弹性力学平面应力问题和平面应变问题

合集下载

弹性力学-平面应力-平面应变问题

弹性力学-平面应力-平面应变问题

平面应力问题的求解方法
解析法
实验法
通过数学分析的方法,将问题转化为 数学方程进行求解。适用于简单几何 形状和边界条件的问题。
通过实验测试来测量物体的应力分布, 通常需要制作模型并进行加载测试。 适用于无法通过理论分析求解的问题。
有限元法
将物体离散化为有限个小的单元,通 过求解每个单元的平衡方程来得到整 个物体的应力分布。适用于复杂几何 形状和边界条件的问题。
弹性力学的基本方程
描述物体在受力后的应力 与应变之间的关系。
描述物体在受力后发生的 位移和应变关系。
描述物体内部力的平衡关 系03
平面应力问题
平面应力问题的定义
平面应力问题是指在弹性力学中,物 体受到的应力作用在某一平面内,且 在该平面上没有作用力的问题。
平面应力问题通常适用于薄板、薄壳 等二维结构,其中应力分量在某一平 面内变化,而垂直于该平面的方向上 ,应力和应变均为零。
THANKS
感谢观看
04
平面应变问题
平面应变问题的定义
平面应变问题是指在弹性力学中,应变和应力都仅发生在某一平面内的现象。在 此情况下,应变和应力分量都与离开平面的距离无关。
平面应变问题通常出现在薄壁结构、板壳结构等二维结构中,其中主要的变形和 应力分布都在一个平面内。
平面应变问题的求解方法
1 2 3
有限元法
通过将问题离散化为有限个小的单元,利用弹性 力学的平衡方程和变形协调方程,求解每个单元 的应力、应变和位移。
跨学科的研究
与其他学科的交叉研究 可能会带来新的思想和 理论。例如,与物理学 、化学、生物学等学科 的交叉可能会为弹性力 学的研究提供新的视角 和思路。
实验与理论的结 合
实验技术的发展将有助 于更好地验证理论的正 确性和实用性。同时, 理论的发展也将为实验 提供更好的指导。因此 ,实验与理论的结合将 是未来研究的一个重要 方向。

弹性力学-2-平面问题的基本理论

弹性力学-2-平面问题的基本理论

2015-1-16
4 弹性力学
2.1 平面应力问题与平面应变问题
弹性力学空间问题共有应力、应变和位
移共15个未知函数,且均为 f (x, y, z)。
弹性力学平面问题共有应力、应变和位
移8个未知函数,且均为f (x, y,)。
2015-1-16
5 弹性力学
2.1 平面应力问题与平面应变问题
什么条件下 空间问题可简化为平面问题
px n l l
py n m m
又由于:
px xl xy m p y xyl y m
32 弹性力学
2015-1-16
2.2 平面问题中一点的应力状态 问题3:若经过该点的某一斜面上的切应力为0, 求此斜面上的主应力σ和应力主方向α 从而可得
2015-1-16 25 弹性力学
2.2 平面问题中一点的应力状态 应力是与作用面有关的。σx,σy和τxy作为 基本未知函数,只是表示一点的坐标平面上的 应力分量(左图)。而校核强度时需要知道过 此点的任意斜面上的应力p。斜面上的应力p可 以按坐标轴分解为(px,py),也可沿法向和切 向分解为正应力σn和切应力τn(右图)。
z , zx , zy 0
2015-1-16 10 弹性力学
2.1 平面应力问题与平面应变问题
因此,此类问题的未知量只剩下Oxy面内 的三个应力分量: x , y , xy
所以此类问题称为平面应力问题。 由于板很薄,等厚度,外力和约束沿z 方向不变,因此应力也沿厚度z方向均匀分 布,应力x,y和xy只是坐标x, y的函数。
取如图所示的微分三角板或三棱柱
PAB,当平面AB无限接近于P点时, 该平面上的应力即为所求。

弹性力学平面应力平面应变问题 ppt课件

弹性力学平面应力平面应变问题  ppt课件

系,即 σx = Eεx 这就是虎克定律。 应力
(Hooke‘s Law)
Y
弹塑性范围
弹性范围
斜率, E
应变
工程上,一般将应变与应力间的关系表示为
xE 1xyz yE 1yzx
xy
1
G
xy
yz
1
G
yz
zE 1zxy
zx
1
G
zx
称它们为物理方程(广义虎克定律)。
x 1 E 1 1 2 x 1 y 1 z
1
0
对 1 0

1
2
对于平面应变问题的弹性矩阵,只须在上式
中,以 E
1 2
代E,
1
代μ即可。
小结
则有
uu vv ww (在 u 上)
用矩阵形式表示为:
uu (在 u 上)
小结
弹性力学基本方程的一般形式为
回顾
平衡微分方程 σb0 (在 内)
几何方程 物理方程
ε tu σDε
(在 内) (在 内)
边界条件
nσt
(在 t 上)
uu
(在 u 上)
其中 t u , 为弹性体的完整边界。
§2-3 平面应变和平面应力问题
平面应变问题
位移:按平面应变的定义,三个方向的位移函数是
uux,y vv(x,y) w0
应变:由几何方程应变-位移关系,得
x
u x
1x,
y,
y
v y
3x,
y,
xy yz
u y
v x
2x,
v w0 z y
y
z
w0, z
zx
u z

弹性力学第二章

弹性力学第二章

(2)平面应变问题的物理方程 由于平面应力问题中:εz = γ zx = γ zy = 0
µ 1− µ2 σx − εx = σy 1− µ E 1− µ2 µ σy − εy = σy E 1− µ
——平面应变问题 ——平面应变问题 物理方程
第三节
平面问题中一点的应力状态
一点的应力
2. 一点的主应力与应力主向 (1)主应力 若某一斜面上τn = 0 ,则该斜面上的正应力σn 称为该点一个主应力σ; 当τn = 0 时,有 σn =σ = p
px =lσ py = m σ
lσx +m xy =lσ τ m y +lτxy = m σ σ
γ xy =
2(1+ µ) τ xy E
在z方向,εz = 0, σz = µ(σx +σy )
变换关系 : 平面应力物理方程 →平面应变物理方程:
E µ E→ , → µ 2 1− µ 1− µ
平面应变物理方程 →平面应力物理方程:
E→
E(1+ 2µ)
(1+ µ)2
, → µ 1+ µ
µ
思考题 1. 试证:由主应力可以求出主应变,且两者方 向一致。 2. 试证:三个主应力均为压应力,有时可以产 生拉裂现象。 3. 试证:在自重作用下,圆环(平面应力问题) 比圆筒(平面应变问题)的变形大。
E
µ
2.平面应变问题 2.平面应变问题 条件是:⑴很长的常截面柱体 ; ⑵体力、面力、约束平行于柱面横截面, 沿长度方向不变。 应力:
σz = µ(σx +σy )
τ zx =τ zy = 0
应变:
εz = 0 γ zx = 0 γ zy = 0

弹性力学平面应力问题和平面应变问题

弹性力学平面应力问题和平面应变问题
特点
平面应力问题的定义
平面应力问题的基本假设
假设弹性体是连续的,没有空隙或裂缝。
假设弹性体的材料性质在空间中是均匀的,即各向同性。
假设弹性体的材料性质在不同方向上相同。
假设弹性体的变形是微小的,即变形前后的形状和尺寸变化不大。
连续性
均匀性
各向同性
小变形
解析法
01
通过数学公式和定理求解弹性力学问题的精确解。适用于简单形状和边界条件的平面应力问题。
平面问题的定义
02
CHAPTER
平面应力问题
在弹性力学中,平面应力问题是指应变场和应力场在二维平面上变化的问题。这类问题通常涉及到薄板、薄壳等二维结构,其厚度相对于结构的尺寸较小,可以忽略不计。
平面应力问题
平面应力问题具有对称性,即应变和应力在垂直于平面的方向上为零。同时,由于结构厚度较小,平面应力问题通常只考虑平面内的应变和应力分量,忽略垂直于平面的分量。
弹性力学简介
平面问题是指弹性物体在平面内的变形问题,其中物体与平面平行或与平面垂直。
平面应变问题是指物体在平行于平面的方向上发生变形,而垂直于平面的方向上变形较小或忽略不计。
平面问题可以分为平面应变问题和平面应力问题两类。
平面应力问题是指物体在垂直于平面的方向上发生变形,而平行于平面的方向上变形较小或忽略不计。
03
CHAPTER
平面应变问题
平面应变问题
模拟 aword/noun like "bleepileysing前进 on how toilet b. The first time you feel that there is a word-like "bleepilexamples the first time you具有重要的 first time you feel that there is a word's a word-like "bleepilexamples[c. The first time you feel that there is a word's a word-like b. The first time you feel that there is a word's a word's a word-like "bleepilexamples the first time you's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a way toilet's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's

弹性力学简明教程 第2章 平面问题的基本理论

弹性力学简明教程 第2章 平面问题的基本理论

一 、求AB面上的正应力σn和切应力τn
设px、py为斜面AB的应力p在x、y 轴上的投影。斜面 AB的长度为 ds, 则AB=ds, PB=lds, PA=mds 。 由平衡条件∑Fx=0 得:
l ds m d s p x ds x l ds xy m ds f x 0 2
除以ds ,然后令ds→0, 得:
B'
一、位移与形变
刚体位移
如果各点(或部分点)间的相对距离发生变化, 则物体发生了变形。这种变形一方面表现在微 线段长度的变化,称为线应变;一方面表现在 微线段间夹角的变化,称为切应变。
O
A
O
A'
B
B'
二、几何方程
几何方程——描述任一点的微线段上形变分量 与位移分量之间的关系。 P点的形变分量与位移分量的关系?
0 l 1
当 l2 = 1 时,
0 l 2 1
n nmax 1 ( 1 2 ) 2 1
当 l2 = 0 时,
n n min 2
可见:两个主应力就是最大与最小的正应力。
五、求最大与最小的切应力
任意斜面上的切应力 n lm( y x ) (l 2 m 2 ) xy
y
二、几何方程
PA的线应变在小变形
时是由x 方向的位移 引起的,因此PA的线 应变为
P' A' PA x PA
o u
P
x
u
dx
v
P'
A
u dx x

A'
v
v dx x
y
u (u dx) u AA' PP' u x dx PA x v (v dx) v v x PA的转角为 dx x

弹性力学平面应力问题和平面应变问题

弹性力学平面应力问题和平面应变问题
在弹性力学平面应力问题和平面应变问题中,有限差分法常用于求解偏微 分方程,特别是对于规则的网格划分,计算效率较高。
有限差分法的精度取决于差分格式的选择和网格的划分,同时需要注意数 值稳定性和计算精度的问题。
边界元法
边界元法是一种基于边界积 分方程的数值分析方法,通 过将微分方程转化为边界积
分方程来求解。
变形特点
应用领域
在平面应力问题中,变形主要发生在作用 面上,而在平面应变问题中,变形可以发 生在整个结构中。
平面应力问题在桥梁、建筑和机械等领域 有广泛应用,而平面应变问题在岩土、地 质和材料等领域有广泛应用。
06
结论与展望
结论总结
平面应力问题和平面应变问题在弹性力学中具有重要地位,它们是描述物体在应力作用下的变形和应 力分布的基础。
弹性模量表示材料在受力作用下的刚度,是衡量材料抵 抗弹性变形能力的重要参数。
剪切模量表示材料在剪切力作用下的刚度,与弹性模量 和泊松比有关。
03
平面应变问题
应变状态分析
平面应变条件
应变分量中,只有$varepsilon_{x}$ 、$varepsilon_{y}$和 $gamma_{xy}$不为零,其余分量为 零。
有限元法在弹性力学平面应力问题和平面应变问题中广泛 应用,因为它能够处理复杂的几何形状和边界条件,且计 算精度高。
有限元法的实现需要建立离散化的模型、选择合适的单元 类型和求解算法,并进行数值稳定性和误差分析。
有限差分法
有限差分法是一种基于差分原理的数值分析方法,通过将微分方程转化为 差分方程来求解。
薄板弯曲问题
考虑一个矩形薄板,受到一对相距较远的集中力作用,使板发生弯曲。根据平面应力问题,可以分析 板的应力分布、中性面位置以及挠度等。

平面应力问题与平面应变问题

平面应力问题与平面应变问题
• (u,v)≠0,They are functions of x and y only u v 通常不为零,且只是x y的函数。
• Plane displacement problem 平面位移问题
2021/1/23
弹性力学 第二章
12
G. Stresses for plane strain problem 平面应变问题的应力
Symmetric condition对称条件:zx=0,zy=0
A
B
w0
2021/1/23
弹性力学 第二章
14
' zy
将mn作为对称面,按作用反作用关系,左部分某点若

zy
,右部分则有
' zy
,大小与 zy
相等。
'
由对称性,对称点切应力应具有相同方向,右边又可
zy

" zy
,而
" zy
' zy
y)
dx
F 2 ( x, y) 2!x 2
dx2
F (x, y) F (x, y) dx
F (x,
y
dy)
x F (x,
y)
ቤተ መጻሕፍቲ ባይዱ
F (x, y
y)
dy
F 2 (x, y) 2!y 2
dy 2
F (x, y) F (x, y) dy y
2021/1/23
弹性力学 第二章
27
Review: Taylor’s series: 泰勒级数
可见弹力的平衡微分方程的推导并不是全新的内容其所用的方法取单元体考虑单元体的平衡在材力中早已用过2013814弹性力学第二章25?弹力的单元体变小了所得方程从反力内力的四则运算和常微分关系变成了应力体力的偏微分关系

02《弹性力学》教案:第二章:平面问题的基本理论

02《弹性力学》教案:第二章:平面问题的基本理论

二、弹性力学平面问题
弹性力学平面问题的特点有两个: ( 1) 、从几何尺寸的角度看,物体一个方向的尺寸,较之其它两个方向的尺 寸要大得多,或小得多。 ( 2) 、从受力分析的角度看,物体所受的体力分量和面力分量,以及由此产 生的应力分量、应变分量和位移分量,都与某一个坐标轴(例如 z 轴)无关。 有 两 种 典 型 情 况 , 分 别 是 平 面 应 力 问 题 ( pla ne s tre ss pr obl e m ) 和 平 面 应 变 问 题 ( pla ne stra i n pr obl e m ) 。分别讨论。 1、 平 面 应 力 问 题 几 何 尺 寸 : 物 体 是 很 薄 的 等 厚 度 平 板 , 沿 z 方 向 的 厚 度 为 t; 沿 x 方 向 和 y 方 向的尺寸,远大于厚度 t。 坐 标 系 : 以 薄 板 的 中 面 为 xoy 面 , z 轴 垂 直 于 xoy 面 。 受力特点:体力作用于板内,平行于板面且不沿厚度变化, ( X、Y) ,沿厚 度均匀分布。 面力作用于板边,平行于板面且不沿厚度变化, ( X 、Y ) ,沿厚 度均匀分布。
σ x = σ x ( x, y ) , 则 在 c d 面 上 , 由 于 长 度 增 加 了 dx , 则 c d 面 上 的 正 应 力 分 量 应 随
之 变 化 。应 力 分 量 的 这 种 变 化 可 用 泰 勒 级 数 展 开 求 得 。实 际 上 ,在 c d 面 上 ,我 们 有
σ x ( x + dx, y ) = σ x ( x, y ) +
11
Generated by Foxit PDF Creator © Foxit Software For evaluation only.

《弹性力学教学课件》2-1平面应力和平面应变问题

《弹性力学教学课件》2-1平面应力和平面应变问题

数学模型的比较
平面应力问题
需要建立三个方向的应力分量,即$sigma_{x}$、$sigma_{y}$ 和$tau_{xy}$,以及三个方向的应变分量,即$epsilon_{x}$、 $epsilon_{y}$和$gamma_{xy}$。
平面应变问题
需要建立两个方向的应变分量,即$epsilon_{x}$、 $epsilon_{y}$和$gamma_{xy}$,以及三个方向的应力分量, 即$sigma_{x}$、$sigma_{y}$和$tau_{xy}$。
04
弹性力学在工程中的应用
弹性力学在建筑领域的应用
结构设计
建筑结构中的梁、柱、板等构件 的受力分析,需要考虑弹性力学 的基本原理,以确保结构的稳定 性和安全性。
地震工程
地震工程中,建筑物的抗震设计 需要利用弹性力学的基本原理, 研究地震作用下的结构响应和破 坏机制。
弹性力学在机械领域的应用
机械零件设计
机械零件如轴承、齿轮、弹簧等的受 力分析,需要考虑弹性力学的基本原 理,以确保零件的稳定性和可靠性。
疲劳寿命预测
弹性力学在机械领域中广泛应用于疲 劳寿命预测,通过分析材料的应力分 布和应变历程,预测零件的疲劳寿命。
弹性力学在航空航天领域的应用
飞机结构分析
飞机结构中的机翼、机身等部件的受力分析,需要考虑弹性力学的基本原理,以确保飞机的安全性和稳定性。
假设物体在平面内的应力分量与垂直于平面的应力分量相比很小,因此可以忽略不 计。
平面应变问题的求解方法
基于弹性力学的基本方程,建 立平面应变问题的数学模型。
利用边界条件和初始条件,求 解数学模型中的未知量。
常用的求解方法包括有限元法、 有限差分法和变分法等数值计 算方法,以及解析法等理论计 算方法。

弹性力学平面问题总结

弹性力学平面问题总结

P
思考题
① 试证明微分体绕 z 轴的平均转动分量是
1 2 v x u . y
② 当应变为常量时,x=a, y=b, xy=c, 试 求对应的位移分量。
第二章 平面问题的基本理论
2-1 平面应力问题与平面应变问题 2-2 平衡微分方程 2-4 几何方程 刚体位移 2-5 物理方程
物理方程
物理方程描述应力分量和应变分量之间
z
x
y
z
x
y
xy
zx
zy
1 G 1 G 1 G
xy ,
xy
) E
0,
xy ,
zx ,
zx
zy .
zy
0.
物理方程
平面应力问题的物理方程:
x
y
1 E 1 E 2(1
x
y
, ,
y
x
) E
xy
xy .
此外, z
E
x
y
,
zx
zy
0.
平面应力问题,虽然 σz=0,但一般 εz≠0。
物理方程
平面应变问题: z
0,
(在V 中)
xy 存在。
故只有平面应力 σx , σy ,
平面应力问题
(2) 由于板为等厚度,外力、约束沿 z 向不变, 故应力 x , y , xy 仅为 f x , y 。
所以归纳为平面应力问题:
a.应力中只有平面应力 x , y , xy 存在;
b.且仅为 f x , y 。
几何方程
平面问题中的几何方程:
x
u , x
y
v , y
xy
v x
u . y
当弹性体的位移分量完全确定时,应变分 量即完全确定。反之,当应变分量完全确定时, 位移分量却不能完全确定。

弹性力学平面应力问题和平面应变问题

弹性力学平面应力问题和平面应变问题
跨学科融合
弹性力学与材料科学、计算科学、生物学等学科的交叉融合,为解决 复杂工程问题提供了新的思路和方法。
数值模拟与计算
随着计算机技术的进步,数值模拟和计算在弹性力学领域的应用越来 越广泛,能够更精确地模拟和预测材料的力学行为。
多尺度分析
从微观到宏观的多尺度分析方法,能够更好地理解材料的微观结构和 宏观性能之间的关系。
它们简化了问题的复杂性,使得 弹性力学成为一种实用的工程工 具。
02
基本假设的局限性
03
限制条件的考虑
在某些情况下,这些假设可能不 成立,例如在处理非均匀、非各 项同性或大变形问题时。
在应用弹性力学时,必须考虑这 些限制条件,以确保结果的准确 性和可靠性。
06 弹性力学的发展趋势和未 来研究方向
弹性力学的发展趋势
非线性力学
随着工程结构的复杂性和非线性特征的增加,非线性力学的研究越来 越受到重视,为解决复杂工程问题提供了新的理论和方法。
未来研究方向
新材料和新结构的力学行为
智能材料的力学行为
研究新型材料和复杂结构的力学行为,探 索其性能优化和设计方法。
研究智能材料的响应机制和调控方法,探 索其在传感器、驱动器和自适应结构等领 域的应用。
生物医学中的弹性力学问题
研究生物组织的力学行为和生理功能,探 索其在生物医学工程和再生医学等领域的 应用。
环境与可持续发展的弹性力学问 题
研究环境因素对材料和结构的影响,探索 其在环保和可持续发展等领域的应用。
THANKS FOR WATCHING
感谢您的观看
材料力学性能的测试
材料弹性模量的测定
通过实验测定材料的弹性模量,可以了解材料的力学性能,为工程设计和材料选择提供依据。

《弹性力学》第二章_平面问题的基本理论

《弹性力学》第二章_平面问题的基本理论

o
xy
x
y
P
yx
y
A
XN
x
设AB面在xy平面内的长度为dS, 厚度为一个单位长度,N为该面的外 法线方向,其方向余弦为:
B
N
N
N
cos(N , x) l , cos(N , y) m
9
YN S
图2 - 4
斜面AB上全应力沿x轴及y轴的投影分别为XN和YN。由PAB 的平衡条件 Fx 0 可得: X N dS xldS yxmdS
2.主应力的方向
1 与 2 互相垂直。
11
§2-4
几何方程、刚体位移
在平面问题中,弹性体中各点都可能产生任意方向的位移。 通过弹性体内的任一点P,取一单元体PAB,如图2-5所示。弹性 体受力以后P、A、B三点分别移动到P′、A′、B′。 一、P点的正应变
u (u dx) u u x x dx x
二、P点的剪应变
线段PA的转角:
同理可得线段PB的转角:
u y
所以
xy
v u x y
13
因此得到平面问题的几何方程:
u x x v y y v u xy x y
由几何方程可见,当物体的位移分量完全确定时,形变 分量即可完全确定。反之,当形变分量完全确定时,位移分 量却不能完全确定。
z

E
( x y )
16
二、平面应变问题的物理方程 1 2 x ( x y ) E 1 1 2 y ( y x ) E 1 2(1 ) xy xy E 三、平面应力的应力应变关系式与平面应变的关系式之间的 变换关系 1 ( ) y 将平面应力中的关系式: x E x

弹性力学第二章平面问题的基本理论

弹性力学第二章平面问题的基本理论

常体力情况下的简化(2)
— 求解平衡方程
平衡方程 所求的应力函数必须满足以下方程: 应力调和方程
其中
式的解为
式的通解加上
式的特解:
常体力情况下的简化(3)
— 平衡方程的特解
特解一: 特解二: 特解三:
常体力情况下的简化(4)
— 平衡方程的通解
剪应力相等:
艾里George Airy (1801-1892)应力 函数
平面应力问题
平面应力问题:设有很薄的等厚度板,只在板边上受有 平行于板面且不沿厚度变化的面力或约束,同时体力也 平行于板面且不沿厚度变化。
z
x
h
y
平面应变问题
平面应变问题:设有很长的柱形体,它的横截面不沿长 度变化,在柱面上受有平行于横截面而且不沿长度变化 的面力或约束,同时体力也平行于横截面且不沿长度变 化。
则有:
最后得到:
因此,由
中第一式:

中第二式:
常体力情况下的简化(5)
— 平衡方程的解
通解
特解
常体力情况下的简化(6)
— 艾里应力函数表示的相容方程
代入 应力调和方程
得到:
简写为:
y x
z
物理方程
这里,E为弹性模量,G为剪切模量,µ 泊松系数,且有 如下关系:
平面应力问题的物理方程
注:平面应力状态中,垂直于平面方向上的正应变 不为零。
平面应变问题的物理方程
注:平面应变状态中,垂直于平面方向上的正应力 不为零。
平 衡 微 分 方 程 (1)
o x
c
y
平 衡 微 分 方 程 (2)
F F F/A F F/A
F
F/2 F/2

弹性力学-平面应力-平面应变问题

弹性力学-平面应力-平面应变问题

对于平面应力问题,弹性矩阵为
D
E
1
对 1

1 2
0
0
1
2
对于平面应变问题的弹性矩阵,只须在上式
中,以 E
1 2
代E,
1
代μ即可。
小结
小结
平面应变和平面应力两种平面问题的平衡微分方程、 几何方程和物理方程可写成以下统一形式:
平衡微分方程:
物理方程:
几何方程:
x x
xy y
X
0
平面应变问题
位移:按平面应变的定义,三个方向的位移函数是
uux,y vv(x,y) w0
应变:由几何方程应变-位移关系,得
x
u x
1x,
y,
y
v y
3x,
y,
xy yz
u y
v x
2x,
v w0 z y
y
z
w0, z
zx
u z
w x
0
不等于零的三个应变分量是εx、εy和γxy,而且应变仅发
yE 1yzx

x
1 E
1 x
y
y
1 E
1 y
x
xy
1 G
xy
21
E
xy
平面应变问题
应力:如果用应变分量来表示应力分量,则有
x
E(1) (1)(12)
x
1
y
y
E(1) (1)(12)
1
x
y
xy
E 2(1
)
xy
E(1) (1)(12)
12 2(1)
在工程和机械中,许多结构或构件属于这一类问

弹性力学平面应力问题和平面应变问题

弹性力学平面应力问题和平面应变问题

y 面, 面), n
边长 AB ds, PB lds , PA mds.
2、平面问题中一点的应力状态 x
35
yx yx
y
y y
A
几何参数:
cos(N , x) l ,cos(N , y) m,
xx
xy xy
P P
τN
B py
xy 设AB面面积=ds, PB面积=lds, p σN x PA面积=mds。
z 0, 本题中: zx , zy 0
zx , zy 0.
故只有 ε x , ε y , γ xy ,
ox
z
且仅为 f x, y 。
故为平面应变问题。
y
第二章
平面应力问题和平面应变问题
定义
§2-2
平衡微分方程
平衡微分方程--表示物体内任一点
的微分体的平衡条件。
x
y yz
x xy xz ij = yx y yz zx zy z
x xy xz ij = yx y yz zx zy z
u,,
第二章
平面应力问题和平面应变问题
zx
z xz x
x xy ij = yx y
当 d x, d y 0 时,得切应力互等定理,
xy yx .
(c)
第二章
平面应力问题和平面应变问题
说明
对平衡微分方程的说明:
⑴ 代表A中所有点的平衡条件,
因位( x ,)∈A; y ⑵ 适用的条件--连续性,小变形; ⑶ 应力不能直接求出; ⑷ 对两类平面问题的方程相同。
第二章

第2章 平面问题的基本理论汇总

第2章 平面问题的基本理论汇总
一、单元体的受力图
t= 1
平面应力:z方向应力为零。 平面应变:z方向应力自成平衡。
应用的基本假定: 连续性假定─应力用连续函数来表示。 小变形假定─用变形前的尺寸代替
变形后的尺寸。
二、平衡微分方程(平面任意力系)
合力 = 应力×面积,体力×体积; 以正向物理量来表示。
平面问题中可列出三个平衡条件:
例2(习题2-4) 按平面应变问题特征来分析, 本题中
ox z
y
只有
x x x, y , y y x, y , xy xy x, y
思考题 设有厚度很大(即 z 向很长)的基础梁放置在地基上,如果
想把它近似地简化为平面问题处理,问应如何考虑?
2-2 平面问题的平衡微分方程
将(px,py)向法向、切向投影,得
2-3 平面问题中一点的应力状态
一、斜截面上的应力
2-3 平面问题中一点的应力状态
一、斜截面上的应力
2-4 几何方程 刚体位移
一、几何方程:表示应变与位移之间的关系
x x x, y , y y x, y , xy xy x, y u u x, y,v v x, y
罗建辉
第二章
平面问题的 基本理论
2-1 平面应力问题和平面应变问题
一、弹性力学空间问题的简化
(在特定的条件下)
空间问题
平面问题
二、弹性力学平面问题
1、平面应力问题 (1) 几何特征:
等厚度的薄板,厚度<<长、宽; (2) 受力特征: ∥xy面,沿板厚不变;
体力fx、fy作用于体内; 面力fx、fy作用于板边; 约束u、v 作用于板边。
思考题
1.试检查,同一方程中的各项,其量纲必然相同(可用来 检验方程的正确性)。

平面应力问题和平面应变问题

平面应力问题和平面应变问题

对于平面应力和平面应变问题,若讨论的物体截面形状及侧面受力相同,则它们所需满足的基本方程和边界条件也相同,所得到的解和应力函数均相同。

因此,它们的应力分量σ x,σ y和τ xy也相同,应力分量τ xz和τ yz均等于零,所不同的是z向应力分量 σ z,应变ε z和位移分量w。

下表列出了两种平面问题的主要差别。

力的计算公式。

返回虽然平面应力和平面应变问题的主要不同在于z向应变,位移和正应力的计算公式。

但是应该注意的问题是平面应力问题解的近似性。

由于讨论平面应力问题时,仅用了一个变形协调方程,其余五个方程未做检验。

这五个方程对于平面应变问题来讲是完全满足的,而对于平面应力问题,变形协调方程除了第四,五两式自动满足外,第二,三,六式还要求这要求ez 为x,y的线性函数,因此ez = ax+by+c,但平面应力问题又要求。

这要求sx+ sy满足线性分布。

这只有均匀应力分布,例如单向、双向拉伸,纯弯曲和纯剪切等可以满足。

这将使求解受到极大的限制,通过双调和方程和边界条件得到的弹性力学解,一般是不可能满足此条件的。

由于平面应力问题e z≠0,这使得问题的求解困难相对。

为了简化分析,对于薄板问题,e z很小,可以认为e z近似为零。

这样平面应力问题也可以像平面应变问题一样求解。

对于这样的假设,将不可避免产生误差,下面将讨论其误差。

假如重新假定应力分量s x,s y,t xy是x,y,z的函数,应力分量s z,t xz 和t yz 仍然等于零,则可以选取新的应力函数求解平面应力问题。

如果上式中函数(x,y)为双调和函数,则应力函数Y(x,y,z)完全满足平衡微分方程和六个变形协调方程。

显然,新的应力函数Y(x,y,z)与平面应力问题近似解应力函数的主要差别在于补充项的影响。

根据上述分析,可以对平面应力简化解的误差做量级上的分析。

由于平面应力问题讨论的板厚很小,补充项含有z的平方项,因此补充项对应力计算的贡献就是一个z的平方项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)求( p x, p y) 由平衡条件,并略去高阶分量体力项,得
px lσ x mτ yx , p y mσ y lτ xy ,
其中:l=cos(n,x), m=cos(n,y)。
(a)
2、平面问题中一点的应力状态 x
37
yx yx
y xx
y y
A
斜面上应力分解为:
已知P点应力σxσyτxy 可求出过P点任意斜面上的
•正应力和剪应力(σNτN) 利用(2-4)(2-5) •应力在x,y轴上的投影(px,py) 利用(2-3)
第二章
平面应力问题和平面应变问题
斜面应力
(2)求( σ n , τ n )
将 p ( p x , p y ) 向法向,切向投影,得
2 2 n lpy mpx lm(σ y σ x ) (l m ) xy . σ n lpx mp y l σ x m σ y 2lm xy ,
x
p
n
y 斜面上应力分解为:
yx
x
p px py
xy
X p ds lds
x
mds f xldsmds/ 2 0
由∑Y=0得:
px xl xym
py y m xyl
(2-3)
第二章
平面应力问题和平面应变问题
斜面应力
将得出什么结果?
第二章
平面应力问题和平面应变问题
问题
§2-3
平面问题中一点的应力状态
问题的提出: 已知坐标面上应力σ x , σ y , xy , 求斜面上的应力。
第二章
平面应力问题和平面应变问题
问题
斜面应力表示:p ( p x , p y ), p (σ n , n ). 求解:取出一个三角形微分体(包含 x 面,
2
y x
B py
x y 2
2 xy
2
注意:①平面应力状态下,任一点一般都存在 两个主应力。二者方向互相垂直。 n ② σ1+σ2=σx+σy
③任一点主应力值是过该点各截面上正应力中的极值。 2 ④最大剪应力所在平面与主 x y 1 2 平面相交45°,其值为 2
其中一阶微量抵消,并除以 d x d y 得:
σ x yx f x 0. x y (a)
Fy0 ,同理可得:
σ y y xy x f y 0. (b)
第二章
平面应力问题和平面应变问题
平衡条件
Mc0, 得
1 xy d x 1 yx d y, xy yx 2 x 2 y
σ ,
zx
故接近平面应力问题。
第二章
平面应力问题和平面应变问题
第二种:平面应变问题
纵向轴 压力管道
纵向轴
水坝
第二章
平面应力问题和平面应变问题
平面应变
第二种:平面应变问题
条件是:
(1)很长的常截面柱体;
(2)体力作用于体内,平行于横截面,沿柱体 长度方向不变; (3)面力作用于柱面,平行于横截面,沿柱 体长度方向不变; (4)约束作用于柱面,平行于横截面,沿柱 体长度方向不变。
弹性力学
朱明礼 njzhu2004@
第一节
平面应力问题和平面应变问题
第二节
第三节 第四节
平衡微分方程
平面问题中一点的应力状态 几何方程 刚体位移
第五节
第六节
物理方程
边界条件
第七节
第八节
圣维南原理及其应用
按位移求解平面问题
第九节
第十节
按应力求解平面问题
常应力情况下的简化
相容方程
应力函数
z 0, 本题中: zx , zy 0
zx , zy 0.
故只有 ε x , ε y , γ xy ,
ox
z
且仅为 f x, y 。
故为平面应变问题。
y
第二章
平面应力问题和平面应变问题
定义
§2-2
平衡微分方程
平衡微分方程--表示物体内任一点
的微分体的平衡条件。
y 面, 面), n
边长 AB ds, PB lds , PA mds.
2、平面问题中一点的应力状态 x
35
yx yx
y
y y
A
几何参数:
cos(N , x) l ,cos(N , y) m,
xx
xy xy
P P
τN
B py
xy 设AB面面积=ds, PB面积=lds, p σN x PA面积=mds。
第二章
平面应力问题和平面应变问题
平面应力
如:
弧形闸门闸墩
计算简图:
F
深梁
计算简图:
fy
fy
第二章
平面应力问题和平面应变问题
平面应力
例题1:试分析AB薄层中的应力状态。
因表面无任何面力,
即:f
x
0, f
y
0
B
故表面上,有:
σ ,
z
z
zx
, zy 0.
, zy 0.
A
在近表面很薄一层内:
px l
σ2-(σx+σy)σ+(σxσy-τ2xy)=0
1
2
x y
2

x y 2
2
2 xy
第二章
平面应力问题和平面应变问题
斜面应力
(3)求主应力
设某一斜面为主面,则只有 σ n σ , τ n 0, 由此建立方程,求出:
第二章
平面应力问题和平面应变问题
平面应变
坐标系选择如图:
对称面
oz
x
ox
z
zy
y y
第二章
平面应力问题和平面应变问题
平面应变
简化为平面应变问题:
(1)截面、外力、约束沿z 向不变,外力、约束 平行xy面,柱体非常长; 故任何z 面(截面)均为对称面。
w 0, 只有u,v; (平面位移问题)
2 2
(b)
39
主平面主应力:剪应力等于零的平面叫主平 主平面上的应力叫主应力。
yx
P xy
y
A
x
y x
B py
p y m x l l xy m px x x l xy m lm l xym x l xy py y m xyl m y m xyl m xy px m y m xyl l y xy x n xy y
小变形假定─用变形前的尺寸代替变
形后的尺寸。
第二章
平面应力问题和平面应变问题
平衡条件
列出平衡条件: 合力 = 应力×面积,体力×体积; 以正向物理量来表示。 平面问题中可列出3个平衡条件。
第二章
平面应力问题和平面应变问题
平衡条件
F 0,
x
σ x (σ x d x)d y1 σ x d y1 x yx ( yx d y )d x1 yx d x1 f x d xd y10. y
第二章
平面应力问题和平面应变问题
平面应力
§2-1
平面应力问题和平面应变问题
弹性力学空间问题共有应力、应变和 位移15个未知函数,且均为 f x, y, z ; 弹性力学平面问题共有应力、应变和 位移8个未知函数,且均为 f x, y 。
第二章
平面应力问题和平面应变问题
z
zx
xy
当 d x, d y 0 时,得切应力互等定理,
xy yx .
(c)
第二章
平面应力问题和平面应变问题
说明
对平衡微分方程的说明:
⑴ 代表A中所有点的平衡条件,
因位( x ,)∈A; y ⑵ 适用的条件--连续性,小变形; ⑶ 应力不能直接求出; ⑷ 对两类平面问题的方程相同。
第二章
第二章
平面应力问题和平面应变问题
V
h
dx
理力( V )
材力(
V hd xb )
dx dy
弹力( dV d xd y1 )
第二章
平面应力问题和平面应变问题
思考题 1.试检查,同一方程中的各项,其量纲
必然相同(可用来检验方程的正确性)。
2.将条件 Mc0 ,改为对某一角点 M 0 ,将得出什么结果? 3.微分体边上的应力若考虑为不均匀分布,
px
xy
P P
xy
n
τN
B
py
σN x
p N N
yx ( 2 y mp 3) l 2 m2 2lm N lpx y N x y xy
p
(2-4)
(2 N lpy mpx 3) N lm( y x )(l 2 m2 ) xy(2-5)
max
2
⑤主平面上剪应力等于零,但τmax
作用面上正应力一般不为零。而是:

2

xy

x y
2
第二章
平面应力问题和平面应变问题
最大,最小应力
(4)求最大,最小应力 将x,y放在 σ1 , σ 2 方向,列出任一斜面上 应力公式,可以得出(设 σ1 σ 2 )
max min
x xy ij = yx y
u,
第二章
平面应力问题和平面应变问题
两类特殊问题
相关文档
最新文档