最新指数与指数幂的运算练习题整理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.1指数与指数幂的运算练习题
高一( )班 座号: 姓名:
知能点1:有理数指数幂及运算性质 1、有理数指数幂的分类
(1)正整数指数幂()n n a a a a a n N *=⋅⋅⋅⋅∈个
; (2)零指数幂)0(10≠=a a ;
(3)负整数指数幂()1
0,n
n a
a n N a
-*=
≠∈ (4)0的正分数指数幂等于0, 0的负分数指数幂没有意义。
2、有理数指数幂的性质
(1)()0,,m
n m n
a
a a
a m n Q ==>∈ (2)()()0,,n
m mn a a a m n Q =>∈
(3)()()0,0,m m m
ab a b a b m Q =>>∈
知能点2:无理数指数幂
若a >0,P 是一个无理数,则p
a 表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用。 知能点3:根式
1、根式的定义:一般地,如果a x n
=,那么x 叫做a 的n 次方根,其中(
)*
∈>N n n ,1,
n
a 叫做根式,
n 叫做根指数,a 叫被开方数。
2,要注意以下几点:
(1)n N ∈,且1n >; (2)当n 是奇数,则a a n n =;当n 是偶数,则⎩⎨⎧<-≥==0
0a a
a a a a n n ;
(3)负数没有偶次方根; (4)零的任何次方根都是零。 3、我们规定:
(1))0,,,1m n
a
a m n N n *
=>∈>; (2))10,,,1m n
m n
a
a m n N n a
-*=
=
>∈>
1、用根式的形式表示下列各式)0(>a (1)5
1a = (2)3
4
a = (3)35
a -= (4)32
a
-
=
2、用分数指数幂的形式表示下列各式:
(1)
3
4y x = (2)
)0(2>=
m m
m (3)85
-
⎝⎭
=
(4= (5= ; (6)a a a = ;
(7) =•a a 2
(8)=•323a a (9)=a a (10) =35
6
q p 3、求下列各式的值
(1)2
38= ;(2)12
100-
= ; (3)3
1()4
-= ;(4)3
416()81-=
(5)3
227= ;(6)23)4936(= ;(7)2
3)4
25(-= ;(8)23
25=
(9
)12
2
[(]-
= (10
)(12
2
1⎡⎤⎢⎥⎣⎦
= (11)=3
264
4.化简
(1)=••12
7
4
33
1a a a (2)=֥6
54
32
3a a a (3)=÷-•a a a 9)(34
32
3
(4)322
a a a •= (5)3
163)278(--b a = (6)⎪⎪⎭
⎫ ⎝⎛---32
3
1312212x x x = (7)()0,053542
15
658≠≠÷⋅⎪⎪⎭
⎫ ⎝
⎛-
-b a b a b
a =
(8))3()6)(2(6
56
13
12
12
13
2
b a b a b a -÷-= 5.计算
(1)43512525÷-
(2) (3)2
1
031
9)41()2(4)2
1(----+-⋅- (4)()5
.02
12001.04122432-⎪
⎭
⎫
⎝⎛⋅+⎪⎭⎫ ⎝⎛-
-
(5)48373271021.09720
3
22
5
.0+-⎪
⎭
⎫
⎝⎛++⎪
⎭
⎫ ⎝⎛-
-π (6)241
3
0.753323(3)0.04[(2)]168
----++-+
(7)(
)
14
32
3
112325671027.0-+-+⎪⎭
⎫
⎝⎛----- (8)5.003
1
2603.12
32
366141+--+-
⎪⎪⎭
⎫ ⎝⎛+⎪⎭⎫
⎝⎛-
-
(9)()()[]
2
175
.03
430
3
101.016
287064.0-++-+⎪⎭
⎫ ⎝⎛---
-