电路分析基础实验报告1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一
1、实验目得
学习使用workbench软件,学习组建简单直流电路并使用仿真测量仪表测量电压、电流。
2、解决方案
1)基尔霍夫电流、电压定理得验证。
解决方案:自己设计一个电路,要求至少包括两个回路与两个节点,测量节点得电流代数与与回路电压代数与,验证基尔霍夫电流与电压定理并与理论计算值相比较.
2)电阻串并联分压与分流关系验证。
解决方案:自己设计一个电路,要求包括三个以上得电阻,有串联电阻与并联电阻,测量电阻上得电压与电流,验证电阻串并联分压与分流关系,并与理论计算值相比较。
3、实验电路及测试数据
4、理论计算
根据KVL与KCL及电阻VCR列方程如下:
Is=I1+I2,
U1+U2=U3,
U1=I1*R1,
U2=I1*R2,
U3=I2*R3
解得,U1=10V,U2=20V,U3=30V,I1=5A,I2=5A
5、实验数据与理论计算比较
由上可以瞧出,实验数据与理论计算没有偏差,基尔霍夫定理正确;
R1与R2串联,两者电流相同,电压与为两者得总电压,即分压不分流;
R1R2与R3并联,电压相同,电流符合分流规律.
6、实验心得
第一次用软件,好多东西都找不着,再瞧了指导书与同学们得讨论后,终于完成了本次实验。在实验过程中,出现得一些操作上得一些小问题都给予解决了.
实验二
1、实验目得
通过实验加深对叠加定理得理解;学习使用受控源;进一步学习使用仿真测量仪表测量电压、电流等变量。
2、解决方案
自己设计一个电路,要求包括至少两个以上得独立源(一个电压源与一个电流源)与一个受控源,分别测量每个独立源单独作用时得响应,并测量所有独立源一起作用时得响应,验证叠加定理.并与理论计算值比较。
3、实验电路及测试数据
电压源单独作用:
电流源单独作用:
共同作用:
4、理论计算
电压源单独作用时:—10+3Ix1+2Ix1=0,得Ix1=2A;
电流源单独作用时:,得Ix2=-0、6A; 两者共同作用时:,得Ix=1、4A、
5、实验数据与理论计算比较
由上得,与测得数据相符,Ix=Ix1+Ix2,叠加定理得证.
6、实验心得
通过本实验验证并加深了对叠加定理得理解,同时学会了受控源得使用。
实验三
1、实验目得
通过实验加深对戴维南、诺顿定理得理解;学习使用受控源。
2、解决方案
自己设计一个有源二端网络,要求至少含有一个独立源与一个受控源,通过仪表测量其开路电压与短路电流,将其用戴维南或诺顿等效电路代替,并与理论计算值相比较。
实验过程应包括四个电路:1)自己设计得有源二端网络电路,接负载RL,测量RL上得电流或电压;2)有源二端网络开路电压测量电路;3)有源二端网络短路电流测量电路;3)原有源二端网络得戴维南(或诺顿)等效电路,接(1)中得负载RL,测量RL上得电压或电流。
3、实验电路及测试数据
原电路:
开路电压测量:
短路电流测量:
戴维南等效电路:
4、理论计算
开路电压:Uoc=10V,
短路电流:Ioc=1/150=0、667A,
输出电阻:Ro=Uoc/Ioc=1、5kΩ、
5、实验数据与理论计算比较
由上可知,计算结果与测量结果相符,且等效电路在负载上引起得响应与原电路相同,验证了戴维南等效法得正确性.
6、实验心得
通过本实验验证并加深了对戴维南、诺顿定理得理解.
实验四
1、实验目得
通过实验加深对理想运放得负反馈电路理解。
2、解决方案
自己设计一个理想运放负反馈电路,可以就是反向比例电路,正向比例电路,加法电路等,可以设计一级或多级,测量其输出电压值,并与理论计算值相比较。(注意运放输入电压必须就是小信号,电压值控制在1v以下.)
3、实验电路及测试数据
反向比例器:
4、理论计算
由虚短与虚断知,U0=0,I1=I2,即(U1—U0)/R1=(U0—U2)/R2,得U2=- U1*R2/R1。
5、实验数据与理论计算比较
根据理论计算,U2=—12V,与测量结果一致,即本电路可以作为反向比例器使用。
6、实验心得
通过本次实验验证并加深了对理想运放得负反馈电路理解。
实验五
1、实验目得
(1)学习使用示波器。
(2)通过模拟仪器测试RC电路得充放电特性,观察电容器充放电过程中电压与电流得变化规律。
2、实验内容与步骤
1、RC电路得充放电特性测试
(1)在EWB得电路工作区按上图图连接。可按自己选择得参数设置。
(2)选择示波器得量程,按下启动\停止开关,通过空格键使电路中得开关分别接通充电与放电回路,观察不同时间常数下RC电路得充放电规律。
(3)改变C数值计算其时间常数。绘出虚拟示波器显示得输出波形图,也可自行设计实验。
使用EWB时注意选择适当得仿真仪表量程。每次要通过按下操作界面右上角得“启动/停止开关"接通电源,或者暂停来观察波形。使用示波器时要注意选择合适得时间与幅值来观察波形。
3、实验电路及测试数据
1uF电容充电:
1uF电容放电:
0、1uF电容充电:
0、1uF电容放电:
电容具有充放电功能,充放电时间与电路时间常数有关。
4、理论计算
当C1=0、1uF时,时间常数τ=RC1=1ms,当C2=1uF时,τ=RC2=10ms; 充电时电容电压为零状态响应,Uc(t)=12*(1—) V,
放电时电容电压为零输入响应,Uc(t)=12*V.
5、实验数据与理论计算比较
比较计算结果与测量数据可得,电容充放电得时长与电路时间常数有关(τ越大,充放电时间越长),且测得得响应曲线与计算结果一直。
6、实验心得
通过本次实验,学习了使用示波器。通过模拟仪器测试RC电路得充放电特性,观察到了电容器充放电过程中电压与电流得变化规律。