高分子分离膜ppt课件
合集下载
膜分离技术标准文档ppt

渗透现象:即纯溶剂通过半透膜由纯溶剂一侧向溶液一侧 的自发流动过程。
渗透压:渗透过程达平衡时半透膜两侧形成的压差 。
反渗透:在浓溶液一侧加压,使膜两侧的压差大于溶液的 渗透压(p>),溶剂从溶液一侧向纯溶剂一侧液流动。
涉及气体分离、水溶液分离、生化产品的分离与纯化等操作 的食品和饮料加工过程、工业污水处理、大规模空气分离、 湿法冶金、气体和液体燃料的生产及石油化工制品的生产等
常见的膜分离过程
过程
膜
微滤
对称细孔高分子膜 孔径0.03~10 nm
超滤
非对称多孔膜 孔径1~20 nm
反渗透
非对称性或复合膜 孔径0.1~1 nm
渗析(透析
非对称离子交换膜 孔径1~10 nm
电渗析
阴、阳离子交换膜 孔径1~10 nm
气体分离
均质膜和非对称膜
渗透汽化
复合膜
液膜
液体保存在多孔膜中
主要功能
滤除 50 nm的颗粒
滤除 5~100 nm的颗 粒
水溶液中溶解盐类 的脱除
水溶液中无机酸、 盐的脱除
水溶液中酸、碱、 盐的脱除
滤除 50 nm的颗粒
第一节膜分离技术
第一节 膜分离技术
膜分离: 一般是指利用膜对流体混合物中不同组分的选择性渗透的
特点来分离流体混合物的操作过程
膜分离的应用: (1) 分散得很细的固体,特别是与液体密度相近,胶状的可 压缩的固体微粒; (2) 低分子量的不挥发的有机物、药物与溶解的盐类; (3) 对温度、酸碱度等物理化学条件特别敏感的生物物质。
素(EC)等。
聚 尼龙-6(NY-6)、尼龙-66(NY- 具亲水性能,较耐碱而不耐酸,在酮、 酰 66)、芳香聚酰胺(PI)、芳香聚酰 酚、醚及高相对分子质量醇类中,不易 胺 胺酰肼(PPP)、聚苯砜对苯二甲酰 被浸蚀,孔径型号也较多。
渗透压:渗透过程达平衡时半透膜两侧形成的压差 。
反渗透:在浓溶液一侧加压,使膜两侧的压差大于溶液的 渗透压(p>),溶剂从溶液一侧向纯溶剂一侧液流动。
涉及气体分离、水溶液分离、生化产品的分离与纯化等操作 的食品和饮料加工过程、工业污水处理、大规模空气分离、 湿法冶金、气体和液体燃料的生产及石油化工制品的生产等
常见的膜分离过程
过程
膜
微滤
对称细孔高分子膜 孔径0.03~10 nm
超滤
非对称多孔膜 孔径1~20 nm
反渗透
非对称性或复合膜 孔径0.1~1 nm
渗析(透析
非对称离子交换膜 孔径1~10 nm
电渗析
阴、阳离子交换膜 孔径1~10 nm
气体分离
均质膜和非对称膜
渗透汽化
复合膜
液膜
液体保存在多孔膜中
主要功能
滤除 50 nm的颗粒
滤除 5~100 nm的颗 粒
水溶液中溶解盐类 的脱除
水溶液中无机酸、 盐的脱除
水溶液中酸、碱、 盐的脱除
滤除 50 nm的颗粒
第一节膜分离技术
第一节 膜分离技术
膜分离: 一般是指利用膜对流体混合物中不同组分的选择性渗透的
特点来分离流体混合物的操作过程
膜分离的应用: (1) 分散得很细的固体,特别是与液体密度相近,胶状的可 压缩的固体微粒; (2) 低分子量的不挥发的有机物、药物与溶解的盐类; (3) 对温度、酸碱度等物理化学条件特别敏感的生物物质。
素(EC)等。
聚 尼龙-6(NY-6)、尼龙-66(NY- 具亲水性能,较耐碱而不耐酸,在酮、 酰 66)、芳香聚酰胺(PI)、芳香聚酰 酚、醚及高相对分子质量醇类中,不易 胺 胺酰肼(PPP)、聚苯砜对苯二甲酰 被浸蚀,孔径型号也较多。
功能高分子材料-第三章-高分子分离膜..

膜的形式可以是固态的,也可以是液态的。 被膜分割的流体物质可以是液态的,也可以是气 态的。膜至少具有两个界面,膜通过这两个界面 与被分割的两侧流体接触并进行传递。分离膜对 流体可以是完全透过性的,也可以是半透过性的, 但不能是完全不透过性的。
9
膜分离技术是利用膜对混合物中各组分的选 择渗透性能的差异来实现分离、提纯和浓缩的新 型分离技术。
◆ 第四道:RO逆渗透系统 美国高科技的RO逆渗透膜,去 除重金属离子杂质,有效去除过滤性病毒及细菌等有害物 质:
◆ 第五道:后置活性炭系统 高密度活性炭(T33)提高和增 加活净水口感,使水质更加甘甜可口,补充人体所需微量 元素和矿物质。
24
开发膜组件的几个基本要求:
◆ 适当均匀的流动,无静水区; ◆ 具有良好的机械稳定性、化学稳定性和热稳
分离的类型包括同种物质按不同大小尺寸的 分离;异种物质的分离;不同物质状态的分离等。
在化工单元操作中,常见的分离方法有筛分、 过滤、蒸馏、蒸发、重结晶、萃取、离心分离等。 然而,对于高层次的分离,如分子尺寸的分离、 生物体组分的分离等,采用常规的分离方法是难 以实现的,或达不到精度,或需要损耗极大的能 源而无实用价值。
纤维素酯类材料易受微生物侵蚀,pH值适应 范围较窄,不耐高温和某些有机溶剂或无机溶剂。 因此发展了非纤维素酯类(合成高分子类)膜。
34
二、聚砜类
O
聚砜结构中的特征基团为 S
O
聚砜类树脂常用的制膜溶剂有:二甲基甲 酰胺、二甲基乙酰胺、N-甲基吡咯烷酮、二甲 基亚砜等。
聚砜类树脂具有良好的化学、热学和水解 稳定性,强度也很高,pH值适应范围为1~13, 最高使用温度达120℃,抗氧化性和抗氯性都十 分优良。因此已成为重要的膜材料之一。
9
膜分离技术是利用膜对混合物中各组分的选 择渗透性能的差异来实现分离、提纯和浓缩的新 型分离技术。
◆ 第四道:RO逆渗透系统 美国高科技的RO逆渗透膜,去 除重金属离子杂质,有效去除过滤性病毒及细菌等有害物 质:
◆ 第五道:后置活性炭系统 高密度活性炭(T33)提高和增 加活净水口感,使水质更加甘甜可口,补充人体所需微量 元素和矿物质。
24
开发膜组件的几个基本要求:
◆ 适当均匀的流动,无静水区; ◆ 具有良好的机械稳定性、化学稳定性和热稳
分离的类型包括同种物质按不同大小尺寸的 分离;异种物质的分离;不同物质状态的分离等。
在化工单元操作中,常见的分离方法有筛分、 过滤、蒸馏、蒸发、重结晶、萃取、离心分离等。 然而,对于高层次的分离,如分子尺寸的分离、 生物体组分的分离等,采用常规的分离方法是难 以实现的,或达不到精度,或需要损耗极大的能 源而无实用价值。
纤维素酯类材料易受微生物侵蚀,pH值适应 范围较窄,不耐高温和某些有机溶剂或无机溶剂。 因此发展了非纤维素酯类(合成高分子类)膜。
34
二、聚砜类
O
聚砜结构中的特征基团为 S
O
聚砜类树脂常用的制膜溶剂有:二甲基甲 酰胺、二甲基乙酰胺、N-甲基吡咯烷酮、二甲 基亚砜等。
聚砜类树脂具有良好的化学、热学和水解 稳定性,强度也很高,pH值适应范围为1~13, 最高使用温度达120℃,抗氧化性和抗氯性都十 分优良。因此已成为重要的膜材料之一。
高分子分离膜

超滤膜:不对称膜,形式有平板式、卷式、管式和中空纤维状等。
表面活性层:致密光滑,厚度,细孔孔径小于10nm
超滤 膜
过渡层:细孔大于10nm,厚度1-10μm
支撑层:厚度50-250μm,孔径大于10nm。起支撑作用,提高机械强度
性能主要取决于表面活性层和过渡层
超滤膜技术应用
超滤技术主要用于含分子量500-500,000的微粒溶液的分离,是目前应用最广的膜分离过程之一,应用领域涉及化 工、食品、医药、生化
3.4 高分子分离膜的制备方法
膜的制备工艺对分离膜的性能十分重要。同样的材料,由于不同的制作工艺和控制条件,其性能差别很大。 合理的、先进的制膜工艺是制造优良性能分离膜的重要保证。
制备方法
烧结法 拉伸法 径迹刻蚀法 相转化法 复合膜化法
多孔膜 最实用
1. 烧结法
将聚合物的微粒通过烧结形成多孔膜
聚合物的微粒
微孔膜的缺点: 颗粒容量较小,易被堵塞
微滤的应用
微粒和细菌的过滤。可用于水的高度净化、食品和饮料的除菌、药液的过滤、发酵工业的空气净化和除菌等。 微粒和细菌的检测。微孔膜可作为微粒和细菌的富集器,从而进行微粒和细菌含量的测定。 气体、溶液和水的净化。大气中悬浮的尘埃、纤维、花粉、细菌、病毒等;溶液和水中存在的微小固体颗粒和微生 物,都可借助微孔膜去除。
实用的有机高分子膜材料有:纤维素酯类、聚砜类、聚酰胺类及其他材料。
日本: 纤维素酯类膜:53%, 聚砜膜:33.3%, 聚酰胺膜:11.7%, 其他:2%
材料
纤维 素
二醋酸纤维素 (CDA)、三醋酸纤维素 (CTA)、硝化 纤维素(CN),混合纤维素(CN-CA)、乙基纤维素 (EC)等。
特点
膜分离ppt课件

第4章 膜分离
§4.1 概述 §4.2 纳滤 §4.3 超滤 §4.4 微滤
1
膜分离 (membrane separation)
膜分离技术发展的历史
膜分离技术已被国际上公认为20世纪末至21世纪中期 最有发展前途、甚至会导致一次工业革命的重大生产 技术,所以可称为前沿技术,是世界各国研究的热点。 如果将20世纪50年代初视为现代高分子膜分离技术研 究的起点,截止现在,其发展致可分为三个阶段:① 50年代为奠定基础阶段;②60年代和70年代为发展阶 段,③ 80年代至今为发展深化阶段。
17
膜材料
纤维素衍生物 聚砜类 聚酰胺类及杂环含氮高聚物 聚酯类 聚烯烃 乙烯类高聚物 含氟高聚物
18
常用高分子膜材料
类别
纤维素酯 类
膜材料
纤维素衍生 物类
聚砜类
非纤维素 酯类
聚酰(亚)胺 类
聚酯、烯烃 类
含氟(硅)类
其他
举例
醋酸纤维素,硝酸纤维素,乙基纤 维素等
聚砜,聚醚砜,聚芳醚砜,磺化聚 砜等
26
制备方法 高分子膜
相转化法(流涎、纺丝)
L-S型制膜* 热致相分离*
复合膜法
溶液浸涂或喷涂 界面聚合 原位聚合 等离子聚合 水面展开法
定向拉伸*
痕迹刻蚀法*
固态粒子烧结法*
无机膜
溶胶-凝胶法* 化学提取法
高温分解法
化学气相沉积、电化学沉积等
27
L-S型制膜法
① 高分子材料溶于溶剂中,并加入添加剂,配成制膜液 (铸膜液)。
孔膜的有效扩散系数。基于膜和两类溶质的下列数据,估
计两类溶质在25下的穿膜流率。假定膜两侧的水溶液够稀,
组分间的扩散可以忽略不计。膜数据如下。
§4.1 概述 §4.2 纳滤 §4.3 超滤 §4.4 微滤
1
膜分离 (membrane separation)
膜分离技术发展的历史
膜分离技术已被国际上公认为20世纪末至21世纪中期 最有发展前途、甚至会导致一次工业革命的重大生产 技术,所以可称为前沿技术,是世界各国研究的热点。 如果将20世纪50年代初视为现代高分子膜分离技术研 究的起点,截止现在,其发展致可分为三个阶段:① 50年代为奠定基础阶段;②60年代和70年代为发展阶 段,③ 80年代至今为发展深化阶段。
17
膜材料
纤维素衍生物 聚砜类 聚酰胺类及杂环含氮高聚物 聚酯类 聚烯烃 乙烯类高聚物 含氟高聚物
18
常用高分子膜材料
类别
纤维素酯 类
膜材料
纤维素衍生 物类
聚砜类
非纤维素 酯类
聚酰(亚)胺 类
聚酯、烯烃 类
含氟(硅)类
其他
举例
醋酸纤维素,硝酸纤维素,乙基纤 维素等
聚砜,聚醚砜,聚芳醚砜,磺化聚 砜等
26
制备方法 高分子膜
相转化法(流涎、纺丝)
L-S型制膜* 热致相分离*
复合膜法
溶液浸涂或喷涂 界面聚合 原位聚合 等离子聚合 水面展开法
定向拉伸*
痕迹刻蚀法*
固态粒子烧结法*
无机膜
溶胶-凝胶法* 化学提取法
高温分解法
化学气相沉积、电化学沉积等
27
L-S型制膜法
① 高分子材料溶于溶剂中,并加入添加剂,配成制膜液 (铸膜液)。
孔膜的有效扩散系数。基于膜和两类溶质的下列数据,估
计两类溶质在25下的穿膜流率。假定膜两侧的水溶液够稀,
组分间的扩散可以忽略不计。膜数据如下。
高分子功能膜 (PPTminimizer)

多孔膜用于混合物水的分离: 多孔膜用于混合物水的分离:渗 微滤、超滤、纳滤、亲和膜等。 析、微滤、超滤、纳滤、亲和膜等。
依所用 膜分为
致密膜用于电渗析(ED)、逆渗析、 致密膜用于电渗析(ED)、逆渗析、气 )、逆渗析 体分离、渗透汽化、蒸汽渗透等过程 体分离、渗透汽化、
2010-9-21
4.1 透析
2010-9-21
一、高分子功能膜分类
混合物分离分离膜 使用功能划分 药物释放缓释膜 分割作用保护膜 气体分离膜 液体分离膜 根据被分离物质性质 固体分离膜 离子分离膜 微生物分离膜 超细滤膜、超滤膜、 被分离物质粒度大小 超细滤膜、超滤膜、微滤膜 沉积膜 熔融拉伸膜 膜形成过程 溶剂注膜 界面膜 动态形成膜 密度膜 根据膜性质 相变形成膜 乳化膜 多孔膜
超滤膜
乙酸纤维素、聚砜和聚丙烯腈是现今通用超滤膜材料。中国科学 院广州化学研究所曾开发氰乙基代乙酸纤维素超滤膜能抗菌。中 国科学院生态环境中心进行膜防污塞和清洗的工作。
2010-9-21
微滤、 4.2 微滤、超滤和纳滤 纳滤
渗透膜, 最初的纳滤膜制备方法同逆 渗透膜,实质是用脱盐截留率较低的 芳香聚酰胺逆渗透膜,用于燃料等中等分子量的物质( 芳香聚酰胺逆渗透膜,用于燃料等中等分子量的物质(相对分子质 量为500 的截留而容许盐和水通过。 500) 量为500)的截留而容许盐和水通过。由于一方面纳滤膜的水通过 量远大于逆渗透膜,而纳滤所用压力也较低( 2.5MPa);另一方 MPa); 量远大于逆渗透膜,而纳滤所用压力也较低(1-2.5MPa);另一方 面在无机盐类和有机中等分子量物质的分离以及一价阴、 面在无机盐类和有机中等分子量物质的分离以及一价阴、阳和多价 阳离子分离的要求,促进了纳滤的发展。 阴、阳离子分离的要求,促进了纳滤的发展。 纳滤技术为硬水软化提供了新途径。现行工艺路线: 纳滤技术为硬水软化提供了新途径。现行工艺路线: 海水 过滤 沉降 钠离子交换柱去除高价阳离子 逆渗透 淡水 沉降 逆渗透 浓水 淡水
依所用 膜分为
致密膜用于电渗析(ED)、逆渗析、 致密膜用于电渗析(ED)、逆渗析、气 )、逆渗析 体分离、渗透汽化、蒸汽渗透等过程 体分离、渗透汽化、
2010-9-21
4.1 透析
2010-9-21
一、高分子功能膜分类
混合物分离分离膜 使用功能划分 药物释放缓释膜 分割作用保护膜 气体分离膜 液体分离膜 根据被分离物质性质 固体分离膜 离子分离膜 微生物分离膜 超细滤膜、超滤膜、 被分离物质粒度大小 超细滤膜、超滤膜、微滤膜 沉积膜 熔融拉伸膜 膜形成过程 溶剂注膜 界面膜 动态形成膜 密度膜 根据膜性质 相变形成膜 乳化膜 多孔膜
超滤膜
乙酸纤维素、聚砜和聚丙烯腈是现今通用超滤膜材料。中国科学 院广州化学研究所曾开发氰乙基代乙酸纤维素超滤膜能抗菌。中 国科学院生态环境中心进行膜防污塞和清洗的工作。
2010-9-21
微滤、 4.2 微滤、超滤和纳滤 纳滤
渗透膜, 最初的纳滤膜制备方法同逆 渗透膜,实质是用脱盐截留率较低的 芳香聚酰胺逆渗透膜,用于燃料等中等分子量的物质( 芳香聚酰胺逆渗透膜,用于燃料等中等分子量的物质(相对分子质 量为500 的截留而容许盐和水通过。 500) 量为500)的截留而容许盐和水通过。由于一方面纳滤膜的水通过 量远大于逆渗透膜,而纳滤所用压力也较低( 2.5MPa);另一方 MPa); 量远大于逆渗透膜,而纳滤所用压力也较低(1-2.5MPa);另一方 面在无机盐类和有机中等分子量物质的分离以及一价阴、 面在无机盐类和有机中等分子量物质的分离以及一价阴、阳和多价 阳离子分离的要求,促进了纳滤的发展。 阴、阳离子分离的要求,促进了纳滤的发展。 纳滤技术为硬水软化提供了新途径。现行工艺路线: 纳滤技术为硬水软化提供了新途径。现行工艺路线: 海水 过滤 沉降 钠离子交换柱去除高价阳离子 逆渗透 淡水 沉降 逆渗透 浓水 淡水
功能高分子材料-第三章高分子分离膜PPT课件

01
03
超滤膜的应用,提高了食品工业的生产效率和产品质 量,同时也为消费者提供了更加安全、健康的食品。
04
超滤膜的过滤精度高,能够有效地去除杂质和有害微 生物,同时保留原有的营养成分和口感,为食品工业 提供了一种高效、环保的加工方法。
纳滤膜在医药工业中的应用
纳滤膜是一种特殊类型的过滤膜,孔径范围在1-1纳米之间,具有较高的过滤精度和 选择性。
循环利用。
用于分离空气中的氧气、 氮气等气体,以及工业
尾气中的有害气体。
用于食品、医药、化工 等领域中物料的浓缩和
提纯。
02
高分子分离膜制备方法
相转化法
浸没沉淀相转化法
热致相分离法
将聚合物溶液流过支撑体,通过控制 溶剂蒸发速度和溶液浓度,使聚合物 在支撑体上沉淀,形成分离膜。
通过加热使聚合物溶液发生相分离, 形成分离膜。
反渗透膜技术的出现,为人类提供了 大量的淡水资源,对于解决全球水资 源短缺问题具有重要的意义。
超滤膜在食品工业中的应用
超滤膜是一种孔径范围在1-100纳米的过滤膜,能够 过滤出大分子物质和杂质,广泛应用于食品工业。
输标02入题
在食品工业中,超滤膜主要用于饮料、酒类、乳制品、 肉制品等产品的过滤澄清和除菌处理,提高产品质量 和延长保质期。
渗透速率。
高分子分离膜制备技术改进
先进的成膜技术
随着成膜技术的不断改进,高分子分离膜的 制备效率和质量得到了显著提高。例如,采 用先进的拉伸成膜技术、喷丝成膜技术、溶 胶-凝胶成膜技术等,可以制备出具有优异 性能的高分子分离膜。
新型的制膜设备
为了提高高分子分离膜的制备效率和产品质 量,不断有新型的制膜设备被研发出来。这 些设备采用了先进的控制系统和精密的机械 结构,能够实现自动化、连续化的生产,并
功能高分子第3章高分子分离膜

多用于透析、微滤、超滤、反渗透、膜蒸
发和膜电泳等场合。
醋酸纤维素的缺点: ①在酸、碱存在下易发生水解,pH值适应范
围较窄;
②易受微生物侵蚀;
③耐热性能差;
④耐溶剂性能差。 近年来甲壳素类海藻酸钠类成为了新的分 离膜制备材料。
2、聚砜类
O
特征基团:
S O
聚砜类树脂基本特性: ① 化学稳定性好, 耐热性能好;
聚乙烯醇/丙烯腈接枝共聚物
常见材料的最高允许使用温度
名称 醋酸纤维素 聚酰胺 温度/℃ 35
聚苯并咪唑
聚苯并咪唑酮 磺化聚苯醚 磺化聚砜 聚醚砜酮
90
70 70 120 160
四、 高分子分离膜的制备方法
1、致密膜的制备
2、多孔膜的制备
3、复合膜的制备
1、致密膜的制备 (1) 溶剂涂层挥发法 高分子铸膜液刮涂在玻璃等表面、干燥 旋涂成膜仪★ (2) 水面扩展挥发法 高分子溶液在水面扩展、溶剂挥发
(2) 超滤技术应用领域 超滤技术主要用于含分子量500~500,000的微 粒溶液的分离,是目前应用最广的膜分离过程之 一,它的应用领域涉及化工、食品、医药、生化 等。 ①纯水的制备 超滤技术广泛用于水中的细菌、病毒和其他异 物的除去,用于制备高纯饮用水、电子工业超净 水和医用无菌水等。
②汽车、家具等制品电泳涂装淋洗水的处理
——最上层的表面活性层,厚度0.1-1.5m
中间的过渡层;
最下面的支撑层,呈多孔状。
膜的分离性能主要取决于表面活性层和过渡层。
支撑层的作用为起支撑作用,提高膜的机械强度。
中空纤维状超滤膜的特点:直径小,强度高,不
需要支撑结构,管内外能承受较大的压力差。
制备超滤膜的材料主要有聚砜、聚酰胺、聚丙 烯腈和醋酸纤维素等。
发和膜电泳等场合。
醋酸纤维素的缺点: ①在酸、碱存在下易发生水解,pH值适应范
围较窄;
②易受微生物侵蚀;
③耐热性能差;
④耐溶剂性能差。 近年来甲壳素类海藻酸钠类成为了新的分 离膜制备材料。
2、聚砜类
O
特征基团:
S O
聚砜类树脂基本特性: ① 化学稳定性好, 耐热性能好;
聚乙烯醇/丙烯腈接枝共聚物
常见材料的最高允许使用温度
名称 醋酸纤维素 聚酰胺 温度/℃ 35
聚苯并咪唑
聚苯并咪唑酮 磺化聚苯醚 磺化聚砜 聚醚砜酮
90
70 70 120 160
四、 高分子分离膜的制备方法
1、致密膜的制备
2、多孔膜的制备
3、复合膜的制备
1、致密膜的制备 (1) 溶剂涂层挥发法 高分子铸膜液刮涂在玻璃等表面、干燥 旋涂成膜仪★ (2) 水面扩展挥发法 高分子溶液在水面扩展、溶剂挥发
(2) 超滤技术应用领域 超滤技术主要用于含分子量500~500,000的微 粒溶液的分离,是目前应用最广的膜分离过程之 一,它的应用领域涉及化工、食品、医药、生化 等。 ①纯水的制备 超滤技术广泛用于水中的细菌、病毒和其他异 物的除去,用于制备高纯饮用水、电子工业超净 水和医用无菌水等。
②汽车、家具等制品电泳涂装淋洗水的处理
——最上层的表面活性层,厚度0.1-1.5m
中间的过渡层;
最下面的支撑层,呈多孔状。
膜的分离性能主要取决于表面活性层和过渡层。
支撑层的作用为起支撑作用,提高膜的机械强度。
中空纤维状超滤膜的特点:直径小,强度高,不
需要支撑结构,管内外能承受较大的压力差。
制备超滤膜的材料主要有聚砜、聚酰胺、聚丙 烯腈和醋酸纤维素等。
功能高分子材料ppt课件

A. 丙烯酸钠是高吸水性树脂的主要成分 B. 高吸水性树脂成品是线型结构 C. 二氧化碳和环氧丙烷在催化剂作用下可生成一种可降解的塑料 D. 高分子制成的“人造金属”能够导电导热,所以有金属光泽
随堂练习
2. 下列关于功能高分子材料,说法不正确的是( C )
A. 生物高分子材料、隐身材料、液晶高分子材料等属于功能高分子材料 B. 高分子分离膜可用于海水淡化、分离工业废水、浓缩天然果汁等 C. 高分子药物和有机玻璃都属于功能高分子材料 D. 纤维素难溶于水的主要原因是其链间有多个氢键
聚丙烯纤维很难降解,根据其结构特点,你建议寻找哪类高分子材料替代 聚丙烯? 聚丙烯纤维特点:无毒、疏水性的线型高分子材料; 可以用聚酯类线型性高分子材料代替,实现可降解;且聚乳酸比普通聚酯类相 比,既能降解,又可再生!
微生物降解材料 聚乳酸
聚乳酸是一种可生物降解的高分子材料,其结构简式如图,主要用于制造 可降解纤维、可降解塑料和医用材料。以淀粉为原料,先水解为葡萄糖,再在 乳酸菌的作用下将葡萄糖转变为乳酸,乳酸在催化剂作用下可聚合成聚乳酸。 聚乳酸材料废弃后,先水解成乳酸,乳酸在微生物和氧气的作用下可生成CO2 和H2O。请用化学方程式表示上述过程。
第五章 第二节 高分子材料
一、通用高分子材料 二、功能高分子材料
第五章 第二节 第二课时 功能高分子材料
一、高吸水性树脂 二、微生物降解材料
三、高分子分离膜
生活答疑
疫情期间曾“一罩难求”,有不法分子用纸张(天然纤维素)代替口罩材料, 你知道如何用简单的方法鉴别真假吗?
纤维素(多糖)
聚丙烯
➢ 加水鉴别吸水性:纸张有亲水基,能吸水;聚丙烯无亲水基,不吸水; ➢ 燃烧法鉴别:纸张燃烧后灰烬易碾碎;合成纤维燃烧时刺鼻呛味,燃烧后
随堂练习
2. 下列关于功能高分子材料,说法不正确的是( C )
A. 生物高分子材料、隐身材料、液晶高分子材料等属于功能高分子材料 B. 高分子分离膜可用于海水淡化、分离工业废水、浓缩天然果汁等 C. 高分子药物和有机玻璃都属于功能高分子材料 D. 纤维素难溶于水的主要原因是其链间有多个氢键
聚丙烯纤维很难降解,根据其结构特点,你建议寻找哪类高分子材料替代 聚丙烯? 聚丙烯纤维特点:无毒、疏水性的线型高分子材料; 可以用聚酯类线型性高分子材料代替,实现可降解;且聚乳酸比普通聚酯类相 比,既能降解,又可再生!
微生物降解材料 聚乳酸
聚乳酸是一种可生物降解的高分子材料,其结构简式如图,主要用于制造 可降解纤维、可降解塑料和医用材料。以淀粉为原料,先水解为葡萄糖,再在 乳酸菌的作用下将葡萄糖转变为乳酸,乳酸在催化剂作用下可聚合成聚乳酸。 聚乳酸材料废弃后,先水解成乳酸,乳酸在微生物和氧气的作用下可生成CO2 和H2O。请用化学方程式表示上述过程。
第五章 第二节 高分子材料
一、通用高分子材料 二、功能高分子材料
第五章 第二节 第二课时 功能高分子材料
一、高吸水性树脂 二、微生物降解材料
三、高分子分离膜
生活答疑
疫情期间曾“一罩难求”,有不法分子用纸张(天然纤维素)代替口罩材料, 你知道如何用简单的方法鉴别真假吗?
纤维素(多糖)
聚丙烯
➢ 加水鉴别吸水性:纸张有亲水基,能吸水;聚丙烯无亲水基,不吸水; ➢ 燃烧法鉴别:纸张燃烧后灰烬易碾碎;合成纤维燃烧时刺鼻呛味,燃烧后
《膜分离技术》PPT课件

蛋白质、无机盐
缓冲液
精选ppt
无机盐
34
2. 微 滤
以多孔薄膜为过滤介质,压力差为推动力,利用 筛分原理使不溶性粒子(0.1-10um)得以分离的 操作。操作压力0.05-0.5MPa。
精选ppt
35
• 微滤应用 1) 除去水/溶液中的细菌和其它微粒; 2) 除去组织液、抗菌素、血清、血浆蛋白 质等多种溶液中的菌体; 3) 除去饮料、酒类、酱油、醋等食品中的 悬浊物、微生物和异味杂质。
F
精选ppt
11
17.1 膜材料 与膜的制造
精选ppt
12
膜材料的特性
• 对于不同种类的膜都有一个基本要求:
– 耐压:膜孔径小,要保持高通量就必须施加较高的压 力,一般膜操作的压力范围在0.1~0.5MPa,反渗透 膜的压力更高,约为1~10MPa
– 耐高温:高通量带来的温度升高和清洗的需要 – 耐酸碱:防止分离过程中,以及清洗过程中的水解; – 化学相容性:保持膜的稳定性; – 生物相容性:防止生物大分子的变性; – 成本低;
孔膜,其孔隙大小在电镜的分辨范围内。
精选ppt
28
4完整性试验
• 本法用于试验膜和组件是 否完整或渗漏。
• 将超滤器保留液出口封闭, 透过液出口接上一倒置的 滴定管。自料液进口处通 入一定压力的压缩空气, 当达到稳态时,测定气泡 逸出速度,如大于规定值, 表示膜不合格。
× 保留液 出口封闭
压缩空气
• 透析过程中透析膜内无流体流动,溶质 以扩散的形式移动。
精选ppt
32
透析原理图
大分子
透析膜 小分子
水分子
精选ppt
33
透析法的应用
常用于除去蛋白或核酸样品中的盐、变性剂、还原剂之类 的小分子杂质,
缓冲液
精选ppt
无机盐
34
2. 微 滤
以多孔薄膜为过滤介质,压力差为推动力,利用 筛分原理使不溶性粒子(0.1-10um)得以分离的 操作。操作压力0.05-0.5MPa。
精选ppt
35
• 微滤应用 1) 除去水/溶液中的细菌和其它微粒; 2) 除去组织液、抗菌素、血清、血浆蛋白 质等多种溶液中的菌体; 3) 除去饮料、酒类、酱油、醋等食品中的 悬浊物、微生物和异味杂质。
F
精选ppt
11
17.1 膜材料 与膜的制造
精选ppt
12
膜材料的特性
• 对于不同种类的膜都有一个基本要求:
– 耐压:膜孔径小,要保持高通量就必须施加较高的压 力,一般膜操作的压力范围在0.1~0.5MPa,反渗透 膜的压力更高,约为1~10MPa
– 耐高温:高通量带来的温度升高和清洗的需要 – 耐酸碱:防止分离过程中,以及清洗过程中的水解; – 化学相容性:保持膜的稳定性; – 生物相容性:防止生物大分子的变性; – 成本低;
孔膜,其孔隙大小在电镜的分辨范围内。
精选ppt
28
4完整性试验
• 本法用于试验膜和组件是 否完整或渗漏。
• 将超滤器保留液出口封闭, 透过液出口接上一倒置的 滴定管。自料液进口处通 入一定压力的压缩空气, 当达到稳态时,测定气泡 逸出速度,如大于规定值, 表示膜不合格。
× 保留液 出口封闭
压缩空气
• 透析过程中透析膜内无流体流动,溶质 以扩散的形式移动。
精选ppt
32
透析原理图
大分子
透析膜 小分子
水分子
精选ppt
33
透析法的应用
常用于除去蛋白或核酸样品中的盐、变性剂、还原剂之类 的小分子杂质,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海水淡化
工业废水处理 城市废水资源化 天然气 水资源
生物利用 能源
燃料电池
膜
传统工业 冶金 制药 食品 化工与石化 电子
CO2控制
生态环境 除尘 洁净燃烧
以压力差为推动力,截留离子物质仅透过溶剂
反渗透
血液透析
尿毒症 药物中毒患者
高分子分离膜材料
原则上讲,凡能成膜的高分子材料和无机材料均可用于制备
纤维素酯类膜材料
醋酸纤维素是当今最重要的膜材料之一。 醋酸纤维素主要用于反渗透膜材料,也用于制造超滤膜和 微滤膜。醋酸纤维素膜价格便宜,膜的分离和透过的性能 良好,但其PH使用范围较窄(4~8),在高温和酸、碱存 在下易发生水解。为了改进其性能,进一步提高分离效率 和透过速率,可采用各种不同取代度的醋酸纤维素的混合 物来制模,也可采用醋酸纤维素与硝酸纤维素的混合物来 制模。此外,醋酸丙酸纤维素、醋酸丁酸纤维素也是很好 的膜材料。[附:透过速度(单位时间内流体通过膜的 量)、分离系数(不同物质透过系数之比)和对某种物质 的截留率是衡量模性能的重要指标。]
材料
纤 二醋酸纤维素 (CDA)、三醋 维 酸纤维素 (CTA)、硝化纤维 素 素(CN),混合纤维素(CNCA)、乙基纤维素(EC)等。 聚 尼龙-6(NY-6)、尼龙-66(NY酰 66)、芳香聚酰胺(PI)、芳香 胺 聚酰胺酰肼(PPP)、聚苯砜 对苯二甲酰(PSA)
特点
成孔性、亲水性好、价廉易得, 使用温度范围较广,可耐稀酸, 不适用于酮类,酯类、强酸和 碱类等液体的过滤。 具亲水性能,较耐碱而不耐酸, 在酮、酚、醚及高相对分子质 量醇类中,不易被浸蚀,孔径 型号也较多。
纤维素酯类膜材料
纤维素是有几千个椅式构型的葡萄糖基通过1,4-β-甙链(缩醛链)连接起来的 天然线性高分子化合物,其结构式为:
纤维素酯类膜材料
从结构上看,每个葡萄糖单元上有三个羟基。在催化剂(如 硫酸、高氯酸或氧化锌)存在下,能与冰醋酸、醋酸酐 进行酯化反应,得到二醋酸纤维素或三醋酸纤维素: C6H7O2(OH)3+(CH3CO)2O=C6H7O2(OCOCH3)2+H2O C6H7O2(OH)3+3(CH3CO)2O=C6H7O2(OCOCH3)3+3CH3 COOH
聚 聚砜(PPO)、聚醚砜 (PES)微 具有良好的化学稳定性和热稳 砜 滤膜 定性,耐辐射,机械强度较高。
含 聚偏氟乙烯膜(PVDF)、聚四 氟 氟乙烯膜(PTFE)、聚全氟磺 材 酸 料 化学稳定性好,耐高温。如 PTFE(聚四氟乙烯)膜,-40 ~260oC,可耐强酸,强碱和 各种有机溶剂。具疏水性,可 用于过滤蒸气及腐蚀性液体。
聚酰胺类及聚酰亚胺类
早期使用的聚酰胺是脂肪族聚酰胺,如尼龙—4、尼龙—6等制成的中 空纤维膜。这类产品对盐水的分离率在80%~90%之间,但透水率很 低,仅0.076ml/c㎡.h。以后发展了芳香族聚酰胺,用它们支撑的分 离膜,PH使用范围为3~11,分离率可达99.5%(对盐水),透水率 为0.6ml/c㎡.h。长期使用稳定性好。由于酰胺基团易与氯反应,故 这种膜对水中的游离氯有较高要求。 聚酰亚胺耐高温、耐溶剂,具有高强度。一直用于耐溶剂超滤膜和非 水溶液分离膜研制的首选膜材料。在气体 分离和空气除湿膜材料中, 它亦具有自己的特色。
分离膜。但实际上,真正成为工业化膜的膜材料并不多。这 主要决定于膜的一些特定要求,如分离效率、分离速度等。 此外,也取决于膜的制备技术。 目前,实用的有机高分子膜材料有:纤维素酯类、聚砜类、 聚酰胺类及其他材料。以日本为例,纤维素酯类膜占53%, 聚砜膜占33.3%,聚酰胺膜占11.7%,其他材料的膜占2%, 可见纤维素酯类材料在膜材料中占主要地位
高分子分离膜
Байду номын сангаас
目录
引言 分类 前景展望
引言
用天然或人工合成的无机或有机薄膜,以外界能量或化学 位差为推动力,对双组分或多组分溶质和溶剂进行分离、 分级、提纯和富集的方法统称为膜分离法。 随着膜分离科学与技术的发展,膜分离越来越多的应用在 水处理行业包括海水淡化、污/废水处理、纯净水等,石 化行业包括石油产品分离、有机物脱水纯化等,食品医药 生物行业等领域。 膜分离技术是利用分离膜的选择透过性对分离对象进行分 离和提纯的技术,此技术具有高效、节能、投资少、污染 小的特点,被誉为“绿色”技术。也成为如今能减排大潮 中的关键和重要技术之。
聚酯类
聚酯类树脂强度高,尺寸稳定性好,耐热、耐溶剂和化学 品的性能良好。 聚碳酸酯薄膜广泛用于制造经放射性物质辐射、再用化学 试剂腐蚀的微滤膜。 聚四溴碳酸酯由于透气速率和氧、氮透过选择性均较高, 已被用作新一代的富氧气体分离膜材料。 聚酯无纺布是反渗透、气体分离、渗透汽化、超滤、微滤 等一切卷式膜组件最主要的支撑底材。
分类
纤维素衍生物类:再生纤维素、醋酸纤维素、硝酸纤维 素、乙基纤维素及其他纤维素衍生类
聚砜类:双酚A型聚砜、聚芳砜、聚醚砜、聚苯硫醚砜 等 聚酰胺类及聚酰亚胺类 聚酯类:涤纶、聚对苯二甲酸丁二醇酯、聚碳酸酯等 聚烯烃类:聚乙烯、聚丙烯、聚4-甲基-1-戊烯 乙烯基类高聚物:聚丙烯腈、聚乙烯醇、聚氯乙烯、聚 偏氯乙烯等
聚烯烃类
LDPE和PP薄膜通过拉伸可以制造微孔滤膜。 HDPE通过加热烧结可以制成微孔滤板或滤芯,它也可以 作为分离膜的支撑材料。
纤维素酯类膜材料
硝酸纤维素是由纤维素和硝酸制成的。价格便宜,广泛用 作透析膜和微滤膜材料。 再生纤维素是由纤维素溶液或纤维素衍生物再生的纤维素。 广泛用于 人工肾脏透析膜材料和微滤、超滤膜材料。
聚砜类
| 聚砜结构中的特征基团为O=S=O,为了引入亲水基团,
|
常将粉状聚砜悬浮于有机溶剂中,用氯磺酸进行磺化。 聚砜类常用的制模溶剂有:二甲基酰胺、二甲基乙酰胺、N甲基吡咯烷酮、二甲基亚砜等。 聚砜类具有良好的化学、热学和水解稳定性,强度也很高, PH值使用范围为1~13,最高使用温度达120℃,抗氧化 性和抗氯性都十分优良,可用作超滤和微滤膜材料。