第三章《数字逻辑》(第二版)习题答案
数字逻辑(第二版)毛法尧课后题答案(1_6章)
习题一1.1 把下列不同进制数写成按权展开式:⑴(4517.239)10= 4×103+5×102+1×101+7×100+2×10-1+3×10-2+9×10-3⑵(10110.0101)2=1×24+0×23+1×22+1×21+0×20+0×2-1+1×2-2+0×2-3+1×2-4⑶(325.744)8=3×82+2×81+5×80+7×8-1+4×8-2+4×8-3⑷(785.4AF)16=7×162+8×161+5×160+4×16-1+A×16-2+F×16-31.2 完成下列二进制表达式的运算:1.3 将下列二进制数转换成十进制数、八进制数和十六进制数:⑴(1110101)2=(165)8=(75)16=7×16+5=(117)10⑵(0.110101)2=(0.65)8=(0.D4)16=13×16-1+4×16-2=(0.828125)10⑶(10111.01)2=(27.2)8=(17.4)16=1×16+7+4×16-1=(23.25)101.4 将下列十进制数转换成二进制数、八进制数和十六进制数,精确到小数点后5位:⑴(29)10=(1D)16=(11101)2=(35)8⑵(0.207)10=(0.34FDF)16=(0.001101)2=(0.15176)8⑶(33.333)10=(21.553F7)16=(100001.010101)2=(41.25237)81.5 如何判断一个二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除?解: 一个二进制正整数被(2)10除时,小数点向左移动一位, 被(4)10除时,小数点向左移动两位,能被整除时,应无余数,故当b1=0和b0=0时, 二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除.1.6 写出下列各数的原码、反码和补码:⑴0.1011[0.1011]原=0.1011; [0.1011]反=0.1011; [0.1011]补=0.1011⑵ 0.0000[0.000]原=0.0000; [0.0000]反=0.0000; [0.0000]补=0.0000 ⑶ -10110[-10110]原=110110; [-10110]反=101001; [-10110]补=101010 1.7 已知[N]补=1.0110,求[N]原,[N]反和N.解:由[N]补=1.0110得: [N]反=[N]补-1=1.0101, [N]原=1.1010,N=-0.1010 1.8 用原码、反码和补码完成如下运算: ⑴ 0000101-0011010[0000101-0011010]原=10010101;∴0000101-0011010=-0010101。
《数字逻辑》第3章习题答案
题
【3-1】填空: (1) 逻辑代数中有三种最基本运算: 与 、 或 和 非 ,在此基础上又派生出五种基本运算, 分别为 与非 、 或非 、 异或 、 同或 、和 与或非 。 (2) 与运算的法则可概述为:有 0 出 0 ,全 1 出 1 ;类似地,或运算的法则为 有”1”出”1”, 全”0”出”0” 。 (3) 摩根定理表示为: A B = A B ; A B = A B 。 (4) 函数表达式 Y= AB C D ,则其对偶式为 Y ' = ( A B)C D 。 积的形式结果应为 M ( 0,1,2,4,5,8,9,10)。 (5) 函数式 F=AB+BC+CD 写成最小项之和的形式结果应为 m ((3,6,7,11,12,13,14,15)), 写成最大项之
0 0 1 1 1 1
1 1 0 0 1 1
0 1 0 1 0 1
1 1 0 0 1 0
【3-8】写出下列函数的反函数 F ,并将其化成最简与或式。 (1) F1 ( A D )( B C D)( AB C ) (2) F2 ( A B )( BCD E )( B C E )(C A) (3) F3 A B C A D (4) F4 ( A B)C ( B C ) D 解: (1) F1 AD C (2) F2 AB A C E (3) F3 AB AC A D (4) F4 BC C D ABD A B C 【3-9】用对偶规则,写出下列函数的对偶式 F ,再将 F 化为最简与或式。 (1) F1 AB B C A C (2) F2 A B C D (3) F3 ( A C )( B C D)( A B D) ABC (4) F4 ( A B )( A C )( B C )(C D) (5) F5 AB C CD BD C 解:题中各函数对偶函数的最简与或式如下: (1) F1 A BC AB C (2) F2 A B D A C D (3) F3 AC A BD (4) F4 A BC B C CD (5) F5 ABC D (6) F6 AB C D 【3-10】已知逻辑函数 F A B C , G=A⊙B⊙C,试用代数法证明: F G 。 解:
数字逻辑(第二版)毛法尧课后题答案(1-6章)
习题一1.1 把下列不同进制数写成按权展开式:⑴(4517.239)10= 4×103+5×102+1×101+7×100+2×10-1+3×10-2+9×10-3⑵(10110.0101)2=1×24+0×23+1×22+1×21+0×20+0×2-1+1×2-2+0×2-3+1×2-4⑶(325.744)8=3×82+2×81+5×80+7×8-1+4×8-2+4×8-3⑷(785.4AF)16=7×162+8×161+5×160+4×16-1+A×16-2+F×16-31.2 完成下列二进制表达式的运算:1.3 将下列二进制数转换成十进制数、八进制数和十六进制数:⑴(1110101)2=(165)8=(75)16=7×16+5=(117)10⑵(0.110101)2=(0.65)8=(0.D4)16=13×16-1+4×16-2=(0.828125)10⑶(10111.01)2=(27.2)8=(17.4)16=1×16+7+4×16-1=(23.25)101.4 将下列十进制数转换成二进制数、八进制数和十六进制数,精确到小数点后5位:⑴(29)10=(1D)16=(11101)2=(35)8⑵(0.207)10=(0.34FDF)16=(0.001101)2=(0.15176)8⑶(33.333)10=(21.553F7)16=(100001.010101)2=(41.25237)81.5 如何判断一个二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除?解: 一个二进制正整数被(2)10除时,小数点向左移动一位, 被(4)10除时,小数点向左移动两位,能被整除时,应无余数,故当b1=0和b0=0时, 二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除.1.6 写出下列各数的原码、反码和补码:⑴0.1011[0.1011]原=0.1011; [0.1011]反=0.1011; [0.1011]补=0.1011⑵0.0000[0.000]原=0.0000; [0.0000]反=0.0000; [0.0000]补=0.0000⑶-10110[-10110]原=110110; [-10110]反=101001; [-10110]补=1010101.7 已知[N]补=1.0110,求[N]原,[N]反和N.解:由[N]补=1.0110得: [N]反=[N]补-1=1.0101, [N]原=1.1010,N=-0.10101.8 用原码、反码和补码完成如下运算:⑴0000101-0011010[0000101-0011010]原=10010101;∴0000101-0011010=-0010101。
数字逻辑(第二版)毛法尧课后题答案(1_6章)
1.1把下列不同进制数写成按权展开式⑴(4517.239) 10= 4 X 103+5 X 102+1 X 101+7 X 10°+2 X 10-1+3 X 10-2+9 X 10-3(2) (10110.0101) 2=1X 24+0 X 23 + 1 X 22+1 X 21+0 X 2°+0 X 2-1+1 X 2-2+0 X 2-3 + 1 X 2-4⑶(325.744) 8=3 X82+2 X81+5 X8°+7 X8-1 +4 X8-2+4 X8-3⑷(785.4AF) 16=7 X 162+8 X 161+5 X 16°+4 X 16-1 +A X 16-2+F X 16-31.2完成下列二进制表达式的运算⑴(1110101) 2=(165) 8=(75) 16=7 X 16+5=(117) 10⑵(0.110101) 2=(0.65) 8=(0.D4) 16=13 X 16-1 +4 X 16-2 =(0.828125) 10 ⑶(10111.01) 2=(27.2) 8=(17.4) 16=1 X 16+7+4 X 16-1=(23.25) 101.4将下列十进制数转换成二进制数 、八进制数和十六进制数,精确到小数点后5位:⑴(29) 10=(1D) 16=(11101) 2=(35) 8⑵(0.207) 1o =(0.34FDF) 16=(0.001101) 2=(0.15176) 8习题一(1) 10111+101.101= U100.1Q11U111.000十)MJLURD100.1D1⑶ 10.01X1.01=10.110110.01 X) 1.01 10 01 +) 10 0110.1101⑵ noo-m,on -100.101UOOJOOO-)U1,OU1Q0.101⑷ lool oooi-njoi -10.110,1moi) 10010D0Anunmoi moi1.3将下列二进制数转换成十进制数 、八进制数和十六进制数(33.333) io =(21.553F7) 16=(100001.010101) 2=(41.25237) 81.5如何判断一个二进制正整数B=b 6b 5b 4b 3b 2b 1b o 能否被 ⑷10整除?解:一个二进制正整数被(2) 10除时,小数点向左移动一位,被⑷10除时,小数点向左移动两位, 能被整除时,应无余数 故当b 1=0和b 0=0时,二进制正整数 B=b 6b 5b 4b 3b 2b 1b 0能否被(4)1。
数字逻辑(第2版)习题答案
毛法尧第二版习题一1.1 把下列不同进制数写成按权展开式:⑴(4517.239)10= 4×103+5×102+1×101+7×100+2×10-1+3×10-2+9×10-3⑵(10110.0101)2=1×24+0×23+1×22+1×21+0×20+0×2-1+1×2-2+0×2-3+1×2-4⑶(325.744)8=3×82+2×81+5×80+7×8-1+4×8-2+4×8-3⑷(785.4AF)16=7×162+8×161+5×160+4×16-1+A×16-2+F×16-31.2 完成下列二进制表达式的运算:1.3 将下列二进制数转换成十进制数、八进制数和十六进制数:⑴(1110101)2=(165)8=(75)16=7×16+5=(117)10⑵(0.110101)2=(0.65)8=(0.D4)16=13×16-1+4×16-2=(0.828125)10⑶(10111.01)2=(27.2)8=(17.4)16=1×16+7+4×16-1=(23.25)101.4 将下列十进制数转换成二进制数、八进制数和十六进制数,精确到小数点后5位:⑴(29)10=(1D)16=(11101)2=(35)8⑵(0.207)10=(0.34FDF)16=(0.00111)2=(0.15176)8采用0舍1入规则⑶(33.333)10=(21.553F7)16=(100001.01011)2=(41.25237)81.5 如何判断一个二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除?解: 一个二进制正整数被(2)10除时,小数点向左移动一位, 被(4)10除时,小数点向左移动两位,能被整除时,应无余数,故当b1=0和b0=0时, 二进制正整数B=b6b5b4b3b2b1b0能被(4)10整除.1.6 写出下列各数的原码、反码和补码:⑴0.1011[0.1011]原=0.1011; [0.1011]反=0.1011; [0.1011]补=0.1011⑵0.0000[0.000]原=0.0000; [0.0000]反=0.0000; [0.0000]补=0.0000⑶-10110[-10110]原=110110; [-10110]反=101001; [-10110]补=1010101.7 已知[N]补=1.0110,求[N]原,[N]反和N.解:由[N]补=1.0110得: [N]反=[N]补-1=1.0101, [N]原=1.1010,N=-0.10101.8 用原码、反码和补码完成如下运算:⑴0000101-0011010[0000101-0011010]原=10010101;∴0000101-0011010=-0010101。
数字逻辑(第二版)毛法尧课后题答案(1-6章)
习题一1.1 把下列不同进制数写成按权展开式:⑴(4517.239)10= 4×103+5×102+1×101+7×100+2×10-1+3×10-2+9×10-3⑵(10110.0101)2=1×24+0×23+1×22+1×21+0×20+0×2-1+1×2-2+0×2-3+1×2-4⑶(325.744)8=3×82+2×81+5×80+7×8-1+4×8-2+4×8-3⑷(785.4AF)16=7×162+8×161+5×160+4×16-1+A×16-2+F×16-31.2 完成下列二进制表达式的运算:1.3 将下列二进制数转换成十进制数、八进制数和十六进制数:⑴(1110101)2=(165)8=(75)16=7×16+5=(117)10⑵(0.110101)2=(0.65)8=(0.D4)16=13×16-1+4×16-2=(0.828125)10⑶(10111.01)2=(27.2)8=(17.4)16=1×16+7+4×16-1=(23.25)101.4 将下列十进制数转换成二进制数、八进制数和十六进制数,精确到小数点后5位:⑴(29)10=(1D)16=(11101)2=(35)8⑵(0.207)10=(0.34FDF)16=(0.001101)2=(0.15176)8⑶(33.333)10=(21.553F7)16=(100001.010101)2=(41.25237)81.5 如何判断一个二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除?解: 一个二进制正整数被(2)10除时,小数点向左移动一位, 被(4)10除时,小数点向左移动两位,能被整除时,应无余数,故当b1=0和b0=0时, 二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除.1.6 写出下列各数的原码、反码和补码:⑴0.1011[0.1011]原=0.1011; [0.1011]反=0.1011; [0.1011]补=0.1011⑵0.0000[0.000]原=0.0000; [0.0000]反=0.0000; [0.0000]补=0.0000⑶-10110[-10110]原=110110; [-10110]反=101001; [-10110]补=1010101.7 已知[N]补=1.0110,求[N]原,[N]反和N.解:由[N]补=1.0110得: [N]反=[N]补-1=1.0101, [N]原=1.1010,N=-0.10101.8 用原码、反码和补码完成如下运算:⑴0000101-0011010[0000101-0011010]原=10010101;∴0000101-0011010=-0010101。
数字逻辑(第二版)毛法尧课后题答案(1_6章)
习题一1.1 把下列不同进制数写成按权展开式:⑴ (4517.239)10= 4×103+5×102+1×101+7×100+2×10-1+3×10-2+9×10-3⑵ (10110.0101)2=1×24+0×23+1×22+1×21+0×20+0×2-1+1×2-2+0×2-3+1×2-4⑶ (325.744)8=3×82+2×81+5×80+7×8-1+4×8-2+4×8-3⑷ (785.4AF)16=7×162+8×161+5×160+4×16-1+A×16-2+F×16-31.2 完成下列二进制表达式的运算:1.3 将下列二进制数转换成十进制数、八进制数和十六进制数:⑴ (1110101)2=(165)8=(75)16=7×16+5=(117)10⑵ (0.110101)2=(0.65)8=(0.D4)16=13×16-1+4×16-2=(0.828125)10⑶ (10111.01)2=(27.2)8=(17.4)16=1×16+7+4×16-1=(23.25)101.4 将下列十进制数转换成二进制数、八进制数和十六进制数,精确到小数点后5位:⑴ (29)10=(1D)16=(11101)2=(35)8⑵ (0.207)10=(0.34FDF)16=(0.001101)2=(0.15176)8⑶ (33.333)10=(21.553F7)16=(100001.010101)2=(41.25237)81.5 如何判断一个二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除?解: 一个二进制正整数被(2)10除时,小数点向左移动一位, 被(4)10除时,小数点向左移动两位,能被整除时,应无余数,故当b1=0和b0=0时, 二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除.1.6 写出下列各数的原码、反码和补码:⑴ 0.1011[0.1011]原=0.1011; [0.1011]反=0.1011; [0.1011]补=0.1011⑵ 0.0000[0.000]原=0.0000; [0.0000]反=0.0000; [0.0000]补=0.0000⑶ -10110[-10110]原=110110; [-10110]反=101001; [-10110]补=1010101.7 已知[N]补=1.0110,求[N]原,[N]反和N.解:由[N]补=1.0110得: [N]反=[N]补-1=1.0101, [N]原=1.1010,N=-0.10101.8 用原码、反码和补码完成如下运算:⑴ 0000101-0011010[0000101-0011010]原=10010101;∴0000101-0011010=-0010101。
(完整word版)《数字逻辑》(第二版)习题答案
第一章1。
什么是模拟信号?什么是数字信号?试举出实例。
模拟信号—----指在时间上和数值上均作连续变化的信号。
例如,温度、压力、交流电压等信号.数字信号--—--指信号的变化在时间上和数值上都是断续的,阶跃式的,或者说是离散的,这类信号有时又称为离散信号。
例如,在数字系统中的脉冲信号、开关状态等。
2. 数字逻辑电路具有哪些主要特点?数字逻辑电路具有如下主要特点:●电路的基本工作信号是二值信号。
●电路中的半导体器件一般都工作在开、关状态.●电路结构简单、功耗低、便于集成制造和系列化生产。
产品价格低廉、使用方便、通用性好。
●由数字逻辑电路构成的数字系统工作速度快、精度高、功能强、可靠性好。
3。
数字逻辑电路按功能可分为哪两种类型?主要区别是什么?根据数字逻辑电路有无记忆功能,可分为组合逻辑电路和时序逻辑电路两类。
组合逻辑电路:电路在任意时刻产生的稳定输出值仅取决于该时刻电路输入值的组合,而与电路过去的输入值无关。
组合逻辑电路又可根据输出端个数的多少进一步分为单输出和多输出组合逻辑电路。
时序逻辑电路:电路在任意时刻产生的稳定输出值不仅与该时刻电路的输入值有关,而且与电路过去的输入值有关。
时序逻辑电路又可根据电路中有无统一的定时信号进一步分为同步时序逻辑电路和异步时序逻辑电路。
4. 最简电路是否一定最佳?为什么?一个最简的方案并不等于一个最佳的方案。
最佳方案应满足全面的性能指标和实际应用调整。
5。
把下列不同进制数写成按权展开形式。
(1) (4517.239)10(3) (325.744)8(2)(10110.0101)2(4) (785.4AF)16解答(1)(4517。
239)10 = 4×103+5×102+1×101+7×100+2×10—1+3×10—2+9×10—3(2)(10110.0101)2= 1×24+1×22+1×21+1×2-2+1×2-4(3)(325.744)8 = 3×82+2×81+5×80+7×8-1+4×8-2+4×8—3(4) (785。
数字逻辑习题答案_毛法尧_第二版
毛法尧第二版习题一1.1 把下列不同进制数写成按权展开式:⑴(4517.239)10= 4×103+5×102+1×101+7×100+2×10-1+3×10-2+9×10-3⑵(10110.0101)2=1×24+0×23+1×22+1×21+0×20+0×2-1+1×2-2+0×2-3+1×2-4⑶(325.744)8=3×82+2×81+5×80+7×8-1+4×8-2+4×8-3⑷(785.4AF)16=7×162+8×161+5×160+4×16-1+A×16-2+F×16-31.2 完成下列二进制表达式的运算:1.3 将下列二进制数转换成十进制数、八进制数和十六进制数:⑴(1110101)2=(165)8=(75)16=7×16+5=(117)10⑵(0.110101)2=(0.65)8=(0.D4)16=13×16-1+4×16-2=(0.828125)10⑶(10111.01)2=(27.2)8=(17.4)16=1×16+7+4×16-1=(23.25)101.4 将下列十进制数转换成二进制数、八进制数和十六进制数,精确到小数点后5位:⑴(29)10=(1D)16=(11101)2=(35)8⑵(0.207)10=(0.34FDF)16=(0.001101)2=(0.15176)8⑶(33.333)10=(21.553F7)16=(100001.010101)2=(41.25237)81.5 如何判断一个二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除?解: 一个二进制正整数被(2)10除时,小数点向左移动一位, 被(4)10除时,小数点向左移动两位,能被整除时,应无余数,故当b1=0和b0=0时, 二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除.1.6 写出下列各数的原码、反码和补码:⑴0.1011[0.1011]原=0.1011; [0.1011]反=0.1011; [0.1011]补=0.1011⑵0.0000[0.000]原=0.0000; [0.0000]反=0.0000; [0.0000]补=0.0000⑶-10110[-10110]原=110110; [-10110]反=101001; [-10110]补=1010101.7 已知[N]补=1.0110,求[N]原,[N]反和N.解:由[N]补=1.0110得: [N]反=[N]补-1=1.0101, [N]原=1.1010,N=-0.10101.8 用原码、反码和补码完成如下运算:⑴0000101-0011010[0000101-0011010]原=10010101;∴0000101-0011010=-0010101。
(完整版)数字逻辑习题答案毛法尧第二版
⑷(785.4AF)16=7×162+8×161+5×160+4×16-1+A×16-2+F×16-3
1.2完成下列二进制表达式的运算:
1.3将下列二进制数转换成十进制数、八进制数和十六进制数:
⑴(1110101)2=(165)8=(75)16=7×16+5=(117)10
解:输出函数:
;
; ;
激励函数:
;
;
;
。
4.2已知状态表如表4.45所示,作出相应的状态图。
解:状态图为:
4.3已知状态图如图4.56所示,作出相应的状态表。
解:相应的状态表为:
4.4图4.57所示状态图表示一个同步时序逻辑电路处于其中某一个未知状态,。为了确定这个初始状态,可加入一个输入序列,并观察输出序列。如果输入序列和相应的输出序列为00/0、01/1、00/0、10/0、11/1,试确定该同步时序电路的初始状态。
用“与非”门实现的逻辑电路为:
用异或门实现的电路为
3.9判断下列函数是否存在冒险,并消除可能出现的冒险。
⑴
⑵
⑶
解:⑴不存在冒险;
⑵存在冒险,消除冒险的办法是添加一冗余项BD;
即:
⑶也存在冒险,消除冒险的办法也是添加一冗余因子项 .
即: .
习题四
4.1图4.55所示为一个同步时序逻辑电路,试写出该电路的激励函数和输出函数表达式。
解:为分析问题的方便,下面写出状态表:
当输入序列和相应的输出序列为00/0时,A、B、C、D都符合条件,但当序列为01/1时要转为B态或C态,就排除了A、D态;下一个序列为00/0时,B、C保持原态,接着序列为10/0时,B态转为A态,C态转为D态,但当最后一个序列为11/1时,只有D态才有可能输出1,这就排除了B态。故确定该同步时序电路的初始状态为C态。
数字逻辑第三章习题答案
A B C
Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7
&
G
3.21 F = X⊕Y⊕Z X 0 0 1 1 3.22 ⑴
74138 Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y X & F Z Z A B Y C0 C1 C2 C3 74153 F
74153
Y 0 1 0 1
F Z Z Z Z
74LS283
S3 S2 S1 S0
Y2Y4Y2Y1
3.29 ⑴ 当B=1时 F = C+C 静态 险象 静态1险象 时 静态1险象 当A=1,C=0 时 F = B+B 静态 险象 化简F 可消除险象。 化简 = B + AC 可消除险象。 静态1险象 ⑵ 当 B=C=D=1时 F = A+A 静态 险象 时 静态1险象 当 A=C=0 时 F = B+B 静态 险象 静态1险象 当 A=D=1,B=0 时 F = C+C 静态 险象 F = AB + BC + ACD + AC + BCD + ABD 可消除险象。 可消除险象。 3.30 ⑴ F=AB+CD+BCD+ACD ⑶ F=BD+BD+ABC+ACD
+5V
AGTB AGTB AEQB AEQB ALTB ALTB A0 B0 74LS85 A1 B1 A2 B2 A3 B3
X>Y X=Y X<Y
••• •••
••• •••
+5V
X12 Y12 X13 Y13 X14 Y14 X15 Y15
3.26 ⑸ 2421码→8421码 码 码 A = 0:+ 0000 A = 1:- 0110(+ 1010) A B C D
数字逻辑(第二版)毛法尧课后题答案(1-6章)
习题一1.1 把以下不同进制数写成按权展开式:⑴(4517.239)10= 4×103+5×102+1×101+7×100+2×10-1+3×10-2+9×10-3⑵(10110.0101)2=1×24+0×23+1×22+1×21+0×20+0×2-1+1×2-2+0×2-3+1×2-4⑶(325.744)8=3×82+2×81+5×80+7×8-1+4×8-2+4×8-3⑷(785.4AF)16=7×162+8×161+5×160+4×16-1+A×16-2+F×16-31.2 完成以下二进制表达式的运算:1.3 将以下二进制数转换成十进制数、八进制数和十六进制数:⑴(1110101)2=(165)8=(75)16=7×16+5=(117)10⑵(0.110101)2=(0.65)8=(0.D4)16=13×16-1+4×16-2=()10⑶(10111.01)2=(27.2)8=(17.4)16=1×16+7+4×16-1=(23.25)101.4 将以下十进制数转换成二进制数、八进制数和十六进制数,准确到小数点后5位:⑴(29)10=(1D)16=(11101)2=(35)8⑵(0.207)10=(0.34FDF)16=(0.001101)2=(0.15176)8⑶(33.333)10=(21.553F7)16=(100001.010101)2=(41.25237)81.5 如何判断一个二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除?解: 一个二进制正整数被(2)10除时,小数点向左挪动一位, 被(4)10除时,小数点向左挪动两位,能被整除时,应无余数,故当b1=0和b0=0时, 二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除.1.6 写出以下各数的原码、反码和补码:⑴[0.1011]原=0.1011; [0.1011]反=0.1011; [0.1011]补=0.1011⑵[0.000]原=0.0000; [0.0000]反=0.0000; [0.0000]补=⑶-10110[-10110]原=110110; [-10110]反=101001; [-10110]补=1010101.7 [N]补=1.0110,求[N]原,[N]反和N.解:由[N]补得: [N]反=[N]补-1=1.0101, [N]原=1.8 用原码、反码和补码完成如下运算:⑴0000101-0011010[0000101-0011010]原=10010101;∴0000101-0011010=-0010101。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章
1.根据所采用的半导体器件不同,集成电路可分为哪两大类?各
自的主要优缺点是什么?
解答
双极型集成电路:采用双极型半导体器件作为元件.主要特点是速度快、
负载能力强,但功耗较大、集成度较低。
单极型集成电路:指MOS集成电路,采用金属-氧化物半导体场效应管
(Metel Oxide Semi- conductor Field Effect
Transister,简写为MOSFET)作为元件.MOS型集成电
路的特点是结构简单、制造方便、集成度高、功耗低,
但速度较慢。
2.简述晶体二极管的静态特性?
解答
“正向导通(相当于开关闭合),反向截止(相当于开关断开)”,硅管正向压降约0.7伏,锗管正向压降约0.3伏。
3.晶体二极管的开关速度主要取决于什么?
解答
晶体二极管的开关速度主要取决于反向恢复时间(二极管从正向导通到反向截止所需要的时间)和
开通时间(二极管从反向截止到正向导通所需要的时间)。
相比之下,开通时间很短,一般可以忽略不计。
因此,影响二极管开关速度的主要因素是反向恢复时间。
4.数字电路中,晶体三极管一般工作在什么状态?
解答
数字电路中,晶体三极管一般工作在“截止状态”(相当于开关断开)
和“饱和导通状态”(相当于开关闭合)。
5.晶体三极管的开关速度取决于哪些因素?
解答
晶体三极管的开关速度主要取决于开通时间t on(三极管从截止状态到饱和状态所需要的时间)和关闭时间t off (三极管从饱和状态到截止状态所需要的时间),它们是影响电路工作速度的主要因素。
6. TTL与非门有哪些主要性能参数?
解答
TTL与非门的主要外部特性参数有输出逻辑电平、开门电平、关门电平、扇入系数、扇出系数、平均传输时延、输入短路电流和空载功耗等8项。
7.OC门和TS门的结构与一般TTL与非门有何不同?各有何主要应用?
解答
OC门:该电路在结构上把一般TTL与非门电路中的T3、D4去掉,令T4的集电极悬空,从而把一般TTL与非门电路的推拉式输出级改为三极管集电极开路输出。
OC门可以用来实现“线与”逻辑、电平转换以及直接驱动发光二极管、干簧继电器等。
TS门: 该电路是在一般与非门的基础上,附加使能控制端EN和控制电路构成的。
在EN有效时为正常
工作状态,在EN无效时输出端被悬空,即处于高阻状态。
TS门主要应用于
数据与总线的连接,以实现总线传送控制,它既可用于单向数据传送,也可用于双向数据传送。
8.有两个相同型号的TTL与非门,对它们进行测试的结果如下:
(1) 甲的开门电平为1.4V,乙的开门电平为1.5V;
(2) 甲的关门电平为1.0V,乙的关门电平为0.9V。
试问在输入相同高电平时,哪个抗干扰能力强?在输入相同低电平时,哪个抗干扰能力强?
解答
在输入相同高电平时,甲的抗干扰能力强。
因为开门电平愈小,在输入高电平时的抗干扰能力愈强。
在输入相同低电平时,甲的抗干扰能力强。
因为关门电平越大,在输入低电平时的抗干扰能力越强。
9. 图1(a)所示为三态门组成的总线换向开关电路,其中,A 、B 为信号输入端,分别送两个频率不同的信号;EN为换向控制端,控制电平波形如图(b)所示。
试画出Y1、Y2的波形。
图1 电路图及有关信号波形
解答
图中,EN=0:Y1 =A, Y2=B;EN=1: Y1 =B , Y2 = A。
据此,可做出Y1、Y2的波形图如图2所示。
图 2
10. 试画出实现如下功能的CMOS 电路图。
(1) C B A F ⋅⋅= (2) B A F += (3) D C B A F ⋅+⋅= 解答
(1)实现C B A F ⋅⋅= 的CMOS 电路图如图3所示。
图3
(2)实现B A F +=的CMOS 电路图如图4所示。
图4
(3)实现D
F⋅
⋅
=的CMOS电路图如图5所示。
+
C
B
A
图5
11. 出下列五种逻辑门中哪几种的输出可以并联使用。
(1) TTL集电极开路门;
(2) 普通具有推拉式输出的TTL与非门;
(3) TTL三态输出门;
(4) 普通CMOS门;
(5) CMOS三态输出门。
解答
上述五种逻辑门中,TTL集电极开路门、TTL三态输出门和C M OS三态输出门的输出可以并联使用。
12.用与非门组成的基本R-S触发器和用或非门组成的基本R-S 触发器在逻辑功能上有什么区别?
解答
与非门组成的基本R-S触发器功能为:
R=0,S=0,状态不定(不允许出现);
R=0,S=1, 置为0状态;
R=1,S=0, 置为1状态;
R=1,S=1,状态不变。
或非门组成的基本R-S触发器功能为:
R=0,S=0,状态不变;
R=0,S=1, 置为1状态;
R=1,S=0, 置为0状态;
R=1,S=1,状态不定(不允许出现)。
13.在图6(a)所示的D触发器电路中,若输入端D的波形如图6(b)所示,试画出输出端Q的波形(设触发器初态为0)。
图6 电路图及有关波形
解答
根据D触发器功能和给定输入波形,可画出输出端Q的波形如图7所示。
图7
14. 已知输入信号A和B的波形如图8(a)所示,试画出图8 (b)、( c)
中两个触发器Q端的输出波形,设触发器初态为0。
图8 信号波形及电路
解答
根据给定输入波形和电路图,可画出两个触发器Q端的输出波形Q D、Q T如图9所示。
图9 输出波形图
15. 设图10 (a)所示电路的初始状态Q1 = Q2 = 0,输入信号及CP端的波形
如图10(b)所示,试画出Q1、Q2的波形图。
图10 电路及有关波形
解答
根据给定输入波形和电路图,可画出两个触发器输出端Q1、Q2的波形如图11所示。
图11
16 试用T触发器和门电路分别构成D触发器和J-K触发器。
解答
(1)采用次态方程联立法,分别写出T触发器和D触发器的次态方程如下:
T触发器的次态方程:
D触发器的次态方程:
比较上述两个方程可得Q D T ⊕= ,据此可画出用T 触发器和一个异或门构成D 触发器的电路图如图12(a )所示。
(2) 采用次态方程联立法,分别写出T 触发器和JK 触发器的次态方程
如下:
T 触发器的次态方程:
JK 触发器的次态方程:
,据此可画出用T 触发器
和三个逻辑门构成JK 触发器的电路图如图12(b )所示。
图 12。