多功能 和应用场景。

多功能显示: 具有多功能显 示,可以同时 显示心率、血 压等多种生理
参数
便携式设计: 采用便携式设 计,方便携带
和使用
支持多用户同时使用,满足多场景需求 数据同步功能,实时监测和记录用户心率数据 可通过蓝牙或WiFi连接手机或电脑进行数据传输和分析 具备数据加密和安全保护功能,确保用户隐私和数据安全
数据分析:通过配套的专业软件,用户可以对心率数据进行深度分析,了解自己的健康状况。
预警功能:当检测到异常心率时,检测仪会发出预警信号,提醒用户及时关注自己的健康状 况。
实时监测:数字 人体心率检测仪 能够实时监测人 体的心率数据。
异常提醒:当检 测到异常心率时, 设备会自动提醒 用户,避免意外 情况发生。
便携化:随着人 们对健康管理的 需求不断增加, 数字人体心率检 测仪将更加便携, 方便用户随时随 地进行检测。
精准化:随着传感 器技术的不断进步, 数字人体心率检测 仪的检测精度将不 断提高,能够更加 准确地反映用户的 心率状况。
个性化:随着个性 化需求的不断增加, 数字人体心率检测 仪将更加个性化, 能够根据用户的需 求和偏好进行定制 和优化。
睡眠质量监测:数字人体心率检测仪 可以监测用户的睡眠质量,帮助用户 了解自己的睡眠状况,改善睡眠质量。
实时监测患者的心率数据,辅助医生诊断和治疗心血管疾病 长期监测健康人的心率变化,预测和预防潜在的健康问题 跟踪运动员的心率数据,提高训练效果和竞技表现 在紧急救援现场,快速检测伤员的心率,为救治提供及时准确的数据支持

心率计设计

心率计设计

心率计设计 一、检测的基本原理:随着心脏的搏动,人体手腕的脉搏及颈部的搏动较为明显,我们采用压电传感器放在上述位置,把压电传感器测到的信号转换成脉冲并进行整形、计数和显示,就能实现实时检测脉搏次数的目的。

二、心率监测仪系统总体设计心率监测仪的总体设计电路框图如图1-1所示,主要包括单片机AT89S52、复位电路、时钟电路、传感器与信号处理电路、显示电路和报警电路。

先用红外光电传感器采集与心跳同频率的信息,当人体组织半透明度的数值较大时,红外光电二极管Dl 发射出的透过人体组织的光强度很弱,光敏三极管无法导通,所以输出端为高电平;当人体组织半透明度的数值较小时,红外光电二极管Dl 发射出的透过人体组织的光强度较强,光敏三极管导通,输出端为低电平,这样就形成了频率与脉搏次数成正比的低频信号,它近似于正弦波形.脉搏为50次,分时,频率是0.78Hz ,199次,分时是3.33Hz ,从传感器过来的是低频信号.该低频信号首先经RC 振荡器滤波以消除高频干扰,经无极性隔直流电容C6、C7加到线性放大器的输入端,经运放IC1A 将信号放大10倍,C1直流耦合滤波,运放IC1B 将信号放大0~50倍,IC1C 与R9、R10、C2、C3组成截止频率为10Hz 左右的二阶低通滤波器以进一步滤除残留的干扰,然后IC1D 将信号放大10倍输出,形成尖脉冲信号,最后555施密特触发器电路将尖脉冲信号转化为同频率的长脉冲信号,该脉冲信号通过555输出端送到单片机后,软件对信号进行处理,最后在数码管上显示数值。

传感器与信号处理电路三、光电式脉搏波传感器本次设计选用透射型光电式脉搏波传感器,其电路如图下图1-2-1所示传感器与信号处理电路AT89S52 单片机 显 示 电 路 复 位 电 路时 钟 电 路 报 警 电 路图1-2-1透射型光电式脉搏波传感器电路图因为传感器输出信号的频率很低,如当脉搏为50次/分钟时,只有0.78Hz,200次/分钟时也只有3.33Hz,因此信号首先经R14、C8组成的低通滤波器滤除高频干扰,当传感器与手指断开或检测到较强的干扰光线时,输出端的直流电压会出现很大变化,用C6、C7背靠背串联组成的双极性耦合电容把它隔断,滤除直流成分。

便携式心率监测仪的设计

便携式心率监测仪的设计

便携式心率监测仪的设计目录绪论 (1)1 系统统方案设计 (2)1.1 系统功能要求 (2)1.2 医学常识 (2)1.3 系统方框图 (3)2系统硬件设计 (5)2.1 单片机介绍 (5)2.1.1 AT89C2051主要性能 (5)2.1.2 AT89C2051的引脚说明 (6)2.2 传感器与信号处理电路的设计 (7)2.2.1 光电式脉搏波传感器 (7)2.2.2 前置放大与滤波电路 (8)2.3 显示电路 (10)2.3.1 ULN2003的功能 (10)2.3.3 显示电路接口设计 (10)2.4 报警电路 (11)2.5 时钟和复位电路设计 (11)2.5.1 时钟电路设计 (11)2.5.2 复位电路的设计 (12)3 软件设计 (13)3.1 中端程序流程图 (13)3.1.1 定时器中断程序流程图 (13)3.1.2 INT中断程序流程图 (14)3.2 显示程序流程图 (15)4 调试与仿真 (16)4.1 仿真软件 (16)4.2 调试仿真中注意的问题 (16)结论 (17)参考文献 (18)附录A 心率监测仪电气原理图 (19)附录B 部分源程序 (20)致谢 (25)便携式人体心率监测仪的设计摘要多年来,心率监测仪在心血管疾病的研究和诊断方面发挥出显著的作用,它们所记录的心脏活动时的生物电信号,已成为临床诊断的重要依据。

目前,检测心率的仪器虽然很多,但是能像本文设计的系统一样实现精确测量、便于携带、报警等多种功能的便携式全数字心率测量装置却不多。

本系统以AT89C2051单片机为核心控制芯片,光电式脉搏波传感器采集信号,以七段数码管作为显示系统,经信号处理电路后脉冲送入单片机,由数码管显示心率。

本文设计的人体心率监测仪使用方便,只需将手指端轻轻放在传感器上,即可实时显示出每分钟脉搏次数,特别适合体育训练和外出旅游等场合使用。

采用红外光学检测法,能够在运动的状态下进行心率测量。

基于单片机的数字人体心率检测仪设计

基于单片机的数字人体心率检测仪设计

基于单片机的数字人体心率检测仪设计摘要:数字人体心率检测仪是当前医学和运动健康领域中非常重要的一项设备。

本文主要针对基于单片机的数字人体心率检测仪的设计,通过检测人体心跳来实现对心率的准确测量和分析。

首先介绍了数字人体心率检测仪的原理和设计思路,然后详细讲解了数字人体心率检测仪的硬件和软件设计,并且给出了实验结果和分析。

本文提出的数字人体心率检测仪,具有结构简单、使用便捷、准确度高、可靠性好等优点,在不同领域都有广泛的应用前景。

关键词:数字人体心率检测仪、单片机、心率测量、硬件设计、软件设计、实验结果Abstract:The digital human body heart rate detector is animportant device in the field of medicine and fitness. This paper mainly focuses on the design of a digital human body heart rate detector based on single-chip microcomputer, which can accurately measure and analyze heart rate by detecting human heartbeat. Firstly, the principle and design idea ofthe digital human body heart rate detector are introduced. Then, the hardware and software design of the digital human body heart rate detector are elaborated in detail, and the experimental results and analysis are given. The digital human body heart rate detector proposed in this paper has the advantages of simple structure, convenient use, high accuracy, and good reliability, and has broad application prospects in different fields.Keywords: digital human body heart rate detector,single-chip microcomputer, heart rate measurement, hardwaredesign, software design, experimental results1.引言在医学和运动健康领域,人体心率是一项非常重要的生理指标。

数字心率计的设计

数字心率计的设计

摘要摘要本设计采用以AT89S51单片机为核心的低成本、高精度、微型化数字显示心率计的硬件电路和软件设计方法。

整个电路采用模块化设计,由主程序、预置子程序、信号采集子程序、信号放大处理子程序、显示子程序等模块组成。

本设计采用了红外对管传感器和光电转换原理进一步实现对心率的检测。

心率计通过感知手指内的微弱波动来接收信号,可以避免人工听诊器所带来不必要的麻烦。

心率传感器采样脉搏信号,采用AT89S51单片机作为控制器,心率传感器输出方波传入单片机,单片机每接收一个脉冲波形,数码管就计数一次。

心率次数超限时用蜂鸣器报警。

三极管加大功率,驱动器件工作。

各探头的信号经单片机综合分析处理,实现心率测量的各种功能。

在此基础上设计了系统的总体方案,最后通过硬件和软件实现了各个功能模块。

关键词:心率;传感器;滤波器;放大器;显示电路;报警电路IAbstractAbstractThe rapid development of society today, people's material and cultural life has been great ly improved, but at the same time, a variety of diseases threatening people's life; and the heart attack is difficult to prevent the sudden fatal disease, so health is also more and more attention by people. This design is to solve the problem that can be measured by heart rate, heart dise ase prevention of heart disease in the digital heart rate meter.Heart rate is an important phys iological parameter of human body, in modern medicine, heart rate for blood circulation and c ardiac function in field research has important significance. Heart rate meter is used to measur e the human heart rate in medical devices, high accuracy rate meter research and development of medical instrument is always an important topic in the field of. This design aims to have th e circuit and hardware knowledge, design a simple heart rate meter. In the design of the pulse frequency and heart rate, heart rate can be used to measure the pulse measurement is obtained, therefore the design of human body pulse as the measuring object.Key words:Heart rate;sensor;filter;amplifier;a display circuit;alarm circuitII目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 课题背景、目的及意义 (1)1.2 国内外研究现状及存在问题 (1)1.3 课题的主要问题和研究方法 (2)1.3.1 设计要求 (2)1.3.2 设计内容 (2)第2章数字心率计总体方案设计 (3)2.1 数字心率计方案设计思路 (3)2.2 心率计的结构组成和框图 (3)2.2.1 心率计的结构组成 (3)2.2.2 心率计的结构框图 (4)2.3 本章小结 (4)第3章心率计的硬件设计 (5)3.1 AT89S51单片机 (5)3.1.1 AT89S51单片机简介 (5)3.1.2 AT89S51单片机的特点 (5)3.1.3 AT89S51的结构 (6)3.1.4 工作原理 (8)3.2 传感器 (8)3.2.1 传感器的选择与论证 (8)3.2.2 红外线传感器 (10)3.3 复位电路 (10)3.3.1 单片机复位电路 (10)3.3.2 按键电路 (11)3.3.3 振荡电路 (11)3.4 显示报警模块 (12)3.4.1 显示模块的选择与论证 (12)3.4.2 显示电路 (12)3.4.3 报警电路 (15)3.5 信号采集电路 (16)I I3.6 信号放大电路 (17)3.7 信号比较电路 (17)3.8 LM358P放大器 (18)3.9 本章小结 (19)第4章心率计的软件设计 (20)4.1 程序流程 (20)4.1.1 主程序流程图 (20)4.1.2 中断程序流程图 (21)4.1.3 定时器T0和T1的中断服务程序 (21)4.2 测量计算原理 (22)4.3 KEIL编程软件的介绍 (23)4.4 几种主要干扰因素 (23)4.5 本章小结 (24)总结 (25)致谢 (26)参考文献 (27)附录 (28)附录1 系统原理图 (28)附录2 程序代码 (29)I V第1章绪论1.1课题背景、目的及意义近年来世界科技与经济的飞速蓬勃发展,重视生命和健康渐渐成为人类共同的追求。

心率测试仪的设计.

心率测试仪的设计.

摘要随着生物医学工程技术的发展, 医学信号测量仪器日新月异。

生物医学测量与临床医学和保健医疗的联系日益紧密。

通过对人体各种生理信号的检测,能更好的认识人体的生命现象。

脉象包含丰富的人体健康状况信息, 脉诊技术应客观化、定量化。

本设计利用光电式传感器, 设计脉搏信号获取的方法。

本设计主要是基于单片机的便携式脉搏测试仪的具体实现方法,利用光电传感器产生脉冲信号,经过放大整形后,输入单片机内进行相应的控制,从而测量出一分钟内的脉搏跳动次数,快捷方便。

通过观测脉搏信号,可以对人体的健康进行检查,通常被用于保健中心和医院。

本设计所设计的基于单片机的便携式心率测试仪对推进脉诊技术客观化的实现具有积极的促进作用。

关键词:脉搏;单片机;光电传感器;脉冲信号;便携式目录摘要 (I)第1章引言 (1)1.1概述 (1)1.2基于单片机的心率测试仪的发展与应用 (2)1.3本设计的主要内容 (3)第2章整体方案分析 (4)2.1任务 (4)2.2要求 (4)2.3系统的整体方案 (4)2.4 方案的对比和论证 (4)2.4.1脉搏检测传感器的选择 (4)2.4.2单片机的选择 (6)2.4.3显示部分的选择 (6)2.5设计时要考虑的问题 (7)2.5.1环境光对脉搏传感器测量的影响 (7)2.5.2电磁干扰对脉搏传感器的影响 (7)2.5.3测量过程中运动噪声的影响 (8)2.6本章小结 (8)第3章硬件电路设计分析 (9)3.1控制器 (9)3.1.1AT89S52 (9)3.1.2AT89S52的特点 (9)3.1.3AT89S52的结构 (9)3.2脉搏信号采集 (12)3.2.1光电传感器的结构及原理 (12)3.2.2信号采集电路 (13)3.3信号放大电路 (13)3.4波形整形电路 (15)3.5单片机处理电路 (15)3.6 显示电路 (16)3.7 报警电路 (17)3.8 本章小结 (17)第4章软件系统 (18)4.1主程序流程 (18)4.2定时器中断程序流程 (19)4.3 INT中断程序流程 (20)4.4显示程序流程 (20)4.5蜂鸣器报警流程 (21)4.6本章小结 (22)结束语 (23)参考文献 ............................................................................................ 错误!未定义书签。

心率测试仪设计与制作

心率测试仪设计与制作

心率测试仪设计与制作摘要:脉搏波所呈现出来的形态、强度、速率和节律等方面的综合信息,能反映出人体心血管系统中许多生理疾病的血流特征。

本系统采用AT89S52单片机为核心而制作的一种实用型脉搏测量仪。

采用红外发射和接收二极管作为传感器对人体的脉搏心率警醒数据采集。

得到的信号经过整形和放大后送入AT89S52单片机进行处理。

单片机将采集到的脉搏心率在LCD液晶显示器上实时显示出来,同时还设置了脉搏测量仪的上下限报警电路。

本文首先描述本设计的整体思路,然后介绍各个部分设计中的细节问题,最后提出一些完善本设计的改进意见。

关键字:脉搏计单片机 AT89S52 人体脉搏信号实时显示目录1.系统方案选择与论证 (3)1.1任务 (3)1.2要求 (3)1.3系统基本方案 (3)1.3.1各部分电路的方案选择及论证 (4)1.3.2系统各模块的最终方案 (5)2.系统硬件设计 (6)2.1信号采集整形部分设计 (6)2.2 矩阵键盘的设计 (7)2.3液晶显电路 (8)3.系统软件设计 (8)3.1系统主程序的设计 (8)3.2脉搏波动频率测量子程序的设计 (9)3.3键盘扫描子程序 (12)4.调试与分析 (13)5.收获与体会 (13)附录1(硬件电路原理图): (14)附录2(主要程序): (14)1.系统方案选择与论证1.1任务设计并制作一个脉搏检测器1.2要求(1)、通过脉搏传感器采样脉搏信号,设计脉搏波检测电路,通过示波器显示出来(2)、将整形后的脉冲波送入单片机,采用单片机构成脉搏检测仪,要求实时显示脉率变化,脉率超限时用蜂鸣器报警,报警范围可以通过键盘设定。

1.3系统基本方案根据题目的要求系统模块可以基本划分为:脉搏传感器部分、信号放大整形电路部分、单片机处理电路部分及显示电路部分。

为实现各模块的功能,分别做了几种不同的设计方案病进行了论证1.3.1各部分电路的方案选择及论证(1)脉搏传感器部分传感器又称为换能器、变换器等。

心率检测仪原理及设计要点

心率检测仪原理及设计要点

心率检测仪原理及设计要点心率检测仪是一种用于检测人体心率的设备,它可以通过测量心脏搏动的频率来帮助人们了解自己的心脏健康状况。

本文将介绍心率检测仪的原理及设计要点,以帮助读者了解该设备的工作原理并进行设计。

首先,让我们先来了解心率检测仪的工作原理。

心率检测仪主要通过测量心脏搏动的频率来确定心率。

一般情况下,心率检测仪会使用传感器来检测人体的脉搏或心电信号。

其中,最常用的传感器是光电传感器。

光电传感器通过将红外光源和光敏元件安装在一个透明的指夹或手环上,通过指尖或手腕的血液流动来检测心率。

在使用光电传感器进行心率检测时,光敏元件会监测到由心脏搏动引起的指尖或手腕的微小变化。

这些变化会导致血液的颜色和透明度发生变化,从而引起透射到皮肤上的光的吸收和散射的变化。

光电传感器会测量这些光的变化,并将其转换为电信号。

接着,心率检测仪会对这些电信号进行处理,计算出心率的数值,并通过显示屏或其他输出方式进行展示。

在设计心率检测仪时,关注以下几个要点是至关重要的:1. 合适的传感器选择:选择合适的传感器是设计一个有效的心率检测仪的关键。

光电传感器是目前应用最广泛的传感器之一,但还有其他的选择,如电容传感器、压阻传感器等。

设计师需要根据具体的需求选择最适合的传感器。

2. 信号处理算法:心率检测仪的信号处理算法对测量结果的准确性和稳定性至关重要。

信号处理算法可以通过滤波、放大和计算等步骤来提高心率测量的准确度。

设计师需要熟悉信号处理技术,并根据实际情况进行优化。

3. 功耗优化:心率检测仪通常是便携式设备,因此功耗控制非常重要。

设计师需要选择低功耗的元件和优化电路设计,以延长电池寿命并提高设备的可用时间。

4. 数据传输与显示:心率检测仪通常需要将测量结果传输给用户或其他设备。

设计师需要选择合适的通信方式和界面,如蓝牙、USB等,并设计相应的显示界面,使用户可以方便地查看心率数据。

此外,为了提高心率检测仪的可用性和用户体验,设计师还可以考虑以下几个方面:1. 设计人体工学:心率检测仪的佩戴舒适度对用户体验至关重要。

电子脉搏计毕业设计

电子脉搏计毕业设计

电子脉搏计毕业设计引言电子脉搏计是一种用于测量人体脉搏的仪器,可以实时监测心率并提供相关数据。

本文将介绍一个关于电子脉搏计的毕业设计,旨在设计出一款功能完善、精确可靠的电子脉搏计。

一、设计背景近年来,心脑血管疾病的发病率逐渐增高,对心脏健康的关注越来越重要。

在日常生活中,人们对自己的心率了解的程度较低,并往往只关注在出现问题时寻求医疗帮助。

然而,随着科技的飞速发展,人们对个人健康的关注也越来越高。

设计一个电子脉搏计是为了使更多的人能够实时监测和了解自己的心率,提高对心脏健康的认识。

二、设计目标1. 实时测量心率:设计一个在佩戴时能够实时测量心率的电子脉搏计,可以方便用户随时了解自己的心脏情况。

2. 精确可靠:电子脉搏计应具有高精确度和可靠性,确保测量数据准确无误。

3. 可穿戴设计:为了方便用户随身携带和佩戴,设计的电子脉搏计应具有轻巧、便捷的可穿戴性。

4. 数据记录和分析:电子脉搏计应能够记录测量数据并提供分析,帮助用户更好地了解自己的健康状况。

三、设计方案1. 传感器选择:为了实现实时心率测量,可以选用光电传感器来监测血液流速和心率。

光电传感器具有高灵敏度和可靠性,可以准确测量心率并提供稳定的数据。

2. 移动应用程序开发:设计一个移动应用程序,通过无线连接将测量数据传输到用户的智能手机或其他设备上。

用户可以通过应用程序随时查看心率数据,并进行自定义设置和分析。

3. 心率数据记录和分析:电子脉搏计应具备数据记录和分析功能,可以将历史测量数据保存在设备或云端服务器中,并提供图表和趋势分析,帮助用户更好地了解自身心脏状况。

4. 设计外观和佩戴舒适性:考虑到电子脉搏计的可穿戴性,设计时应注意外观设计和佩戴舒适性,使用户能够长时间佩戴并不感到不适。

四、设计结果经过设计和开发,我们成功实现了一款电子脉搏计。

该设备具备实时测量心率、精确可靠、可穿戴设计、数据记录和分析等功能。

用户可以使用移动应用程序随时查看心率数据,并得到个性化的健康报告。

数字式人体脉搏仪的设计-毕业设计

数字式人体脉搏仪的设计-毕业设计

数字式人体脉搏仪的设计学生:XXX 指导老师:XXX内容摘要:医院的护士每天都要给住院的病人把脉记录病人每分钟脉搏数,方法是用手按在病人腕部的动脉上,根据脉搏的跳动进行计数。

为了节省时间,一般不会作1分钟的测量,通常是测量10秒钟时间内心跳的数,再把结果乘以6即得到每分钟的心跳数,即使这样做还是比较费时,而且精度也不高。

本文介绍一种用单片机制作的脉搏测量仪,只要人把手指放在传感器内2秒钟就可以精确测量出每分钟脉搏数,测量结果用三位数字显示。

关键词:AT98C2051单片机脉搏测量仪光电图Design for digital dermic measuring instrument Abstract: Nurse Hospital wants to give in hospital every day the patient takes the pulse to record the patient each minute pulse number, the method is with the hand according to on the patient wrist's department artery, carries on the counting according to pulse's beat. For the saving of time, will not make 1 minute survey generally, usually will be surveys in 10 seconds time palpitation's number, will be multiplied by again the result 6 namely obtains each minute palpitation number, even if will do this is quite time-consuming, moreover the precision will not be high. This article introduced that one kind the pulse measuring instrument which manufactures with the monolithic integrated circuit, so long as the human places the finger in the sensor 2 seconds to be possible the precision measuring each minute pulse number, the measurement result showed with three digits.Keywords: AT89C2051 monolithic integrated circuit photo electricity目录前言 (1)1 硬件电路设计 (2)1.1 AT89C2051主要性能 (2)1.2 AT89C2051的结构框图 (3)1.3 AT89C2051的引脚说明 (4)1.4 复位电路 (5)1.5 振荡电路 (5)2 基本结构模块 (6)2.1 脉搏波检测电路 (6)2.2 脉搏信号拾取电路 (7)2.3 信号放大 (8)2.4 波形整形部分 (9)3 整体电路分析 (10)3.1 光发射电路 (10)3.2 光电转换电路 (10)3.3 信号采集及处理系统 (11)3.4 过采样技术的应用 (11)3.5 整体硬件电路设计 (12)4 软件设计 (13)4.1 程序设计 (13)4.2 程序源代码 (14)5 结束语 (16)参考文献 (18)数字式人体脉搏仪设计前言脉搏测量属于检测有无脉博的测量,有脉搏时遮挡光线,无脉搏时透光强,所采用的传感器是红外接收二极管和红外发射二极管。

心率检测仪的电路设计及基于STM32的嵌入式系统实现

心率检测仪的电路设计及基于STM32的嵌入式系统实现

心率检测仪的电路设计及基于STM32的嵌入式系统实现心率检测仪是一种用于测量人体心率的设备,它可以帮助人们监测心脏健康状况并及时发现异常。

本文将介绍心率检测仪的电路设计以及基于STM32的嵌入式系统实现。

心率检测仪的电路设计是整个系统的核心部分,它包括传感器、信号处理模块和显示模块。

首先,我们需要选择一个合适的心率传感器。

常见的心率传感器有光电传感器、压力传感器和心电图传感器等。

光电传感器是最常用的一种,它通过测量血液中血红蛋白的反射光强度来确定心率。

在电路设计中,我们可以使用光电二极管传感器和光敏二极管来实现。

接下来,我们需要对传感器输出的信号进行处理。

首先,需要对传感器输出的光信号进行放大,以增强信号的强度。

可以使用运放进行放大处理。

其次,需要通过滤波器进行滤波处理,以去除噪声干扰和不必要的频率成分。

可以采用低通滤波器来实现。

在信号处理模块之后,我们需要将处理后的信号进一步转换成数字信号,以供嵌入式系统的处理。

这可以通过模数转换器(ADC)来实现。

ADC将连续的模拟信号转换成离散的数字信号,以便进行数字信号处理。

接下来,我们将介绍基于STM32的嵌入式系统实现。

STM32是一系列32位内核的单片机,具有丰富的外设接口和处理能力,非常适合用于嵌入式系统的设计。

首先,我们需要选取一款适合的STM32芯片,根据需求选择合适的型号。

然后,我们需要编写相应的软件程序,包括初始化设置、数据采集和处理、显示功能等。

在软件程序中,首先需要进行STM32芯片的初始化设置,包括时钟配置、GPIO口设置等。

然后,在主循环中不断读取ADC转换后的数字信号,进行数据处理和心率计算。

可以采用一些算法如峰值检测法或相关性分析法来计算心率。

最后,将心率数据通过显示模块显示出来。

为了降低功耗,可以使用睡眠模式来控制系统的运行状态。

当没有心率检测需求时,可以将系统进入睡眠状态,以达到节能的目的。

此外,为了增加系统的可靠性和稳定性,还可以在嵌入式系统中加入一些保护功能,例如温度保护、电压保护等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 32卷第 7期
范红刚 ,等 :数字人体心率检测仪的设计
·电子技术应用 ·
主要有显示驱动程序 、按键处理程序 、INT0 中断 服务程序 、AT24C02驱动存储程序 、串口通信程序等 。
4 结束语
通过实际设计制作 ,并与市场现有心率检测仪相 对比 ,结果表明本设计具有体积小 、重量轻 、成本低 、使 用方便 、测量准确等优点 ,有较好的应用前景 。
2. Shandong Laiwu Special Steel Factory, Laiwu 271100, China)
Abstract: In this paper, the system composition and working p rincip le of the digital heart rate measuring instrument based on AT89C51 are introduced, and the design m ethod of software and hardware are p resented. Experimental results show that this instrument can accurately carry out two kinds of measurement: real2time m easurement and one m inute tim ing measurement. A t the same time, it has such functions as real2time dis2 p lay, alarm , power fail storage, measured data transfer to PC and so on. Actual app lication results show that this instrum ent has the advantages of conveniences, accurate m easurem ent, low cost and so on. It w ill have w ide app lication.
参 考 文 献
[ 1 ] PONT M J. 使用 8051 系列微控制器开发可靠应用 [M ]. 北京 :中国电力出版社 , 2004.
[ 2 ] 龚建伟 ,熊光明. V isual C++ / Turbo C串口通信编程实践 [M ]. 北京 :电子工业出版社 , 2004.
[ 3 ] 陈尔绍. 传感器实用装置制作集锦 [M ]. 北京 :人民邮电 出版社 , 1999.
显示电路如图 4 所示 。采用动态显示方式 ,图中 2片 74LS373的数据输入端均接在 89C51单片机的 P0 口上 ,单片机通过 P1. 0和 P1. 1给 2片 74LS373提供 片选信号 ,从而实现分时选择 2片 74LS373工作 ,分别 传送段码和位码 。图中 6 个数码管 ,前 3 个用来显示 被测人 的序 号 , 后 3 个 用来 显 示 每 分 钟 心 跳 次 数 ; ULN2803是 8反相驱动器 ,作为位增强驱动器 。
计研究 , 2002 (8) : 40242.
[ 5 ] L I G, HAM ILTON H J. Basic association rules [ C ] / / Pro2
ceedings 2004 SIAM International Conference on Data M ining ( SDM ’04 ) , Ap r 22224, 2004, Lake Buena V ista, FL , USA. Society for Industrial and App lied M athematics Publisa2 tions, 2004: 1662177. [ 6 ] 程岩 , 黄梯云. 一种结合关联规则技术在数据库中挖掘分 类规则的方法 [ J ]. 计算机应用研究 , 1999, 16 (12) : 64267. [ 7 ] 李顺安. 基于关联的自适应分类规则挖掘方法 [ J ]. 西安 联合大学学报 , 2003, 7 (2) : 73276.
Park, CA , USA: AAA I/M IT Press, 1996. [ 2 ] 史忠植. 知识发现 [M ]. 北京 :清华大学出版社 , 2002. [ 3 ] 王艳. 数据挖掘中关联规则的探讨 [ J ]. 成都信息学院学
报 , 2004, 19 (2) : 1722176. [ 4 ] 戴稳胜 ,匡宏波 ,谢邦昌. 数据挖掘中的关联规则 [ J ]. 统
The D esign of D ig ita l Heart2ra te M ea sur ing In strum en t
FAN Honggang1 , FENG Cheng2 , HU J ianguo2 , ZHANG L ijuan1 (1. Heilongjiang Institute of Science and Technology, Haerbin 150027, China;
D ifferences and Rela tion sh ip between A ssoc ia tion Rule M in ing and C la ssif ica tion Rule M in ing
PENG Hu iling, L IU Fa sheng (J iangxi University of Science and Technology, Ganzhou 341000, China)
Abstract:D iscovering the association rule and classification rule are very important techniques of data m ining. In this paper, we first introduce the basic know ledge of discovering association rule and classification rule, then compare them mainly from the respect of goal of m ining and from the m ethod of discovering2rule al2 gorithm , the design idea etc. Finally we introduce the relationship between them.
图 7 声光报警电路
3 软件的设计
系统主程序流程图如图 8所示 。
图 5 记忆存储电路
2. 5 通信电路 通信电路的功能是将单片机测量的心率数据上传
PC机 。本电路采用一片 MAX232 芯片将 TTL 电平转 换成 PC机所能识别的电平 ,再通过一个标准的 9 针
·78·
图 8 系统程序流程
摘 要 :介绍了以 AT89C51为控制核心的数字人体心率检测仪的系统组成及工作原理 ,给出了系 统软硬件设计方法 。实验结果表明 ,该检测仪能够精确完成实时测量及 1 m in定时测量两种测量方 式 ,同时具有实时显示 、报警 、掉电存储 、测量数据上传 PC机等功能 。实际应用结果表明 ,该检测仪具 有使用方便 、测量准确 、成本低等优点 ,有广阔的应用前景 。
图 4 显示电路
2. 4 记忆存储电路 记忆存储电路见图 5。存储芯片采用 AT24C02。
SDA为串行数据输入 /输出引脚 ; SCL 为串行同步时钟 输入端 ; A0、A1 及 A2 是片选信号输入端 ; TEST引脚 是写保护 ,接地时表示不保护 ,测量完心率数据后想要 保存时就按一下存储按键 K3,单片机就通过 P2. 1 给 AT24C02 提供合适的时钟 , 然后将数据存入指定地 址 。当然 ,控制字 、地址和数据是分 3 次输入的 ,并且 在每段之间要求 AT24C02 提供给单片机一个应答信 号 。此外 ,在读写数据前后要加开始和停止位 。
接口与 PC机连接 。外围电路非常简单 ,只需要 5 个 0. 1μF的电容器 ,具体电路如图 6所示 。
图 6 通信电路
2. 6 声光报警电路 声光报警电路见图 7。由与非门 74F00构成 2级
门控振荡器 。其中 , U6A 和 U6B 组成低频振荡器 ,振 荡频率约 1 Hz, R5 为下拉电阻 ,常态下使 UC = 0 V。 仅当测量数据在报警范围内时由单片机的 P1. 6提供 一个高电平电路才起振 , B0 端交替输出的高 、低电平 经 Q1,使发光二极管闪烁发光 ; U6C和 U6D 组成音频 振荡器 ,振荡频率约 1 kHz。仅当 BO = 1 时第 2 级振 荡器才起振 ,通过达林顿管 Q2、输出变压器 T驱动扬 声器 BL 发出断续的“嘀 、嘀 ……”报警声 。
2. 1 传感器及信号处理电路 传感器及信号处理电路如图 2所示 。
1 系统组成及工作原理
系统组成如图 1 所示 。本设计以单片机为主控 芯片 ,外辅少量硬件电路 ,完成数据处理 、记忆 、显示 、 通信等功能 。
图 1 数字人体心率检测仪原理框图
首先 ,在系统开机时通过键盘设定系统的工作方 式 ;然后 ,将压电陶瓷片检测到的人体心跳信号经过放 大 、滤波及整形处理后输入给单片机 ,单片机对测量的 数据进行处理 ,送显示电路显示 ,同时通过通信电路将 测量数据上传 PC 机 ;记忆电路主要用来存储测量数 据 ,实现掉电存储功能 ;声光报警电路在测量数据超过 正常范围 (如大于 180次 /m in或小于 45次 /m in)时进 行报警以提醒医生注意 。
图 2 传感器及信号处理电路
检测心率脉冲信号的传感器采用压电陶瓷 (在压 电陶瓷片上安装一海绵垫以传递脉冲信号 ) ; 将采集 到的心率信号经过由 CD4069的 3个非门组成 3级放 大电路进行放大 ,然后通过由 R4、R5、C5 及 R7、R8、 C6构成的 2级梯形滤波电路进行滤波处理 ,即可获得 人体心率范围的信号 (约在 0. 66 Hz~3. 33 Hz之间 ) ; 再通过由二极管 D1、D2和 R6构成的检测电路以及由 U1F、U1D、U1E这 3 个非门构成的整形电路处理后 , 就可得到单片机所需要的标准的 0~5 V 脉冲信号 。 2. 2 键盘电路
相关文档
最新文档