极限的常用求法及技巧.

合集下载

极限求法总结

极限求法总结

极限求法总结极限是微积分中的一个重要概念,是研究函数变化趋势的基础。

在求解极限的过程中,我们常常会使用一些常用的技巧和方法。

下面我将对常见的极限求法进行总结,详细说明每种方法的步骤和应用场景。

一、直接代入法当函数在某个点有定义并且极限存在时,我们可以通过将变量直接代入函数中计算出极限的值。

例如,对于 f(x) = x^2 - 1,当 x -> 2 时,我们可以将 x 的值替换为 2,计算出 f(2) 的值。

这种方法适用于函数在该点有定义且不产生未定义结果的情况。

二、分子有理化法有些极限问题中,分子含有根式、分母含有分式等情况,为了便于计算,我们可以使用有理化方法。

主要有三种情况:有理化分母、有理化分子和有理化共轭。

1. 有理化分母:当分母中含有根式时,我们可以通过乘上分母的共轭形式,并利用差平方公式,将根式有理化为有理数。

例如,对于f(x) = 1/√x,当 x -> 4 时,我们可以乘上分母的共轭√x,得到f(x) = √x/√x^2,再利用 x^2 - a^2 = (x - a)(x + a) 的差平方公式,化简出分母为 (x - 4)。

接着我们可以直接代入计算。

2. 有理化分子:当分子中含有根式时,我们可以通过乘上分子的共轭形式,并利用和平方公式,将根式有理化为有理数。

例如,对于f(x) = √x + 1,当 x -> 2 时,我们可以乘上分子的共轭√x - 1,得到f(x) = (√x + 1)(√x - 1)/(√x - 1),再利用 a^2 -b^2 = (a - b)(a + b) 的和平方公式,化简后得到 f(x) = (x - 1)/(√x - 1)。

接着我们可以直接代入计算。

3. 有理化共轭:当分式中含有复杂的分母,我们可以根据分母的共轭形式,将分式有理化为分子和分母之间关于负号的组合。

例如,对于 f(x) = 1/(x + 3)^2,当 x -> -3 时,我们可以将分子和分母都乘上 (x + 3)^2 的共轭 (-x - 3)^2,然后化简分子和分母。

求极限的12种方法总结及例题

求极限的12种方法总结及例题

求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。

在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。

本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。

2. 利用极限的定义我们可以利用极限的定义来求解问题。

根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。

利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。

3. 利用夹逼准则夹逼准则是求极限常用的方法之一。

当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。

要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。

4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。

利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。

要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。

5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。

洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。

通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。

6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。

当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。

通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。

7. 利用换元法换元法是求解复杂函数极限的常用方法之一。

通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。

对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。

求函数极限的方法与技巧

求函数极限的方法与技巧

求函数极限的方法与技巧函数极限是微积分中的重要概念,它描述了函数在某个点或者趋向某个点时的变化规律。

求函数极限的方法与技巧有很多,下面将详细介绍。

1. 直接代入法直接代入法是求函数极限最简单的方法之一。

当函数在某一点或者趋向某一点时,可以直接将该点代入函数中进行计算。

如果得到的结果是有限值,则函数在该点的极限存在且等于该有限值;如果得到的结果是无穷大或者不存在,则函数在该点的极限也相应不存在。

要求函数f(x)在x=1时的极限,可以直接计算f(1)的值,如果得到的值是有限的,那么f(x)在x=1时的极限存在且等于f(1)的值;如果得到的值为无穷大或者不存在,那么f(x)在x=1时的极限也相应不存在。

2. 夹逼定理夹逼定理是求函数极限的重要方法之一,它适用于求极限存在的情况。

夹逼定理的思想是通过找到一个比较“简单”的函数序列,将要求的函数夹在这些函数之间,从而利用这些函数的极限值来判断原函数的极限是否存在。

夹逼定理的具体步骤是:(1) 找到两个函数序列g(x)和h(x),它们分别比要求的函数f(x)小和大;(2) 当x趋向某一点a时,g(x)和h(x)的极限分别为L和M;(3) 如果L=M,则函数f(x)在x趋向a时的极限存在且等于L=M。

要求函数f(x)=x^2sin(1/x)在x=0时的极限,可以采用夹逼定理。

我们知道-1≤sin(1/x)≤1,因此-x^2≤x^2sin(1/x)≤x^2,而当x趋向0时,-x^2和x^2两个函数的极限都为0。

根据夹逼定理,可以得到f(x)在x=0时的极限存在且等于0。

3. 分式分解法对于一些复杂的函数,可以通过将其进行分式分解来求解极限。

分式分解法的思想是将函数表示为分子、分母分别进行分解,并利用极限的四则运算性质来求得要求的极限。

要求函数f(x)=(x^2-1)/(x-1)在x=1时的极限,可以将f(x)进行分解得到f(x)=x+1,从而得到函数在x=1时的极限为2。

求函数极限的方法与技巧

求函数极限的方法与技巧

求函数极限的方法与技巧求函数极限是微积分的重要内容之一,也是数学分析中的基本问题。

求函数极限需要掌握一定的方法与技巧,下面将从常用的方法、典型的技巧和注意事项等方面进行详细介绍。

1. 代入法代入法是求函数极限最简单的方法之一。

当函数在极限点附近没有特殊的性质时,可以通过直接代入极限值来求解极限。

求函数f(x)=2x-1在点x=3处的极限,直接代入x=3,即可得到f(3)=2*3-1=5,所以极限值为5。

2. 分式化简法对于复杂的函数极限,通常可以利用分式化简法来解决。

将函数化为分式形式,通过合并同类项或者提取公因式等方法,将分式化简至最简形式,然后再进行极限运算。

这样可以简化计算,并且更容易得到极限值。

3. 夹逼准则夹逼准则也是求解极限常用的方法之一。

夹逼准则是一种利用不等式来求解极限的方法,通常用于求解无穷小的极限。

利用夹逼准则可以将复杂的极限问题转化为相对简单的不等式推导问题,从而更容易求得极限值。

4. 极限换元法极限换元法是求解函数极限的一种有效方法,也是求极限的一个经典技巧。

通过将变量进行适当的换元,可以将原来复杂的极限问题转化为相对简单的形式,从而更容易求解极限值。

常见的换元方式包括三角换元、指数换元、对数换元等。

二、典型的技巧1. 分步求解有些复杂的函数极限问题可以通过分步求解来进行,先将函数进行分解或者阶段性的处理,然后逐步求解各个部分的极限值,最后将结果进行合并得到整体的极限值。

这样可以降低计算的复杂度,更容易求得极限值。

2. 极限的运算法则在进行极限运算时,可以利用极限的运算法则来简化计算。

其中包括加减法法则、乘法法则、除法法则、幂函数法则、复合函数法则等,这些运算法则可以在极限计算中起到一定的简化作用,并帮助求得极限值。

3. 利用对称性对称性在求解函数极限中也是一种常用的技巧。

对于对称性的函数或者函数的特殊性质,可以利用对称性来简化极限计算,例如利用奇偶性、周期性等性质,从而简化计算过程,更容易求得极限值。

求极限的13种方法

求极限的13种方法

求极限的13种方法求极限的方法有很多种,以下列举了常见的13种方法和技巧,以帮助解决各种极限问题。

1.代入法:将极限中的变量代入表达式中,简化计算。

这通常适用于简单的多项式函数。

2.夹逼定理:当一个函数夹在两个趋向于相同极限的函数之间时,函数的极限也趋向于相同的值。

3.式子分解:通过将复杂的函数分解成更简单的部分,可以更容易地计算极限。

4.求导法则:使用导数的性质和规则来计算函数的极限。

这适用于涉及导数的函数。

5.递归关系:如果一个函数的递归关系式成立,可以使用递归关系来计算函数的极限。

6.级数展开:将函数展开成无穷级数的形式,可以使用级数的性质来计算函数的极限。

7.泰勒级数:对于可微的函数,可以通过使用泰勒级数来近似计算函数的极限。

8. 洛必达法则:如果一个函数的极限形式是$\frac{0}{0}$或$\frac{\infty}{\infty}$,可以使用洛必达法则来计算极限。

该法则涉及对分子分母同时求导的操作。

9.极限存在性证明:通过证明一个函数在一些点上的左极限和右极限存在且相等,可以证明函数在该点上的极限存在。

10.收敛性证明:对于一个序列极限,可以通过证明序列是有界且单调递增或单调递减的来证明其极限存在。

11.极限值的判断:根据函数的性质,可以判断函数在一些点上的极限是多少。

12.替换法:通过将变量替换为一个新的变量,可以使函数更容易计算极限。

13.反证法:通过假设极限不存在或不等于一些特定值,来推导出矛盾的结论,从而证明极限存在或等于一些特定值。

这些方法并非完整的极限求解技巧列表,但是它们是最常见和基本的方法。

在实际问题中,可能需要结合使用多种方法来求解复杂的极限。

函数极限的求法及技巧总结

函数极限的求法及技巧总结

函数极限的求法及技巧总结函数极限是高等数学的一个重要概念,它在微积分、实分析等许多领域都有着广泛的应用。

在计算函数极限时,需要掌握一些求法和技巧。

本篇文章将对此进行总结。

1. 直接代入法直接代入法是最基本也是最简单的一种方法,它适用于可以直接将自变量代入函数中计算得到结果的情况。

例如,当求函数f(x) = x² + 3x + 2在x = 1处的极限时,我们可以直接将x = 1代入函数中,得到f(1) = 1² + 3×1 + 2 = 6。

因此,f(x)在x = 1处的极限为6。

2. 分式化简法分式化简法是一种常用的求极限的方法,它适用于形如“分式”的函数。

3. 夹逼定理夹逼定理是一种常用的求极限的方法,它适用于当我们无法通过代入或化简等方法直接求出函数极限时。

夹逼定理的思想是:若存在函数g(x)和h(x),满足 g(x) ≤ f(x) ≤ h(x)且limx→a g(x) = limx→a h(x) = L,那么limx→a f(x) = L。

4. 洛必达法则其中,f'(x)和g'(x)分别表示f(x)和g(x)的导数。

例如,当求函数f(x) = (e^x - 1) / x在x = 0处的极限时,我们可以将f(x)表达为g(x) / h(x)的形式,即g(x) = e^x - 1,h(x) = x,然后计算g'(x)和h'(x),得到 g'(x) = e^x,h'(x) = 1。

因此,根据洛必达法则,我们得到limx→0 f(x) = limx→0 [e^x / 1] = 1。

5. 泰勒展开法泰勒展开法是一种常用的求函数极限的方法,它适用于当函数在极限点左右存在二阶及以上的导数时。

泰勒展开法的思想是:当limx→a f(x)存在时,可以将函数f(x)在a附近进行泰勒展开,得到f(x) = f(a) + f'(a)×(x - a) + f''(a)×(x - a)² / 2 + …… + Rn(x),其中Rn(x)为余项。

求函数极限的方法与技巧

求函数极限的方法与技巧

求函数极限的方法与技巧函数极限是微积分中的重要概念,在解决实际问题和进行理论推导时经常需要用到。

在计算函数极限时,常常使用一些方法和技巧可以简化计算过程。

下面将介绍一些常用的函数极限计算方法和技巧。

一、代数运算法则1. 乘积运算法则:如果lim(x->a)f(x)=A,lim(x->a)g(x)=B,则lim(x->a)[f(x)g(x)]=AB。

2. 商运算法则:如果lim(x->a)f(x)=A,lim(x->a)g(x)=B且B≠0,则lim(x->a)[f(x)/g(x)]=A/B。

3. 加法运算法则:如果lim(x->a)f(x)=A,lim(x->a)g(x)=B,则lim(x->a)[f(x)+g(x)]=A+B。

4. 减法运算法则:如果lim(x->a)f(x)=A,lim(x->a)g(x)=B,则lim(x->a)[f(x)-g(x)]=A-B。

以上的代数运算法则可以简化函数极限的计算过程,通过运用这些法则可以将一个复杂的函数极限问题转化为多个简单的函数极限问题。

二、夹逼准则夹逼准则也是常用的一种函数极限计算方法。

如果存在函数g(x)和h(x),使得对于x 在a的某个去心邻域内,有g(x)≤f(x)≤h(x),并且lim(x->a)g(x)=lim(x->a)h(x)=L,则lim(x->a)f(x)=L。

夹逼准则利用了三个函数之间的大小关系,将复杂的函数极限问题转化为两个较为简单的函数极限问题。

三、分子有理化和分母有理化在计算函数极限时,有时候分子或分母不是有理式,而是含有根号、分数等形式。

这时可以利用分子有理化和分母有理化的方法将其化简为有理式,再进行运算。

当计算lim(x->0)(sinx/x)时,可以将其改写为lim(x->0)(sinx)/(x/x)的形式,然后再利用等式lim(x->0)(sinx)/x=1来计算极限。

求函数极限的方法与技巧

求函数极限的方法与技巧

求函数极限的方法与技巧函数极限的计算是数学中常见且重要的问题,对于深入理解函数行为和解决实际问题具有重要意义。

以下是一些计算函数极限的常见方法和技巧:1. 代入法:当函数只有一个变量的时候,可以通过将变量代入函数中来计算极限。

这种方法适用于简单的函数和简单的极限问题。

2. 四则运算法则:对于复杂的函数,可以利用四则运算法则简化极限计算。

四则运算法则包括加法、减法、乘法和除法,通过对函数表达式进行合理的变形和简化,可以得到更简单的极限计算形式。

3. 夹逼定理:夹逼定理也称为挤压定理,是一种计算极限的重要方法。

当一个函数在某个点附近夹在两个已知函数之间时,可以利用这个夹逼关系来求函数的极限。

4. 分数分解法:对于含有分数的函数,可以利用分数分解法将其分解为分子和分母的极限,然后分别计算两个极限。

5. 洛必达法则:洛必达法则是计算极限的一种重要方法。

当求函数的极限遇到不确定型的形式(如0/0或∞/∞)时,可以利用洛必达法则,将函数转化为两个函数的极限比值,然后再进行计算。

6. 泰勒展开法:泰勒展开是一种将函数在某一点附近用多项式逼近的方法。

当函数在某一点处极限求解困难时,可以用泰勒级数展开来近似计算极限。

7. 对数换底法:对数换底法是计算一些特殊形式的极限的一种有效方法。

当函数中含有对数函数,并且指数不同底时,可以通过换底公式将其转化为更简单的形式。

8. 常用极限:熟记一些常用的函数极限是计算极限的一个重要技巧。

常用的函数极限包括指数函数、对数函数、三角函数等的极限,可以通过记忆和推导得到。

计算函数极限的方法和技巧很多,选择合适的方法和技巧对于解决极限问题非常重要。

需要根据具体的函数形式和问题特点选取合适的方法,并在计算中灵活应用各种技巧,从而有效地计算函数的极限。

高数中求极限的16种方法

高数中求极限的16种方法

千里之行,始于足下。

高数中求极限的16种方法在高等数学中,求极限是一个格外重要的技巧和考点。

为了解决各种极限问题,数学家们总结出了很多方法和技巧。

以下是高数中求极限的16种方法:1.代换法:将极限中的变量进行代换,使其变成简洁计算的形式。

2.夹逼准则:当函数处于两个已知函数之间时,可以通过比较已知函数的极限来确定未知函数的极限。

3.无穷小量比较法:比较两个函数的无穷小量的大小,以确定它们的极限。

4.利用函数性质:利用函数的对称性、奇偶性等性质来计算极限。

5.利用恒等变形:将极限式子进行恒等变形,以将其转化为简洁计算的形式。

6.利用泰勒开放:将函数开放成无穷级数的形式,以求出极限。

7.利用洛必达法则:对于某些不定型的极限,可以利用洛必达法则将其转化为可计算的形式。

8.利用级数或累次求和:将极限式子转化为级数或累次求和的形式,以求出极限。

9.利用积分计算:将极限式子进行积分计算,以求出极限。

10.利用微分方程:将极限问题转化为求解微分方程的问题,以求出极限。

第1页/共2页锲而不舍,金石可镂。

11.利用积素等价:将极限式子进行积素等价,以求出极限。

12.利用无穷增减变异法:通过凑出一个等价变形,将极限问题转化为比较某些函数值的大小。

13.利用不等式:通过找到合适的不等式,对函数进行估量,以求得极限。

14.利用递推公式:对于递归定义的函数,可以通过递推公式求出极限。

15.利用导数性质:利用函数的导数性质,对极限进行计算。

16.利用对数和指数函数的性质:利用对数和指数函数的特性,求出极限。

除了上述方法外,还有很多其他的方法和技巧,可以依据具体问题来选择使用。

这些方法和技巧的使用需要机敏把握,通过大量的练习和思考,可以在求解极限问题中得到娴熟应用。

极限的求法及常见方法

极限的求法及常见方法

极限的求法及常见方法极限是微积分中的一个非常重要的概念,其广泛应用于各个领域中的数学问题,尤其在工程、物理等实际应用中,称为数学分析的基础。

求解极限的方法非常多样化,主要包括分析法、夹逼法、洛必达法、泰勒展开法等多种常见方法。

1.分析法分析法是极限求解的最常用方法之一。

常用于求有理函数和无理函数的极限。

具体方法为,将被求极限的式子分子分母进行化简,提取出其中与自变量有关的项,将无穷小量相互抵消,直到式子可以直接代入极限值求解。

例如,对于求极限lim x→0 (sin x)/x,我们可以通过分析法将其中的分母x与sin x配合得到:lim x→0 (sin x/x)×(1/1) = 1×1 = 1。

2.夹逼法夹逼法是求解极限非常常用的方法之一,适用于取值范围狭窄的函数里面,例如正弦函数和余弦函数等。

具体方法为,找到与待求极限函数类似的两个函数,一个比待求极限函数大,一个比它小,然后用这两个函数的极限值夹逼待求极限函数。

例如,对于求极限lim x→0 x sin (1/x),我们设f(x)=x,g(x)=-x,则g(x)≤x sin (1/x) ≤ f(x),取极限得到:lim x→0 g(x)=-0,lim x→0 f(x)=0,由夹逼定理可得lim x→0 x sin (1/x)=0。

3.洛必达法洛必达法是一种比较简单的求解极限的方法,主要适用于涉及两个函数除法的情况。

其基本思想是在求解极限时,将分子和分母同时对自变量求导数,然后再求导数代入极限求解。

例如,对于求极限lim x→0 (sin x/x),我们将分子和分母的导数直接代入:lim x→0 (cos x/1) = 1。

4.泰勒展开法泰勒展开法是一种比较高级的求解极限的方法,适用于一些复杂函数的极限求解。

其基本思想是通过泰勒公式将函数在某点带入到无穷阶导数公式中,得到一个无穷级数,然后通过级数求和计算待求极限值。

例如,对于求极限lim x→0 (e^x-1)/x,我们可以使用泰勒展开公式展开得到:lim x→0 [1+x/2!+x^2/3!+......]/x,将分子分母都除以x,得到lim x→0 [1/2!+x/3!+.....],代入x=0,得到极限值为1/2。

求函数极限的方法和技巧

求函数极限的方法和技巧

求函数极限的方法和技巧函数极限是微积分中的重要概念,它是描述函数在其中一点或在无穷远处的趋势的一种方法。

通过研究函数极限,我们可以了解函数的性质,进而解决各类数学问题。

在求解函数极限时,以下是一些常用的方法和技巧:1.代入法:对于简单的函数,我们可以尝试直接代入特定的值来求解极限。

这种方法常用于多项式函数、指数函数、对数函数和三角函数等。

2. 夹逼定理:夹逼定理是使用一个比较函数来夹住(或夹逼)所要求极限的方法。

例如,当我们需要求解 sin(x)/x 的极限x→0 时,可以使用夹逼定理将其夹住为 1/x,再求解这个极限。

3.分数化简:对于含有复杂分数形式的极限,可以尝试将其化简为更简单的形式。

常见的技巧有:分子有理化、通分、差化积等。

4.极限的性质:极限满足一些基本运算性质,如加法、减法、乘法和除法。

通过运用这些性质,我们可以将一个复杂的极限问题化简为多个简单的极限求解。

5.无穷小量与无穷大量:无穷小量和无穷大量是极限中常见的概念。

无穷小量是指在一些点附近很小的变化量,无穷大量是指在一些点附近趋向无穷大的变化量。

运用无穷小量和无穷大量的概念可以帮助我们求解一些复杂的极限。

6.洛必达法则:洛必达法则是一种求解极限的常用方法。

对于一些特定类型的不定型极限问题,可以使用洛必达法则将其化简为一个更简单的形式。

洛必达法则主要适用于求解0/0或∞/∞形式的极限值。

7.泰勒展开:泰勒展开是一种求函数极限的有力工具。

它可以将一个复杂的函数展开成无穷级数,通过截取有限项,可以近似计算函数的极限。

泰勒展开常用于求解幂函数、指数函数和三角函数等的极限。

8. 重要极限:在求解函数极限时,有一些重要的极限我们需要记住,如lim(x→∞) (1+1/x)^x = e,lim(x→0) (sin(x)/x) = 1,lim(x→0) (1-cos(x))/x = 0等。

熟记这些重要极限可以提高求解极限问题的效率。

总之,求解函数极限需要根据具体情况选择合适的方法和技巧。

高等数学求极限的17种常用方法(附例题和详解)

高等数学求极限的17种常用方法(附例题和详解)
(ii)
(iii)
(iv)单调有界准则
(v)两边夹挤准则(夹逼定理/夹逼原理)
(vi)柯西收敛准则(不需要掌握)。极限 存在的充分必要条件是:
二.解决极限的方法如下:
1.等价无穷小代换。只能在乘除时候使用。例题略。
2.洛必达(L’hospital)法则(大题目有时候会有暗示要你使用这个方法)
它的使用有严格的使用前提。首先必须是X趋近,而不是N趋近,所以面对数列极限时候先要转化成求x趋近情况下的极限,数列极限的n当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f(x)、g(x),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况:

cos=
ln(1+x)=x-
(1+x) =
以上公式对题目简化有很好帮助
4.两多项式相除:设 ,
P(x)= ,
(i) (ii)若 ,则
5.无穷小与有界函数的处理办法。例题略。
面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了。
(i)“ ”“ ”时候直接用
(ii)“ ”“ ”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 ;
(iii)“ ”“ ”“ ”对于幂指函数,方法主要是取指数还取对数的方法,即 ,这样就能把幂上的函数移下来了,变成“ ”型未定式。
3.泰勒公式(含有 的时候,含有正余弦的加减的时候)
例1已知A={x -2≤x<3},B={x -1<x≤5},求A B,A B

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的常用方法(附例题和详解)高等数学中求极限是一项重要的数学技巧,它在数学分析、微积分和其他数学领域中都有广泛应用。

本文将介绍一些常用的求极限的方法,并给出相应的例题和详解。

一、直接代入法直接代入法是求极限的最基本方法之一。

当函数在某一点连续时,可以直接将该点代入函数中来求极限。

例题1:求函数f(x) = x^2在x=2处的极限。

解:直接将x=2代入函数中,得到f(2) = 2^2 = 4。

因此,f(x)在x=2处的极限为4。

二、夹逼法夹逼法(也称为夹挤准则)是求解一些复杂极限的常用方法。

它基于一个简单的想法:如果函数g(x)和h(x)在某一点p附近夹住函数f(x),并且g(x)和h(x)的极限都相等,那么f(x)的极限也等于这个相等的极限。

例题2:求极限lim(x→∞) [(x+1)/x]。

解:我们可以用夹逼法来求解这个极限。

首先,我们可以注意到1 ≤ [(x+1)/x] ≤ [x/x] = 1(其中[x]表示取整函数)。

因此,我们可以将极限表达式两侧夹逼:lim(x→∞) 1 ≤ lim(x→∞) [(x+1)/x] ≤ lim(x→∞) 1。

根据夹逼准则,当lim(x→∞) 1 = 1时,极限lim(x→∞) [(x+1)/x]存在且等于1。

三、极限的四则运算法则在求解复杂函数的极限时,可以利用极限的四则运算法则。

该法则规定,如果函数f(x)和g(x)在某点p处的极限存在,则函数h(x) = f(x) ± g(x)、h'(x) = f(x) * g(x)、和h''(x) = f(x) / g(x)在点p的极限也存在,并满足相应的运算法则。

例题3:求极限lim(x→0) (sinx/x)。

解:我们可以利用极限的四则运算法则来求解这个极限。

首先,观察到当x→0时,分子sinx和分母x都趋向于0,因此这个极限是一个未定式。

根据极限的四则运算法则,我们可以将lim(x→0) (sinx/x)转化为lim(x→0) sinx / lim(x→0) x。

求函数极限的方法与技巧

求函数极限的方法与技巧

求函数极限的方法与技巧函数极限是微积分中的重要概念之一,对于理解函数在某一点的趋势和性质具有基础性的作用。

在数学学习中,求函数极限是一个比较常见的问题,也是比较基础的内容。

不过,并不是所有的函数都能简单地通过代入计算得到极限值,有些函数的极限需要用一些特殊的方法和技巧来求解。

下面就让我们来了解一下求函数极限的方法与技巧。

一、代入法代入法是求函数极限的最基本方法。

它适用于一些简单函数,比如多项式函数、分式函数等。

当我们要求一个函数在某一点的极限时,只需要用该点的值代入函数中,即可得到函数在该点的极限值。

求函数f(x) = 2x + 1在点x=3处的极限,我们只需要将x=3代入函数中即可得到极限值。

即lim(x→3)f(x) = 2*3 + 1 = 7。

这种方法简单直观,适用范围广泛,对于一些简单函数来说确实是一个很好的方法。

但是对于一些复杂函数来说,代入法并不一定适用,我们需要借助其他的方法来求解函数的极限。

二、夹逼法夹逼法常常用于求函数在某一点的极限,特别适用于涉及无穷大和无穷小的极限。

该方法的核心思想是通过构造两个函数夹住要求的函数,从而找到该函数的极限值。

具体步骤如下:1.找到一个函数g(x)和一个函数h(x),使得在极限点的附近,g(x)≤f(x)≤h(x)。

2.证明lim(x→a)g(x) = lim(x→a)h(x) = L。

3.则根据夹逼定理,有lim(x→a)f(x) = L。

举个例子,求函数f(x) = x*sin(1/x)在x=0处的极限。

我们可以取g(x) = -|x|和h(x) = |x|,显然在x=0的附近,-|x| ≤ x*sin(1/x) ≤ |x|。

然后我们验证lim(x→0)-|x| = lim(x→0)|x| = 0,所以根据夹逼定理,函数f(x)在x=0处的极限为0。

夹逼法在求解一些特殊函数的极限问题时非常有用,它能够帮助我们找到函数在某一点的极限值。

三、利用函数性质和极限恒等式有些函数在计算极限时可以利用特定的性质和恒等式来简化计算。

求极限的方法与技巧

求极限的方法与技巧

求极限的方法与技巧求极限是微积分中一个重要的概念,它在数学分析、物理学、经济学等许多领域都有广泛的应用。

正确理解和应用极限的方法和技巧对于解决复杂问题至关重要。

在本文中,我将分享一些求极限的方法和技巧。

一、代入法代入法是求解极限最基本的方法之一、当函数在特定点不可求值或复杂时,我们可以通过代入该点的相邻值来近似求解极限。

例如,对于函数f(x)=x^2,要求极限lim(x->2)f(x),我们可以尝试代入x=2附近的数字,如1.9、1.99、1.999等,通过逐渐逼近2,来估算极限的值。

当代入的数字越接近2时,得到的极限值越接近真实值。

二、基本极限法则基本极限法则是求极限过程中的重要工具,它基于一系列基本的极限结果。

以下是常用的基本极限法则:1. 常数法则:lim(x->a)c=c,其中c为常数;2. 幂函数法则:lim(x->a)x^n=a^n,其中n为正整数,a为实数;3. 指数函数法则:lim(x->0)(1+x)^n=1,其中n为正整数;4. 三角函数法则:lim(x->0)sin(x)/x=1,lim(x->0)(1-cos(x))/x=0;5. 对数函数法则:lim(x->1)ln(x)=0。

通过灵活运用这些基本极限法则,可以简化复杂的极限计算过程。

三、夹逼法夹逼法是求解极限中一种常用的思路。

当我们需要求解一个函数f(x)在特定点的极限时,可以通过构造两个函数g(x)和h(x),使得g(x)≤f(x)≤h(x),且lim(x->a)g(x)=lim(x->a)h(x)=L,则根据夹逼定理,可以得到lim(x->a)f(x)=L。

通过灵活选择g(x)和h(x),我们可以利用夹逼法求解复杂的极限问题。

四、换元法换元法是极限求解中一种常用的技巧。

通过进行变量替换,可以将复杂的极限问题转化为简单的形式。

例如,对于极限lim(x->0)sin(2x)/x,我们可以进行变量替换令u=2x,得到lim(u->0)sin(u)/(u/2),进一步化简为lim(u->0)2sin(u)/u。

求函数极限的方法与技巧

求函数极限的方法与技巧

求函数极限的方法与技巧在微积分中,函数的极限是一种重要的概念,能够给我们关于函数表现的重要见解。

如果我们想要计算函数的极限,我们需要掌握一些方法和技巧。

接下来,我将分享一些关于函数极限的方法和技巧。

1. 代入法代入法是计算函数极限最简单的方法之一。

这种方法的基本思想是通过把自变量x代入函数,计算出函数在这个特定点的值。

如果在x值趋近于某个数(通常是无穷大或无穷小)时,函数的值趋近于某个确定的数,那么我们可以说这个确定的数是函数在这个值处的极限。

例如,我们想要求函数f(x)=x^2-3x+2在x=2处的极限,我们可以代入x=2,计算出函数在这个点的值为f(2)=2,因此我们可以认为x=2时,函数的极限值为2。

2. 有理函数的极限有理函数是指最高次项为整数的分式函数。

对于有理函数,求函数极限的方法是分子分母同时除以最高次项,并且观察分式函数的分母是否含有因式,如果含有因式,就要进行约分。

如果分式函数的最高次项在分子和分母中的次数相同,那么函数的极限将等于最高次项在分子和分母中次数相同的项的系数之比。

例如,对于函数f(x)=(2x^3-x^2+3)/(x^3+2),最高次项在分子和分母中的次数都是3,因此我们把分子和分母同时除以x^3,得到f(x)=(2-1/x+3/x^3)/(1+2/x^3),此时我们可以得到极限为2/1=2。

对于三角函数的极限,实际上我们需要先把三角函数化为有理函数。

以下是常见的三角函数的有理函数表达式:sin x/x=1-cos^2 x/2!如果我们能够将三角函数化为有理函数的形式,那么我们就可以运用有理函数求极限的方法进行计算。

4. 换元法换元法是求函数极限的一种常见方法。

这种方法的基本思想是将函数的自变量用另一个变量来表示,从而更容易计算函数的极限。

通常情况下,我们选择一些特定的换元方式来将函数中的一些特别复杂的部分换成简单的部分。

例如,对于函数f(x)=sqrt(x^2+1)+x,我们可以选择x=tanθ,这样我们可以将函数化为f(x)=(secθ)+tanθ。

高等数学求极限的17种常用方法(附例题和详解)

高等数学求极限的17种常用方法(附例题和详解)

⾼等数学求极限的17种常⽤⽅法(附例题和详解)⾼等数学求极限的14种⽅法⼀、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim 0,(i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ;(ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。

2.极限分为函数极限、数列极限,其中函数极限⼜分为∞→x 时函数的极限和0x x →的极限。

要特别注意判定极限是否存在在:(i )数列{}的充要条件收敛于a n x 是它的所有⼦数列均收敛于a 。

常⽤的是其推论,即“⼀个数列收敛于a 的充要条件是其奇⼦列和偶⼦列都收敛于a ”(ii )A x x f x A x f x =+∞→=-∞→?=∞→limlimlim)()((iii)A x x x x A x f x x =→=→?=→+-lim lim lim 0)((iv)单调有界准则(v )两边夹挤准则(夹逼定理/夹逼原理)(vi )柯西收敛准则(不需要掌握)。

极限)(lim 0x f x x →存在的充分必要条件是:εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当⼆.解决极限的⽅法如下:1.等价⽆穷⼩代换。

只能在乘除..时候使⽤。

例题略。

2.洛必达(L’ho spital )法则(⼤题⽬有时候会有暗⽰要你使⽤这个⽅法)它的使⽤有严格的使⽤前提。

⾸先必须是X 趋近,⽽不是N 趋近,所以⾯对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正⽆穷的,不可能是负⽆穷。

其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接⽤洛必达法则。

另外,必须是“0⽐0”或“⽆穷⼤⽐⽆穷⼤”,并且注意导数分母不能为0。

求函数极限的方法与技巧

求函数极限的方法与技巧

求函数极限的方法与技巧
函数极限是数学中的重要概念,其在微积分和数学分析等领域起着关键作用。

求函数极限的方法与技巧有许多种,下面将介绍一些常用的方法和技巧。

1. 代入法:当函数在某一点存在定义时,可以直接将该点代入函数,求解得到极限值。

2. 利用性质:对于基本函数,比如常数函数、幂函数、指数函数和对数函数等,可以利用其在特定点的性质推导出极限。

3. 两边夹逼法:当函数在某个点附近的取值受到两个函数的限制时,可以利用这两个函数的极限值来求出该点的极限。

4. 根式与分式化简:对于根式和分式形式的函数,可以将其化简为简单的形式,然后再求极限。

5. 拆分法:对于复杂的函数,可以将其拆分成更简单的函数,然后分别求解各个部分的极限。

6. 递推法:对于递推定义的函数,可以通过递推公式逐步推导出函数递推到无穷时的极限。

7. 泰勒展开法:对于某些函数,可以利用泰勒展开公式近似计算其极限,当展开到一阶或者二阶项时,极限即成立。

8. 利用洛必达法则:当函数的极限形式为无穷除以无穷、零除以零、无穷乘以零等形式时,可以利用洛必达法则将其转化为求导数的形式来计算极限。

9. 无穷小判别法:当函数为无穷小量之和或者无穷小量之积时,可以利用无穷小判别法来判断函数的极限。

10. 利用夹逼定理:当函数在某一点的附近存在两个函数,其中一个函数的极限存在且等于该点的极限,另一个函数的极限也存在且等于该点的极限,则函数的极限也存在且等于该点的极限。

求函数极限的方法与技巧有很多种,不同的情况需要采用不同的方法来求解。

在实际应用中,可以根据具体问题的特点选择合适的方法来求解函数的极限。

求极限的方法与技巧

求极限的方法与技巧

求极限的方法与技巧求极限是微积分中的基本问题,它在解决实际问题中起着关键作用。

在高等数学中,求极限的方法有多种。

下面将介绍一些常见的求极限的方法与技巧。

一、代入法:当极限中存在一些点,可以通过直接将该点代入函数中来求得极限。

二、化简法:当题目给出的函数比较复杂时,可以通过化简来求极限。

比如,利用封闭函数性质、基本运算法则等进行化简。

三、夹逼法:夹逼法也叫夹定理法,是一种常用的求极限方法。

其基本思想是给出两个函数,找到一个中间函数,使得中间函数的极限等于极限所求的值。

通过夹定理可得:若函数f(x)、g(x)、h(x)满足f(x)≤g(x)≤h(x),当x趋于其中一值a时,f(x)和h(x)的极限都等于L,则g(x)的极限也等于L。

四、间断分解法:当函数在其中一点存在间断时,可以将函数分解开来,单独求解每一段函数的极限,然后再进行综合得出最后的极限。

五、无穷小量替换法:当给出的函数极限不好求解时,可以通过将其替换为一个相等的无穷小量来简化计算。

比如,将极限中的分子或分母替换为无穷小量,或者将函数替换为等价的无穷小量。

六、洛必达法则:洛必达法则是求解一些形如$\displaystyle\frac{0}{0}$ 或$\displaystyle\frac{\pm\infty }{\pm\infty }$型极限的常用方法。

其基本思想是将函数的极限转化为分数的形式,然后对分子和分母同时求导,最后将得到的导数值带入原函数中。

如果在求导之后依然得到一个$\displaystyle\frac{0}{0}$形式的极限,可以继续应用洛必达法则,直到得到非$\displaystyle\frac{0}{0}$形式的极限。

七、级数展开法:对于一些无穷级数的极限求解,可以通过级数展开来计算。

例如,利用泰勒级数展开,将函数展开成无穷级数的形式,然后利用级数的性质进行计算。

八、极限换元法:有时候对于一些较为复杂的函数,可以通过对变量进行换元简化问题。

求函数极限的方法与技巧

求函数极限的方法与技巧

求函数极限的方法与技巧随着数学的发展,求函数极限的方法与技巧也越来越丰富和多样化。

下面我将介绍一些常用的方法和技巧,帮助你更好地求解函数极限问题。

我们来介绍一些常用的求函数极限的基本技巧:1. 代入法:通过直接将极限点代入函数中计算,从而得到极限值。

代入法适用于有明确极限的函数。

2. 分式对分法:对于分式形式的函数,我们可以通过分母有理化或者因式分解的方式,将函数拆分成几个更简单的分式,然后再进行求解。

3. 夹逼法:当函数的上下界存在且极限相等时,我们可以利用夹逼法求得函数的极限。

4. 常用极限:有一些函数的极限是常用的,例如三角函数的极限、指数函数的极限等,我们可以通过这些常用极限来求解更复杂的函数极限。

还有一些更高级的方法和技巧能够帮助我们更好地求解复杂的函数极限问题:1. 极限的运算法则:我们可以根据极限的运算法则来计算复合函数、求和函数、误差函数的极限等。

2. 等价无穷小替换法:当函数的极限形式为无穷大与无穷小的组合时,我们可以通过将无穷大和无穷小进行等价替换,从而简化函数的运算。

3. 泰勒展开法:对于一些复杂的函数,我们可以通过使用泰勒展开公式来近似求得函数的极限。

4. L'Hopital法则:当函数的极限形式为0/0或无穷大/无穷大的不确定型时,我们可以通过L'Hopital法则将其转化为求导的形式,从而得到准确的极限值。

除了上述常见的方法和技巧外,还有一些特殊的函数极限求解方法。

例如变量代换法、递推法、反函数法、对数变换法等,这些方法和技巧在特定情况下会更有效。

求函数极限的方法与技巧是十分丰富和多样化的。

我们可以根据具体的函数形式和条件,选择合适的方法和技巧进行求解。

在实际求解过程中,我们需要灵活运用各种方法,结合具体问题进行分析和求解,才能更好地解决函数极限问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极限的常用求法及技巧引言极限是描述数列和函数在无限过程中的变化趋势的重要概念。

极限的方法是微积分中的基本方法,它是人们从有限认识无限,从近似认识精确,从量变认识质变的一种数学方法,极限理论的出现是微积分史上的里程碑,它使微积分理论更加蓬勃地发展起来。

极限如此重要,但是运算题目多,而且技巧性强,灵活多变。

极限被称为微积分学习的第一个难关,为此,本文对极限的求法做了一些归纳总结,我们学过的极限有许多种类型:数列极限、函数极限、积分和的极限(定积分),其中函数极限又分为自变量趋近于有限值的和自变量趋近于无穷的两大类,如果再详细分下去,还有自变量从定点的某一侧趋于这一点的所谓单边极限和双边极限,x 趋于正无穷,x 趋于负无穷。

函数的极限等等。

本文只对有关数列的极限以及函数的极限进行了比较全面和深入的介绍.我们在解决极限及相关问题时,可以根据题目的不同选择一种或多种方法综合求解,尤其是要发现数列极限与函数极限在求解方法上的区别与联系,以做到能够举一反三,触类旁通。

1数列极限的常用求法及技巧数列极限理论是微积分的基础,它贯穿于微积分学的始终,是微积分学的重要研究方法。

数列极限是极限理论的重要组成部分,而数列极限的求法可以通过定义法,两边夹方法,单调有界法,施笃兹公式法,等方法进行求解.本章节就着重介绍数列极限的一些求法。

1.1利用定义求数列极限利用定义法即利用数列极限的定义 设{}n a 为数列。

若对任给的正数N,使得n 大于N 时有ε<-a a n则称数列{}n a 收敛于a ,定数a 称为数列{}n a 的极限,并记作,lim n a n a =∞→或)(,∞→∞→n a n读作当n 趋于无穷大时,{}n a 的极限等于a 或n a 趋于a 例证明2322n lim -∞→n n 解 由于)3n 93n 9323222≥≤-=--(nn n 因此,对于任给的ε>0,只要ε<n9,便有 ε<--33322n n即当nε9>时,(2)试成立。

又因为(1)式是在3≥n 的条件下也成立,故应取.9,3max ⎭⎬⎫⎩⎨⎧=εN在利用数列的N -ε定义时,应意识到下几点1.ε的任意性 定义中的正数ε的作用在于衡量数列通项{}n a 与定数a 的接近程度,ε越小,表示接近的愈好;而正数ε可以任意的小,说明{}n a 与a 可以接近到任何程度。

然而,尽管ε有其任意性,但已经给出,就暂时的被确定下来了,以便依靠它来求出N.又1.2 利用极限的四则运算极限的四则运算法则若{n a }与{n b }为收敛数列,则{n n a b +},{n n a b -},{n n a b •}也都是收敛数列,其有lim()lim lim()lim lim n n n nn n n n n nn n n a b a b a b a b →∞→∞→∞→∞→∞±=±•=例求n 解==由111()n n+→→∞ 得1lim 2n n == 1.3利用单调有界定理单调有界定理即在实数系中,有界的单调数列必有极限,单调数列即 若数列{}n a 的各项关系式,)(11++≥≤n n n n a a a a则称{}n a 为递增(递减)数列。

递增数列和递减数列统称为单调数列。

有界性即M 存在使得对于一切正整数n,有M a n ≤这一方法是利用极限理论基本定理:单调有界数列必有极限,其方法为:(1)判定数列是单调有界的,从而可设其极限为A 。

(2)建立数列相邻两项之间的关系式。

(3)在关系式两端取极限,得以关于A 的方程,若能解出A,问题就可以解决了。

一般利用单调有界原理求极限的题目都给出了第n 项和第n+1项的关系式。

首先应用归纳法或“差法”,“比法”等方法证明其单调性,再证明其单调性,有界性(或先证有界,再证单调)。

由单调有界定理得出极限的存在性,然后对关系式两端求极限,a a a++其中(a>0)极限解: 设0x,1x ==11,1,2...)n x n +==则{n x }是单调有界数列,它必有极限,设其极限为A在1n x +=A =20A A a --=所以A =A>0所以A =即1lim 2n n x →∞=例设x 0>0, a >0,x 1n +=21(x n +x na ), n=0,1,2….z 证明数列{}x n 的极限存在,并求之。

证明:易见x n >0,n=0,1,2….所以有x 1n +=21(x n+x na )≥xn.xna=ax 1n +=21(x n +x n a )≥21(x n +x x nn 2)=x n=)(1)(1121a a a ll n-+--+由0<l<1,故lim n ∞→0)(-=n l ,从而lim n ∞→=a n lim n ∞→a n 1+=l l la a a a a ++=+-+1121121 aann n 1lim+∞→=11lim lim limn =+∞→∞→∞→a a nn n n1.4利用迫敛法则利用迫敛法则求极限主要利用放缩法将其同时放大或缩小成俩个已知数列。

(已知数列的极限相同)即设数列{}n a ,{}n b 都以a 为极限,且存在0N ,使得当n>0N 时b c a n n n ≤≤则数列{}n c 收敛,且a c n n =∞→lim 。

由迫敛法则可得所求极限与已知数列极限相等例 求limn ∞→)n 26.4.21-n 25.3.1()(解 :记x n =)n 26.4.21-n 25.3.1()( ,yn=)1n 27.5.32(6.4.2+()n 显然x n <yn,n=1.2…,所以即数列{}x n 单调递减有下界,极限存在。

记lim n ∞→x n =A , 对关系式x 1n +=21(x n +x na ) 令n→∞取得极限得到A =a .(其中A=-a <0,因不合舍去) 例 设 a i﹥0(i=1,2,3…m),记 M=ma x(a 1,a 2,…a m )。

证明limn ∞→a n 1+a n 2+…a m n=M n证明:因M n<a n1+a n2+…a m n<m Mn→M (n→∞)即 limn ∞→a n1+a n2+…a m n=M n1.5利用递推关系有些题目中数列的单调性不易证得时就不能应用单调有界定理,此时可尝试采用递推关系应用压缩原理去解决.这些题目一般都给我们一个递推式)(1n n a f a =+,但单调性不易或根本无单调性,例 设 a 1,a 2为任意取定的实数,且a 12+a 22≠0,定义a a a n n n l k 11-++=① 其中,k ,l 为正数,且,1=+l k n=1,2….试求aa nn n 1lim +∞→证明 由,1=+l k 即0< k<1,0<l <1.由①式得l a a a a n n n l 21n 1)(-=--=-+()()12121a a la a n n n -=----a a a a a a a an n n n n 112111)()()(+-+-+-=-++=a a a l l l n n 11221))](1)()[(+++-++-+--- 所以有0<x n 2<x nyn=1n 21+ 即0<xn<1n 21+→0,(n →∞) 故lim n ∞→xn=01.6利用上下极限一个有界数列未必存在极限,但它一定有上下极限,且有界数列极限存在的充要条件是其上下极限相等。

对于一个有界数列{}n a 取掉它的最初K项以后,剩下来的仍旧是一个数列,记这个数列的上确界为k β ,下确界为k α亦即k β={}{} 32,1kn ,sup sup +++>=k k k n a a a ak α={}{} 32,1,inf inf +++>=k k k n kn a a a a可见k α< k β, 3,2,1=k 令于是可以得到一列{}k β和一列{}k α,显然{}k β是单调递减的,{}k α是单调递增的,所以这两个数列的极限都存在,我们称{}k β的极限为数列{}n a 的上极限,{}k α为数列{}n a 的下极限。

我们可根据上下极限处理一些极限问题 例 设lim n ∞→x n =A.求证limn ∞→=+++nn n x x x n 1322121 A证明 由lim n ∞→x n =A,知对任给0>ε,存在N ,使得当n>N 时,有 A-ε<x n <A+ε于是y n =n n nx x x n1322121+++ =)121(1)1N N 3221(1121x x x x x nN N n nN N n n ++++++++++ ≤))(n (1)1N N 3221(121ε+-+++++A N nn x x x N两边取上极限得ε+≤∞→A ny n lim同理可证ε-≥∞→A y nn lim _____于是ε-≥∞→A y nn lim _____于是≤-εA y nn lim _____∞→≤limn ∞→y n≤ε+≤∞→A n y n lim由ε的任意性得limn ∞→A y=n亦即limn ∞→=+++nn nx x x n 1322121 A1.7利用stolz 定理Stolz 定理 若所求极限为x y nn 型,且{}y n是单调增加的无穷大量.。

且limn ∞→yy x x n nn n 11----=a 则limn ∞→xy nn =a或 {}n x ,{}n y 都是无穷小量,且{}n y 是严格单调减少数列,且1n 1limn n n n x x a y y -→∞--=-(a 为有限量,+∞与-∞),则n lim n nxa y →∞=证明{}n y 是严格单调增加的正无穷大量,且1n 1limn n n n x x a y y -→∞--=-(a 为有限量,+∞与-∞)则n limnnx a y →∞= 证:(1) 考虑a = 0的情况由1n 1lim 0n n n n x x y y -→∞--=-,有11,,(),n n n n x x N n n N y y εε---∀∃∀><-即ﻩﻩﻩ11n n n n x x y y ε---<-则 1121n n n n n N N N x x x x x x x x ---+=-+-++-+ﻩ 1121n n n n N N N x x x x x x x ---+≤-+-++-+ﻩ1121n n n n N N N y y y y y y x ε---+≤⎡-+-++-⎤+⎣⎦n y 是严格单调增加的,因此1121N n n n n n N Nn nnx x y y y y y y y y y ε---+-+-++-≤+N n n Nn n n x x y y y y y ε-≤+ N nn nx x y y ε≤+ n y 是正无穷大量ﻩﻩﻩ22,(),Nnx N n n N y ε∃∀>< 取'2N max(,)1N N =+,'()n n N ∀>有2nnx y ε≤ 所以n lim0nnx y →∞= (2) 当a是非零有限数时,令'nn n x x ay =-,于是由 ''11n n 11lim lim 0n n n n n n n n x x x x a y y y y --→∞→∞----=-=-- 得到'n lim 0n n x y →∞=,从而'n n lim lim n nn nx x a a y y →∞→∞=+=(3) a =+∞的情况首先'11,(),n n n n N n n N x x y y --∃∀>->-说明{n x }也严格单调增加,且从n N n N x x y y ->-可知{n x }是正无穷大量将前面的结论应用到n n y x ⎧⎫⎨⎬⎩⎭,得到ﻩ ﻩ11limlim 0n n n n n n n n y y y x x x -→∞→∞--==- 因而 ﻩn limnnx y →∞=+∞ (4) 对于a =-∞的情况,证明方法类同2. {}n x ,{}n y 都是无穷小量,且{}n y 是严格单调减少数列,且1n 1limn n n n x x a y y -→∞--=-(a 为有限量,+∞与-∞),则n limnnx a y →∞= 证: a 为有限量因11n n 11limlim n n n n n n n n x x x x a y y y y +-→∞→∞+---==--,所以11,,(),22n n n n x x N n n N a a y y εεε++-∀∃∀>-<<+-,其中10n n y y +->111()()()()22n n n n n n a y y x x a y y εε+++--<-<+-采用类似定理1的证明,可以得到()()()()22n n p n n p n n p a y y x x a y y εε+++--<-<+-令p →+∞,且0n p x +→,0n p y +→利用Stol z定理时,应注意验证题目所给数列是否满足定理的内容 例 求极限lim n ∞→nnk kk 1k21+++解 经检验分母1n +k ∞→,时,∞→n 且单调递增,所以满足条件。

相关文档
最新文档