2牛顿运动定律
牛顿第二定律超全
Q:力和运动之间到底有 什么内在联系?
(1)若F合=0,则a = 0 ,物体处于 _平__衡_状__态__。
(2)若F合=恒量,v0=0,则a=__恒_量____, 物体做_匀加速直线运动。
(3)若F合变化,则a随着_变__化___,物体做 ____变__速_运__动_____。
分析:推车时小车受4个力;合力为F- FN f.加速度为1.8m/s2.
不推车时小车受几个力?由谁产生加速度?
推车时, F f ma
F
f F ma 90 451.8 9N
f
不推车时 f ma
a
f
m
9 45
0.2m / s2
G
例4:质量为8103kg的汽车,在水平的公路上沿直 线行驶,汽车的牵引力为1.45104N,所受阻力为 2.5 103N.求:汽车前进时的加速度.
2
0.3m/s
2
s1
1 at2 2
0.3 42 2
2.4m
减速阶段:物体m受力如图,以运动方向为正方向
N2 V(正) 由牛顿第二定律得:-f2=μmg=ma2
a
故 a2 =-μg=-0.2×10m/s2=-2m/s2
f2 又v=a1t1=0.3×4m/s=1.2m/s,vt=0
G
由运动学公式vt2-v02=2as2,得:
故
a2
0
v
2 2
2s2
0 152 m/s2 2 125
0.9m/s2
由牛顿第二定律得:-f=ma2
故阻力大小f= -ma2= -105×(-0.9)N=9×104N 因此牵引力
F=f+ma1=(9×104+5×104)N=1.4×105N
2牛顿运动定律
第二章 牛顿运动定律(Newton’s Laws of Motion )§1 牛顿运动定律▲第一定律(惯性定律)(First law ,Inertia law ): 任何物体都保持静止或作匀速直线运动的状态,除非作用在它上面的力迫使它改变这种状态。
⎩⎨⎧概念定性给出了力与惯性的定义了“惯性系” 惯性系(inertial frame ):牛顿第一定律成立的参考系。
力是改变物体运动状态的原因,而并非维持物体运动状态的原因。
▲第二定律(Second lawF ρ:物体所受的合外力。
m :质量(mass ),它是物体惯性大小的量度,也称惯性质量(inertial mass )。
若m = const. ,则有:a m F ρρ= a ρ:物体的加速度。
第一定律▲第三定律(Third Law ):2112F F ρρ-=说明:1.牛顿定律只适用于惯性系;2.牛顿定律是对质点而言的,而一般物体可认为是质点的集合,故牛顿定律具有普遍意义。
Δ§2 SI 单位和量纲(书第二章第2节)Δ§3 技术中常见的几种力(书第二章第3节)Δ§4基本自然力(书第二章第4节)m 1 m 2 F 12 F 21§5 牛顿定律应用举例书第二章第2节的各个例题一定要认真看,下面再补充一例,同时说明作题要求。
已知:桶绕z轴转动,ω= const.水对桶静止。
求:水面形状(z - r关系)解:▲选对象:任选表面上一小块水为隔离体m ;▲看运动:m作匀速率圆周运动raρρ2ω-=;▲查受力:受力gmρ及Nρ,水面⊥Nρ(∵稳定时m受周围水及空气的切向合力为零);▲列方程:⎩⎨⎧-=-=-)2(sin)1(cos2rmNrmgNzωθθ向:向:θtg为z(r)曲线的斜率,由导数关系知:rzddtg=θ(3)由(1)(2)(3)得:rgrz2ddtgωθ==分离变量: r r gz d d 2ω= 积分: ⎰⎰=zz rr r g z 002d d ω得: 0222z r g z +=ω(旋转抛物面) 若已知不旋转时水深为h ,桶半径为R ,则由旋转前后水的体积不变,有: ⎰=⋅R h R r r z 02d 2ππ⎰=+Rh R r r z r g 02022d 2)2(ππω 得 g R h z 4220ω-=▲验结果: 0222z r g z +=ω ·单位:[2ω]=1/s 2 ,[r ]=m ,[g ]=m/s 2][m m/sm )/s 1(]2[2222z g ==⋅=ω,正确。
牛顿第二定律详解
牛顿第二定律详解实验:用控制变量法研究:a与F的关系,a与m的关系知识简析一、牛顿第二定律1.内容:物体的加速度跟物体所受合外力成正比,跟物体的质量成反比;a的方向与F合的方向总是相同。
2.表达式:F=ma揭示了:①力与a的因果关系,力是产生a的原因和改变物体运动状态的原因;②力与a的定量关系3、对牛顿第二定律理解:(1)F=ma中的F为物体所受到的合外力.(2)F=ma中的m,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统(几个物体组成一个系统)做受力分析时,如果F是系统受到的合外力,则m是系统的合质量.(3)F=ma中的F与a有瞬时对应关系,F变a则变,F大小变,a则大小变,F方向变a也方向变.(4)F=ma中的F与a有矢量对应关系,a的方向一定与F的方向相同。
(5)F=ma中,可根据力的独立性原理求某个力产生的加速度,也可以求某一个方向合外力的加速度.(6)F=ma中,F的单位是牛顿,m的单位是kg,a的单位是米/秒2.(7)F=ma的适用范围:宏观、低速4. 理解时应应掌握以下几个特性。
(1) 矢量性F=ma是一个矢量方程,公式不但表示了大小关系,还表示了方向关系。
(2) 瞬时性a与F同时产生、同时变化、同时消失。
作用力突变,a的大小方向随着改变,是瞬时的对应关系。
(3) 独立性(力的独立作用原理) F合产生a合;Fx合产生ax合;Fy合产生ay合当物体受到几个力作用时,每个力各自独立地使物体产生一个加速度,就象其它力不存在一样,这个性质叫力的独立作用原理。
因此物体受到几个力作用,就产生几个加速度,物体实际的加速度就是这几个加速度的矢量和。
(4) 同体性F=ma中F、m、a各量必须对应同一个物体(5)局限性适用于惯性参考系(即所选参照物必须是静止或匀速直线运动的,一般取地面为参考系);只适用于宏观、低速运动情况,不适用于微观、高速情况。
牛顿运动定律的应用1.应用牛顿运动定律解题的一般步骤:(1) 选取研究对象(2) 分析所选对象在某状态(或某过程中)的受力情况、运动情况(3) 建立直角坐标:其中之一坐标轴沿的方向然后各力沿两轴方向正交分解(4) 列出运动学方程或第二定律方程F合=a合;Fx合=ax合;Fy合=ay合用a这个物理量把运动特点和受力特点联系起来(5) 在求解的过程中,注意解题过程和最后结果的检验,必要时对结果进行讨论.2.物理解题的一般步骤:(1) 审题:解题的关键,明确己知和侍求,特别是语言文字中隐着的条件(如:光滑、匀速、恰好追上、距离最大、共同速度等),看懂文句、及题述的物理现象、状态、过程。
牛顿第二定律的理解
2. 用质量为m、长度为L的绳沿着光滑水平面拉动质量 为M的物体,在绳的一端所施加的水平拉力为F, 求: (1)物体与绳的加速度;(2)绳中各处张力的大小(假定绳 的质量分布均匀,下垂度可忽略不计。)
解:(1)以物体和绳整体为研究对
象,根据牛顿第二定律可得:
F(Mm)a a F m
Mm
F
(2)以物体和靠近物体x长的绳为研究对象,根据牛顿第二定
问题1:必须弄清牛顿第二定律的同体性。
F=ma中的F、m和a是同属于同一个研究对象 而言的,不能张冠李戴。研究对象可以是一个物体, 也可以是两个或两个以上的物体组成的系统.所以解 题时首先选好研究对象,然后把研究对象全过程的受 力情况都搞清楚。对同一个研究对象的合外力、质 量、加速度用牛顿第二定律列方程求解。
(A )
A. 8.2N
B. 7N
C. 7.4N
D. 10N
ax
解1:隔离法(略)。
解2:整体法用牛顿第二定律的分量 式求解。
ay
370
2GFNGsi2n307
FN 8.2N
解3:整体法用超重失重观点求解。斜木块和小铁块组成的系 统,小铁块失重Gsin2370=1.8N,故测力计的示数为10N-
1.8N=8.2N
C. 2m/s2, 方向竖直向上
D. 2m/s2, 方向竖直向下
N
解:拔去M的瞬间,小球受到重力和下边弹簧的弹力,重力产生的加速 度是10m/s2,方向竖直向下.此时小球的加速度大小为12m/s2.⑴若 竖直向上,则下边弹簧的弹力产生的加速度为22m/s2 ,方向竖直向上; 说明上边弹簧的弹力产生的加速度为12m/s2 ,方向竖直向下.因此 在拔去销钉N的瞬间,小球的加速度为12m/s2+10m/s2=22m/s2,方 向竖直向下.⑵若竖直向下,则下边弹簧的弹力产生的加速度大小为 2m/s2 ,方向竖直向下.说明上边弹簧的弹力产生的加速度为12m/s2, 方向竖直向上.因此在拔去销钉N的瞬间,小球的加速度为12m/s2- 10m/s2=2m/s2,方向竖直向上.
大学物理第2章 牛顿运动定律
推论:当你不去追求一个美眉,这个美眉就会待在那里不动。 2、第二定律(F=ma,物体的加速度,与施加在该物体上的外力成正比); 推论:当你强烈地追求一个美眉,这个美眉也会有强烈的反应。 评述:这个显然也是错误的!如果你是一只蛤蟆,那么公主是不会动心的。 你的鲜花送得越勤,电话费花得越多,可能对方越是反感,还可能肥了不费力 气的对手。更可能的情况是,当多个人同时在追求一个美眉时,该美眉反而无 动于衷,心想:机会多着呢,再挑一挑。所以,紧了绷,轻了松,火候要拿捏 得好。
mgR 2 F r2
R2 dv mg 2 m 由牛顿第二定律得: r dt 2 dv dv dr dv gR 又 v dr vdv 2 dt dr dt dr r
当r0 = R 时,v = v0,作定积分,得:
v gR 2 R r 2 dr v0 vdv r
故有
k
例题2-4 不计空气阻力和其他作用力,竖直上抛物体的初速 v0最小应取多大,才不再返回地球?
分析:初始条件,r R 时的速度为 v0 只要求出速率方程 v v ( r ) “不会返回地球”的数学表示式为: 当
r 时, v 0
结论:用牛顿运动定律求出加速度后,问 题变成已知加速度和初始条件求速度方程或运动 方程的第二类运动学问题。 解∶地球半径为R,地面引力 = 重力= mg, 物体距地心 r 处引力为F,则有:
说明
1)定义力
2)力的瞬时作用规律
3)矢量性
4)说明了质量的实质 : 物体惯性大小的量度
5)适用条件:质点、宏观、低速、惯性系
在直角坐标系中,牛顿第二定律的分量式为
d ( mv x ) Fx dt
牛顿运动定律点点清专题2 牛顿运动定律的理解--因果性、矢量性、独立性、同一性
牛顿运动定律点点清专题2 牛顿第二定律的理解----因果性、矢量性、独立性、同一性一知识清单1.内容:物体加速度的大小跟作用力成正比,跟物体的质量成反比.加速度的方向与作用力方向相同.2.表达式:F=ma.3.适用范围(1)只适用于惯性参考系(相对地面静止或匀速直线运动的参考系).(2)只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况.4.牛顿第二定律的“五”性5.力学单位制:单位制由基本单位和导出单位共同组成.力学单位制中的基本单位有千克(kg)、米(m)和秒(s).导出单位有N、m/s、m/s2等.二经典例题(一)牛顿第二定律的因果性(1)不管速度是大是小,或是零,只要合力不为零,物体都有加速度.(2)合力与速度同向时,物体加速运动;合力与速度反向时,物体减速运动.例题1.(多选)由牛顿第二定律表达式F=ma可知(CD).A.质量m与合外力F成正比,与加速度a成反比B.合外力F与质量m和加速度a都成正比C.物体的加速度的方向总是跟它所受合外力的方向一致D.物体的加速度a跟其所受的合外力F成正比,跟它的质量m成反比解析对于给定的物体,其质量是不变的,合外力变化时,加速度也变化,合外力与加速度的比值不变,A错;既然物体的质量不变,故不能说合外力与质量成正比,B错;加速度的方向总是跟合外力的方向相同,C正确;由a=Fm可知D正确.例题2. (2019年莆田模拟)一质点受多个力的作用,处于静止状态.现使其中一个力的大小逐渐减小到零,再沿原方向逐渐恢复到原来的大小.在此过程中,其他力保持不变,则质点的加速度大小a 和速度大小v 的变化情况是( )A .a 和v 都始终增大B .a 和v 都先增大后减小C .a 先增大后减小,v 始终增大D .a 和v 都先减小后增大解析:质点受多个力的作用,处于静止状态,则多个力的合力为零,其中任意一个力与剩余所有力的合力大小相等、方向相反,使其中一个力的大小逐渐减小到零再恢复到原来大小的过程中,则所有力的合力先变大后变小,但合力的方向不变,根据牛顿第二定律知,a 先增大后减小,v 始终增大,C 正确.答案:C例题3.由库仑定律可知,真空中两个静止的点电荷,带电荷量分别为q 1和q 2,其间距离为r 时,它们之间相互作用力的大小为F =kq 1q 2r 2,式中k 为静电力常量.若用国际单位制的基本单位表示,k 的单位应为( ) A .kg ·A 2·m 3B .kg ·A -2·m 3·s -4C .kg ·m 2·C -2D .N ·m 2·A -2解析:由公式F =k q 1q 2r 2得,k =Fr 2q 1q 2,故k 的单位为N ·m2C2,又由公式q =It 得1 C =1 A ·s ,由F =ma可知1 N =1 kg ·m ·s -2,故1N ·m 2C2=1 kg ·A -2·m 3·s -4,选项B 正确.答案:B(二)牛顿第二定律的矢量性牛顿第二定律F=ma 是矢量式,加速度的方向由物体所受合外力的方向决定,二者总是相同,即任一瞬间,a 的方向均与合外力方向相同.由于加速度的方向与合力的方向总相同,若已知合力的方向,即可确定加速度的方向;反之,若已知加速度的方向,即可确定合力的方向.图6-3例题4.如图6-3所示,一辆有动力驱动的小车上有一水平放置的弹簧,其左端固定在小车上,右端与一小球相连.设在某一段时间内小球与小车相对静止且弹簧处于拉伸状态,若忽略小球与小车间的摩擦力,则在此段时间内小车可能是( ) A .向右做加速运动B .向右做减速运动C .向左做匀速运动D .向左做减速运动B [解析] 因为弹簧处于拉伸状态,小球在水平方向受到向左的弹簧弹力F ,由牛顿第二定律的矢量性可知,小球加速度也是向左.小球与小车相对静止,故小车可能向左做加速运动或向右做减速运动,B 正确.图6-4例题5.如图6-4所示,有一辆汽车满载西瓜在水平路面上匀速前进,突然发现意外情况,紧急刹车做匀减速运动,加速度大小为a ,重力加速度为g ,则中间一质量为m 的西瓜A 受到其他西瓜对它的作用力的大小是( )A .mB .maC .mD .m (g+a )变式题 C [解析] 西瓜受到重力和其他西瓜给它的作用力而做匀减速运动,加速度水平向右,由牛顿第二定律的矢量性可知,其合力水平向右.作出西瓜A 受力情况如图所示,由牛顿第二定律可得=ma ,所以F=m ,选项C 正确.(三)牛顿第二定律的独立性(1)作用于物体上的每一个力各自产生的加速度都遵循牛顿第二定律. (2)物体的实际加速度等于每个力产生的加速度的矢量和.(3)力和加速度在各个方向上的分量也遵循牛顿第二定律,即a x =F x m ,a y =F y m.当物体受到几个力的作用时,各力将独立地产生与其对应的加速度,而物体表现出来的实际加速度是物体所受各力产生加速度的矢量和.例题6.为了节省能量,某商场安装了如图6-7所示智能化的电动扶梯,扶梯与水平面的夹角为θ.无人乘行时,扶梯运行得很慢;当有人站上扶梯时,扶梯先以加速度a 匀加速运动,再以速度v 匀速运动.一质量为m 的顾客乘扶梯上楼,恰好经历了这两个过程,重力加速度为g ,下列说法中正确的是 ( )图6-7A .顾客始终受到三个力的作用B .扶梯对顾客的支持力始终等于mgC .加速阶段扶梯对顾客的摩擦力大小为ma cos θ,方向水平向右D.顾客对扶梯作用力的方向先沿扶梯向上,再竖直向下C[解析] 顾客加速过程中,受力如图所示,由牛顿第二定律知,水平方向有f=ma cos θ,f方向水平向右,竖直方向有F N-mg=ma sin θ,则F N>mg,选项B错误,C正确;在匀速运动过程中,顾客仅受重力和支持力,且二力平衡,选项A、D错误.例题7.(多选)如图6-8所示,水平地面上有一楔形物体b,b的斜面上有一小物体a;a与b之间、b与地面之间均存在摩擦.已知楔形物体b静止时,a静止在b的斜面上.现给a和b一个共同的向左的初速度,与a和b都静止时相比,此时可能()图6-8A.a与b之间的压力减小,且a相对b向下滑动B.a与b之间的压力增大,且a相对b向上滑动C.a与b之间的压力增大,且a相对b静止D.b与地面之间的压力不变,且a相对b向上滑动BC[解析] 若两物体依然相对静止,则a的加速度一定水平向右,将加速度沿垂直于斜面与平行于斜面两个方向进行分解,则垂直于斜面方向,有F N-mg cos θ=ma'y,即支持力F N大于mg cos θ,与都静止时比较,a与b之间的压力增大;若加速度a过大,则摩擦力可能沿着斜面向下,即a物体可能有相对b向上滑动的趋势,甚至相对b向上滑动,故A错误,B、C正确.对系统,在竖直方向上,若a相对b向上滑动,则a还具有向上的分加速度,对整体,由牛顿第二定律可知,系统处于超重状态,b与地面之间的压力将大于两物体重力之和,D错误.(四)牛顿第二定律的同一性例题8.五个质量相等的物体置于光滑的水平面上,如图3所示.现向右施加大小为F、方向水平向右的恒力,则第2个物体对第3个物体的作用力等于( C )图3A.15FB.25FC.35FD.45F 解析 设每个物体的质量为m ,以整体为研究对象,根据牛顿第二定律有F =5ma ,解得整体的加速度a =F5m ;以物体3、4、5为研究对象,根据牛顿第二定律,第2个物体对第3个物体的作用力F ′=3ma =35F ,C 正确.例题9.如图5所示,物体A 、B 质量分别为m 1、m 2,物块C 在水平推力作用下,三者相对静止,一起向右以a =5m/s 2的加速度匀加速运动,不计各处摩擦,取g =10 m/s 2,则m 1∶m 2为( C )图5A .1∶2B .1∶3C .2∶1D .3∶1解析 设A 、B 间细绳的拉力大小为F T ,则有F T =m 2g ,对A 根据牛顿第二定律得:F T =m 1a ,解得m 1m 2=21,所以选项C 正确.三 达标检测题组一、因果性1.下列对牛顿第二定律的理解,不正确的是( )A .如果一个物体同时受到两个力的作用,则这两个力各自产生的加速度互不影响B .如果一个物体同时受到几个力的作用,则这个物体的加速度等于所受各力单独作用在物体上时产生加速度的矢量和C .平抛运动中竖直方向的重力不影响水平方向的匀速运动D .物体的质量与物体所受的合力成正比,与物体的加速度成反比解析:物体的质量是物体的固有属性,不会受到外界条件的影响(如:受力、运动状态、在火星上还是地球上等),故选D.答案:D2.(多选)关于单位制,下列说法中正确的是( CD ).A .kg 、m/s 、N 是导出单位B .kg 、m 、C 是基本单位C .在国际单位制中,时间的基本单位是sD .在国际单位制中,力的单位是根据牛顿第二定律定义的 解析 在力学中选定m(长度单位)、kg(质量单位)、s(时间单位)作为基本单位,可以导出其他物理量的单位,力的单位(N)是根据牛顿第二定律F =ma 导出的,故C 、D 正确.3.(2019年海南三亚一中月考)竖直起飞的火箭在推力F 的作用下产生10 m/s 2的加速度,若推力增大到2F ,则火箭的加速度将达到(取g =10 m/s 2,不计空气阻力)( )A .20 m/s 2B .25 m/s 2C .30 m/s 2D .40 m/s 2解析:根据牛顿第二定律可知F -mg =ma 1,当推力为2F 时,有2F -mg =ma 2,代入数据解得a 2=30 m/s 2,则C 正确.答案:C4.(2019年山东枣庄质检)有一轻质橡皮筋下端挂一个铁球,手持橡皮筋的上端使铁球竖直向上做匀加速运动,若某时刻手突然停止运动,则下列判断正确的是( )A .铁球立即停止上升,随后开始向下运动B.铁球立即开始向上做减速运动,当速度减到零后开始下落C.铁球立即开始向上做减速运动,当速度达到最大值后开始下落D.铁球继续向上做加速运动,当速度达到最大值后才开始做减速运动【解析】铁球匀加速上升,受到拉力和重力的作用,且拉力的大小大于重力,手突然停止运动瞬间,铁球由于惯性继续向上运动,开始阶段橡皮条的拉力还大于重力,合力竖直向上,铁球继续向上加速运动,当拉力等于重力后,速度达到最大值,之后拉力小于重力,铁球开始做减速运动,故A、B、C错误,D正确.【答案】 D5.在解一道文字计算题(由字母表达结果的计算题)时,一个同学解得x=F2m(t1+t2),用单位制的方法检查,这个结果( )A.可能是正确的B.一定是错误的C.如果用国际单位制,结果可能正确D.用国际单位制,结果错误,如果用其他单位制,结果可能正确解析:由x=F2m (t1+t2)可知x的单位为:Nkg·s=kg·m/s2·skg=m/s,此为速度的单位,而位移的单位为m,所以结果错误.答案:B6.(多选)[2018·荆州中学月考]如图K6-8所示,在一个立方体空箱子顶部用细线悬吊着一个小球,让箱子分别沿甲、乙两个倾角相同的固定斜面下滑.在斜面甲上运动过程中悬线始终竖直向下,在斜面乙上运动过程中悬线始终与顶部垂直,则箱子()图K6-8A.在斜面甲上做匀加速运动B.在斜面乙上做匀加速运动C.对斜面甲的作用力较大D.对两斜面的作用力相等.BC[解析] 斜面甲上的小球所受的合力为0,做匀速运动,斜面甲对箱子的作用力与箱子和小球的总重力(m+M)g大小相等;斜面乙上的小球所受的合力为mg sin θ,做匀加速运动,对乙图中的小球和箱子,斜面乙对箱子的作用力大小为(m+M)g cos θ,小于(m+M)g,选项B、C正确.7.(2013·新课标Ⅱ·14)一物块静止在粗糙的水平桌面上.从某时刻开始,物块受到一方向不变的水平拉力作用.假设物块与桌面间的最大静摩擦力等于滑动摩擦力.以a表示物块的加速度大小,F表示水平拉力的大小.能正确描述F与a之间的关系的图象是( C )解析当拉力F小于最大静摩擦力时,物块静止不动,加速度为零,当F大于最大静摩擦力时,根据F-f =ma知:随F的增大,加速度a增大,故选C.题组二、矢量性7.一个质量为2 kg的物体在六个恒定的共点力作用下处于平衡状态.现同时撤去大小分别为15 N和20 N 的两个力,关于此后该物体的运动,下列说法中正确的是()A.一定做匀变速直线运动,加速度大小可能是5 m/s2B.可能做匀减速直线运动,加速度大小是2 m/s2C.一定做匀变速运动,加速度大小可能是15 m/s2D.可能做匀速圆周运动,向心加速度大小可能是5 m/s2.C[解析] 由平衡条件知,余下力的合力与撤去的两个力的合力大小相等、方向相反,则撤去大小分别为25 N和10 N的两个力后,物体的合力大小范围为5 N≤F合≤35 N,物体的加速度范围为2.5 m/s2≤a≤17.5 m/s2,撤去两个力后,加速度可能为5 m/s2,但是若速度与合加速度方向不在一条直线上,则物体做曲线运动,选项A错误;撤去两个力后,加速度不可能为2 m/s2,选项B错误;若物体原来做匀速直线运动,则撤去两个力后,剩下力的合力恒定,物体做匀变速运动,加速度大小可能是15 m/s2,但不可能做匀速圆周运动,选项C 正确,D错误.图3-2-38. (2019右甘肃模拟)如图3-2-3,顶端固定着小球的直杆固定在小车上,当小车向右做匀加速运动时,球所受合外力的方向沿图中的( )A.OA方向B.OB方向C.OC方向D.OD方向【解析】据题意可知,小车向右做匀加速直线运动,由于球固定在杆上,而杆固定在小车上,则三者属于同一整体,根据整体法和隔离法的关系分析可知,球和小车的加速度相同,所以球的加速度也应该向右,即沿OD方向,故选项D正确.【答案】 D9. (2016年高考·课标全国卷Ⅰ)(多选)一质点做匀速直线运动.现对其施加一恒力,且原来作用在质点上的力不发生改变,则( )A.质点速度的方向总是与该恒力的方向相同B.质点速度的方向不可能总是与该恒力的方向垂直C.质点加速度的方向总是与该恒力的方向相同D.质点单位时间内速率的变化量总是不变解析:质点原来做匀速直线运动,说明所受合外力为0,当对其施加一恒力后,恒力的方向与原来运动的速度方向关系不确定,则质点可能做直线运动,也可能做曲线运动,但加速度的方向一定与该恒力的方向相同,质点单位时间内速度的变化量Δv总是不变的,但速率的变化量不确定,选项B、C正确.答案:BC10.鱼在水中沿直线水平向左减速游动过程中,水对鱼的作用力方向合理的是图K6-1中的()图K6-1.C[解析] 对鱼分析,加速度向右,则重力与水对鱼的作用力的合力水平向右,所以水对鱼的作用力斜向右上方,选项C 正确.11.如图K6-3所示,在质量为m的物体上加一个竖直向上的拉力F,使物体以加速度a竖直向上做匀加速运动,不计阻力.下列说法中正确的是()A.若拉力改为2F,则物体的加速度为2aB.若质量改为,则物体的加速度为2aC.若质量改为2m,则物体的加速度为D.若质量改为,拉力改为,则物体的加速度不变5.D[解析] 由牛顿第二定律得F-mg=ma,解得a==-g,若拉力改为2F,则物体的加速度为a1=-g>2a,选项A错误;若质量改为,则物体的加速度a2=-g>2a,选项B错误;若质量改为2m,则物体的加速度a3=-g<,选项C错误;若质量改为,拉力改为,则物体的加速度a4=-g=a,选项D正确.12.(多选)如图K6-9所示,质量为m的小球放在半径为R的光滑半球形槽内,当槽以加速度α向右匀加速运动时,小球离槽底的高度为h.下列说法正确的是()A.槽的加速度a越大,则h越大B.槽的加速度a越大,则h越小C.槽的加速度a越大,则小球对槽的压力越大D.槽的加速度a越大,则小球对槽的压力越小12.AC[解析] 对小球受力分析如图所示,设小球所在位置的半径与水平方向的夹角为θ,则小球所受的合力F合=,根据牛顿第二定律得F合==ma,解得tan θ=,槽的加速度a越大,则θ越小,由几何关系可知h越大,故A正确,B错误;槽对球的支持力F N=,槽的加速度a越大,则θ越小,由F N=知F N越大,由牛顿第三定律知,球对槽的压力越大,故C正确,D错误.图K6-1013.如图K6-10所示,一截面为椭圆形的容器内壁光滑,其质量为M,置于光滑水平面上,内有一质量为m的小球.当容器在一个水平向右的力F作用下向右匀加速运动时,小球处于图示位置,重力加速度为g,此时小球对椭圆面的压力大小为()A.mB.mC.D.13.B[解析] 对整体,由牛顿第二定律得,加速度a=,对小球,有F N==m,由牛顿第三定律可知,小球对椭圆面的压力大小F'N=F N=m,选项B正确.题组三、独立性14. (2019年广西南宁模拟)如图3-2-7所示,车内轻绳AB与BC拴住一小球,BC水平,开始车在水平面上向右匀速直线运动,现突然刹车做匀减速直线运动,小球仍处于图中所示的位置,则( )图3-2-7A .AB 绳、BC 绳拉力都变小B .AB 绳拉力变大,BC 绳拉力不变 C .AB 绳拉力不变,BC 绳拉力变小D .AB 绳拉力不变,BC 绳拉力变大【解析】 对球B 受力分析,受重力、BC 绳子的拉力F T2、AB 绳子的拉力F T1,如图3-2-8所示,根据牛顿第二定律,水平方向:F T2-F T1sin θ=ma图3-2-8竖直方向:F T1cos θ-mg =0 解得F T1=mgcos θ,AB 绳子的拉力不变F T2=mg tan θ+ma匀速时加速度为零,刹车后,加速度向左,取负值,所以,BC 绳子的拉力变小,故C 正确,A 、B 、D 错误.【答案】 C图3-2-915 .(2019年浙江模拟)趣味运动会上运动员手持网球拍托球沿水平面匀加速跑,设球拍和球质量分别为M 、m ,球拍平面和水平面之间夹角为θ,球拍与球保持相对静止,它们间摩擦力及空气阻力不计,则( )A .运动员的加速度为g tan θB .球拍对球的作用力为mgC .运动员对球拍的作用力为(M +m )g cos θD .若加速度大于g sin θ,球一定沿球拍向上运动解析:对球进行受力分析,受到重力mg 和球拍对它的支持力N ,作出受力分析图如图3-2-10所示,图3-2-10 图3-2-11根据牛顿第二定律得N sin θ=ma ,N cos θ=mg ,解得a =g tan θ,N =mgcos θ,故A 正确,B 错误;以球拍和球整体为研究对象进行受力分析,如图3-2-11所示,根据牛顿第二定律得,运动员对球拍的作用力为F =(M +m )g cos θ,故C 错误;当a >g tan θ时,球将沿球拍向上运动,由于g sin θ与g tan θ的大小关系未知,故D 错误.答案:A图3-2-2116.(2019年南宁模拟)如图3-2-21所示,质量为m 的球置于斜面上,被一个竖直挡板挡住.现用一个力F 拉斜面,使斜面水平面上做加速度为a 的匀加速直线运动,忽略一切摩擦,以下说法中正确的是( )A .若加速度足够小,竖直挡板对球的弹力可能为零B .若加速度足够大,斜面对球的弹力可能为零C .斜面和挡板对球的弹力的合力等于maD .挡板对球的弹力不仅有,而且是一个定值图3-2-22解析:球在重力、斜面的支持力和挡板的弹力作用下做加速运动,则球受到的合力水平向右,为ma ,如图3-2-22,设斜面倾角为θ,挡板对球的弹力为F 1,由正交分解法得F 1-F N sin θ=ma ,F N cos θ=G ,解得F 1=ma +G tan θ,可见,弹力为一定值,故D 正确.答案:D17.(2019年辽宁沈阳四校月考)如图3-2-1所示,当小车向右加速运动时,物块M 相对车厢静止于竖直车厢壁上,当车的加速度增大时 ( )图3-2-1A .M 受静摩擦力增大B .M 对车厢壁的压力减小C .M 仍相对于车厢静止D .M 受静摩擦力减小解析:分析M 受力情况如图3-2-2所示,因M 相对车厢壁静止,有F f =Mg ,与水平方向的加速度大小无关,A 、D 错误.水平方向,F N =Ma ,F N 随a 的增大而增大,由牛顿第三定律知,B 错误.因F N 增大,物体与车厢壁的最大静摩擦力增大,故M 相对于车厢仍静止,C 正确.图3-2-2答案:C18.如图K6-11所示,当车向右加速行驶时,一质量为m 的物块紧贴在车厢壁上,且相对于车厢壁静止.下列说法正确的是 ( )A .在竖直方向上,车厢壁对物块的摩擦力与物块的重力平衡B .在水平方向上,车厢壁对物块的弹力与物块对车厢壁的压力是一对平衡力C .若车的加速度变小,则车厢壁对物块的弹力不变D .若车的加速度变大,则车厢壁对物块的摩擦力也变大 .A [解析] 对物块受力分析如图所示,由牛顿第二定律知,在竖直方向,有f=mg ,在水平方向,有F N =ma ,A 正确,C 、D 错误;车厢壁对物块的弹力与物块对车厢壁的压力是一对作用力和反作用力,B 错误.题组四、统一性18.如图6所示,质量分别为m 1、m 2的两个物体通过轻弹簧连接,在力F 的作用下一起沿水平方向做匀加速直线运动(m 1在光滑地面上,m 2在空中).已知力F 与水平方向的夹角为θ.则m 1的加速度大小为( A )图6A.F cos θm 1+m 2B.F sin θm 1+m 2C.F cos θm 1D.F sin θm 2解析 把m 1、m 2看做一个整体,在水平方向上加速度相同,由牛顿第二定律可得:F cos θ=(m 1+m 2)a ,所以a =F cos θm 1+m 2,选项A 正确. 19.将力传感器A 固定在光滑水平桌面上,测力端通过轻质水平细绳与滑块相连,滑块放在较长的小车上.如图7甲所示,传感器与计算机相连接,可获得力随时间变化的规律.一水平轻质细绳跨过光滑的定滑轮,一端连接小车,另一端系沙桶,整个装置开始处于静止状态.现在向沙桶里缓慢倒入细沙,力传感器采集的F -t 图象如图乙所示.则( BD )图7A .2.5s 前小车做变加速运动B .2.5s 后小车做变加速运动C .2.5s 前小车所受摩擦力不变D .2.5s 后小车所受摩擦力不变解析 当倒入细沙较少时,M 处于静止状态,对M 受力分析有绳子拉力等于m 对M 的静摩擦力.在满足M 静止的情况下,缓慢加细沙,绳子拉力变大,m 对M 的静摩擦力逐渐变大,由图象得出2.5s 前M 都是静止的,A 、C 选项错误;2.5s 后M 相对于m 发生滑动,m 对M 的摩擦力为滑动摩擦力F f =μmg 保持不变,D 项正确;M 运动后继续倒入细沙,绳子拉力发生变化,小车将做变加速运动,B 项正确.20.某运动员做跳伞训练,他从悬停在空中的直升机上由静止跳下,跳离飞机一段时间后打开降落伞减速下落.他打开降落伞后的速度图线如图9(a)所示.降落伞用8根对称的绳悬挂运动员,每根绳与中轴线的夹角均为α=37°,如图(b)所示.已知运动员的质量为50kg ,降落伞的质量也为50kg ,不计运动员所受的阻力,打开伞后伞所受阻力F f 与速度v 成正比,即F f =kv (g 取10m/s 2,sin37°=0.6,cos37°=0.8).则下列判断中正确的是( BC )图9A .k =100N ·s/mB .打开伞瞬间运动员的加速度a =30m/s 2,方向竖直向上C .悬绳能够承受的拉力至少为312.5ND .悬绳能够承受的拉力至少为625N解析 以运动员和降落伞整体为研究对象,系统受两个力的作用,即重力和阻力,以竖直向上为正方向,由题图(a)可知:2mg =kv 匀,又v 匀=5m/s ,故k =200 N ·s/m ,选项A 错误;在打开伞的瞬间,对运动员和降落伞整体由牛顿第二定律可得kv 0-2mg =2ma ,所以a =kv 0-2mg 2m=30m/s 2,方向竖直向上,选项B 正确;设每根绳的拉力为F T ,以运动员为研究对象有8F T cos α-mg =ma ,F T =m (g +a )8cos37°=312.5N ,选项C 正确,D 错误.8.如图8所示,一质量为m 的滑块,以初速度v 0从倾角为θ的斜面底端滑上斜面,当其速度减为零后又沿斜面返回底端,已知滑块与斜面间的动摩擦因数为μ,若滑块所受的摩擦力为F f 、所受的合外力为F 合、加速度为a、速度为v,规定沿斜面向上为正方向,在滑块沿斜面运动的整个过程中,这些物理量随时间变化的图象大致正确的是( AD )图834.(空间受力情况)某同学在擦黑板时,使板擦由静止开始,沿水平方向做匀加速直线运动,用1s,板擦移动1m,板擦得质量为0.2kg,板擦与黑板之间的动摩擦因数为0.4,移动中手对板擦做用力两个效果:一个是垂直板擦的压力F1,一个是平行于黑板面的推力F2,已知F1=4 g取10,求F2 大小和方向由S=1/2at²即 1=S=1/2a 得 a=2 M/s²F2cosθθθ - μF1=ma F2sinθ=mgF2cosθ = ma+ μF1=0.2*2 + 0.4*4=2 N方向与加速度方向成45独角向上相同。
第二章-牛顿运动定律
Fi 0
( 静力学基本方程 )
二. 牛顿第二定律
某时刻质点动量对时间的变化率正比与该时刻作用在质点上
所有力的合力。
Fi
d(mv) dt
Fi
k
d(mv) dt
取适当的单位,使 k =1 ,则有
Fi
d(mv) dt
dmv dt
m
dv dt
当物体的质量不随时间变化时
Fi
m
dv dt
ma
• 直角坐标系下为
例 一柔软绳长 l ,线密度 ρ,一端着地开始自由下落.
求 下落到任意长度 y 时刻,给地面的压力为多少?
解 在竖直向上方向建坐标,地面为原点(如图).
取整个绳为研究对象 设压力为 N
N gl dp p p yv
y
dt
N gl d( yv) dy v gt
dt dt
y
l
d( yv) dyv dv y v 2 yg dt dt dt
• 同时性 —— 相互作用之间是相互依存,同生同灭。
讨论
第三定律是关于力的定律,它适用于接触力。对于非接触的 两个物体间的相互作用力,由于其相互作用以有限速度传播, 存在延迟效应。
§2.2 力学中常见的几种力
一. 万有引力
质量为 m1、m2 ,相距为 r 的 两质点间的万有引力大小为
m1
F12
r r0
l
λΔ lg
T (l)
T
N
f2
四. 摩擦力
1. 静摩擦力 当两相互接触的物体彼此之间保持相对静止,且沿接触面有 相对运动趋势时,在接触面之间会产生一对阻止上述运动趋 势的力,称为静摩擦力。
说明
静摩擦力的大小随引起相对运动趋势的外力而变化。最大 静摩擦力为 fmax=µ0 N ( µ0 为最大静摩擦系数,N 为正压力) 2. 滑动摩擦力 两物体相互接触,并有相对滑动时,在两物体接触处出现 的相互作用的摩擦力,称为滑动摩擦力。
牛顿第二定律
• 如图所示,放在水平地面上的木板长1米,质量 为2kg,B与地面间的动摩擦因数为 0.2.一质 量为3kg的小铁块A放在B的左端,A、B之间的动 摩擦因数为0.4.当A以3m/s的初速度向右运 动后,求最终A对地的位移和A对B的位移.
解:A在摩擦力作用下作减速运动,B在上、下两个表面的摩擦力 的合力作用下先做加速运动,当A、B速度相同时,A、B立即保 持相对静止,一起向右做减速运动. A在B对它的摩擦力的作用下做匀减速运动 aA=-μ Ag=一4m/s2 • B在上、下两个表面的摩擦力的合力作用下做匀加速运动 A m A g B m A m B g =lm /s2 • aB =
a1 0 • C.
a2 g
a2 mM g M
• D.a1 g
mM a2 g M
例3(双)如图所示,一个铁球从竖立在地面上的轻弹 簧正上方某处自由下落,接触弹簧后将弹簧压缩, 在压缩的全过程中,弹簧均为弹性形变,那么,当 弹簧的被压缩过程中: A.球加速度一直增大,速度也一直增大 B.球的加速度先增大后减小,但速度一直增大 C.球的加速度先减小后增大,速度先增大后减小 D.球加速度为零时,铁球速度最大 CD 在最低点时铁球加速度最大且大于重力加速度
v/ms-1 64 A
h max 768 m
g 4m / s
2
32 0 -32 B 8
16
24
32
40
48
56
t/s
F 1.8 10 N
4
-64
• 如图的装置可以测量汽车在水平路面上做匀加速直线运 动的加速度。该装置是在矩形箱子的前后壁上各安装一 个由力敏电阻组成的压力传感器。用两根相同的轻弹簧 夹着一个质量为2.0kg的滑块,滑块可以无摩擦滑动, 两弹簧的另一端分别压在传感器a、b上,其压力大小 可直接从传感器的液晶显示屏上读出。现将装置沿运动 方向固定在汽车上,传感器b在前,传感器a在后。汽 车静止时,传感器a、b的示数均为10N。(取 g=10m/s2) • (1)若传感器a的示数为14N、b的示数为6.0N,求此 时汽车加速度的大小和方向。 • (2)当汽车以怎样的加速度运动时,传感器a的示数为 零。
牛顿第二定律
教材分析:牛顿第二定律它就是在实验基础上建立起来的重要规律,也就是动力学的核心内容。
而牛顿第二定律就是牛顿第一定律的延续,就是整个运动力学理论的核心规律,就是本章的重点与中心内容。
它在力学中占有很重要的地位,反映了力、加速度、质量三个物理量之间的定量关系,就是一条适用于惯性系中的各种机械运动的基本定律,就是经典牛顿力学的一大支柱。
而且牛顿第二定律在生活生产中都有着非常重要的作用,如设计机器、研究天体运动,计算人造卫星轨道等等都与牛顿第二定律有关。
教科书将牛顿第二定律的探究实验与公式表达分成了两节内容,目的在于加强实验探究与突出牛顿第二定律在力学中的重要地位。
牛顿第二定律的首要价值就是确立了力与运动之间的直接关系,即因果关系。
本节内容就是在上节实验的基础上,通过分析说明,提出了牛顿第二定律的具体表述,得到了牛顿第二定律的数学表达式。
教科书突出了力的单位“1牛顿”的物理意义,并在最后通过两个例题介绍牛顿第二定律应用的基本思路。
教学目标:教学重点牛顿第二定律的特点教学难点(1)牛顿第二定律的理解.(2)理解k=1时,F=ma教学过程【新课导入】师:利用多媒体播放上节课做实验的过程,引起学生的回忆,激发学生的兴趣,使学生再一次体会成功的喜悦,迅速把课堂氛围变成研究讨论影响物体加速度原因这一课题中去.学生观瞧,讨论上节课的实验过程与实验结果.师:通过上一节课的实验,我们知道当物体的质量不变时物体的加速度与其所受的作用力之间存在什么关系?生:当物体的质量不变时物体运动的加速度与物体所受的作用力成正比,师:当物体所受力不变时物体的加速度与其质量之间存在什么关系?生:当物体所受的力不变时物体的加速度与物体的质量成反比. 学@科网师:当物体所受的力与物体的质量都发生变化时,物体的加速度与其所受的作用力、质量之间存在怎样的关系呢?【新课教学】一、牛顿第二定律师:通过上一节课的实验,我们再一次证明了:物体的加速度与物体的合外力成正比,与物体的质量成反比.师:如何用数学式子把以上的结论表示出来?生:a∝F/m师:如何把以上式子写成等式?生:需要引入比例常数ka=kF/m师:我们可以把上式再变形为F=kma.选取合适的单位,上式可以,简化。
牛顿运动定律知识点总结
牛顿运动定律1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态为止。
(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,(运动状态指物体的速度)又根据加速度定义:t v a ∆∆=,有速度变化就一定有加速度,所以可以说:力是使物体产生加速度的原因。
(不能说“力是产生速度的原因”(3量度。
(4(52(1(2)(3,F y =ma y ,若F 那么a 表示物体在该方向上的分加速度;若F 为物体受的若干力中的某一个力,那么a 仅表示该力产生的加速度,不是物体的实际加速度。
(4)牛顿第二定律F=ma 定义了力的基本单位——牛顿(使质量为1kg 的物体产生1m/s 2的加速度的作用力为1N,即1N=1kg.m/s 2.(5)应用牛顿第二定律解题的步骤: ①明确研究对象。
②对研究对象进行受力分析。
同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边画出来。
③若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。
④当研究对象在研究过程的不同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。
3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。
理解要点:(1)作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提;(2)作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后有反作用力;V^2-V0^2=2axT=2x/a^1/2V=v0+at,x=v0t+1/2at^2二、解析典型问题问题1:必须弄清牛顿第二定律的矢量性。
4.3《牛顿第二定律》(笔记)
所以:从这个例子可以看出, v=0 时a不一定为0 。 那么,a=0 时, v一定为0吗?
也不一定,例如:做匀速直线运动的物体, a=0,但是v≠0。
可见,a=0与v=0之间没有任何必 然关系。
推论:F合=0与v=0之间有什么关系吗?
答:F合=0与v=0之间也没有任何必然关 系,因为F合=0 时,由牛顿第二定律可 得a=0,上面已经证明了。
a、v同向,加速;a、v反向,减速。 F合、v同向,加速;F合、v反向,减速。
(2)独立性:每个力各自独立地 能使物体产生一个加速度
(3)因果性: 力是产生加速度的原因,物 体的加速度由外因“力”和内 因“质量”这两个因素共同决 定的。
思 思考:v=0,a也一定为0吗? 考 例如:竖直向上抛出一个物体,当物体到达 最高点时,速度为为多大? 速度为0 此时加速度为0 吗?或者说 合外力为0 吗? 此时物体只受重力,由牛顿第 G 二定律可得 F合=mg=ma, a=g。
第四章 牛顿运动定律
二 ︑ 牛 顿 第 2. 公式: 二 定 加速度 律
1.内容:物体加速度的大小跟 作用力成正比,跟物体的质 量成反比;加速度的方向跟 作用力的方向相同
a = m 合力
F=ma
质量
F
(1)矢量性: aa = m
F
怎样判断物体做加速运动还 是减速运动?
牛顿二定律
牛顿二定律牛顿第二运动定律是指物体加速度的大小跟作用力成正比,跟物体的质量成反比,且与物体质量的倒数成正比,加速度的方向跟作用力的方向相同。
该定律由艾萨克·牛顿于1687年在《自然哲学的数学原理》一书中提出,和第一、第三定律共同组成了牛顿运动定律,阐述了经典力学中基本的运动规律。
1定律定义牛顿在《自然哲学的数学原理》发表的原始表述:动量为的质点,在外力的作用下,其动量随时间的变化率同该质点所受的外力成正比,并与外力的方向相同;常见表述:物体加速度的大小与合外力成正比,与物体质量成反比(与物体质量的倒数成正比)。
加速度的方向与合外力的方向相同。
牛顿第二运动定律可以用比例式来表示,也可以用等式来表示,即∑F=kma,其中k是比例系数;只有当F以牛顿、m以千克、a以m/s²为单位时,∑F=ma成立。
2定律特点牛顿第二运动定律有五个特点:瞬时性:牛顿第二运动定律是力的瞬时作用效果,加速度和力同时产生、同时变化、同时消失。
矢量性:是一个矢量表达式,加速度和合力的方向始终保持一致。
独立性:物体受几个外力作用,在一个外力作用下产生的加速度只与此外力有关,与其他力无关,各个力产生的加速度的矢量和等于合外力产生的加速度,合加速度和合外力有关。
因果性:力是产生加速度的原因,加速度是力的作用效果h 故力是改变物体运动状态的原因。
等值不等质性:虽然,但不是力,而是反映物体状态变化情况的;虽然,仅仅是度量物体质量大小的方法,3实验验证牛顿第二运动定律实验是物理中的一个很基础、必要的验证性实验,涉及到检验一个物理定律或规律的基本途径和方法,因此对于其实验精度往往有特殊的要求。
牛顿第二运动定律验证实验,就是测量在不同的作用下运动系统的加速度,并检验二者之间是否符合上述关系。
利用现代的实验教学设施改进和补充原来的实验手段,更能体现出物理学的科学素养和科学态度。
《牛顿第二定律》-完整ppt课件
列几种描述中,正确的是 [
]
• A.接触后,小球作减速运动,加速度的绝对值越来越大 速度越来越小,最后等于零
• B.接触后,小球先做加速运动,后做减速运动,其速度 先增加后减小直到为零
• C.接触后,速度为零的地方就是弹簧被压缩最大之处, 加速度为零的地方也是弹簧被压缩最大之处
(2)若在3s末给物体再加上一个大小也是2N,方向水平向左 的拉力F2,则物体的加速度是多大?(0)
(3)3s后物体的加速度为0,那是不是说3s后F1不再产生加速 度了呢?
物体受到几个力的作用时,每 个力各自独立地使物体产生一个 加速度,就像其他力不存在一样, 这个性质叫做力的独立性原理。 物体的加速度等于各个分力分别 产生的加速度的矢量和。
(sin37° =0.6,cos37° =0.8, g=10m/s2 。)
35
拓展题:
1.光滑水面上,一物体质量为1kg,初速度为0,从0时刻开始 受到一水平向右的接力F ,F随时间变化图如下,要求作出速 度时间图象。
3 F/N
2
1
0
t/s
1 2 34
v(m/s)
3
2
1
0
1
2 34
t(s)
36
• 2、如图所示,一小球自空中自由落下,与正下方的直立轻质
16
练习二:
质量为1kg 的物体受到两个大小 分别为2N 和4N 的共点力作用。则物 体的加速度大小可能是 A、5m/s2 B、3m/s2 C、2m/s2
D答、案2:ABC
17
例1:光滑水平面上有一个物体,质量是2㎏,
受到互成120o角的两个力F1和F2的作用。这
牛顿第二定律
第三章 牛顿运动定律第二单元 牛顿第二定律[知识梳理]:1.牛顿第二定律的表述:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同,即F =ma (其中的F 和m 、a 必须相对应)2.对定律的理解:(1)矢量性:牛顿第二定律公式是矢量式。
公式mFa =只表示加速度与合外力的大小关系。
矢量式的含义在于加速度的方向与合外力的方向始终一致。
(2)瞬时性:加速度与合外力在每个瞬时都有大小、方向上的对应关系,这种对应关系表现为:合外力恒定不变时,加速度也保持不变。
合外力变化时加速度也随之变化。
合外力为零时,加速度也为零。
(3)独立性:当物体受到几个力的作用时,各力将独立的产生与其对应的加速度,而物体表现出来的实际加速度是各力产生的加速度的矢量和。
3.牛顿第二定律确立了力和运动的关系牛顿第二定律明确了物体的受力情况和运动情况之间的定量关系。
联系物体的受力情况和运动情况的桥梁或纽带就是加速度。
[典型例题](一)牛顿第二定律的矢量性、瞬时性、独立性 (1)牛顿第二定律的矢量性、瞬时性 牛顿第二定律公式mFa =是矢量式。
加速度的方向与合外力的方向始终一致。
加速度的大小和方向与合外力是瞬时对应的,当力发生变化时,加速度瞬时变化。
【例1】如图(1)所示,一质量为m 的物体系于长度分别为L 1 、L 2的两根细线上,L 1的一端悬挂在天花板上,与竖直方向夹角为θ,L 2水平拉直,物体处于平衡状态。
现将L 2线剪断,求剪断瞬时物体的加速度。
(1)下面是某同学对该题的某种解法:解:设L 1线上拉力为T 1,L 2线上拉力为T 2,重力为mg ,物体在三力作用下处于平衡。
=θcos 1T mg ,21sin T T =θ,解得2T =mg tan θ,剪断线的瞬间,T 2突然消失,物体却在T 2反方向获得加速度,因为mg tanθ=ma 所以加速度a =g tan θ,方向在T 2反方向。
牛顿第二定律的性质
1:瞬时性:加速度和力的关系是瞬时对应, a与 F同时产生,同时变化,同时消失;
2:矢量性:加速度的方向总与合外力方向相同;
3:独立性(或相对性):当物体受到几个力的 作用时,可把物体的加速度看成是各个力单 独作用时所产生的分加速度的合成;
4:牛顿运动定律的适应范围:是对宏观、低速 物体而言;
A
B
变式训练2:如图所示,一平直的传送带以速度V =2m/s匀速运动,传送带把A处的工件运送到B处, A、B相距L=10m.从A处把工件无初速地放到传 送带上,经时间t=6s能传送到B处,欲用最短时 间把工件从A处传到B处,求传送带的运行速度至 少多大.
A
B
例题分析:
例2:如图所示,一水平方向足够长的传 送带以恒定的速度V=2m/s沿顺时针方 向匀速转动,传送带传送带右端有一与 传送带等高的光滑水平面,一物体以恒定 的速率V’=4m/s沿直线向左滑上传送带, 求物体的最终速度多大?
要较长时间,在瞬时问题中,其弹力可以看成不变。
一条轻弹簧上端固定在 天花板上,下端连接一物 体A,A的下边通过一轻 绳连接物体B.A,B的质 量相同均为m,待平衡后 A 剪断A,B间的细绳,则剪 断细绳的瞬间,物体A的 B 加速度和B的加速度?
质量皆为m的A,B两球之间系 着一个不计质量的轻弹簧,放 在光滑水平台面上,A球紧靠墙 壁,今用力F将B球向左推压弹 簧,平衡后,突然将力F撤去的瞬 间A,B的加速度分别为多少?.
则当将两物体由静
止释放后,弹簧秤
的读数是多少?
M1
M2
传送带问题
学习重点、难点、疑点、突破 水平传送带问题的演示与分析 传送带问题的实例分析 传送带问题总结
难点与疑点:
大学物理第2章 牛顿运动定律
a 0 大 F0 大
雷管
导板
F0
S´
撞针滑块
滑块受摩擦力大
雷管不能被触发! 鱼雷
a0
v
敌 舰 体
28
【例】在光滑水平面上放一质量为M、底角为 、斜边光滑的楔块。今在其斜边上放一质量 为m的物体,求物体沿楔块下滑时对楔块和对 地面的加速度。 a 0 :楔块对地面 a :物体对楔块
3
§2.1 牛顿定律与惯性参考系
一、牛顿定律
1、第一定律(惯性定律) 物体保持静止或匀速直线运动不变,除非作 用在它上面的“力”迫使它改变这种状态。 更现代化的提法:
“自由粒子”总保持静止或匀速直线运动状态。
“惯性”的概念-物体保持静止或匀速直线 运动不变的属性,称为惯性。
4
2、第二定律 运动的“变化”与所加动力成正比,并发生 在力的方向上 dv
的量纲就分别为 v =LT1 和 F = MLT2。 只有量纲相同的项才能进行加减或用等式联接。
12
§2.3 技术中常见的几种力
重力:由于地球吸引使物体所受的力。质量与重力 加速度的乘积,方向竖直向下。 弹力:发生形变的物体,由于力图恢复原状,对与 它接触的物体产生的作用力。如压力、张力、拉力、支 持力、弹簧的弹力。 拉力 支持力 张力 与支持面垂直 各点张力相等
在弹性限度内:f =-kx,方向总是与形变的方向相反。 摩擦力:物体运动时,由于接触面粗糙而受到的阻碍 运动的力。分滑动摩擦力和静摩擦力。大小分别为: fk= kN 及 fsmax=sN。 一般,μs>μk
13
§2-4 基本的自然力 一、万有引力:
f G m 1m r
2 2
G 为万有引力恒量 G = 6.67 10-11 Nm2/kg2
牛顿第二定律
T
θ mg
由于 a =10m/s2 > a0 所以小球会离开斜面, 所以小球会离开斜面,受力如下图
T sinα = mg T cosα = ma ∴T = (mg)2 + (ma)2 2.33(N) =
mg α
T
θ
∴N = 0.
例4.如图所示,质量为0.2kg的小球A用细 绳悬挂于车顶板的O点,当小车在外力作 用下沿倾角为30°的斜面向上做匀加速直线 运动时,球A的悬线恰好与竖直方向成 30°夹角。求: (1)小车沿斜面向上运动的加速度多大? (2)悬线对球A的拉力是多大?
解:对球A做受力分析 A受两个力重力mg、绳子的拉力T 将二力沿图示x、y方向分解 x Tcos30°-mgsin30°=ma ① y Tsin30°-mgcos30°=0 ②
小结: 小结:
牛顿运动定律的应用是力学的重点之一. 牛顿运动定律的应用是力学的重点之一. 在已知运动情况求力或已知力分析运动情 况都是以加速度这一物理量作为(桥梁) 况都是以加速度这一物理量作为(桥梁) 来解决问题. 来解决问题.
牛顿第二定律
必修一 ·物理(RJ)
第四章 牛顿运动定律
不同模型瞬时加速度的求法辨析 物体在某时刻的瞬时加速度由合力决定,当物体受力发 生变化时,其加速度同时发生变化。这类问题常会遇到轻 绳、轻杆、轻弹簧、橡皮条等模型。全面准确地理解它们 的特点,可帮助我们灵活正确地分析问题。 (1)它们的共同点:质量忽略不计,都因发生弹性形变产 生弹力,同时刻内部弹力处处相等且与运动状态无关。
必修一 ·物理(RJ)
第四章 牛顿运动定律
二、力的单位 1.国际单位
牛顿 ,简称 牛 ,符号为 N 。 2.“牛顿”的定义 使质量为1 kg的物体产生1 m/s2的加速度的力叫做1 N, 即1 N=1 kg·m/s2 。 3.比例系数k的意义 (1)在F=kma中,k的选取有一定的 任意性 。 (2)在国际单位制中k= 1,牛顿第二定律的数学表达式为 F=ma,式中F、m、a的单位分别为 N 、 kg 、m/s2 。
【总结提升】 应用牛顿第二定律应注意的两个问题 (1)要注意分析物体的受力情况和运动情况,而加速度是联 系受力情况和运动情况的桥梁。 (2)使用公式F=ma时,F、m、a三个物理量的单位必须采 用统一的国际单位,否则公式中比例系数k不等于1。
必修一 ·物理(RJ)
第四章 牛顿运动定律 变式训练3 如图甲所示,固定光滑轻杆与地面成一定倾
(2)公式F=ma可以纯数学理解吗,比如F∝m、F∝a对吗?
【提示】 物理公式具有具体的物理含义,公式F=ma中,F 指合外力,由外界决定,m由物体决定,加速度a由合外力F与 质量m共同决定。
必修一 ·物理(RJ)
第四章 牛顿运动定律
【解析】 虽然 F=ma 表示牛顿第二定律,但 F 与 a 无 关,因 a 是由 m 和 F 共同决定的,即 a∝mF且 a 与 F 同时产 生、同时消失、同时存在、同时改变;a 与 F 的方向永远相 同。综上所述,可知 A、B 错误,C、D 正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢当a≠0且m≠0(绳子质量不能忽略时),绳上各点的 张力不同
三、摩擦力
阻碍彼此接触的物体相对运动或相对运动趋势的力
静摩擦力
物体没有相对运动,但有相对运动的趋势
FSF
Fmax 0FN
滑动摩擦力
物体有相对运动,滑动摩擦力与正压力成正比
Fk FN μ为滑动摩擦系数 <μ0
湿摩擦力 固体在流体中运动时受到的摩擦力
m
dv dt
Fn mna
m
v2
•对应性:各分力产生自己对应的加速度分量; •瞬时性:合外力是与加速度相伴随的。
牛顿第二定律只适用于低速、宏观领域
当物体的运动速度接近光速或研究微观物体的运动时, 需要分别应用相对论力学和量子力学规律
三、牛顿第三定律
两个物体间的相互作用力总是等值反向,分别作用在 两个物体上。
F12 F21
F12 F21
成对性 同时性 一致性
无作用先后之分,同时产生,同时消灭 同种类型的力
§2 基本力、常见力
力程
万有引力
长程力
电磁力
长程力
弱力
<10-17 m 短程力
强力
<10-15 m 短程力
强度
10-34N
相互作用 一切物体之 物体 间
其他特点 大尺度范围 内起决定作 用(天体)
§4 质点动力学的两类问题
(1)微分 r v a F
(2)积分 F a v r
解题步骤: •确定研究对象; •进行受力分析; •选择坐标系; •列牛顿运动方程求解(通常取分量式); •讨论结果,判断其是否合理和正确。
例、质量为m的小球,在水中受的浮力为常力F,当
它从静止开始沉降时,受到水的粘滞阻力为f=-kv(k为
常数),证明小球在水中竖直沉降的速度v与时间t 的
关系为 vm gF(1ekmt)
v较小时, fd= - kv v较大时, fd= - kv2
§3 物理量的单位和量纲
物理量表示为 Q={数值}[单位]
基本量 基本单位 导出量 导出单位 单位制
一、国际单位制(SI) System of International Units
长度 质量 时间 热力学 电流 物质的量 发光强度 温度
传递媒介 引力子
(尚未发现)
102N
10-2N
一切带电 多数粒子之 粒子之间 间
光子 g
主要发生在 粒子衰变及 俘获过程中
中间玻色子 W±,Z0 (1983 年发现)
104N 强子之间 (核子、介 子、超子)
胶子G (已被间接 确认尚未被 分离出来)
★ 物理学家的目标: •四种力可否从一种更基本、更简单的力导出? •各种力是否能统一在一种一般的理论中?
线方向上。
Fma
(m为常量时)
•质量 物体惯性大小的量度
Fmamddv t md d2 tr2
F d(mv) dt
直角坐标系中的分量式
自然坐标中的分量式
Fx max
m
dv x dt
m
d2 dt
x
2
Fymya mdd vtymd d2 t2 y
Fzmza mdd vtz md dt22 z
Ft mat
•超大统一: 四种力的统一
一、万有引力
任意两个质点之间的相互吸引力
F12Gmr1m 22er
万有引力常量
G = 6.6 7 11 0N 1m 2k2 g
重力:地球对其表明附近物体的万有引力
P mg g=9.8ms2
Mm P G R2
gG M R2
二、弹性力
因形变而产生的恢复力 弹簧的弹性力
★ 已做和待做的工作:
• 20世纪20年代,爱因斯坦最早着手这一工作。 最初是想统一电磁力和引力, 但未成功。
• 弱、电统一: 1967年温伯格等Байду номын сангаас出理论 1983年实验证实理论预言
•大统一 : 弱、电、强 统一已提出一些理论 因目前加速器能量不够而无法实验证实。 (需要1015Gev, 现103Gev)
f kx
虎克定律:在弹性限度内,弹性力的大小与弹簧的伸 长量成正比,方向指向平衡位置
压力、支持力 正压力(作用在支承面上) 支持力(作用在物体上)
绳索内的张力
TA Fma TATBma
➢当a=0或者m→0(轻绳)时,
F TA TA TA
TA TB TB TB
F T A T B
对质量忽略不计的轻绳,各点的张力相同
米 千克 秒 开 安培 摩尔 坎德尔
m kg s K A mol
cd
SI辅助单位
平面角 弧度 rad 立体角 球面度 Sr
二、量纲(式)
例如: 速度 [v]=[r]/[t]=LT-1 加速度 [a]=[v]/[t]=LT-2
dimQLpMqTr p、q、r称为量Q的量纲指数。
➢在不同的单位制中,若基本量不同,量纲也不同 ➢单位和量纲是两个概念,量纲反映关系,单位反映尺 度。例如时间的单位可以是秒、天、年等,并不会改 变量纲式。 ➢只有量纲相同的物理量才能相加减或用等号相连接; 可以用来帮助记忆与推导公式,检验方程的准确性 ➢无量纲量:量纲指数等于零, 如弧度、摩擦系数等。
算出海王星 Neptune
不能解释水星近日点进动
§1 牛顿运动定律
一、牛顿第一定律
任何物体都将保持其静止或匀速直线运动状态,直到其 他物体的相互作用迫使它改变运动状态为止。
F i 0 v c o n s t.
•惯性 保持其运动速度不变的性质 •力 物体间的作用
二、牛顿第二定律
运动的变化与所施加的力成正比,并且发生在力所沿直
动力学是研究物体与物体之间的相互作用以 及由于这种相互作用而引起的物体运动状态 的变化规律
• 牛顿运动定律 • 动量定理、动量守恒定律 • 质心运动定理 • 角动量定理、角动量守恒定律 • 动能定理、功能原理、能量守恒定律
牛顿运动三个定律是整个动力学的基础
第二章 牛顿运动定律
§1 牛顿运动定律 §2 基本力、常见力 §3 物理量的单位和量纲 §4 质点动力学的两类问题 §5 惯性系与非惯性系
牛顿 (Isaac Newton, 1642―1727)
英国物理学家、数学家、天文学家,经 典物理学的奠基人。
重要贡献有万有引力定律、经典力学、微 积分和光学。 •万有引力定律:总结了伽利略和开普勒 的理论和经验,用数学方法完美地描述了 天体运动的规律。 •牛顿定律:《自然科学的数学原理》中 含有牛顿运动三条定律和万有引力定律, 以及质量、动量、力和加速度等概念。 •光学贡献:牛顿发现色散、色差及牛顿 环,他还提出了光的微粒说。 •反射式望远镜的发明