2018年中考数学模拟试题各地真题299

合集下载

(完整word版)2018中考数学模拟试题含答案(精选5套)

(完整word版)2018中考数学模拟试题含答案(精选5套)

2018年中考数学模拟试卷(一)姓名--------座号--------成绩-------一、选择题(本大题满分36分,每小题3分. ) 1. 2 sin 60°的值等于( ) A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在( )A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为( ) A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( ) A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°, 则图中阴影部分的面积之和为( )A. 3B. 23C.23D. 1圆弧 角 扇形菱形等腰梯形A. B. C. D.(第9题图)(第7题图)12. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单 位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是 (-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′, 则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角 边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三 个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等 腰直角三角形所构成的图形的面积为 . 三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)3121--+x x ≤1, ……① 解不等式组:3(x -1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°. 小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF = 1米,从E处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度. (参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)(第21题图)(第23题图)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.(第24题图)(第26题图)2018年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2018年中考数学模拟试题(二)姓名---------座号---------成绩-----------一、选择题1、 数1,5,0,2-中最大的数是( ) A 、1- B 、5 C 、0 D 、22、9的立方根是( )A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=( )A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是( ) A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是( )A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=( ) A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是( ) A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有( )A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是( )A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

2018年中考数学全真模拟试卷及答案(共三套)

2018年中考数学全真模拟试卷及答案(共三套)

=mm-+21 · ·············································································· 4 分
当 m =1 时,原式=11-+21 =-12.·········································· 6 分
20.(本小题满分 8 分)
P
和点
B
在射线
OA
上的射影值均为OOPA=
1 3

B
B
B
D
O
P
A
O
A
C
O
A
C
图1
图2
图3
(第 27 题)
(1)在△ OAB 中,
①点 B 在射线 OA 上的射影值小于 1 时,则△ OAB 是锐角三角形;
②点 B 在射线 OA 上的射影值等于 1 时,则△ OAB 是直角三角形;
③点 B 在射线 OA 上的射影值大于 1 时,则△ OAB 是钝角三角形.
12
1
2
12.将点 A(2,-1)向左平移 3 个单位,再向上平移 4 个单位得到点 A′,则
点 A′的坐标是 ▲ .
13.如图,点 A、B、C、D 都在方格纸的格点上,若△ AOB 绕点 O 按逆时针方
向旋转到△ COD 的位置,则旋转角为 ▲ °.
A
D
C
A
B
D
O
(第 13 题)
E
B
C
P
(第 14 题)
1 2
4.某篮球兴趣小组 7 名学生参加投篮比赛,每人投 10 个,投中的个数分别为:
8,5,7,5,8,6,8,则这组数据的众数和中位数分别为

2018年中考数学模拟试卷及答案

2018年中考数学模拟试卷及答案

2018年中考数学模拟试卷及答案2018年中考数学模拟试卷一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)-3的相反数是()A.-1 B.3 C.1 D.-32.(3分)下列运算中,正确的是()A.2x+2y=2xyB.(xy)2÷(xy)3=x-yC.D.2xy-3yx=xy(x2y3)2=x4y53.(3分)一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥 B.四棱柱 C.三棱锥 D.三棱柱4.(3分)口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是()A.随机摸出1个球,是白球B.随机摸出1个球,是红球C.随机摸出1个球,是红球或黄球D.随机摸出2个球,都是黄球5.(3分)如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移36.(3分)如果多项式p=a2+2b2+2a+4b+5,则p的最小值是()A.1二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相应位置上)7.(3分)9的平方根是38.(3分)若∠α=32°22′,则∠α的余角的度数为57°38′9.(3分)化简:-3的结果是310.(3分)一组数据2、-2、4、1、的方差是5.511.(3分)若关于x的一元二次方程ax2-bx+2=0(a≠0)的一个解是x=1,则3-a+b的值是412.(3分)如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=140°13.(3分)圆锥的母线长为6cm,底面圆半径为4cm,则这个圆锥的侧面积为40√5 cm2.14.(3分)如图,⊙O的内接四边形ABCD中,∠A=105°,则∠BOD等于75°15.(3分)如图,Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,若AD=BC,则sin∠A=3/516.(3分)抛物线y=mx2-2mx+m-3(m>0)在-1<x<3位于x轴下方,在3<x<4位于x轴上方,则m的值为2三、解答题17.1) $-2+|3\tan30^\circ-1|-(\pi-3)^\circ$2+|\frac{3}{\sqrt{3}}-1|-(\pi-3)^\circ$2+|\sqrt{3}-1|-(\pi-3)^\circ$2+\sqrt{3}-1-(\pi-3)^\circ$2-\sqrt{3}-\pi^\circ$2) $x^2-3x+2=0$x=1$或$x=2$所以方程的解为$x=1$或$x=2$。

2018年中考数学模拟试卷及答案

2018年中考数学模拟试卷及答案

2018年中考数学模拟试卷一、选择题(本题共10个小题,每小题3分,共30分)1.下列四个数中,最小的是()A.﹣3 B.﹣2 C.3 D.52.下列计算正确的是()A.2x+1=2x2B.(﹣x2)3=x5C.x2•x3=x6D.(﹣2x)3=﹣8x33.某几何体的三视图如图所示,则此几何体是()A.圆锥B.圆柱C.长方体D.四棱柱4.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.下列图形中,是中心对称图形的是()A. B. C. D.6.九年一班甲、乙、丙、丁四名同学几次数学测试成绩的平均数(分)及方差S2如下表:老师想从中选派一名成绩较好且状态稳定的同学参加全省中学生数学竞赛,那么应选()A.甲B.乙C.丙D.丁7.如图,将一块含有30°角的直角三角板的直角顶点放在矩形的一边上,如果∠2=47°,那么∠3的度数为()A.30°B.47°C.17°D.20°8.下列调查中,最合适采用抽样调查的是()A.乘坐高铁对旅客的行李的检查B.了解建昌县初中生的视力情况C.调查九年一班全体同学的身高情况D.对新研发的新型战斗机的零部件进行检查9.关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k<1 C.k>﹣1且k≠0 D.k<1且k≠010.小明和小刚同时从公园门口出发,沿同一路线散步到公园凉亭再原路返回.他们距公园门口的距离y(m)与小刚行走的时间x(min)之间的关系如图.则(1)公园门口到公园凉亭的距离是600m;(2)小明在凉亭休息了5min;(3)小刚和小明同时回到了公园;(4)小明返回时的速度比去时的速度快.上面四个结论中正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共8小题,每小题3分,共24分)11.三张质地、大小相同的卡片上,分别画上如图所示的三个图形,在看不到图形的情况下从中任意抽出一张,则抽出的卡片是轴对称图形的概率是.12.分解因式:x3﹣4x=.13.韩国不顾各方面反对坚持部署“萨德”,近日不完全统计结果表明由此造成的经济损失约50000000000美元,则数50000000000用科学记数法表示为.14.数学老师用10道题作为一次课堂练习,课代表将全班同学的答题情况绘制成条形统计图,如图,观察此图可知,每位同学答对的题的个数组成的样本众数是,中位数是.15.如图,△ABC中,∠C=90°,分别以顶点A、B为圆心,大于AB长为半径作弧,两弧在直线AB两侧分别交于M、N两点,过M、N作直线交AB于点P,交AC于点D,连接BD.若DC=3,BC=4,则AB=.16.如图,点A在反比例函数y=的图象上,AB垂直于x轴,若S△AOB=4,那么这个反比例函数的解析式为.17.已知:如图,用长为18m的篱笆(3AB+BC),围成矩形花圃.一面利用墙(墙足够长),则围成的矩形花圃ABCD的占地面积最大为m2.18.如图,在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上,△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(,),那么点A3的纵坐标是,点A n的纵坐标是.三、解答题(本大题共2小题,共22分)19.先化简,再求值:÷(x﹣2﹣),其中x=2sin45°+()﹣1.20.将九年级两个班男生掷实心球的成绩进行整理,并绘制出频数分布表、扇形统计图和频数分布直方图(不完整).(x表示成绩,且规定x≥6.25合格,x≥9.25为优秀)(1)频数分布表中,a=,b=,其中成绩合格的有人,请补全频数分布直方图;(2)这两个班男生成绩的中位数落在组,扇形统计图中E组对应的圆心角是;(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,用列表法或画树状图法求甲、乙两位同学至少有1人被选中的概率(提示:成绩优秀的其他同学可用a、b、c、d、e…表示)四、解答题(本大题共2小题,共24分)21.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验;先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于30米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:≈1.732,≈1.414);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时3秒,这辆校车在AB段是否超速?请说明理由.22.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF ∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)四边形ADCF是形;(3)若AB=AC,则四边形ADCF是形.五、解答题(共12分)23.某活动中心准备带会员去龙潭大峡谷一日游.1张儿童票和2张成人票共需190元,2张儿童和3张成人票共需300元.解答下列问题:(1)求每张儿童票和每张成人票各多少元?(2)这个活动中心想带50人去游玩,费用不超过3000元,并且出于安全考虑,儿童人数不能超过25人①求带儿童人数的取值范围.②如何安排游玩人数,才能既保证安全又使费用最低?最低费用是多少?六、解答题(共12分)24.如图,已知,⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.(1)求证:AG是⊙O的切线(2)若AC=6,AB=8,BE=3,求OF的长.七、解答题(共12分)25.图1是边长分别为4和2的两个等边三角形纸片ABC和DEC叠放在一起.(1)①图1中△DEC的面积是②操作:固定△ABC,将△DEC绕点C顺时针旋转30°,连接AD、BE,CE的延长线交AB于点F(图2),则在图2中△CBF的面积是.(2)在(1)的条件下将△DEC继续旋转(旋转角小于180°,图3).连接AD、BE相交于点O,AD交CE于点F,请判断∠EOD的度数,并说明理由.(3)在(1)的条件下将△DEC绕点C逆时针旋转(旋转角大于60°且小于90°,图4),直接写出直线AD与BE相交所得到的锐角的度数.八、解答题(共14分)26.如图所示,抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C(0,4),且此抛物线顶点为D(1,).(1)求抛物线的解析式(化为一般形式)(2)连接BD,点P是线段BD上的一个动点(不与B、D重合),过点P作PE ⊥y轴,垂足是点E,连接BE.设P点的坐标为(x,y),△PBE的面积为S,求S与x之间的函数关系式,写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,过点P作PF⊥x轴,垂足是点F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,请直接写出P′点的坐标(不必画图),并直接判断点P′是否在该抛物线上.2017年辽宁省葫芦岛市建昌县中考数学二模试卷参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分)1.下列四个数中,最小的是()A.﹣3 B.﹣2 C.3 D.5【考点】18:有理数大小比较.【分析】根据有理数的大小比较方法,找出最小的数即可.【解答】解:∵﹣3<﹣2<3<5,∴四个数中最小的是﹣3.故选A.2.下列计算正确的是()A.2x+1=2x2B.(﹣x2)3=x5C.x2•x3=x6D.(﹣2x)3=﹣8x3【考点】47:幂的乘方与积的乘方;46:同底数幂的乘法.【分析】利用积的乘方、幂的乘方以及同底数的幂的乘法法则即可作出判断.【解答】解:A、2x和1不是同类项,不能合并,故选项不符合题意;B、(﹣x2)3=﹣x6,故选项不符合题意;C、x2•x3=x5,故选项不符合题意;D、(﹣2x)3=﹣8x3正确,选项符合题意.故选D.3.某几何体的三视图如图所示,则此几何体是()A.圆锥B.圆柱C.长方体D.四棱柱【考点】U1:简单几何体的三视图.【分析】根据三视图的主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析可知几何体的名称.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,故选:B.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】根据不等式组解集的四种情况进行解答即可.【解答】解:由大小小大中间找的原则,得出不等式组的解集为﹣2≤x <4,表示在数轴上为,故选B.5.下列图形中,是中心对称图形的是()A. B. C. D.【考点】R5:中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:B.6.九年一班甲、乙、丙、丁四名同学几次数学测试成绩的平均数(分)及方差S2如下表:老师想从中选派一名成绩较好且状态稳定的同学参加全省中学生数学竞赛,那么应选()A.甲B.乙C.丙D.丁【考点】W7:方差.【分析】此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的运动员参赛.【解答】解:由于乙的平均数较大且方差较小,故选乙.故选:B.7.如图,将一块含有30°角的直角三角板的直角顶点放在矩形的一边上,如果∠2=47°,那么∠3的度数为()A.30°B.47°C.17°D.20°【考点】JA:平行线的性质.【分析】根据平行线的性质和三角形的外角的性质即可得到结论.【解答】解:∵a∥b,∴∠4=∠2=47°,∵∠1=30°,∴∠3=∠4﹣∠1=17°,故选C.8.下列调查中,最合适采用抽样调查的是()A.乘坐高铁对旅客的行李的检查B.了解建昌县初中生的视力情况C.调查九年一班全体同学的身高情况D.对新研发的新型战斗机的零部件进行检查【考点】V2:全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、乘坐高铁对旅客的行李的检查是事关重大的调查,故A不符合题意;B、了解建昌县初中生的视力情况调查范围广适合抽样调查,故B符合题意;C、调查九年级一班全体同学的身高情况适合普查,故C不符合题意;D、对新研发的新型战斗机的零部件进行检查是事关重大的调查,故D不符合题意;故选:B.9.关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k<1 C.k>﹣1且k≠0 D.k<1且k≠0【考点】AA:根的判别式;A1:一元二次方程的定义.【分析】根据一元二次方程的定义和△的意义得到k≠0且△>0,即(﹣2)2﹣4×k×(﹣1)>0,然后解不等式即可得到k的取值范围.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴k≠0且△>0,即(﹣2)2﹣4×k×(﹣1)>0,解得k>﹣1且k≠0.故选C.10.小明和小刚同时从公园门口出发,沿同一路线散步到公园凉亭再原路返回.他们距公园门口的距离y(m)与小刚行走的时间x(min)之间的关系如图.则(1)公园门口到公园凉亭的距离是600m;(2)小明在凉亭休息了5min;(3)小刚和小明同时回到了公园;(4)小明返回时的速度比去时的速度快.上面四个结论中正确的有()A.1个 B.2个 C.3个 D.4个【考点】E6:函数的图象.【分析】观察图象,获得路程及相应的时间,可得答案.【解答】解:(1)由纵坐标看出公园门口到公园凉亭的距离是600m,故(1)正确;(2)由横坐标看出小明在凉亭休息了5min,故(2)正确;(3)由横坐标看出小刚和小明同时回到了公园,故(3)正确;(4)由纵坐标看出同样的路程,由横坐标看出小明的时间长,小刚的时间段,小明返回时的速度比去时的速度慢,故(4)错误;故选:C.二、填空题(本大题共8小题,每小题3分,共24分)11.三张质地、大小相同的卡片上,分别画上如图所示的三个图形,在看不到图形的情况下从中任意抽出一张,则抽出的卡片是轴对称图形的概率是.【考点】X4:概率公式;P3:轴对称图形.【分析】根据概率公式求解可得.【解答】解:从中任意抽取1张,共有3种等可能结果,其中是轴对称的只有圆这一种,∴抽出的卡片是轴对称图形的概率是,故答案为:.12.分解因式:x3﹣4x=x(x+2)(x﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).13.韩国不顾各方面反对坚持部署“萨德”,近日不完全统计结果表明由此造成的经济损失约50000000000美元,则数50000000000用科学记数法表示为5×1010.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:50000000000=5×1010,故答案为:5×1010.14.数学老师用10道题作为一次课堂练习,课代表将全班同学的答题情况绘制成条形统计图,如图,观察此图可知,每位同学答对的题的个数组成的样本众数是8,中位数是9.【考点】VC:条形统计图;W4:中位数;W5:众数.【分析】根据众数的定义找出答对最多的题目数即可;根据中位数的定义,找出50人中的第25、26两人答对题目的数量的平均数即可为中位数.【解答】解:由图可知,答对8题的人数最多,是20人,所以,每位同学答对的题的个数组成的样本众数是8,答题人数为:4+20+18+8=50,按照答对题目数量从少到多,第25、26两人都是9道题目,所以,中位数是9.故答案为:8;9.15.如图,△ABC中,∠C=90°,分别以顶点A、B为圆心,大于AB长为半径作弧,两弧在直线AB两侧分别交于M、N两点,过M、N作直线交AB于点P,交AC于点D,连接BD.若DC=3,BC=4,则AB=4.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质;KQ:勾股定理.【分析】由题意MN垂直平分线段AB,可得BD=AD,在Rt△BCD中,可得BD===5,推出AD=BD=5,AC=AD+DC=8,在Rt△ACB中,根据AB=即可解决问题.【解答】解:由题意MN垂直平分线段AB,∴BD=AD,在Rt△BCD中,BD===5,∴AD=BD=5,AC=AD+DC=8,在Rt△ACB中,AB===4,故答案为4.16.如图,点A在反比例函数y=的图象上,AB垂直于x轴,若S△AOB=4,那么这个反比例函数的解析式为y=﹣.【考点】G5:反比例函数系数k的几何意义.【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值|k|,△AOB的面积为矩形面积的一半,即|k|.【解答】解:由于点A在反比例函数y=的图象上,=|k|=4,k=±8;则S△AOB又由于函数的图象在第二象限,k<0,则k=﹣8,所以反比例函数的解析式为y=﹣.故答案为:y=﹣.17.已知:如图,用长为18m的篱笆(3AB+BC),围成矩形花圃.一面利用墙(墙足够长),则围成的矩形花圃ABCD的占地面积最大为27m2.【考点】HE:二次函数的应用.【分析】首先表示出矩形的长与宽,进而利用二次函数最值求法得出答案.【解答】解:设AB=x,则BC=18﹣3x,则围成的矩形花圃ABCD的面积为:S=x(18﹣3x)=﹣3x2+18x=﹣3(x2﹣6x)=﹣3(x﹣3)2+27,即围成的矩形花圃ABCD的占地面积最大为27m2.故答案为:27.18.如图,在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上,△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(,),那么点A3的纵坐标是,点A n的纵坐标是()n﹣1.【考点】D2:规律型:点的坐标.【分析】先求出直线y=kx+b的解析式,求出直线与x轴、y轴的交点坐标,求出直线与x轴的夹角的正切值,分别过等腰直角三角形的直角顶点向x轴作垂线,然后根据等腰直角三角形斜边上的高线与中线重合并且等于斜边的一半,利用正切值列式依次求出三角形的斜边上的高线,即可得到A3的坐标,进而得出各点的坐标的规律.【解答】解:∵A1(1,1),A2(,)在直线y=kx+b上,∴,解得,∴直线解析式为:y=x+;设直线与x轴、y轴的交点坐标分别为N、M,当x=0时,y=,当y=0时,x+=0,解得x=﹣4,∴点M、N的坐标分别为M(0,),N(﹣4,0),∴tan∠MNO===,作A1C1⊥x轴与点C1,A2C2⊥x轴与点C2,A3C3⊥x轴与点C3,∵A1(1,1),A2(,),∴OB2=OB1+B1B2=2×1+2×=2+3=5,tan∠MNO===,∵△B2A3B3是等腰直角三角形,∴A3C3=B2C3,∴A3C3==()2,同理可求,第四个等腰直角三角形A4C4==()3,依此类推,点A n的纵坐标是()n﹣1,故答案为:,()n﹣1.三、解答题(本大题共2小题,共22分)19.先化简,再求值:÷(x﹣2﹣),其中x=2sin45°+()﹣1.【考点】6D:分式的化简求值;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:÷(x﹣2﹣)===,当x=2sin45°+()﹣1=2×=,原式=.20.将九年级两个班男生掷实心球的成绩进行整理,并绘制出频数分布表、扇形统计图和频数分布直方图(不完整).(x表示成绩,且规定x≥6.25合格,x≥9.25为优秀)(1)频数分布表中,a=5,b=15,其中成绩合格的有45人,请补全频数分布直方图;(2)这两个班男生成绩的中位数落在C组,扇形统计图中E组对应的圆心角是36°;(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,用列表法或画树状图法求甲、乙两位同学至少有1人被选中的概率(提示:成绩优秀的其他同学可用a、b、c、d、e…表示)【考点】X6:列表法与树状图法;V7:频数(率)分布表;V8:频数(率)分布直方图;VB:扇形统计图;W4:中位数.【分析】(1)根据题意可得:这部分男生共有:5÷10%=50(人);又由只有A 组男人成绩不合格,可得:合格人数为:50﹣5=45(人);(2)由这50人男生的成绩由低到高分组排序,A组有5人,B组有10人,C组有15人,D组有15人,E组有5人,可得:成绩的中位数落在C组;又由E组有5人,占5÷50=10%,即可求得:对应的圆心角为:360°×10%=36°;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他俩至少有1人被选中的情况,再利用概率公式即可求得答案.【解答】解:(1)本次调查的总人数为5÷10%=50,∴a=50×30%=15,b=50﹣(5+10+15+15)=5,其中合格的人数为50﹣5=45人,补全条形图如下:故答案为:15、5、45,(2)50个数据的中位数为第25、26个数据的平均数,而第25、26个数均落在C组,∴中位数在C组,扇形统计图中E组对应的圆心角是360°×=36°,故答案为:C、36°;(3)成绩优秀的男生在E组,含甲、乙两名男生,记其他三名男生为a,b,c,画树状图得:∵共有20种等可能的结果,其中甲、乙至少有1人被选中的结果有14种,==.∴P(甲、乙至少有1人被选中)四、解答题(本大题共2小题,共24分)21.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验;先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于30米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:≈1.732,≈1.414);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时3秒,这辆校车在AB段是否超速?请说明理由.【考点】T8:解直角三角形的应用.【分析】(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【解答】(1)解:∵∠CAD=30°,∠CBD=60°,CD⊥l,CD=30∴在Rt△ADC中,AD===30,在Rt△BDC中,BD===10,则AB=AD﹣BD=30﹣10=20≈34.6(米),答:AB的长约为34.6米,(2)解:超速,理由如下:∵汽车从A到B用时3秒,由(1)知,AB≈34.6米∴速度为×3.6≈41.5(千米/小时)>40千米/小时,∴此校车在AB路段超速.22.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF ∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)四边形ADCF是菱形;(3)若AB=AC,则四边形ADCF是正方形.【考点】LF:正方形的判定;KD:全等三角形的判定与性质;KW:等腰直角三角形;L9:菱形的判定.【分析】(1)由E是AD的中点,AF∥BC,易证得△AEF≌△DEB,即可得AF=BD,又由在△ABC中,∠BAC=90°,AD是中线,根据直角三角形斜边的中线等于斜边的一半,即可证得AD=BD=CD=BC,即可证得:AD=AF;(2)由(1)知,AF=BD.结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”得到ADCF是菱形;(3)由AF=BD=DC,AF∥BC,可证得:四边形ADCF是平行四边形,又由AB=AC,根据三线合一的性质,可得AD⊥BC,AD=DC,继而可得四边形ADCF是正方形【解答】(1)证明:∵AF∥BC,∴∠EAF=∠EDB,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,,∴△AEF≌△DEB(ASA),∴AF=BD,∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC=BC,∴AD=AF;(2)由(1)知,AF=DB.DB=DC,则AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形.故答案是:菱;(3)解:四边形ADCF是正方形.∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AB=AC,AD是中线,∴AD⊥BC,∵AD=AF,∴四边形ADCF是正方形.故答案是:正方.五、解答题(共12分)23.某活动中心准备带会员去龙潭大峡谷一日游.1张儿童票和2张成人票共需190元,2张儿童和3张成人票共需300元.解答下列问题:(1)求每张儿童票和每张成人票各多少元?(2)这个活动中心想带50人去游玩,费用不超过3000元,并且出于安全考虑,儿童人数不能超过25人①求带儿童人数的取值范围.②如何安排游玩人数,才能既保证安全又使费用最低?最低费用是多少?【考点】FH:一次函数的应用;9A:二元一次方程组的应用;C9:一元一次不等式的应用.【分析】(1)设每张儿童票x元,每张成人票y元,根据两家人的购票费用列方程组求解即可;(2) ①设带儿童m人,根据题意得不等式即可得到结论;②‚设带儿童m人时费用为w元,则有W=30m+80(50﹣m),根据一次函数的性质即可得到结论.【解答】解:(1)设每张儿童票x元,每张成人票y元,根据题意,得,解得:,答:每张儿童票30元,每张成人票80元;(2) ①设带儿童m人,根据题意,得30m+80(50﹣m)≤≤3000,解得m≥20,又∵儿童人数不能超过25人,∴带儿童人数的取值范围是20≤m≤25;②‚设带儿童m人时费用为w元,则有W=30m+80(50﹣m),即W=﹣50m+4000,∵k=﹣50<0,∴w随m的增大而减小,而20≤m≤25,∴m=25时,w最小,这时,w=﹣50×25+4000=2750,因此,25个成人25个儿童去才能既保证安全又使费用最低,最低费用是2750元.六、解答题(共12分)24.如图,已知,⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.(1)求证:AG是⊙O的切线(2)若AC=6,AB=8,BE=3,求OF的长.【考点】ME:切线的判定与性质;KQ:勾股定理;M2:垂径定理.【分析】(1)连接OA.依据等腰三角形的性质可得到∠B=∠BAO,∠GEA=∠GAE,从而可证名∠B+∠BEF=90°,通过等量代换可得到∠BAO+∠GAE=90°,即OA⊥AG;(2)由直径所对的圆周角等于90°可得到∠BAC=90°,依据勾股定理可求得BC=10,则⊙O的半径为5,锐角三角函数的定义可知cosB==,故此可求得BF的长,最后依据OF=OB ﹣BF求解即可.【解答】解:(1)连接OA.∵OA=OB,GA=GE,∴∠B=∠BAO,∠GEA=∠GAE.∵EF⊥BC,∴∠BFE=90°,∴∠B+∠BEF=90°,又∵∠BEF=∠GEA,∴∠GAE=∠BEF,∴∠BAO+∠GAE=90°,∴OA⊥AG.又∵OA是半径,∴AG是⊙O的切线.(2)解:∵BC为直径,∴∠BAC=90°.又∵AC=6,AB=8,∴在Rt△BAC中,根据勾股定理,得BC=10,∴OB=5.又∵BE=3,∴在Rt△BEF和Rt△BCA中,cosB==.∴=,解得:BF=2.4.∴OF=OB﹣BF=5﹣2.4=2.6.七、解答题(共12分)25.图1是边长分别为4和2的两个等边三角形纸片ABC和DEC叠放在一起.(1)①图1中△DEC的面积是②操作:固定△ABC,将△DEC绕点C顺时针旋转30°,连接AD、BE,CE的延长线交AB于点F(图2),则在图2中△CBF的面积是6.(2)在(1)的条件下将△DEC继续旋转(旋转角小于180°,图3).连接AD、BE相交于点O,AD交CE于点F,请判断∠EOD的度数,并说明理由.(3)在(1)的条件下将△DEC绕点C逆时针旋转(旋转角大于60°且小于90°,图4),直接写出直线AD与BE相交所得到的锐角的度数.【考点】RB:几何变换综合题.【分析】(1)①过D作DF⊥CE于F,根据等边三角形的性质得到∠C=60°,解直角三角形得到DF=,于是得到结论;②由△ABC是等边三角形,得到∠ABC=60°,解直角三角形得到BF=2,CF=6,根据三角形的面积公式即可得到结论;(2)根据等边三角形的性质得到AC=BC,DC=EC,∠ACB=∠DCE=60°,得到∠ACD=∠BCE,根据全等三角形的性质得到∠ADC=∠BEC,根据三角形的内角和即可得到结论;(3)延长AD交BE于F,设AD与BC交于E,根据等边三角形的性质得到AC=BC,DC=EC,∠ACB=∠DCE=60°,得到∠ACD=∠BCE,根据全等三角形的性质得到∠ADC=∠BEC,根据三角形的内角和即可得到结论.【解答】解:(1)①过D作DF⊥CE于F,∵△CDE是等边三角形,∴∠C=60°,∵CD=CE=2,∴DF=,∴△DEC的面积=×2×=;②∵△ABC是等边三角形,∴∠ABC=60°,∵∠BCF=30°,∴∠BFC=90°,∵BC=4,∴BF=2,CF=6,∴△CBF的面积=2×6=6;故答案为:,6;(2)∠EOD=60°,理由如下:∵△ABC和△DEC是等边三角形,∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACD=∠BCE,在△ACD与△BCE中,,∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC,∵∠DFC=∠AFE,∴∠EOD=∠ECD=60°;(3)延长AD交BE于F,设AD与BC交于E,∵△ABC和△DEC是等边三角形,∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACD=∠BCE,在△ACD与△BCE中,,∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC,∵∠AEC=∠BEF,∴∠AFB=∠ACB=60°,直线AD与BE相交所得到的锐角的度数是60°.八、解答题(共14分)26.如图所示,抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C(0,4),且此抛物线顶点为D(1,).(1)求抛物线的解析式(化为一般形式)(2)连接BD,点P是线段BD上的一个动点(不与B、D重合),过点P作PE ⊥y轴,垂足是点E,连接BE.设P点的坐标为(x,y),△PBE的面积为S,求S与x之间的函数关系式,写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,过点P作PF⊥x轴,垂足是点F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,请直接写出P′点的坐标(不必画图),并直接判断点P′是否在该抛物线上.【考点】HF:二次函数综合题.【分析】(1)由抛物线顶点D的坐标是(1,),设抛物线解析式为y=a(x﹣1)2+,再把C(0,4)代入,得出关于a的方程,解方程求出a=﹣,即可得出抛物线的解析式;(2)根据抛物线的解析式求出B点坐标,利用待定系数法求出直线BD的解析式为y=﹣x+6,由点P是线段BD上的一个动点,可设P(x,﹣x+6).得出PE=x,OE=﹣x+6,再根据三角形的面积公式列式得出S=PE•OE=xy=x(﹣x+6)=﹣x2+3x(1<x<4),利用配方法化为顶点式求出S的最大值;(3)在(2)的条件下,当S取最大值时,P(2,3),则E(0,3),F(2,0).画出图形.利用待定系数法求出直线EF的解析式为y=﹣x+3.根据折叠的性质得出P′E=PE=2,PP′⊥EF,由互相垂直的两直线斜率之积为﹣1,得出直线PP′的斜率为,再求出直线PP′的解析式为y=x+,设P′(x,x+),根据P′E=2列出方程x2+(x+﹣3)2=4,解方程求出x的值,进而求解即可.【解答】解:(1)∵抛物线顶点D(1,),∴设抛物线解析式为y=a(x﹣1)2+,又∵抛物线经过点C(0,4),∴4=a+,解得a=﹣,∴抛物线解析式为y=﹣(x﹣1)2+,即y=﹣x2+x+4;(2)令﹣x2+x+4=0,解得x1=﹣2,x2=4,故A(﹣2,0)、B(4,0).设直线BD解析式为y=mx+n(m≠0),∵B(4,0),D(1,),∴,。

2018中考数学模拟试题及答案

2018中考数学模拟试题及答案

2018中考数学模拟试题及答案work Information Technology Company.2020YEAR2018 年 初 中 升 学 模 拟 考 试(一)九 年 数 学 试 卷题 号 一 二 三 四 五 六 七 八 总 分 得 分(考试时间:120分钟;试卷满分:150分)温馨提示:请考生把所有的答案都写在答题卡上,写在试卷上不给分,答题要求见答题卡。

一、选择题(每小题3分,共30分) 1.-12的倒数是( ) A .2B .12C .-12D .-22.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.000 000 000 22米,将0.000 000 000 22用科学记数法表示为 ( ) A .0.22×l0-9 B .2.2×l0-10 C .22×l0-11 D .0.22×l0-8 3.如图是某几何体的三视图,该几何体是 ( ) A .正方体 B .三棱锥 C .圆柱 D .圆锥第3题图 笫4题图4.如图是根据某地某段时间的每天最低温度绘成的折线图,那么这段时间最低温度的中位数,众数分别是 ( ) A .4℃,4℃ B .4℃,5℃ C .4.5℃,5℃ D .4.5C ,4℃ 5.不等式组x 1x+12⎧⎨-⎩≤,>的解集在数轴上可表示为( )6.下列计算,正确的是( )A .2a 2+a =3a 2B .2a -1=12a(a ≠0) C .(-a 2)3÷a 4=-aD .2a 2·3a 3=6a 57.已知四边形ABCD 是平行四边形,下列结论中不正确...的是( ) A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形 C .当∠ABC =90º时,它是矩形 D .当AC =BD 时,它是正方形8.小张承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它的成活率如下表所示: 移植棵数(n) 成活数(m)成活率(m/n) 移植棵数(n) 成活数(m) 成活率(m/n) 50 47 0.940 1500 1335 0.890 270 235 0.870 3500 3203 0.915 400 369 0.923 7000 6335 0.905 7506620.88314000126280.902①随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900;②当移植的棵数是1500时,表格记录成活数是1335,所以这种树苗成活的概率是0.890;③若小张移植10000棵这种树苗,则可能成活9000棵;④若小张移植20000棵这种树苗,则一定成活18000棵.其中合理的是( ) A .①③B .①④C .②③D .②④9.如图,将矩形ABCD 沿着直线BD 折叠,使点C 落在C ′处,P 为对角线BD 上一点(不与点B ,D 重合),PM ⊥BC ′于点M ,PN ⊥AD 于点N 。

2018年九年级数学模拟试卷及答案

2018年九年级数学模拟试卷及答案

2018年中考数学模拟试题(一)注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效. 4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.计算│-4+1│的结果是( ▲ )A .-5B .-3C .3D .52.计算(-xy 2)3的结果是( ▲ )A .x 3y 6B .-x 3y 6C .-x 4y 5D . x 4y 5 3.与17 最接近的整数为( ▲ )A .2B .3C .4D .54.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH =2,HB =1,BC =5,则 DEEF 的值为( ▲ )A .23B .25C .13D .355. 若一组数据2,4,6,8,x 的方差比另一组数据5,7,9,11,13的方差大,则 x 的值可以为( ▲ )A .12B .10C .2D .06.如图,在Rt △ABC 中,∠C =90°,AD 是△ABC 的角平分线,若CD=4,AC=12,则△ABC 的面积 为( ▲ )A .48B .50C .54D .60(第4题) A BCD (第6题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 7.9的平方根是 ▲ ;9的立方根是 ▲ . 8.使x +1 有意义的x 的取值范围是 ▲ .9.2016年南京全市完成全社会固定资产投资约55000000万元,将55000000用科学记数法表示为 ▲ . 10.分解因式x 3+6x 2+9x 的结果是 ▲ . 11.计算 33-13的结果是 ▲ . 12.已知关于x 的方程x 2-3x +m =0的一个根是2,则它的另一个根是 ▲ ,m 的值是 ▲ . 13.如图,∠A =∠C ,只需补充一个条件 ▲ ,就可得△ABD ≌△CDB .14. 如图,在△ABC 中,AB 、AC 的垂直平分线l 1、l 2相交于点O ,若∠BAC 等于82°,则∠OBC = ▲ °.15.已知点A (-1,-2)在反比例函数y =kx 的图像上,则当x >1时,y 的取值范围是 ▲ .16.如图,在半径为2的⊙O 中,弦AB =2,⊙O 上存在点C ,使得弦AC =22,则∠BOC = ▲ °. 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组⎩⎪⎨⎪⎧ x +1≥ 0, x -12<x 3.,并写出它的整数解.18.(7分)化简:( 2m m 2-4- 1 m +2 )÷1 m 2-2m .(第14题)A BD(第13题)(第16题)19.(8分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m ),绘制出如下两幅统计图.请根据相关信息,解答下列问题:(1)扇形统计图中a = ▲ ,初赛成绩为1.70m 所在扇形图形的圆心角为 ▲ °; (2)补全条形统计图;(3)这组初赛成绩的众数是 ▲ m ,中位数是 ▲ m ; (4)根据这组初赛成绩确定8人进入复赛,那么初赛成绩为1.60m 的运动员杨强能否进入复赛?为什么?20.(8分)在一个不透明袋子中有1个红球、1 个绿球和n 个白球,这些球除颜色外都相同.(1)从袋中随机摸出1个球,记录下颜色后放回袋子中并搅匀,不断重复该试验.发现摸到白球的频率稳定在0.75,则n 的值为 ▲ ;(2)当n =2时,把袋中的球搅匀后任意摸出2个球,求摸出的2个球颜色不同的概率.21.(8分)如图,将矩形ABCD 绕点C 旋转得到矩形FECG ,点E 在AD 上,延长ED 交FG 于点H . (1)求证:△EDC ≌△HFE ; (2)连接BE 、CH .①四边形BEHC 是怎样的特殊四边形?证明你的结论. ②当AB 与BC 的比值为 ▲ 时,四边形BEHC 为菱形.(第21题)ACDGFEH22.(8分)据大数据统计显示,某省2014年公民出境旅游人数约100万人次,2015年与2016年两年公民出境旅游总人数约264万人次. 若这两年公民出境旅游总人数逐年递增,请解答下列问题: (1)求这两年该省公民出境旅游人数的年平均增长率;(2)如果2017年仍保持相同的年平均增长率,请你预测2017年该省公民出境旅游人数约多少万人次?23.(8分)如图,小明要测量河内小岛B 到河边公路AD 的距离,在点A 处测得∠BAD =37°,沿AD 方向前进150米到达点C ,测得∠BCD =45°. 求小岛B 到河边公路AD 的距离. (参考数据:sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)24.(8分)已知二次函数y =x 2-2m x +m 2+m +1的图像与x 轴交于A 、B 两点,点C 为顶点. (1)求m 的取值范围;(2)若将二次函数的图像关于x 轴翻折,所得图像的顶点为D ,若CD =8.求四边形ACBD 的面积。

2018届人教版中考数学模拟试卷(含答案)

2018届人教版中考数学模拟试卷(含答案)

21. (8 分 )某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的 方式进行问卷调查, 调查结果分为 “ A.非常了解”、 “ B.了解”、 “ C.基本了解”三个等级, 并根据调查结果绘制了如下两幅不完整的统计图.
(1)这次调查的市民人数为 ________人, m= ________, n= ________; (2)补全条形统计图; (3)若该市约有市民 100000 人,请你根据抽样调查的结果, 估计该市大约有多少人对“社 会主义核心价值观”达到“ A.非常了解”的程度.
CF = BE, = BE.(3 分)在△ DFC 和△ AEB 中, ∠ CFD =∠ BEA,∴△ DFC ≌△ AEB(SAS) ,(6 分 )∴CD
DF = AE,
= AB,∠ C=∠ B,∴ CD ∥ AB.(8 分 ) 21.解: (1)500 12 32(3 分 ) (2)对“社会主义核心价值观”达到“
A. 1 个 B. 2 个 C.3 个 D.4 个 二、填空题 (每小题 3 分,共 24 分 ) 11.如图所示,在 Rt△ ABC 中,∠ B=________.
第 11 题图
第 16 题图
12.《“一带一路”贸易合作大数据报告 (2017) 》以“一带一路”贸易合作现状分析和 趋势预测为核心,采集调用了 8000 多个种类,总计 1.2 亿条全球进出口贸易基础数据 , ,
A. 92° B. 108 ° C. 112 ° D. 124 °
第 9 题图
第 10 题图
10.如图,抛物线
y1

1 2(
x+
1)
2

1

y2= a(x- 4)2- 3
交于点

2018中考数学模拟试题与答案

2018中考数学模拟试题与答案

. . .2018 年 初 中 升 学 模 拟 考 试(一)九 年 数 学 试 卷题 号 一 二 三 四 五 六 七 八 总 分 得 分(考试时间:120分钟;试卷满分:150分)温馨提示:请考生把所有的答案都写在答题卡上,写在试卷上不给分,答题要求见答题卡。

一、选择题(每小题3分,共30分)1.-12的倒数是( ) A .2 B .12C .-12D .-22.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.000 000 000 22米,将0.000 000 000 22用科学记数法表示为( ) A .0.22×l0-9 B .2.2×l0-10 C .22×l0-11 D .0.22×l0-8 3.如图是某几何体的三视图,该几何体是( )A .正方体B .三棱锥C .圆柱D .圆锥第3题图 笫4题图 4.如图是根据某地某段时间的每天最低温度绘成的折线图,那么这段时间最低温度的中位数,众数分别是( )A .4℃,4℃B .4℃,5℃C .4.5℃,5℃D .4.5C ,4℃ 5.不等式组x 1x+12⎧⎨-⎩≤,>的解集在数轴上可表示为( )6.下列计算,正确的是 ( )A .2a 2+a =3a 2B .2a -1=12a(a ≠0) C .(-a 2)3÷a 4=-a D .2a 2·3a 3=6a 5 7.已知四边形ABCD 是平行四边形,下列结论中不正确...的是( )A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC =90º时,它是矩形D .当AC =BD 时,它是正方形8.小张承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它的成活率如下表所示: 移植棵数(n) 成活数(m)成活率(m/n)移植棵数(n) 成活数(m) 成活率(m/n) 50 47 0.940 1500 1335 0.890 270 235 0.870 3500 3203 0.915 400 369 0.923 7000 6335 0.905 7506620.88314000126280.902①随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900;②当移植的棵数是1500时,表格记录成活数是1335,所以这种树苗成活的概率是0.890;③若小张移植10000棵这种树苗,则可能成活9000棵;④若小张移植20000棵这种树苗,则一定成活18000棵.其中合理的是 ( )A .①③B .①④C .②③D .②④9.如图,将矩形ABCD 沿着直线BD 折叠,使点C 落在C ′处,P 为对角线BD 上一点(不与点B ,D 重合),PM ⊥BC ′于点M ,PN ⊥AD 于点N 。

九年级2018数学中考模拟试题(卷)与答案

九年级2018数学中考模拟试题(卷)与答案

2018年九年级中考模拟试题试卷副标题考试范围: ;考试时间:120分钟;命题人:林永章学校: 题号-一一 二二二-三 总分得分注意事项:1 •答题前填写好自己的姓名、班级、考号等信息2 •请将答案正确填写在答题卡上第I 卷(选择题)评卷人得分一•选择题(共10小题,满分30分,每小题3分) 1 • (3分)下列实数中,无理数是( ) A. 0 B.二 C. - 2 D •二2. (3分)下列图形中,既是轴对称又是中心对称图形的是( A.菱形 B •等边三角形C .平行四边形D .等腰梯形4. (3分)一球鞋厂,现打折促销卖出 330双球鞋,比上个月多卖10%设 上个月卖出x 双,列出方程( )2A. 10%x=330B. (1 - 10% x=330C. (1 - 10% x=330 D .( 1+10%)x=3305. (3分)某共享单车前a 公里1元,超过a 公里的,每公里2元,若要使 使用该共享单车50%勺人只花1元钱,a 应该要取什么数( ) A.平均数 B.中位数 C.众数 D.方差6. (3分)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的 位置介于( )之间.绝密★启用前(3分)图中立体图形的主视图是( 3.B . A.C.D.9. (3分)某校美术社团为练习素描,他们第一次用 120元买了若干本资料, 第二次用240元在同一商家买同样的资料,这次商家每本优惠 4元,结果比 上次多买了 20本.求第一次买了多少本资料?若设第一次买了 x 本资料, 列方程正确的是( A 加—1刖=4 ■ x-20 "T1 C 垂—迦=4.工 Z-2010. (3分)用棋子摆出下列一组图形: • • • • • •• • • • • • • ••• • •• • • •• • • • •① ②按照这种规律摆下去,第n 个图形用的棋子个数为 A. 3n B. 6n C. 3n+6 D. 3n+3) -■■ =4=4 x+20 )D. x >2)A . 8.x > 1 (3 分) B. x >2 C. x > 1 F 列曲线中不能表示y 是x 的函数的是( CB. -rl-20评卷人得分二•填空题(共7小题,满分21分,每小题3分)11. ( 3分)2016年南京实现GDP 勺10500亿元,成为全国第11个经济总量 超过万亿的城市,用科学记数法表示 10500是 ________ .12. (3分)不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色 外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是 _________ . 13. (3分)一副三角尺按如图的位置摆放(顶点 C 与F 重合,边CA 与边 FE 叠合,顶点B 、C 、D 在一条直线上).将三角尺DEF 绕着点F 按顺时针方14. (3分)已知关于x 的方程x 2+px+q=0的两根为-3和-1,则p=q= ______ .15. (3分)如图,在厶ABC 中, AB^AC D E 分别为边 AB AC 上的点.AC=3ADAB=3AE 点F 为BC 边上一点,添加一个条件: ________ ,可以使得△ FDB 与 △ ADE 相似.(只需写出一个)围是 _______.17. (3分)函数y 1=x 与y2—的图象如图所示,下列关于函数y=y 1+y 2的结论: ①函数的图象关于原点中心对称;②当 x V 2时,y 随x 的增大而减小;③当 x >0时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号第U 卷(非选择题)),如果EF// AB,那么n 的值是元二次方程kx 2-2x+1=0有实数根,则k 的取值范19. (8分)解下列方程: (1)x (x+5) =14;三•解答题(共8小题,满分69分)18. (4 分)(1)计算:竝+ (应-1) 2-訶 + (二)“(7分)(2)先化简,再求值: (互)亠运x-2 i+2 F-4其中x=- 1.2(2) x - 2x - 2=020. (8分)已知:如图,四边形ABCD中,AD// BC, AD=CQ E是对角线BD 上一点,且EA=EC(1)求证:四边形ABCD1菱形;(2)如果BE=BC且/ CBE / BCE=2 3,求证:四边形ABCD是正方形.21. (8分)某公司共25名员工,下表是他们月收入的资料.数是_______ 元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元.你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.22. (10分)小强与小刚都住在安康小区,在同一所学校读书,某天早上,小强7:30从安康小区站乘坐校车去学校,途中需停靠两个站点才能到达学校站点,且每个站点停留2分钟,校车行驶途中始终保持匀速,当天早上,小刚7:39从安康小区站乘坐出租车沿相同路线出发,出租车匀速行驶,比小强乘坐的校车早1分钟到学校站点,他们乘坐的车辆从安康小区站出发所行使路程y (千米)与校车行驶时间x (分钟)之间的函数图象如图所示.(1)求点A的纵坐标m的值;(2)小刚乘坐出租车出发后经过多少分钟追到小强所乘坐的校车?并求此时他们距学校站点的路程.23. ( 12分)综合实践:折纸的思考.【操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片ABC( AB> BC)(图①),使AB与DC重合,得到折痕EF,把纸片展平(图②).第二步,如图③,再一次折叠纸片,使点C落在EF上的P处,并使折痕经过点B,得到折痕BG折出PB PC,得到△ PBC(1)说明△ PBC是等边三角形.【数学思考】(2)如图④,小明画出了图③的矩形ABCD和等边三角形PBC他发现,在矩形ABC呼把厶PBC经过图形变化,可以得到图⑤中的更大的等边三角形,请描述图形变化的过程.(3)已知矩形一边长为3cm另一边长为a cm,对于每一个确定的a的值, 在矩形中都能画出最大的等边三角形,请画出不同情形的示意图,并写出对应的a 的取值范围.【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4cm和1cm的直角三角形铁圉①圉②图③S® 图⑤24. (12 分)如图,抛物线y=ax2+bx+2 经过点A (- 1, 0), B (4, 0),交y 轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S A AB冷S A ABD?若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的2018年03月20日123lyz 的初中数学组卷参考答案与试题解析一•选择题(共10小题,满分30分,每小题3分)1. ( 3分)下列实数中,无理数是( B ) A. 0B. . T C - 2 D.二【解答】解:0,- 2, 是有理数,\7\_ :是无理数, 故选:B.2. (3分)下列图形中,既是轴对称又是中心对称 图形的是(A ) A. 菱形B .等边三角形C.平行四边形 D.等 腰梯形【分析】根据轴对称图形和中心对称图形对各选项 分析判断即可得解.【解答】解:A 菱形既是轴对称又是中心对称图形, 故本选项正确; B 、 等边三角形是轴对称,不是中心对称图形,故本 选项错误;C 平行四边形不是轴对称,是中心对称图形,故本 选项错误;D 等腰梯形是轴对称,不是中心对称图形,故本选 项错误.故选A . D. 【分析】 【解答】方体,上面有一个小正方体,在中间. 故选A .4. ( 3分)一球鞋厂,现打折促销卖出 330双球鞋, 比上个月多卖 10%设上个月卖出 x 双,列出方程 (D )A. 10%x=330 B . ( 1- 10%) x=330 C. ( 1 - 10%)2x=330 D. (1+10% x=330【分析】设上个月卖出x 双,等量关系是:上个月 卖出的双数x ( 1+10%)=现在卖出的双数,依此列 出方程即可.【解答】解:设上个月卖出x 双,根据题意得 (1 + 10% x=330. 故选D.5. (3分)某共享单车前 a 公里1元,超过a 公里 的,每公里2元,若要使使用该共享单车 50%勺人 只花1元钱,a 应该要取什么数( B ) A .平均数 B.中位数 C.众数D .方差【分析】由于要使使用该共享单车 50%勺人只花1 元钱,根据中位数的意义分析即可 【解答】解:根据中位数的意义, 故只要知道中位数就可以了.故选B.计算可得结果介于-2与-1之间. 故选A 7. ( 3分)若代数式. 有意义,则实数x 的取值 ■J 1-1范围是(B ) A . x > 1 B . x >2 C . x > 1 D . x >2【分析】 函数的定义:设在一个变化过程中有两个 变量x 与y ,对于x 的每一个确定的值,y 都有唯一 的值与其对应,那么就说 y 是x 的函数,x 是自变量•由此即根据主视图是从正面看的图形解答. 解:从正面看,共有两层,下面三个小正 6. (3分)用教材中的计算器依次按键如下,显示 的结果在数轴上对应点的位置介于( A )之间., ,, , , , A B c D K三互 H I =」-4 -2 A 0 IA .B 与C B. C 与D C.E 与F D. A 与 B 【分析】此题实际是求- 2的值.【解答】解:在计算器上依次按键转化为算式为- 【分析】 范围;【解答】根据二次根式有意义的条件即可求出故选(B )解:由题意可知:x > 2 3. ( 3分)图中立体图形的主视图是(A )A .C.(3 分) C )可判断.【解答】解:当给x 一个值时,y 有唯一的值与其 对应,就说y 是x 的函数,x 是自变量.选项C 中的曲线,不满足对于自变量的每一个确定 的值,函数值有且只有一个值与之对应,即单对 应.故C 中曲线不能表示y 是x 的函数, 故选C.9. (3分)某校美术社团为练习素描,他们第一次 用120元买了若干本资料,第二次用 240元在同一 商家买同样的资料,这次商家每本优惠 4元,结果 比上次多买了 20本.求第一次买了多少本资料?若 设第一次买了 x 本资料,列方程正确的是( D )A.240 -120 =4B .240 — 120 =4x-20 Xx+20 KC.120 - 240 =4 D 1201 240=4r-20x W20【分析】E 甘设第- 「次买了 x 本资料,则设第二次买 了( x+20)本资料,由等量关系:第二次比第一次 每本优惠4元,即可得到方程.【解答】 解:设他上月买了 x 本笔记本,则这次买 了( x+20)本,根据题意得:型-輕L =4.K K +20故选D.10. (3分)用棋子摆出下列一组图形:• • • • • • • • ••• ••••• •••••• • • • ♦ •按照这种规律摆下去,第 n 个图形用的棋子个数为 (D )A. 3nB. 6nC. 3n+6 D . 3n+3【分析】 解决这类问题首先要从简单图形入手,抓 住随着“编号”或“序号”增加时,后一个图形与 前一个图形相比,在数量上增加(或倍数)情况的 变化,找出数量上的变化规律,从而推出一般性的 结论. 【解答】 解:•••第一个图需棋子 3+3=6; 第二个图需棋子 3X 2+3=9; 第三个图需棋子 3X 3+3=12; •••第n 个图需棋子3n+3枚. 故选:D.二.填空题(共7小题,满分21分,每小题3分)11. (3分)2016年南京实现 GDP 约10500亿元,成 为全国第11个经济总量超过万亿的城市, 用科学记 数法表示10500是 1.05 X 104 .【分析】 科学记数法的表示形式为 a X 10n 的形式, 其中1 w |a| v 10, n 为整数.确定n 的值是易错点, 由于10500有5位,所以可以确定 n=5-仁4. 【解答】 解:10500=1.05 X 104.故答案为:1.05 X 104.12. (3分)不透明的布袋里有 2个黄球、3个红球、 5个白球,它们除颜色外其它都相同,那么从布袋 中任意摸出一球恰好为红球的概率是— .-fio]-【分析】由在不透明的袋中装有 2个黄球、3个红球、5个白球,它们除颜色外其它都相同,直接利 用概率公式求解,即可得到任意摸出一球恰好为红 球的概率. 【解答】解::•在不透明的袋中装有 2个黄球、3 个红球、5个白球,它们除颜色外其它都相同, •从这不透明的袋里随机摸出一个球,所摸到的球 恰好为红球的概率是: --------------------- . 2+3+5 10故答案为:二.1013 ( 3分)一副三角尺按如图的位置摆放 (顶点C 与 F 重合,边CA 与边FE 叠合,顶点 B C D 在一条 直线上).将三角尺DEF 绕着点F 按顺时针方向旋转 ”后(0 v n v 180 ),如果EF// AB,那么n 的值是【分析】分两种情形讨论,分别画出图形求解即可. 【解答】 解:①如图1中,EF / AB 时,/ ACE=/ A=45°,•旋转角n=45时,EF / AB.②如图 2 中,EF / AB 时,/ ACE+Z A=180°, • / ACE=135•旋转角 n=360 - 135=225, •/ 0 v n v 180,14 . (3分)已知关于x 的方程x 2+px+q=0的两根为-3 和—1,贝U p= 4 , q= 3 .【分析】由根与系数的关系可得出关于 p 或q 的一 元一次方程,解之即可得出结论.【解答】解:•••关于x 的方程x 1 2 3+px+q=0的两根为-3 和-1,•••- 3+ (- 1) =- p , (- 3)X (- 1) =q , ••• p=4, q=3. 故答案为:4; 3.15. ( 3分)如图,在△ ABC 中, 为边 AB AC 上的点.AC=3AD 边上一点,添加一个条件: _A ,可以使得△ FDB 与厶ADE 相似.(只需写出一个) 或/ BFD=/ A .根据相似三 角形的判定方法一一证明即可.【解答】 解:DF / AC 或/ BFD=/ A. 理由:I/ A=Z A ,• △ ADE^A ACB•①当 DF// AC 时,△ BDF^A BAG•••△ BDF^A EAD②当/ BFD=/ A 时,•••/ B=/ AED•••△ FBD^^ AED故答案为 DF / AC,或/ BFD=/ A.16. (3分)若关于x 的一元二次方程 kx 2- 2x+仁0 有=3x+2 =-120. (8分)解下列方程: 2 x (x+5) =14;23x - 2x - 2=0【分析】(1)先把方程化为一般式,然后利用因式分解法解方程;(2)利用配方法得到(x - 1) 2=3,然后利用直接 开平方法解方程. 【解答】 解:(1) x 2+5x - 14=0, (x+7) (x -2) =0, x+7=0 或 x - 2=0, 所以 X 1 = - 7, X 2=2;2(2) x - 2x=2, x 2- 2x+1=3, (x - 1) 2=3,实数根,则 k 的取值范围是 k w 1且 2 0 . 【分析】根据方程根的情况可以判定其根的判别式 的取值范围,进而可以得到关于k 的不等式,解得即可,同时还应注意二次项系数不能为 0.【解答】解:•••关于x 的一元二次方程 kx 2- 2x+仁0 有实数根,••△ =b 2- 4ac > 0, 即:4 - 4k > 0, 解得:k w 1,•••关于x 的一元二次方程 kx 2 - 2x+1=0中k 丰0, 故答案为:k w 1且k z 0.17. (3分)函数y 1=x 与y 2—的图象如图所示,下x列关于函数y=y 1+y 2的结论:①函数的图象关于原点 中心对称;②当x v 2时,y 随x 的增大而减小;③ 当x >0时,函数的图象最低点的坐标是( 2, 4), 其中所有正确结论的序号是 ①③.【分析】结合图形判断各个选项是否正确即可.【解答】 解:①由图象可以看出函数图象上的每一 个点都可以找到关于原点对称的点,故正确;② 在每个象限内,不同自变量的取值,函数值的变 化是不同的,故错误;③ y=x+2= (J 』-」—)2+4 > 4,当且仅当x=2时取 “=”.即在第一象限内,最低点的坐标为( 2, 4),故正确;•••正确的有①③.,AB^ AC. D E 分别'AB=3AE 点 F 为 BC DF / AC,或/ BFD=Z AD :=1AC AB 3故答案为:①③.三.解答题(共8小题,满分69分)18. (4 分)计算:顶+ (伍-1)2-押+ 4-)-21【分析】根据负整数指数幕和分数指数幕的意义计算.【解答】解:原式=3 . :':+2 - 2家弓+1 - 3+2巳1+2.19. (7分)先化简,再求值:(一)十」x-2 [x+2 / _4其中x= - 1 .【分析】根据分式的运算法则即可求出答案.【解答】解:当x= - 1时,C K+2)(x-2)原式=G+2)(K-2)-仁士卜门,所以 X 1 = 1+ _ ;, X 2=1 -:';.21. (8分)已知:如图,四边形 ABCD 中, AD// BC, AD=CD E 是对角线 BD 上一点,且 EA=EC (1) 求证:四边形 ABCD 是菱形;(2)如果BE=BC 且/ CBE / BCE=2 3,求证:四边形 ABCD 是正方形.【分析】(1)首先证得厶ADE^A CDE 由全等三角形的性质可得/ ADE=/ CDE 由AD// BC 可得/ ADEN CBD易得/ CDB M CBD 可得BC=CD 易得AD=BC 利用平行线的判定定理可得四边形ABCD 为平行四边形,由AD=CD可得四边形ABCD 是菱形;2)由BE=BC 可得△ BEC 为等腰三角形,可得/ BCE=/ BEC 利用三角形的内角和定理可得/ CBE=180<4【解答】 证明:(1 )在厶ADE-与^ CDE 中, rAD=CD • DE 二DE ,(EA=EC•••△ ADE^A CDE •••/ ADE 玄 CDE •/ AD// BC,•••/ ADE 玄 CBD•••/ CDE=/ CBD • BC=CD •/ AD=CD • BC=AD•四边形ABCD 为平行四边形, •/ AD=CD•四边形ABCD 是菱形;(2 )T BE=BC•••/ BCE 玄 BEC •••/ CBE / BCE=2 3 , • •四边形ABCD 是菱形, ••/ ABE=45 , ••/ ABC=90 ,••四边形ABCD 是正方形.22. ( 8分)月收入/元 45000 18000 10000 5500 4800 3400 3000 2200 人数 1 1 1 3 6 1 11 1(1 )3400 3000 元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元.你认为用平均数、中位数和众数中的哪45° 易得/ ABE=45 ,可得/ ABC=90 ,由正方形的判定定理可得四边形ABCD 是正方形.••/ CBE=18<2+34 3=45一个反映该公司全体员工月收入水平较为合适?说明理由.【分析】(1)根据中位数的定义把这组数据从小到大排列起来,找出最中间一个数即可;根据众数的定义找出现次数最多的数据即可;(2)根据平均数、中位数和众数的意义回答.【解答】解:(1)共有25个员工,中位数是第13个数, 则中位数是3400元;3000出现了11次,出现的次数最多,则众数是3000.故答案为3400; 3000;(2)用中位数或众数来描述更为恰当•理由:平均数受极端值45000元的影响,只有3个人的工资达到了6276元,不恰当;23. (10分)小强与小刚都住在安康小区,在同一所学校读书,某天早上,小强7: 30从安康小区站乘坐校车去学校,途中需停靠两个站点才能到达学校站点,且每个站点停留2分钟,校车行驶途中始终保持匀速,当天早上,小刚7: 39从安康小区站乘坐出租车沿相同路线出发,出租车匀速行驶,比小强乘坐的校车早1分钟到学校站点,他们乘坐的车辆从安康小区站出发所行使路程y (千米)与校车行驶时间x (分钟)之间的函数图象如图所示.(1)求点A的纵坐标m的值;(2 )小刚乘坐出租车出发后经过多少分钟追到小强所乘坐的校车?并求此时他们距学校站点的路程.【分析】(1)根据速度=路程十时间,可求出校车的速度,再根据m=3+校车速度x(8-6),即可求出m的值;(2)(方法一)根据时间=路程十速度+4,可求出校车到达学校站点所需时间,进而可求出出租车到达学校站点所需时间,由速度=路程十时间,可求出出租车的速度,再根据相遇时间=校车先出发时间X速度十两车速度差,可求出小刚乘坐出租车出发后经过多少分钟追到小强所乘坐的校车,结合出租车的速度及安康小区到学校站点的路程,可得出相遇时他们距学校站点的路程.(方法二)观察函数图象结合数量之间的关系,可分别找出点B、C、E、F的坐标,利用待定系数法可分别求出线段BC EF的解析式,联立两函数解析式成方程组可求出交点的坐标,再结合出租车出发的时间及全程的长度即可得出结论.【解答】解:(1)校车的速度为3-4=0.75 (千米/ 分钟),点A的纵坐标m的值为3+0.75 X(8 - 6)=4.5 . 答:点A的纵坐标m的值为4.5 .(2)(方法一)校车到达学校站点所需时间为9十0.75+4=16 (分钟),出租车到达学校站点所需时间为16 -9 -仁6 (分钟),出租车的速度为9-6=1.5 (千米/分钟),两车相遇时出租车出发时间为0.75 X(9-4)-(1.5 -0.75 )=5 (分钟),相遇地点离学校站点的路程为9 - 1.5 X 5=1.5 (千米).答:小刚乘坐出租车出发后经过5分钟追到小强所乘坐的校车,此时他们距学校站点的路程为 1.5千米.(方法二)••• 9 十0.75+4=16 (分钟),•••点C的坐标为(16, 9). •/点B的坐标为(10, 4.5 ),•线段BC的解析式为y=0.75x - 3 (10< x< 16). •••点E的坐标为(15, 9),点F的坐标为(9, 0), •线段EF 的解析式为y=1.5x - 13.5 (9< x< 15).联立两线段解析式成方程组,花萨3 (y=l. 5x-l 3. 5,解得:\=140.5• x - 9=5, 9 - y=1.5 .答:小刚乘坐出租车出发后经过5分钟追到小强所乘坐的校车,此时他们距学校站点的路程为 1.5千米.24. (12分)折纸的思考.【操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片ABCD( AB> BC)(图①),使AB与DC重合,得到折痕EF,把纸片展平(图②). 第二步,如图③,再一次折叠纸片,使点C落在EF 上的P 处,并使折痕经过点B,得到折痕BG折出PB PC,得到△ PBC(1)说明△ PBC是等边三角形.【数学思考】(2)如图④,小明画出了图③的矩形ABCD和等边三角形PBC他发现,在矩形ABCD中把厶PBC经过图形变化,可以得到图⑤中的更大的等边三角形,请描述图形变化的过程.(3)已知矩形一边长为3cm另一边长为 a cm,对于每一个确定的a的值,在矩形中都能画出最大的等边三角形,请画出不同情形的示意图,并写出对应的a的取值范围.【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4cm 和1cm的直角三角形铁片,所需正方形铁片的边长的最小值为cm.—5 —出PB=PC PB=CB 得出PB=PC=CB卩可;(2 )由旋转的性质和位似的性质即可得出答案;(3)由等边三角形的性质、直角三角形的性质、勾股定理进行计算,画出图形即可;(4)证明△ AEF^A DCE得出生二仝=丄,设AE=xDC CE 4则AD=CD=4x DE=A B AE=3x 在Rt△ CDE中 ,由勾股定理得出方程,解方程即可.【解答】(1)证明:由折叠的性质得:EF是BC的垂直平分线,BG是PC的垂直平分线,••• PB=PC PB=CB••• PB=PC=CB• △ PBC是等边三角形.(2)解:以点B为中心,在矩形ABCD中把△ PBC逆时针方向旋转适当的角度,得到△P i BG;再以点B为位似中心,将厶P i BC放大,使点C的对应点G落在CD上 ,得到△ P2BC;如图⑤所示;(3)解:本题答案不唯一,举例如图 6 所示,3cm图6(4)解:如图7所示:△ CEF是直角三角形,/CEF=90 , CE=4, EF=1 ,•••/ AEF+Z CED=90 ,•••四边形ABCD是正方形,•••/ A=Z D=90 , AD=CD•••/ DCE+Z CED=90 ,•••/ AEF=Z DCE•△ AEF^^ DCE貳童7,设AE=x 贝U AD=CD=4x• DE=A& AE=3x,在Rt△ CDE中,由勾股定理得: 解得:x*L,••• AD=4X, =_L .故答案为:-25. (12分)如图,抛物线y=ax2+bx+2经过点A (1 , 0), B (4 , 0),交y 轴于点C;(1)求抛物线的解析式(用一般式表示) ;(2 )点D为y轴右侧抛物线上一点,是否存在点D 使S A ABC^S A ABD?若存在请直接给出点D坐标;若不存在请说明理由;3)将直线BC绕点B顺时针旋转45°,与抛物线【分析】(1 )由A、B的坐标,利用待定系数法可求得抛物线解析式;(2 )由条件可求得点D到x轴的距离,即可求得 D 点的纵坐标,代入抛物线解析式可求得D点坐标;(3)由条件可证得BC丄AC,设直线AC和BE交于点F ,过F作FM丄x轴于点M则可得BF=BC利用2 2 2 (3x) + (4x) =4 ,平行线分线段成比例可求得 F 点的坐标,利用待定系数法可求得直线 BE 解析式,联立直线 BE 和抛物 线解析式可求得 E 点坐标,则可求得 BE 的长. 【解答】解:(1 )•••抛物线 y=ax 2+bx+2 经过点 A (- 1, 0), B (4,0), Ka-b+2=0 ll6a+4b+2=0 •••抛物线解析式为(2)由题意可知 亠= ______ ,解得FM=6 • F (2 , 6),且 B (4 , 0),设直线BE 解析式为y=kx+m ,则可得[2k4m ~6,解 L 4k+m=0 得仿-3 得、 ,\b=12•直线BE 解析式为y= - 3x+12 , C( 0, 2), A (- 1, 0), B( 4, 0), 联立直线BE 和抛物线解析式可得• E ( 5 , - 3),• BE= = '•--AB=5, OC=2 AB (=A,AB? OC^X 5 X 2=5, 2 2• S A AB(= △ ABD 3. S A AB =- -X 5= 2 设 D ( x , y ), B ? |y|= — 15 2 X 5|y|= - J ,解得 |y|=3 ,—x 2^—x+2=3 ,解得 x=1 或 x=2 ,此2 2 时D 点坐标为(1, 3)或(2 , 3); 当y= - 3时,由- 当y=3时,由- 丄X 2+3X +2=- 3,解得 x= - 2 (舍2 去)或x=5,此时D 点坐标为(5, - 3); 综上可知存在满足条件的点 D,其坐标为(1 , 3) 或(2, 3)或(5, - 3); (3)• AO=1 , OC=2 OB=4, AB=5, • AC= = .■: , BC= =2 .■:, :.AC+BC=AB , • △ ABC 为直角三角形,即 BCL AC, 如图,设直线AC 与直线BE 交于点F ,过F 作FM L x 轴于点M, 由题意可知/ FBC=45 , •••/ CFB=45 , • CF=BC=2 !., •—…即1 = 1 ・・ ----- ,即卩 --------OM ||CF | |or 2V5,解得OM=2。

2018年中考数学模拟试卷含答案 精品

2018年中考数学模拟试卷含答案 精品

数学模拟试卷二一.选择题(本题有10小题,每小题4分,共40分) 1.-2的相反数是( )A .-2B .2C .12D .-122.“神威1”计算机的计算速度为每秒384000000000次,这个速度用科学记数法表示为每( )秒 A .3.84×1011 次 B .3.84×1010 次 C.38.4×1010 次 D .3.84×109次 3. 左边圆锥体的俯视图是A .B .C .D .4. 下列四个图形中,既是轴对称图形,又是中心对称图形是⑴ ⑵ ⑶ ⑷ A .⑴、⑵ B .⑴、⑶ C . ⑴、⑷ D .⑵、⑶ 5. 不等式组5431x xx -<⎧⎨-≤-⎩的解集在数轴上可表示为( )A .B .C .D . 6.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为( ) A. 5049 B. 99! C. 9900 D. 2!7.有2张大小、形状都相同但画面不同的长方形图片,将每张图片剪成大小、形状相同的两部分,这样就得到4张画面不完整的图片.洗匀后闭上眼睛从中取出2张,恰好能拼成一张完整图片的概率是( ) A.12 B. 31 C. 23 D. 148.有一圆柱形的水池,已知水池的底面直径为4 米,水面离池口2米,水池内有一小青蛙,它每天晚上都会浮在水面上赏月,则它能观察到的最大视角为( ) A. 450 B.600 C.900 D. 1350CABD D A B C9.如图8,直线AB CD ,相交于点O ,30AOC ∠=,半径 为1cm 的⊙P 的圆心在射线OA 上,且与点O 的距离为6cm .如果⊙P 以1cm/s 的速度沿由A 向B 的方向移动,那么( )秒种后⊙P 与直线CD 相切. A.4 B.8 C.4或6 D.4或810.将两副三角板如下图摆放在一起,连结AD ,则ADB ∠的余切值为( )A .1 B1 C .2 D .3二.填空题(本题有4小题,每小题4分,共16分)11. “圆形方孔钱”是中国古钱币的突出代表.如图,一枚圆形方孔钱的外圆直径为a ,中间方孔边长为b ,则图示阴影部分面积为 . 12.在直角三角形ABC 中,∠ACB=90º,以BC 所在直线为轴旋转一周所得到的几何体是 .13.14.如图,四边形A 1B 1C 1O ,A 2B 2C 2C 12,C 3分别在直线y kx b =+(k>0)和x 轴上, 点B 3的坐标是(419,49),则k+b= . 三、解答题15.(本小题6分)计算:()2015tan 4533π-⎛⎫--+︒+- ⎪⎝⎭.16.(本小题8分)(1) 在下面的方格纸中,以线段AB 为一边,画一个正方形; (2) 如果图中小方格的面积为1平方厘米,你知道(1)中画出的正方形的面积是多大吗?解释你的计算方法.B17.(本小题10分)为迎接2018年奥运会的召开,某市举行一次少年滑冰比赛,各年龄组(1(2)求全体参赛选手年龄的众数、中位数;(3)小明说,他所在年龄组的参赛人数占全体参赛人数的28%. 你认为小明是哪个年龄组的选手?请说明理由.18.(本小题10分)本市某旅游度假区每天的赢利额y(元)与售出的门票x(张)之间的函数关系如图所示.(1)当0≤x≤200,且x为整数时,y关于x的函数解析式为;当200≤x≤300,且x为整数时,y关于x的函数解析式为 . (2)要使旅游度假区一天的赢利超过1000元,试问该天至少应售出多少张门票?(3)请思考并说明图像与y轴交点(0,-1000)的实际意义.19.(本小题10分)已知∠AOB=900,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA、OB(或它们的反向延长线)相交于点D、E.当三角板绕点C旋转到CD与OA垂直时(如图1),易证得:OD+OE=2OC.当三角板绕点C 旋转到CD与OA不垂直时:(1)在图2情况下上述结论仍成立,请给出证明;(2)在图3情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段OD、OE、OC之间又有怎样的数量关系?请写出你的猜想,不需证明.图1 图2 图320.(本小题12分)如图,已知抛物线y=14x2+1,直线y=kx+b经过点B(0,2).(1)求b的值;(2)将直线y=kx+b绕着点B旋转到与x轴平行的位置时(如图①),直线与抛物线y=14x2+1相交于两点P1、P2,求出点P1、P2的坐标;(3)将直线y=kx+b绕着点B继续旋转....,与抛物线y=14x2+1相交,其中一个交点为P'(如图②),过点P'作x轴的垂线P'M,点M为垂足。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年福建省宁德市初中毕业、升学考试
数学试题
[参考公式:抛物线()02
≠++=a c bx ax y 的顶点坐标为⎪⎪⎭

⎝⎛--a b ac a b 4422,,对称轴
a
b
x 2-
=] 一、选择题(本大题有10小题,每小题4分,共40分) 1.下列各数中,最小的实数是( ). A.-3 B.-1 C.0 D.3
2.宁德市位于福建省东北部,有漫长的海岸线.据测算,海岸线总长约为878000米,用科学记数法表示这个数为( ).
A.0.878³106米
B.8.78³106米
C.878³103米
D.8.78³105米 3.如图,已知AB ∥CD ,∠A =70°,则∠1度数是( ). A.70° B.100° C.110° D.130°
4.小明五次立定跳远的成绩(单位:米)是:2.3,2.2,2.1,2.3, 2.0.这组数据的众数是( ).
A .2.2米
B .2.3米
C .2.18米
D .0.3米 5.不等式025x >-的解集是( ). A.25x <
B.2
5x > C.52x < D.25-x < 6.如图,国际奥委会会旗上的图案是由五个圆环组成,在这个图案中 反映出的两圆位置关系有( ).
A.内切、相交
B.外离、相交
C.外切、外离
D.外离、内切 7.向如图所示的盘中随机抛掷一枚骰子,落在阴影区域的概率(盘底 被等分成12份,不考虑骰子落在线上情形)是( ). A.
61 B.41 C.31 D.2
1 第7题图
A B
C
D 1
第3题图
第6题图
8.如图所示零件的左视图是( ).
A. B. C. D.
9.如果x =4是一元二次方程2
2
3a x x =-的一个根,那么常数a 的值是( ). A.2 B.-2 C.±2 D.±4
10.如图,点A 的坐标是(1,1),若点B 在x 轴上,且△ABO 是 等腰三角形,则点B 的坐标不可能...是( ). A.(2,0) B.(2
1
,0) C.(2-,0) D.(1,0)
二、填空题(本大题有8小题,每小题3分,共24分) 11.计算:=-1
2
________________.
12.计算:()23m 3m 6-÷=________________. 13.因式分解:92
-x = ________________.
14.如图是一副三角尺拼成图案,则∠AEB =_________°.
15.蓄电池电压为定值,使用此电源时,电流I (安)与电阻R (欧)之
间关系图象如图所示,若点P 在图象上,则I 与R (R >0)的函数关系式是______________.
16.如图,PA 切半圆O 于A 点,如果∠P =35°,那么∠AOP =_____°. 17.用卡片进行有理数加法训练,李明手中的三张卡片分别是3
-2,刘华手中的三张卡片分别是2、0、-1卡片,则和为正数的概率是__________.
18.如图,将矩形纸ABCD B C
A
D
E
第14题图
I
P
第10题图
第8题图
第18题图
B F C
重叠的四边形EFGH ,若EH =3厘米,EF =4厘米,则边AD 的长是___________厘米.
三、解答题(本大题有8小题,共86分)
19.(本题满分10分)化简,求值:)8()32---x x x (,其中42-=x .
解:
20.(本题满分10分)如图,E 是□ABCD 的边BA 延长线上一点,连接EC ,交AD 于F .在不添加辅助线的情况下,请找出图中的一对相似三角形,并说明理由. 解:
21.(本题满分10分)“五一”期间,新华商场贴出促销海报,内容如图1.在商场活动期间,王莉和同组同学随机调查了部分参与活动的顾客,统计了200人次的摸奖情况,绘制成如图2的频数分布直方图.
(1)补齐频数分布直方图;
(2)求所调查的200人次摸奖的获奖率;
(3)若商场每天约有2000人次摸奖,请估算商场一天送出的购物券总金额是多少元?
22.(本题满分10分)曙光中学需制作一副简易篮球架,如图是篮球架的侧面示意图,已知篮板所在直线AD 和直杆EC 都与BC 垂直,BC =2.8米,CD =1.8米,∠ABD =40°,求斜杆AB 与直杆EC 的长分别是多少米?(结果精确到0.01米) 解:
D C B
购物券 人次
图1 图2
23.(本题满分10分)在边长为1的正方形网格中,有形如帆船的图案①和半径为2的⊙P .
⑴将图案①进行平移,使A 点平移到点E ,画出平移后的图案;
⑵以点M 为位似中心,在网格中将图案①放大2倍,画出放大后的图案,并在放大后的图案中标出线段AB 的对应线段CD ;
⑶在⑵所画的图案中,线段CD 被⊙P 所截得的弦长为______.(结果保留根号)
24.(本题满分10分)5月12日14时28分,四川汶川发生了8.0级大地震,震后两小时,武警某师参谋长王毅奉命率部队乘车火速向汶川县城开进.13日凌晨1时15分,车行至古尔沟,巨大的山体塌方将道路完全堵塞,部队无法继续前进,王毅毅然决定带领先遣分队徒步向汶川挺进,到达理县时为救援当地受灾群众而耽误了1小时,随后,先遣分队将步行速度提高
9
1
,于13日23时15分赶到汶川县城. ⑴设先遣分队从古尔沟到理县的步行平均速度为每小时x 千米,请根据题意填写下表:
⑵根据题意及表中所得的信息列方程,并求出先遣分队徒步从理县到汶川的平均速度是每小时多少千米?
M
25.(本题满分12分)如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF =BE . ⑴求证:CE =CF ;
⑵在图1中,若G 在AD 上,且∠GCE =45°,则GE =BE +GD 成立吗?为什么? ⑶运用⑴⑵解答中所积累的经验和知识,完成下题:
如图2,在直角梯形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC =12,E 是AB 上一点,且∠DCE =45°,BE =4,求DE 的长.
B C 图1 图2
B C
A D
E
26.(本题满分14分)如图1,在Rt △ABC 中,∠C =90°,BC =8厘米,点D 在AC 上,CD =3厘米.点P 、Q 分别由A 、C 两点同时出发,点P 沿AC 方向向点C 匀速移动,速度为每秒k 厘米,行完AC 全程用时8秒;点Q 沿CB 方向向点B 匀速移动,速度为每秒1厘米.设运动的时间为x 秒()80<x<,△DCQ 的面积为y 1平方厘米,△PCQ 的面积为y 2平方厘米.
⑴求y 1与x 的函数关系,并在图2中画出y 1的图象;
⑵如图2,y 2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P 的速度及AC 的长;
⑶在图2中,点G 是x 轴正半轴上一点(0<OG <6=,过G 作EF 垂直于x 轴,分别交y 1、y 2于点E 、F .
①说出线段EF 的长在图1中所表示的实际意义; ②当0<x <6时,求线段EF 长的最大值. 解:

1
C Q → B。

相关文档
最新文档