第二章 单自由度系统的自由振动

合集下载

机械振动学_第二章单自由度振动系统

机械振动学_第二章单自由度振动系统

第二章单自由度系统振动§1-1 概述单自由度系统的振动理论是振动理论的理论基础。

(1)尽管实际的机械都是弹性体或多自由度系统,然而要掌握多自由度振动的基本规律,就必须先掌握单自由度系统的振动理论。

此外,(2)许多工程技术上的具体振动系统在一定条件下,也可以简化为单自由度振动系统来研究。

[举例如下:]例如:(1)悬臂锤削镗杆;(2)外圆磨床的砂轮主轴;(3)安装在地上的床身等。

[力学模型的简化方法]若忽略这些零部件中的镗杆、主轴和转轴的质量,只考虑它们的弹性。

忽略那些支承在弹性元件上的镗刀头、砂轮、床身等惯性元件的弹性,只考虑它们的惯性。

把它们看成是只有惯性而无弹性的集中质点。

于是,实际的机械系统近似地简化为单自由度线性振动系统的动力学模型。

在实际的振动系统中必然存在着各种阻尼,故模型中用一个阻尼器来表示。

阻尼器由一个油缸和活塞、油液组成。

汽车轮悬置系统等等。

[以上为工程实际中的振动系统]单自由度振动系统——指用一个独立参量便可确定系统位置的振动系统。

所有的单自由度振动系统经过简化,都可以抽象成单振子,即将系统中全部起作用的质量都认为集中到质点上,这个质点的质量m 称为当量质量,所有的弹性都集中到弹簧中,这个弹簧刚度k称为当量弹簧刚度。

以后讨论中,质量就是指当量质量,刚度就是指当量弹簧刚度。

在单自由度振动系统中,质量m、弹簧刚度k、阻尼系数C是振动系统的三个基本要素。

有时在振动系统中还作用有一个持续作用的激振力P。

应用牛顿运动定律,作用于一个质点上所有力的合力等于该质点的质量和该合力方向的加速度的乘积。

(牛顿运动定律)(达伦培尔原理)现取所有与坐标x 方向一致的力、速度和加速度为正,则:kx x C t P xm --= ωsin 0 (牛顿运动定律) (达伦培尔原理:在一个振动体上的所有各力的合力必等于零) (动静法分析:作用在振动体上的外力与设想加在此振动体上的惯性力组成平衡力系)上式经整理得,t P kx x C xm ωsin 0=++ (2.1) 该式就是单自由度线性振动系统的运动微分方程式的普遍式。

2-单自由度自由振动

2-单自由度自由振动

第2章 单自由度系统自由振动
2.5 具有黏性阻尼的振动系统
31
给出初始条件:t=0时 x x0 , x v0
则可确定系数B和D B v0 ( 2 1)n x0 2n 2 1
D v0 ( 2 1)n x0 2n 2 1
第2章 单自由度系统自由振动
2.5 具有黏性阻尼的振动系统
不大,特别是当阻尼很小(<<1)时,可
以忽略阻尼对振动频率和周期的影响。
第2章 单自由度系统自由振动
2.5 具有黏性阻尼的振动系统
40
2.6 对数衰减率
振幅衰减的快慢程度可用相邻振幅 的比值来表示,称为衰减率或减幅率或 减缩率;也可以用衰减率的自然对数来 表示,称为对数衰减率。
第2章 单自由度系统自由振动
第2章 单自由度系统自由振动
2.3 能量法
22
P15例2-3-2 利用能量法求纯滚动圆盘 系统作微幅振动的固有频率。
第2章 单自由度系统自由振动
2.3 能量法
23
2.4 瑞利法
一般不考虑弹性元件的质量对振动系统的 影响,若这些质量不可忽略的时候,“瑞利法” 的思想,是将这些弹性元件所具有的多个集中 质量或分布质量简化到系统的集中质量上去, 从而变成典型的单自由度振动系统。
T 2 n
周期是系统振动一次所需要的时间,单位 为秒(s)。
周期的倒数称为频率,是系统每秒钟振动 的次数,单位为1/秒(1/s)或赫兹(Hz)。记作 f
f 1 n T 2
第2章 单自由度系统自由振动
2.2 自由振动系统
13
固有频率n和频率 f 只相差常数2,因
此经常通称为固有频率。是振动分析中极
已知质量为m,弹簧的刚 度系数为k。取质量的静平衡 位置为坐标原点,当重物偏离 x 时,利用牛顿定律可得到运 动微分方程:

第二章 单自由度系统振动的理论及应用

第二章 单自由度系统振动的理论及应用

M t
则得
2 .. n 0
通解为:
A sin(n t 0 )
代入:
将振动的初始条件t= 0 , 0 , . 0.
A
.0 2 0 2 n
2
n 0 0 arctan . 0
例: 已知:质量为m=0.5kg的物体沿光滑斜面无初速度滑下。 当物块下落高度h=0.1m时,撞于无质量的弹簧上, 并与弹簧不再分离,弹簧刚度系数k=0.8kN/m。 倾角 30 求:此系统振动的固有频率和振幅并给出物块的运动方程。
计算固有频率的能量法
无阻尼自由振动系统没有能量的损失,振动将永远持续下去. 在振动过程中,系统的动能与弹簧的势能不断转换,但总的机械能 守恒.因此,可以利用能量守恒原理计算系统的固有频率. 如图所示无阻尼振动系统 当系统作自由振动时,运动规律为:
x A sin(0t )
速度为:
dx v 0 A cos(0t ) dt
称为单自由度线性纵向振动系统的运动微分方程式,又称单 自由度有粘性阻尼的受迫振动方程.
可分为如下几种情况进行研究:
(1)当c=0,F(t)=0时, 该方程为单自由度无阻尼自由振动方程.
(2)当F(t)=0时, mx cx kx 0 该方程为单自由度有拈性阻尼的自由振动方程.
.. .
mx .. kx 0
由机械能守恒定律有
Tmax Vmax

1 1 2 2 J 0 Φ ( k1l 2 k 2d 2 )Φ 2 2 2
解得固有频率
0
k1 l 2 k 2 d 2 J
例: 已知:如图表示一质量为m,半径为r的圆柱体,在一半 径为R的圆弧槽上作无滑动的滚动。 求:圆柱体在平衡位置附近作微小振动的固有频率。

第2章单自由度的自由系统

第2章单自由度的自由系统
这就是应用于振动系统的能量守恒原理。对时 间求导,得
以具体振动系统的能量表达式代人上式,化简后 即可得出描述振动系统自由振动的微分方程。
如果取平衡位置为势能零点,根据自由振动 的特点,系统在平衡位置时,系统的势能为零, 其动能的极大值Tmax就是全部机械能,而在振 动系统的极端位置时,系统的动能为零,其势能 的极大值Umax等于其全部的机械能。由机械能 守恒定律,有
式中,k为梁的弹簧刚度,对于简支梁带有中间集中 质量时
下面证明一个等截面悬臂梁(如图)在自由端的
等效质量为
。假定梁自由振动时的振动形式
则系统的最大动能为
系统的最大势能为
则得固有频率ωn同前。
例2.2-2细杆OA可绕水平轴O转动,如图所示,
在静平衡时成水平。杆端锤的质量为m,杆与弹
簧的质量均可略去不计,求自由振动的微分方程
及周期。
解:在杆有微小偏角φ时,
弹簧的伸长以及锤的位移与
速度可以近似地表示为aφ,
lφ与 。故振动系统的动能
与势能可以表示为
因为mg=kδs,上式仍可简化为

可见前面关于物体沿光滑平面运动的讨论,同样适
用于对物体沿铅垂方向的振动,只要取物体的静平
衡位置为坐标原点。
从弹簧的静变形可以方便地计算出振动系统
的固有频率。
因为由式



例2.1-1 均匀悬臂梁长为l,弯曲刚度为EJ,重量 不计,自由端附有重为P=mg的物体,如图所示。 试写出物体的振动微分方程,并求出频率。
只要振动系统的自由振动是简谐振动,则由该 方程可以直接得出系统的固有频率。不需要列出振 动微分方程。
例2.2-1有一个重量为W,半径为r的实心圆柱体, 在半径为R的圆柱形面上无滑动地滚动,如图所 示。假设该滚动的圆柱体进行简谐运动,试求它 绕平衡位置作微小摆动时的固有频率ωn。

第二章单自由度系统自由振动)

第二章单自由度系统自由振动)
二、单自由度系统的自由振动 1、无阻尼系统的自由振动 2、有阻尼系统的自由振动
三、单自由度系统在简谐激励作用下的受迫振动 1、简谐激励下的受迫振动响应及频谱分析 2、受迫振动的复数求解法--单位谐函数法 3、支座简谐激励(位移激励)引起的振动与被动隔振 4、偏心质量(力激励)引起的振动与主动隔振 5、测振传感器的原理
正弦型激励 周期激励 任意激励
k
kx m x
m
F(t)
mx kx F0 sin t
p2 k m
x p2x F0 sin t
第一章 概论
一、振动及其研究的问题 1、振动 2、振动研究的问题 振动隔离 在线控制 工具开发 动态性能分析 模态分析
第一章 概论
二、振动分类及研究振动的一般方法 1、振动分类:振动分析、振动环境预测、系统识别 2、研究振动的一般方法 (1)理论分析方法
建立系统的力学模型、建立运动方程、求解方程得到响应 (2)实验研究方法 (3)理论与实验相结合的方法
②旋转矢量表示法
③复数表示法
z Acos(t ) iAsin(t )
z Aei(t )
eit cost i sin t eit cost i sin t
x Im( Aei(t) ) Asin(t )
x

iAei(t )
振幅
A
x02


x0 p
2
初相位
arctan px0
x0
固有圆频率 p k m
(rad/s)
固有频率 f p 1 k
2 2 m
(HZ)
固有周期 T 1 2 m (s)
f
k
例题2.7 某仪器中一元件为等截面悬臂梁,梁的质 量可忽略。在梁的自由端由磁铁吸住两个集中质量 m1、m2。梁在静止时,断电使m2突然释放,求随 后m1的振动。

第二章 单自由度系统的自由振动

第二章 单自由度系统的自由振动
位转角所需的力矩 (N m / rad)
k
I
在圆盘的静平衡位置上任意选一根半径作 为角位移的起点位置
由牛顿第二定律:
I&& k 0
&& 02 0
扭振固有频率
0
k I
第二章 单自由度系统的自由振动
由上例可看出,除了选择了坐标不同之外,角振动与直线振动的数学描述 完全相同。如果在弹簧质量系统中将 m、k 称为广义质量及广义刚度,则弹 簧质量系统的有关结论完全适用于角振动。以后不加特别声明时,弹簧质 量系统是广义的 。
对时间求导 取平衡位置为势能零点,根据自由振动的特点,系统在平衡位置时,系统的势能 为零,其动能的极大值就是全部机械能;而在振动系统的极端位置时,系统的动 能为零,其势能的极大值等于全部的机械能,即有:
例题讲解3 均匀悬臂梁长为 l, 弯曲刚度为EJ,重量不计, 自由端附有重为P=mg的物体,如图所示。试 写出物体的振动微分方程,并求出频率。 梁的自由端将有静挠度: 物体的振动微分方程为:
8
第二章 单自由度系统的自由振动
例题讲解3 重物落下,与简支梁做完全非弹性碰撞
梁长 L,抗弯刚度 EJ m
h
第二章 单自由度系统的自由振动
2.1 简谐振动
由牛顿定律,有 设系统固有频率为 二阶常系数线性齐次常微分方程
通解形式为
1
第二章 单自由度系统的自由振动
根据三角关系式
改 写
由此可以知道:该系统以 固有频率作简谐振动。
振动周期:
振动频率:
2
第二章 单自由度系统的自由振动
设在初始时刻t=0,物体有初位移
弹簧原长位置
m&x& kx 0

第二章(第2,3节)单自由度系统的自由振动

第二章(第2,3节)单自由度系统的自由振动

2
R r 2 2
圆柱体的势能为相对于最低位置O的重力势能。 若选圆柱体中心C在运动过程中的最低点为零势能 点,则系统的势能为 2 U W ( R r )( 1 cos ) 2W ( R r ) sin
2
2.2 能量法
例题:用能量法求解系统的振动微分方程与固有频率(例2.2-1)
2.2 能量法
例题:用能量法求解系统的振动微分方程与固有频率(例2.2-1)
例2.2-1 有一个重量为W,半径为r的实心圆柱体, 在半径为R的圆柱形面上无滑动地滚动,如图2.2-1所示。 假设该滚动的圆柱体进行简谐运动,试求它绕平衡位置作 微小摆动时的固有频率n。 解:圆柱体在摆动时 有两种运动:移动和滚动。 设坐标如图2.2-1示。 摆动时圆柱体中心C点的速度 及圆柱体的角速度分别为
1 k 1 k1 1 k2 1 kn
图 2.3-2
k
i 1
n
1
i
(2.3-2)
2.3 等效刚度系数
串、并联弹簧的等效刚度的计算
图2.3-2(b)是两个并联弹簧,刚度系 数分别为k1和k2。两个弹簧所受的力分别 为k1xB、k2xB 根据静力平衡条件得: F k 1 x B k 2 x B
2.3 等效刚度系数
串、并联弹簧的等效刚度的计算
图2.3-2(a)是两个串联弹簧,刚度系数分 别为k1和k2。B点的位移及等效刚度系数为
xB F k1 F k2
k
F xB

k1k 2 k1 k 2
串联弹簧的作用使系统中的弹簧刚度降低。
如果有n个弹簧串联,刚度系数分别为k1, k2, …, kn,则等效刚度系数k应满足关系式

第二章单自由度系统的自由振动

第二章单自由度系统的自由振动

可见动张力几乎是静张力的一半,由于
v kA k v km wn
因而为了降低动张力,应该降低系统的刚度
15
例2.2 图示的直升机桨 叶经实验测出其质量 为m,质心C距铰中心 O距离为l。现给予桨 叶初始扰动,使其微 幅摆动,用秒表测得 多次摆动循环所用的 时间,除以循环次数 获得近似的固有周期, 试求桨叶绕垂直铰O的 转动惯量。
第二章 单自由度系统的自由振动
以弹簧质量系统为力学模型,讨论单自由度 无阻尼系统的固有振动和自由振动, • 固有振动的表现形式为简谐振动,其固有频率 的计算方法有静变形法、能量法、瑞利法以及 等效刚度、等效质量法 • 有阻尼的系统根据阻尼的大小分为过阻尼、临 界阻尼及欠阻尼三种状态
1
单自由度系统的自由振动
一、自由振动的概念:
以弹簧质量系统为力学模型
2
运动过程中,总指向物体平衡位置的力称为恢复力。 物体受到初干扰后,仅在系统的恢复力作用下在其平衡位 置附近的振动称为无阻尼自由振动。 质量—弹簧系统: 令x为位移,以质量块的静平衡位置 为坐标原点,当系统受干扰时,有:
m mg k (s x) x
O l C mg
16
解:取图示坐标系,将直升机桨叶视为一物 理摆,根据绕固定铰的动量矩定理得到其 摆动微分方程
J 0 mgl sin
O l C mg
sin
n
mgl , J0
J0 mgl 0
J0 Tn 2 mgl
mgl J0 2 Tn2 4
m Tn 2 n k 2
固有周期
k / m g / s
10
固有频率及固有周期
k g wn m s
对于不易得到刚度或质量的系统, 若能测出静变形,可用上式计算固有频率。

振动理论及工程应用2 第二章 单自由度系统的振动

振动理论及工程应用2 第二章 单自由度系统的振动

刚度系数k。
先将刚度系数k2换算至质量m所在处C的等效刚度系数k。
设在C处作用一力F,按静力平衡的
关系,作用在B处的力为 Fa
C
b
此力使B 弹簧 k2 产生 变形,
而此变形使C点发生的变形为
c

a Fa 2 b k2b2
得到作用在C处而与k2弹簧等效的刚度系数
k F
c

k2
C1 x0
C2

v0 pn
x

x0
cos
pnt

v0 pn
sin
pnt
另一种形式
x Asin( pnt )

振幅
相 两种形式描述的物
A
x02

(
v0 pn
)2
位 块振动,称为无阻 角 尼自由振动,简称
自由振动。


arctg(
pn x0 v0
)
无阻尼的自由振动是以其静平衡位置为振动中心的 简谐振动
b2 a2
k F
c
k2
b2 a2
与弹簧k1串联
C
得系统的等效刚度系数
k
k1k 2
b2 a2

k1k 2 b 2
k1

k2
b2 a2
a 2k1 b2k2
物块的自由振动频率为
pn
k b
k1k2
m
m(a2k1 b2k2 )
弹性梁的等效刚度
例 一个质量为m的物块从 h 的高 处自由落下,与一根抗弯刚度为EI、 长为的简支梁作塑性碰撞,不计梁 的质量,求该系统自由振动的频率、 振幅和最大挠度。
系统振动的周期 T 2π 2π m

第二章 单自由度系统

第二章 单自由度系统

M x + c x + kx = meω 2 sin ω t
方程稳态响应可表示为:
M m
x ( t ) = X s in ( ω t )
式中:
m 2 eγ meω M X= = (k ω2M )2 + ω2c2 (1 γ 2 )2 + (2ξγ )2
2
系统的放大因子为:
MX γ2 = me (1 γ 2 ) 2 + (2ξγ ) 2
单自由系统
M
自由振动微分方程
m x + c x + kx = 0
K
无阻尼自由振动方程:
2 x+ ωn x = 0
Hale Waihona Puke C方程解:A=
x x + ωn
2 0 2 0
2
x = A sin (ωn t + ψ )
固有圆频率: 固有圆频率:
ψ = arctan
ω n x0
x0
固有频率: 固有频率:
式中,等效静位移 X 0 = F k 频率比 γ = ω / ωn 振幅放大因子 M = X =
X0
1 (1 γ 2 ) 2 + (2ξγ ) 2
简谐激励下的强迫振动
M= X 1 = X0 (1 γ 2 ) 2 + (2ξγ ) 2
γ = ω / ωn
等效静位移
X0 = F k
简谐激励下的强迫振动
隔振
T 令 TF = TD = TR ,R 叫做传递系数,随 ξ 和 γ 的变化曲线如下图.
位移传递系数 TD和力传递系数 TF 的表达式是完全相同的.
隔振
由图可得到两点结论: 1)无论阻尼比为多少, 只有在 γ > 2 时才有隔振 效果; 2)对于某个给定的 γ > 2 值,当阻尼比减小时,传 递系数也减小.

振动理论-第2章 单自由度系统的自由振动

振动理论-第2章 单自由度系统的自由振动

c
l
解:梁重物处的静变形为
st
Wc2 (l c)2 3lEI
则:
3lEI k c2 (l c)2
1g f
2 st
例3. 已知:升降机吊笼,以等速 v0 下降,钢丝绳视为弹簧,
若A端突然停止,求钢绳所受到的最大应力。
W 10000lbf l 62 ft A 2.5in2 E 15106lbf / in2
4 等效质量和等效刚度
4 等效质量和等效刚度
4 等效质量和等效刚度
4 等效质量和等效刚度
4 等效质量和等效刚度
平行串联、并联弹簧的等效刚度
4 等效质量和等效刚度
平行串联、并联弹簧的等效刚度
4 等效质量和等效刚度
例1 A suspension system of a freight truck with a parallel-spring arrangement. Find the equivalent spring constant of the suspension if each of the three helical springs is made of G 80109 N / m2
(boom) to deform by an amount x2 x cos 45 and the spring k1
Eat 3 4b3
kr
AE l
d2E
4l
1 keq
1 kb
1 kr
4b3 Eat 3
4l d2
E
keq
E 4
at3d 2
d 2b3 lat3
4 等效质量和等效刚度
斜拉弹簧在某个位移方向上的等效弹簧刚度
Fx F cos F 为弹簧的伸长量

第2章 单自由度系统的自由振动

第2章  单自由度系统的自由振动

25第2章 单自由度系统的自由振动2.1 无阻尼系统的自由振动设有质量为m 的物块(可视为质点)挂在弹簧的下端,弹簧的自然长度为l 0,弹簧刚度为k ,如不计弹簧的质量,这就构成典型的单自由度系统,称之为弹簧质量系统如图2-1所示。

工程中许多振动问题都可简化成这种力学模型。

例如,梁上固定一台电动机,当电机沿铅直方向振动时,梁和电机组成一个振动系统,如不计梁的质量,则它在该系统中的作用相当于一根无重弹簧,而电机可视为集中质量。

于是这个系统可简化成如图2-1所示的弹簧质量系统。

2.1.1自由振动方程以图2-1所示的弹簧质量系统为研究对象。

取物块的静平衡位置为坐标原点O ,x 轴顺弹簧变形方向铅直向下为正。

当物块在静平衡位置时,由平衡条件∑F x = 0,得到st δk mg = (A )st δ称为弹簧的静变形。

当物块偏离平衡位置为x 距离时,物块的运动微分方程为mxkx &&=− (2-1) 将式(2-1)两边除以m ,并令mkp =n (2-2) 则式(2-1)可写成02n =+x p x && (2-3)这就是弹簧质量系统置之只在线弹性力-kx 的作用下所具有的振动微分方程,称之为无阻尼自由振动的微分方程,是二阶常系数线性齐次方程。

由微分方程理论可知,式(2-3)的通解为t p C t p C x n 2n 1sin cos +=其中C 1和C 2为积分常数,由物块运动的起始条件确定。

设0=t 时,x x xx ==00,&&。

可解得 C x 10= n02p xC &=t p p xt p x x n n0n 0sin cos &+= (2-4) 式(2-4)亦可写成下述形式)sin(n α+=t p A x (2-5)26 其中⎪⎪⎩⎪⎪⎨⎧=+=)arctan()(00n 2n020x x p p x x A &&α (2-6) 式(2-4)、(2-5)是物块振动方程的两种形式,称为无阻尼自由振动,简称自由振动。

第二章-(第1节)单自由度系统的自由振动

第二章-(第1节)单自由度系统的自由振动

tan 1
ωn x0 x 0
(2.1-11)
2.1 简谐振动
弹簧悬挂的物体沿铅锤方向的振动
当振动系统为静平衡时弹簧在 重力mg的作用下将有静伸长
s
mg k
(2.1-12)
在重力与弹簧力的作用下,
物体的运动微分方程为
mx mg k(s x) (2.1-13)
因为mg=ks,上式仍可简化为
mx kx
波变化。
2.1 简谐振动
振动周期
振动重复一次所需要的时间间隔,称之为振
动周期。 在简谐振动的情况下,每经过一个周期,相
位就增加2,因此
[n(t+T)+]-(nt+)=2
故有
T 2 n
(2.1-9)
实际上T代表发生一次完整运动所需要的时间
,周期通常以秒(s)计。
2.1 简谐振动
振动频率
在单位秒时间内振动重复的次数,称为振动 频率,一般用f 表示。
解:取偏角为坐标。从平衡位
置出发,以逆时针方向为正,锤的
切向加速度为 ,l故 有运动微分方
程为
ml2 mgl sin
假定角不大,可令sin,则
上式简化为 g 0
l
图 2.1-5
2.1 简谐振动
例题:列写振动微分方程求系统的周期(例2.1-2)

n2
g l
则振动周期为
T 2 2 l
n
g
2.1 简谐振动

② x(t) Asin(nt )
(2.1-7)
式中常数A和(=/2-)分别称为振幅和相角。方程(2.1-
7)说明该系统以固有频率n作简谐振动。
2.1 简谐振动 简谐振动的定义及矢量表示

第二章 单自由度系统的振动1(长沙理工大学结构动力学)

第二章 单自由度系统的振动1(长沙理工大学结构动力学)
y (t ) 2 y (t ) 0
(2-2)
这是个常系数线性齐次微分方程
2、自由振动方程的解
方程(2-2)的通解由数学知识可知为: y(t ) C1 sin t C2 cos t (2-3) C1、C2为待定系数,可由初始条件确定。 0 y (0) 代入(2-3) 设t=0时的初始位移 y0 y(0), 初速度 y
二、阻尼的量测
对相邻幅值比取自然对数,称为对数递减率 y 即:
y ln e
TD
TD
y
2
D

2
1 2
(2-13) 2 2 y 2 为获得更高精度的 可量测相隔m个周期的两个幅值比 y' 这时阻尼比为: (2-14) 2 2 2 m y ' 其中:
其中 -柔度系数(单位力作用下相应的位移) k –刚度系数(单位位移作用下所需加的力) g –重力加速度
W
–重力 yst –重力引起的位移
例1) 、试建立图示结构的运动方程(考虑阻尼)并求自振频率 (不计阻尼)。设横梁刚度无限大, 柱 EI 4.5 106 Nm2 梁的质量 m=5000kg。h=3m 解:由于横梁刚度无穷大,结构只能产生水平 h EI 位移。设x坐标向右。二柱的侧移劲度系数为: 12 EI k k1 k2 3 = h 2 y P(t) m 又设横梁(质量m)位移为y,以它为隔离 体,受力如图所示。 F F cy
列x方向全部力的平衡方程,即可得结构的运 动方程为 ky P(t ) m y cy
12 EI k s1 F F y y 图中Fs1和Fs2可由位移法知 s1 s 2 h3 2 y
P(t)

《振动力学》2单自由度系统自由振动

《振动力学》2单自由度系统自由振动

单位:弧度/秒(rad/s)
则有 : &x& + ω02 x = 0
通解 : x(t) = c1 cos(ω0t) + c2 sin(ω0t) = Asin(ω0t + ϕ)
c1, c2: 任意常数,由初始条件决定
振幅 : A = c12 + c22
初相位 : ϕ = tg −1 c1
c2
4
单自由度系统自由振动
解法2:
平衡位置2
动能 T = 1 Iθ&2 = 1 ml2θ&2
最大位移位置,系统动 能为零,势能达到最大
ω0 = k / m
T +V = const
Tmax = Vmax
Tmax = 0
Vmax
=
1 2
kxm2 ax
m
k
最大位移位置
0
xmax
静平衡位置
x
x&max = ω0 xmax
x 是广义的 对于转动: θ&max = ω0θmax
x(t) = Asin(ω0t + ϕ) 30
无阻尼的质量弹簧系统受到初始扰动后,其自由振动是以 ω0 为频率的简谐振动,并且永无休止。
x
T = 2π / ω 0
初始条件的说明:
初始条件是外界能量输入的一 x0
A
种方式,有初始位移即输入了 弹性势能,有初始速度即输入 了动能。
ϕ0
ω0
t
9
单自由度系统自由振动
零初始条件下的自由振动:
x(t)
=
x0
&x& + ω02 x = 0
ω0 =
k m

第二章-单自由度系统的自由振动-yyt

第二章-单自由度系统的自由振动-yyt

x(t ) A sin(nt )
振幅: A
arctan 初相位:
固有频率
x 0 x n n x0
2 0
2
x 0
n
k m
21
2.3 单自由度无阻尼自由振动—实例
例2 提升机系统。重物W=1.47x105N,钢丝刚度k=5.78x104N/cm。重物以 v=15m/min的速度匀速下降,求绳的上端突然卡住时, (1)重物的振动频率;(2)绳中最大张力。 gk 解:振动(自然)频率 n 19.6 rad / s W
证明:动能 T 1 mx 2
2
势能 V mgx k ( x )dx mgx k x
0

x
1 2 1 2 kx kx 2 2
T V const
2 kx2 const mx
两边求导并整理: (m kx) x 0 x
不恒等于0: x
Tmax Vmax
29
零平衡位置
能量方法:
解:广义坐标θ,平衡位置设置零坐标如图
显然,系统的振动方程为: (t ) cos(nt ) θ
(t ) sin( t ) 则,角速度为: n n
有 max 最大动能 Tmax
max n
弹簧-质量-阻尼系统
4
2.1 基本概念(实际结构简化)
m
m
5
2.1 基本概念

振动方式:自由振动

系统在初始时只受到一个外界扰动,此后并不受其他 力的作用而发生的振动。
O
θ l
mg
6
7
2.1 单自由度系统的自由振动

汽车振动分析-2.2 单自由度振系的自由振动

汽车振动分析-2.2 单自由度振系的自由振动

串联,并联弹簧的等效 刚度确定 通过能量法来确定等 效刚度 P15-16
代入计算,就可以得到系统固有圆频率
2.当 1(即n p)时,称为临界阻尼

此时特征方程具有两个相等的实根,即 s1 s2 n p,通解变为
x C1 C2t e pt
显然,这个方程所表示的运动是非周期的.亦是按指数规律衰减 我们可以根据不同的初始条件确定出常数C1 C2,画出如下图所示的相应曲线
由以上可知,通过对 做自由振动的条件表示如下: 1.当
大小的讨论,我们分为三种情况,系统是否

1时,系统做小阻尼的衰减振动.

2.当
1 时,系统作
,.而非振动

3.当
1(即n p)时,是系统引起运动性质突变的临界情况
对于由一些较复杂的系统简化成的单自由系,不必列出系统的振动微分方程. 只要求出相应的等效质量 me 和等效刚度 ke ,然后根据 p ke 求出固有圆 频率,然后再求出固有频率. me
通过能量法来确定
例P24 ,系统已经简化成了单自由度弹簧-质量系统,得到 系统的等效质量为 me m1 ,等效刚度 ,
汽车振动分析
2.2 单自由度振系的自由振动
魏垂泉
2017.10.23

当一个系统仅在开始时受到外界干扰(位移或者速度),靠系 统本身的固有特性而进行的振动称之为自由振动,即:这个时 候的系统外界激振力 f t 0

已知:在激振力 f t 作用下,质量块运动微分方程为:
m x c x kx f t

2.等效质量和等效刚度来求 3.应用能量法来求解


所以,可得固有圆频率为:

第二章(第5节)单自由度系统的自由振动

第二章(第5节)单自由度系统的自由振动

西雅图Novelty 桥
Willamette 河行人桥
2.5 振动在工程中的应用
2有阻尼自由振动自由振动应用―(3)桥梁、高塔等高大建筑的消振
旧金山海湾悬索大桥
2.5 振动在工程中的应用
2有阻尼自由振动自由振动应用―(3)桥梁、高塔等高大建筑的消振
伦敦 Millennium 桥全景
2.5 振动在工程中的应用
工程上许多机械设备,如精 密机床,往往被固定在较重的混 凝土基础之上,在基础与地面之 间铺设一层弹性阻尼衬垫,以隔 绝外界振动的干扰,如图所示。 在机械系统中出现自激振动的例子很多,如机床的 切削过程,旋转轴的油膜振动,机翼的颤振等等,这都 是工程实际中还在继续研究的问题,人们企图在设计过 程中预计不发生这种振动,因为这种振动一开始就表现 为不稳定的增长运动而导致事故。
2.5 振动在工程中的应用
2有阻尼自由振动自由振动应用―(3)桥梁、高塔等高大建筑的消振
用大石块制造阻尼,以减小海浪对堤岸的冲击
2.5 振动在工程中的应用
2有阻尼自由振动自由振动应用―(自由振动,若不在 下次击球之前停止振动,将影响再次击球的方向和角度 ,为此在铁合金管外面绕上石墨纤维,并在其外面用塑 料捆扎住,由于石墨纤维外表面的库仑阻尼,使球拍在 击球后,以最快的时间稳定下来。
2.5 振动在工程中的应用
2有阻尼自由振动自由振动应用―(2)机械系统隔振
Santana轿车整车薄壁上粘贴高阻尼材料, 以达到减振降噪的效果。
2.5 振动在工程中的应用
2有阻尼自由振动自由振动应用―(3)桥梁、高塔等高大建筑的消振
高大的桥梁、铁塔等建筑物,四周用钢索拉紧。当 受到风力、车辆和行人激励时,钢索会产生振动,进而 使桥梁、铁塔等建筑物稳定性受到威胁。为此,在钢索 上装有阻尼的动力消振器。

结构振动理论2-单自由度系统自由振动

结构振动理论2-单自由度系统自由振动

由 dE 0 1、求出运动方程: mx kx 0
dt
有常力作用的机械能: E 1 mx&2 1 k( x)2 Fx
2
2
dE mx&&x& k( x)x& Fx& x&(m&x& kx) 0
dt
由 Ek max E p max E 2、求固有频率
假设 x Asin( pt ) 则 x Apcos(pt )
2
l 0
/
2
y02{3(
x l
)
4(
x l
)3}2
dx
1 2
0.486
ly02
Ek
1 2
me
y02
me 0.486 l
n
ke me
00:03
单自由度系统自由振动
例 铰接式直升机旋翼挥舞振动分析
取微元做受力分析,微元
cos
R
L
2(R cos)d 离心力对铰链轴o的力矩为
θ
ξ
(2 (R cos )d )( sin )
则系统的自由振动方程为: me ke 0
固有频率为:
n
ke me
需要注意的是,me不是梁的总质量,它可以通过梁上各 点位移关系和动能等效的原则求得。
00:03
单自由度系统自由振动
y( x, t )
y0
(t
)[3x l
4(
x )3 ] l
(x 1) l2
Ek
1 2
l y2dm 1 2
0
由此可见,弹性元件并联将提高总刚度,串联将降低总刚
度。这与电学中电阻的并联、串联结论是相反的。阻尼器串联
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,与初速度
,将其代入上述方程可得:
简谐振动的振幅与初相角随初始条件的不同而改变,但振动频率和周期则取决于振 动系统参数,与初始条件无关。
无阻尼的质量弹簧系统受到初始扰动后,其自由振动是以 为振动频率的简谐振0
动,并且永无休止。
初始条件:
x0 2, x0 0
固有频率从左到右:
0 , 20 , 30
由能量法原理
,得到:
化简
21
第二章 单自由度系统的自由振动
例题2:细杆可绕水平轴转动,在静平衡时呈水平。 杆端锤的质量为m,杆与弹簧的质量均可略去不 计,求自由振动的微分方程及周期。
解 : 在杆有微小偏角 时,弹簧的伸长以及
锤的位移与速度可以近似地表示为a •
,l
与 l 。 故振动系统的动能与势能可以表示
如果考虑弹簧的质量,Rayleigh提出了一种近似方法,利用能量原理,把一个分布 质量系统简化为一个单自由度系统,将弹簧分布质量对系统频率的影响考虑进去。
假设弹簧是线性变形,在位置u处的变形为du,质量块的速度
为 ,则弹簧在u处的微段du处的速度为
。设弹簧单位长
度的质量为ρ,那么弹簧微段du的动பைடு நூலகம்为:
m h
l/2
0
l/2
x

静平衡位置
自由振动频率为 : 0
g

48EJ ml 3
• 第二章 单自由度系统的自由振动
撞击时刻为零时刻,则 t=0 时,有:
x0 x0 2gh
则自由振动振幅为 :
m h
l/2
0
l/2

静平衡位置
A
x02


x&0
0
2

2 2h
3
第二章 单自由度系统的自由振动
例题讲解1
当振动系统为静平衡时 , 弹簧在重力mg的作用下将有静伸长
物体的运动微分方程为:
s

mg k
mx mg k(s x)
mx kx 0
则有:
0
k m
g
s
对于不易得到 m 和 k 的系统,若能测出静变形 s ,则用该式计算是较为方便的。
x
梁的最大扰度:
max A
x(t)

x0
cos(0t)

x0
0
sin(0t)
第二章 单自由度系统的自由振动
例:圆盘转动
圆盘转动惯量 I
k为轴的扭转刚度,定义为使得圆盘产生单
位转角所需的力矩 (N m / rad)
k
I

在圆盘的静平衡位置上任意选一根半径作 为角位移的起点位置
2.21105 (N )
(动张力几乎是静张力的一半)
请思考:为了减少振动引起的动张力,应当采取什么措施?
7
第二章 单自由度系统的自由振动
例题讲解3 均匀悬臂梁长为 l, 弯曲刚度为EJ,重量不计, 自由端附有重为P=mg的物体,如图所示。试 写出物体的振动微分方程,并求出频率。 梁的自由端将有静挠度: 物体的振动微分方程为:
对时间求导 取平衡位置为势能零点,根据自由振动的特点,系统在平衡位置时,系统的势能 为零,其动能的极大值就是全部机械能;而在振动系统的极端位置时,系统的动 能为零,其势能的极大值等于全部的机械能,即有:
只要列出上述方程,就可以直接求出系统的固有频率,不需要列出振动微分方程。
19
第二章 单自由度系统的自由振动
由牛顿第二定律:
I&& k 0
&& 02 0
扭振固有频率
0
k I
第二章 单自由度系统的自由振动
由上例可看出,除了选择了坐标不同之外,角振动与直线振动的数学描述 完全相同。如果在弹簧质量系统中将 m、k 称为广义质量及广义刚度,则弹 簧质量系统的有关结论完全适用于角振动。以后不加特别声明时,弹簧质 量系统是广义的 。
第二章 单自由度系统的自由振动
2.1 简谐振动
由牛顿定律,有 设系统固有频率为 二阶常系数线性齐次常微分方程
通解形式为
1
第二章 单自由度系统的自由振动
根据三角关系式
改 写
由此可以知道:该系统以 固有频率作简谐振动。
振动周期:
振动频率:
2
第二章 单自由度系统的自由振动
设在初始时刻t=0,物体有初位移
解: 由牛顿定律 :
I0&& mga sin 0
因为微振动: sin
则有 : I0 mga 0
固有频率 :0 mga / I0
a
0

I0
C
mg
若已测出物体的固有频率 心的转动惯量:

0
,则可求出
I
0
,再由移轴定理,可得物质绕质
Ic I0 ma2
实验确定复杂形状物体的转动惯量的一个方法
第二章 单自由度系统的自由振动
例题讲解5:弹簧-质量系统沿光滑斜面做自由振动
30o
斜面倾角 质量 m =1 kg 弹簧刚度 k=49 N/cm 开始时弹簧无伸长,且速度为零
k
300
重力角速度取 9.8
求: 系统的运动方程
第二章 单自由度系统的自由振动
解:
以静平衡位置为坐标原点建立 坐标系
k 0
振动固有频率:
4
第二章 单自由度系统的自由振动
例题讲解2:提升机系统
重物重 量 W 1.47105 N
钢丝绳的弹簧刚度
k 5.78104 N / cm
重物以 v 15m / min 的速度均匀下降
求,绳的上端突然被卡住时: 1. 重物的振动频率; 2. 钢丝绳中的最大张力。
v W
5
第二章 单自由度系统的自由振动
解:
振动频率 0
k m
gk 19.6rad / s W
重物匀速下降时处于静平衡位置,若 将坐标原点取在绳被卡住瞬时重物所 在位置
则 t=0 时,有: x0 0 x0 v
振动解:
x
t


x0
cos
0t


x&0
0
sin
0t

v
k
静平衡位置
W
W
x
x
t


v
0
sin
0t
弹簧原长位置
m&x& kx 0
m

0
静平衡位置
k
I&& k 0
0 k I
0 k m k
x
I

第二章 单自由度系统的自由振动
例题讲解4:复摆 刚体质量 m
a
0
重心 C
对悬点的转动惯量 I 0
I0
C
mg
求: 复摆在平衡位置附近做微振动时的微分方程和固有频率
第二章 单自由度系统的自由振动
例题1:以重量为W,半径为r的实心圆柱体, 在半径为R的圆柱形面上作无滑动地滚动。假 设该滚动的圆柱体进行间歇运动,试求它绕 平衡位置作微小摆动时的固有频率ωn。
分析:圆柱体在摆动时有两种运动:移动和滚动。 摆动时圆柱体中心的速度及圆柱体的角速度分别为:
系统动能为:
系统势能为:
20
第二章 单自由度系统的自由振动
阻尼比ξ:(或称为相对阻尼系数)
35
第二章 单自由度系统的自由振动
方程的特征根为: 讨论在阻尼比ξ取值不同时,微分方程解 (1)小阻尼情况,即ξ<1:
此时特征方程的根:
的性质。
微分方程的解为:
设:
,考虑初始条件t=0时,有

,将其
代入微分方程的解中,有
t=0时
求解 得到
36
第二章 单自由度系统的自由振动
33
第二章 单自由度系统的自由振动
如图所示粘性阻尼振动系统,粘性阻尼为c(N.s/m),由牛顿运动定律有:
求解上述微分方程,设
,其中s为待定常数。
特征根:
方程通解:
34
第二章 单自由度系统的自由振动
阻尼系数的大小不同,根号内的相可以大于、 等于、小于零,因而得到的根s1、s2可以是 实根、复根或虚根。 临界阻尼系数cc:(上式中根号内的相等于零时求得的c值)
2.4 等效刚度
等效刚度:使系统在选定的坐标上产生单位位移而需要在此 坐标方向上施加的力,叫做系统在这个坐标上的 等效刚度
等效质量:使系统在选定的坐标上产生单位加速度而需要在 此坐标方向上施加的力,叫做系统在这个坐标上 的等效质量
第二章 单自由度系统的自由振动
选定广义位移坐标后,将系统得动能、势能写成如下形式:
整个弹簧的动能
系统最大动能
23
第二章 单自由度系统的自由振动
系统的势能将仍和忽略弹簧质量时一样:

得到:
对于简谐振动 式可以得到:


,代入上
可见弹簧质量对于频率的影响相当于在质量m上再加上1/3弹簧质量的等效质量, 这样就可以将弹簧质量对系统的固有频率的影响考虑进去。
24
第二章 单自由度系统的自由振动
8
第二章 单自由度系统的自由振动
例题讲解3 重物落下,与简支梁做完全非弹性碰撞
梁长 L,抗弯刚度 EJ m
h
l/2
0
l/2
求: 梁的自由振动频率和最大挠度
第二章 单自由度系统的自由振动
解: 取平衡位置 以梁承受重物时的静平衡位 置为坐标原点建立坐标系
静变形 由材料力学 : mgl3
48EJ
相关文档
最新文档