流体力学第四章
合集下载
流体力学第四章
由连续方程 V2
2
A1 V1 A2
,代入上式,有
A V A h j (1 1 ) 2 1 ,即1 (1 1 ) 2 A2 2 g A2
如以
V1
A2 则有 V2代入,则有 A1
2 A2 2 V2 h j ( 1) , 即 2 ( A2 1) 2 A1 2g A1
4.3.2 混合长度理论
4.3.3 湍流的速度分布 1、粘性底层(层流底层)
dv (1) 很大; dy
(2)粘性底层的厚度δ很小。 2、湍流核心
dv (1) dy
很小;
(2)区域大。 3、 过渡层—有时可将它算在湍流核心的 范围。
速度分布:在粘性底层中速度分布是直 线规律;湍流核心中为对数关系。 粗糙度 Δ 管壁凹凸不平的平均尺寸。 水利光滑管 δ>Δ 粗糙度对湍流核心几乎没有影响。 水利粗糙管 δ<Δ 粗糙度的大小对湍流特性产生直接影响。
《流体力学》
教学课件
第4章 流体在圆管中的流动
1 流体在固体内部的管中流动和缝隙中流动; 2 流体在固体外部的绕流; 3 流体在固体一侧的明渠流动; 4 流体与固体不相接触的孔口出流和射流。
4.1 雷诺实验
雷诺实验
雷诺实验发现 1.用不同的流体在相同直径的管道中进行实验,
所测得的临界速度 vk 是各不相同的;
T
有
W W W ,代入上式,得
T
1 1 W W W dt W W dt T0 T0 T 1 所以 T W dt 0 0
T
即脉动量的时均值
W 0
运用时均统计法就将湍流分为两个组成部分:一部分是用时均值表示 的时均流动;另一部分是用脉动值表示的脉动运动。时均流动代表运动 的主流,脉动反映湍流的本质。
4工程流体力学 第四章流体动力学基础
因为 F 沿 y 轴正向,所以 Fy 取正值
Fy F V•n dS = -V0 dS
= =
=
ρ vV n dS ρ vV n dS ρ vV n dS ρ vV n dS
CS
S0
S1
S2
v = -V0 sin
0
0
§4-2 对控制体的流体力学积分方程(续18)
由于V1,V2在y方向上无分量,
忽略粘性摩擦力,控制体所受表面力包括两
端面及流管侧表面所受的压力,沿流线方向总压
力为:
FSl
pS p δpS δS
p
δp 2
δS
Sδ p 1 δpδS 2
流管侧表面所受压力在流 线方向分量,平均压强
§4-2 对控制体的流体力学积分方程(续27z)
控制体所受质量力只有重力,沿流线方向分
Q2
Q0 2
1 cosθ
注意:同一个问题,控制体可以有不同的取法,
合理恰当的选取控制体可以简化解题过程。
§4-2 对控制体的流体力学积分方程(续23)
微元控制体的连续 方程和动量方程
从流场中取一段长度为l 的流管元,因
为流管侧面由流线组成,因此无流体穿过;流 体只能从流管一端流入,从另一端流出。
CS
定义在系统上 的变量N对时 间的变化率
定义在固定控制 体上的变量N对 时间的变化率
N变量流出控制 体的净流率
——雷诺输运定理的数学表达式,它提供了对
于系统的物质导数和定义在控制体上的物理量
变化之间的联系。
§4-2 对控制体的流体力学积分方程 一、连续方程
在流场内取一系统其体积为 ,则系统内
的流体质量为:
根据物质导数的定义,有:
Fy F V•n dS = -V0 dS
= =
=
ρ vV n dS ρ vV n dS ρ vV n dS ρ vV n dS
CS
S0
S1
S2
v = -V0 sin
0
0
§4-2 对控制体的流体力学积分方程(续18)
由于V1,V2在y方向上无分量,
忽略粘性摩擦力,控制体所受表面力包括两
端面及流管侧表面所受的压力,沿流线方向总压
力为:
FSl
pS p δpS δS
p
δp 2
δS
Sδ p 1 δpδS 2
流管侧表面所受压力在流 线方向分量,平均压强
§4-2 对控制体的流体力学积分方程(续27z)
控制体所受质量力只有重力,沿流线方向分
Q2
Q0 2
1 cosθ
注意:同一个问题,控制体可以有不同的取法,
合理恰当的选取控制体可以简化解题过程。
§4-2 对控制体的流体力学积分方程(续23)
微元控制体的连续 方程和动量方程
从流场中取一段长度为l 的流管元,因
为流管侧面由流线组成,因此无流体穿过;流 体只能从流管一端流入,从另一端流出。
CS
定义在系统上 的变量N对时 间的变化率
定义在固定控制 体上的变量N对 时间的变化率
N变量流出控制 体的净流率
——雷诺输运定理的数学表达式,它提供了对
于系统的物质导数和定义在控制体上的物理量
变化之间的联系。
§4-2 对控制体的流体力学积分方程 一、连续方程
在流场内取一系统其体积为 ,则系统内
的流体质量为:
根据物质导数的定义,有:
流体力学第四章
• 在每一个微元流束的有效截面上,各点的速度可认为是相同的 总流:无数微元流束的总和。
38
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
均匀流与非均匀流·渐变流和急变流
均匀流——同一条流线上各空间点上的流速相 同的流动,流线是平行直线,各有效截面上的 流速分布沿程不变 非均匀流——同一条流线上各空间点上的流速不 同的流动,流线不是平行直线,即沿流程方向速 度分布不均
迹线· 流线 1、迹线 1)定义:某一质点在某一时段内的运动轨迹 线。 2)迹线的微分方程
dx dy dz dt ux u y uz
烟火的轨迹为迹线
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
25
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
一维、二维和三维流动
三维流动:流动参数是x、y、z三个坐标的函数
的流动。
二维流动:流动参数是x、y两个坐标的函数的
流动。
一维流动:是一个坐标的函数的流动。
26
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
x= x (t)
dux ux ux dx ux dy ux dz ax dt t x dt y dt z dt
(1)当地加速度(时变加速度):流动过程中流体 由于速度随时间变化而引起的加速度; (2)迁移加速度(位变加速度):流动过程中流体 由于速度随位置变化而引起的加速度。
流体力学第四章:流体阻力及能量损失
减小摩擦阻力的方法
优化物体表面粗糙度、使用润滑剂、改变流体的流速和方 向等。
形状阻力
形状阻力
由于物体形状的不同,流体在绕过物体时产生的阻力。
形状阻力公式
$F_s = frac{1}{2} rho u^2 A C_s$,其中$C_s$为形状阻力系数, 与物体形状、流体性质和流速有关。
减小形状阻力的方法
详细描述
汽车设计中的流体阻力优化主要包括车身形 状设计和空气动力学套件的应用。设计师会 采用流线型设计来减小空气阻力,同时也会 采用导流板、扰流板等空气动力学套件来调 整汽车周围的空气流动,以提高汽车的行驶
稳定性、减小风噪,并降低燃油消耗。
THANKS FOR WATCHING
感谢您的观看
详细描述
船舶航行中的流体阻力主要来自船体与水之间的摩擦力以及水对船体的冲击力。为了减小流体阻力, 船舶设计师通常会采用流线型设计,优化船体表面的光滑度,以及减少不必要的突出物,从而提高航 行效率。
管道流动中的能量损失
总结词
管道中流体流动时,由于流体与管壁之 间的摩擦以及流体内部的湍流等效应, 会产生能量损失。
根据伯努利方程、欧拉方程等计算公式,结合物体的形状、速度和流体密度等 参数进行计算。
02 流体阻力现象
摩擦阻力
摩擦阻力
由于流体与物体表面的相对运动产生摩擦而形成的阻力。
摩擦阻力公式
$F_f = frac{1}{2} rho u^2 A C_f$,其中$rho$为流体密 度,$u$为流速,$A$为流体与物体接触的表面积,$C_f$ 为摩擦阻力系数。
流体力学第四章流体阻力及能量损 失
目录
• 流体阻力的概念 • 流体阻力现象 • 能量损失原理 • 流体阻力的减小方法 • 实际应用案例
优化物体表面粗糙度、使用润滑剂、改变流体的流速和方 向等。
形状阻力
形状阻力
由于物体形状的不同,流体在绕过物体时产生的阻力。
形状阻力公式
$F_s = frac{1}{2} rho u^2 A C_s$,其中$C_s$为形状阻力系数, 与物体形状、流体性质和流速有关。
减小形状阻力的方法
详细描述
汽车设计中的流体阻力优化主要包括车身形 状设计和空气动力学套件的应用。设计师会 采用流线型设计来减小空气阻力,同时也会 采用导流板、扰流板等空气动力学套件来调 整汽车周围的空气流动,以提高汽车的行驶
稳定性、减小风噪,并降低燃油消耗。
THANKS FOR WATCHING
感谢您的观看
详细描述
船舶航行中的流体阻力主要来自船体与水之间的摩擦力以及水对船体的冲击力。为了减小流体阻力, 船舶设计师通常会采用流线型设计,优化船体表面的光滑度,以及减少不必要的突出物,从而提高航 行效率。
管道流动中的能量损失
总结词
管道中流体流动时,由于流体与管壁之 间的摩擦以及流体内部的湍流等效应, 会产生能量损失。
根据伯努利方程、欧拉方程等计算公式,结合物体的形状、速度和流体密度等 参数进行计算。
02 流体阻力现象
摩擦阻力
摩擦阻力
由于流体与物体表面的相对运动产生摩擦而形成的阻力。
摩擦阻力公式
$F_f = frac{1}{2} rho u^2 A C_f$,其中$rho$为流体密 度,$u$为流速,$A$为流体与物体接触的表面积,$C_f$ 为摩擦阻力系数。
流体力学第四章流体阻力及能量损 失
目录
• 流体阻力的概念 • 流体阻力现象 • 能量损失原理 • 流体阻力的减小方法 • 实际应用案例
流体力学第四章
流体力学
动量方程16-运动控制体
已知V = 30m/s,U = 10m/s,忽略重力和摩擦力, 已知V = 30m/s,U = 10m/s,忽略重力和摩擦力, 出口截面A11= 0.003m22,求Rxx和 Ryy 出口截面A = 0.003m ,求R 和 R
解:(1) 坐标系 (2) 控制体
r r r Vr = V − U
流体力学
动量方程15-运动控制体
∂ ∂t
∫
CV
r r r r r ρVr dτ + ∫ ρVrVr ⋅ ndS = ΣF
CS
流体仅在控制面的有限个区域流入流出且 ρ,V 在进出口截面均布,定常流动
r r & ∑ F = ∑ mriVri
(
)
out
−∑
(
r & mriVri
)
in
r r r 其中 Vr = V − VCV
φ
流体力学
雷诺输运方程1
欧拉方法描述系统物理量对时间的变化率
CSIII CSI I
t
r V
II
III
dS3
dS1 r n
r n
r V
t +δ t
DN sys Dt
流体力学
= lim
N sys (t + δt ) − N sys (t )
δt → 0
δt
雷诺输运方程2
DN sys Dt
DN sys Dt
流体力学
质点导数与系统导数
质点导数
r Dφ ∂φ = + (V ⋅ ∇ )φ Dt ∂t
流体质点某物理量随时间的变化率同空 间点上物理量之间的关系 系统导数
DN ∂ = Dt ∂t r r φV ⋅ ndS
动量方程16-运动控制体
已知V = 30m/s,U = 10m/s,忽略重力和摩擦力, 已知V = 30m/s,U = 10m/s,忽略重力和摩擦力, 出口截面A11= 0.003m22,求Rxx和 Ryy 出口截面A = 0.003m ,求R 和 R
解:(1) 坐标系 (2) 控制体
r r r Vr = V − U
流体力学
动量方程15-运动控制体
∂ ∂t
∫
CV
r r r r r ρVr dτ + ∫ ρVrVr ⋅ ndS = ΣF
CS
流体仅在控制面的有限个区域流入流出且 ρ,V 在进出口截面均布,定常流动
r r & ∑ F = ∑ mriVri
(
)
out
−∑
(
r & mriVri
)
in
r r r 其中 Vr = V − VCV
φ
流体力学
雷诺输运方程1
欧拉方法描述系统物理量对时间的变化率
CSIII CSI I
t
r V
II
III
dS3
dS1 r n
r n
r V
t +δ t
DN sys Dt
流体力学
= lim
N sys (t + δt ) − N sys (t )
δt → 0
δt
雷诺输运方程2
DN sys Dt
DN sys Dt
流体力学
质点导数与系统导数
质点导数
r Dφ ∂φ = + (V ⋅ ∇ )φ Dt ∂t
流体质点某物理量随时间的变化率同空 间点上物理量之间的关系 系统导数
DN ∂ = Dt ∂t r r φV ⋅ ndS
流体力学第四章 水头损失
全)。
P59表4-1为不同形状导管的临界雷诺数(水力半径)。
雷诺数的物理意义: Re = V d/ 粘性大、 Re 小、 易层流
13
§4–5 层流的水头损失---圆管中的层流
在这一章节主要讨论粘性力和沿程水头损失 hf 的规律。
假设流体在等截面水平圆管中作层流运动。取出其中半径 为 r 的圆柱体作为研究对象,写出运动方程式:(因为是定常
因此在计算每一个具体流动的水头损失时,首先须要判 别该流体的流动状态,而雷诺数为判别流体是层流还是湍 流提供了准则。
11
§4-4 雷诺数
管中流体的平均流速不是一个独立不变的量。
由实验知:流体平均流速与流体运动粘性成正比、与管道直 径d成反比;则引入一个无量纲比例常数Re 可写为:
V= Re /d
其中 Re 称为雷诺数。
8
(c)继续增大管内流速,则染色流束剧烈地波动,最后个别部 分出现破裂,并失掉原来的清晰的形状,混杂在很多小旋涡中。 染色液体很快充满整个管,如图c。这表明此时管内的流体向前 流动时处于完全无规则的混乱状态,称其为“湍流”,或“紊 流”。
流体由层流转变为湍流时 的平均流速,称之为“上临 界速度VC `”。
长管、短管
不是由管道的长与短来决定,而是由局部水头损失与沿程水头 损失的比例大小来确定。
长管:沿程损失比局部损失和速度水头的和大,局部损失可忽略;
短管:局部损失和速度水头的和比沿程损失大,考虑局部损失;
§4-3 流体流动两种状态
在不同条件下,流体质点的运动可能表现为两种状态。 一是、流体质点作有规则的运动,在运动过程中质点之间
互不混杂、互不干扰。 二是、流体质点的运动非常混乱。 1883年英国科学家雷诺进行了负有盛名的雷诺实验。
P59表4-1为不同形状导管的临界雷诺数(水力半径)。
雷诺数的物理意义: Re = V d/ 粘性大、 Re 小、 易层流
13
§4–5 层流的水头损失---圆管中的层流
在这一章节主要讨论粘性力和沿程水头损失 hf 的规律。
假设流体在等截面水平圆管中作层流运动。取出其中半径 为 r 的圆柱体作为研究对象,写出运动方程式:(因为是定常
因此在计算每一个具体流动的水头损失时,首先须要判 别该流体的流动状态,而雷诺数为判别流体是层流还是湍 流提供了准则。
11
§4-4 雷诺数
管中流体的平均流速不是一个独立不变的量。
由实验知:流体平均流速与流体运动粘性成正比、与管道直 径d成反比;则引入一个无量纲比例常数Re 可写为:
V= Re /d
其中 Re 称为雷诺数。
8
(c)继续增大管内流速,则染色流束剧烈地波动,最后个别部 分出现破裂,并失掉原来的清晰的形状,混杂在很多小旋涡中。 染色液体很快充满整个管,如图c。这表明此时管内的流体向前 流动时处于完全无规则的混乱状态,称其为“湍流”,或“紊 流”。
流体由层流转变为湍流时 的平均流速,称之为“上临 界速度VC `”。
长管、短管
不是由管道的长与短来决定,而是由局部水头损失与沿程水头 损失的比例大小来确定。
长管:沿程损失比局部损失和速度水头的和大,局部损失可忽略;
短管:局部损失和速度水头的和比沿程损失大,考虑局部损失;
§4-3 流体流动两种状态
在不同条件下,流体质点的运动可能表现为两种状态。 一是、流体质点作有规则的运动,在运动过程中质点之间
互不混杂、互不干扰。 二是、流体质点的运动非常混乱。 1883年英国科学家雷诺进行了负有盛名的雷诺实验。
工程流体力学第4章流体在圆管中的流动
流体在圆管中的摩擦系数
定义
表示流体在圆管中流动时, 流体与管壁之间的摩擦力 与压力梯度之间的比值。
影响因素
流体的物理性质、管道的 粗糙度、流动状态等。
测量方法
通过实验测定,常用的实 验设备有摩擦系数计和流 阻仪等。
流体在圆管中的流动效率
定义
表示流体在圆管中流动的能量转 换效率,即流体在流动过程中所 消耗的能量与流体所具有的能量
流速分布受流体粘性和密度的影响, 粘性越大、密度越小,靠近管壁处流 速降低越快。
03
流体在圆管中的流动现象
流体阻力
01
02
03
定义
流体在流动过程中,由于 流体内部以及流体与管壁 之间的摩擦力而产生的阻 力。
影响因素
流体的物理性质、流动状 态、管道的形状和尺寸等。
减小阻力措施
选择适当的流速、优化管 道设计、使用减阻剂等。
之比。
影响因素
流体的物理性质、管道的形状和尺 寸、流动状态等。
提高效率措施
优化管道设计、改善流体物性、降 低流速等。
流体பைடு நூலகம்圆管中的流动稳定性
定义
表示流体在圆管中流动时,流体的速 度和压力等参数随时间的变化情况。
影响因素
流动稳定性控制
通过控制流体物性、流速和管道设计 等措施,保持流体在圆管中的流动稳 定性。
根据输送距离、流量和扬程要求,选择合适的水 泵。
输送效率
优化输送管道布局,降低流体阻力,提高输送效 率。
输送安全性
确保输送过程中不发生泄漏、堵塞等安全问题。
液压系统
液压元件
根据液压系统要求,选择合适的液压元件,如油泵、阀、油缸等。
系统稳定性
确保液压系统在各种工况下稳定运行,避免压力波动和振动。
流体力学课件第四章流动阻力和水头损失
l v hf d 2g
2
r w g J 2
w v 8
定义壁剪切速度(摩擦速度) 则
w v
*
v v
*
8
§4-4 圆管中的层流
层流的流动特征
du dy
du du dy dr
du dr
g J
r 2
r du g J 2 dr
层流 紊流
§4-3 沿程水头损失与剪应力的关系
均匀流动方程式
P G cos P2 T 0 1
P p1 A1 1
P2 p2 A2
T w l
G cos gAl cos gA( z1 z2 )
w l p1 p2 ( z1 ) ( z2 ) g g gA
v2 hj 2g
§4-2 粘性流体的两种流态
两种流态
v小
' c
v小
v > vc
v大 v大
临界流速。 下临界流速 vc ——由紊流转化为层流时的流速称为下 临界流速。
vc' ——由层流转化为紊流时的流速称为上 上临界流速
vv
层流 紊流
' c
紊流 层流
a-b-c-e-f f-e-d-b-a
第四章 流动阻力和水头损失
水头损失产生的原因: 一是流体具有粘滞性, 二是流动边界的影响。
§4-1 流动阻力和水头损失的分类
沿程阻力和沿程水头损失
在边界沿程无变化(边壁形状、尺寸、过 流方向均无变化)的均匀流段上,产生的流动 阻力称为沿程阻力或摩擦阻力。由于沿程阻力 做功而引起的水头损失称为沿程水头损失。均 匀流中只有沿程水头损失 h f 。
流体力学 第4章
模型与原型的流场动力相似,它们的牛顿数必定相等。
4.2 动力相似准则
4.2.1.重力相似准则
在重力作用下相似的流动,其重力场相似。
kF
Fg Fg
V g Vg
k kl3kg
代入
kF k kl2kv2
kv (kl kg )1/ 2
1
v (gl)1/ 2
v (gl)1/ 2
Fr
Fr——弗劳德数,惯性力与重力的比值。
自模化状态 紊流的阻力有两部分
例如:泵与风机的动力相似是自动满足的
如图为弧形闸门放水时的情形,已知水深h=6m, 模型闸门是按比例尺kl=1/20制作,试验时的开度与 原型相同。试求流动相似时模型闸门前的水深。在模 型 上 测 得 收 缩 截 面 的 平 均 流 速 vˊ=2.0m 流 量 qvˊ=30L/s, 水作用在闸门上的力Fˊ=92N,绕闸门的 力矩Mˊ=110N·m,试求原型上收缩截面的平均流速、 流量、以及作用在闸门上的力。
第4章 相似原理和量纲分析
4.1 流动的力学相似
一、几何相似
模型与原形的全部对应线形长度的比例相等
长度比例尺
kl
l l
面积比例尺
kA
A A
l2 l2
kl2
L
体积比例尺
kV
V V
l3 l3
kl3
L
二、运动相似
模型与原形的流场所有对应点上、对应时刻 的流速方向相同而流速大小的比例相等。
速度比例尺 时间比例尺 加速度比例尺 体积流量比例尺 运动粘度比例尺
力的比例尺
kF
FP FP
F F
Fg Fg
Fi Fi
FP ——总压力 F ——切向力 Fg ——重力 Fi ——惯性力
流体力学 第四章 输运公式
例3 水流过一段900的渐缩弯头,进口截面绝对压强p1 221kPa , 横截面积S1 0.01m 2,出口截面面积S 2 0.0025m 2 , 速度V2 16m / s 压强则为大气压强pa 101kPa,水密度=999kg / m 3。流动是 定常的,忽略质量力和摩擦力,求对弯头的支撑力。
CS
假设水速在进出口截面S1 , S 2上均匀分布 (V n )dA V1S1 V2 S 2 0
CS
S2 V1 V2 4m / s S1 (2)定常流动量方程 F V (V n )dA
CS
x轴方向分量方程 Fx u (V n )dA
第四章 流体力学基本方程
主要内容: 1、系统、控制体的基本概念、定义; 2、输运公式; 3、流体力学积分形式基本方程组; 4、流体力学微分形式基本方程组; 5、定解条件方程的应用。
第一节 输运公式
一、基本概念
系统:一团流体质点的集合。引入系统的概念,实际上就是
采用拉格朗日观点来描述流体的运动。
特点:(1)随质点运动而运动,包含质量不变;
Bsys ( d ),BCV ( dv)
sys CV
体积单位;
dBout dBin v dA v dA dt A2 A1 (V n )dA
CS
d d sys ( d ) dt CV ( dv) (V n )dA dt CS
上式第一项: dh dv t ( w Sh) t a S ( H h) w S dt t CV 式中因空气总质量不变,即 a S ( H h)为常量,对时间的导数 为零。h仅是时间t的函数,对时间的偏导数可改写为全导数。 连续方程的第二项: (V n )dS wV2 S 2 wV1S1
工程流体力学-第4章 量纲分析与相似理论
动力相似
原型和模型对应点所受的同名力方向相同,大小 成比例。
FGp FPp F p FI p FGm FPm F m FI m
几何相似是运动相似和动力相似的前提 动力相似是决定流动相似的主要因素 运动相似是几何相似和动力相似的表现
§4-4 相似准则
流动相似的本质 :原型和模型被 同一物理方程所 描述。这个物理 方程即相似准则 。
因为声音在流体中传播速度(音速), a
入柯西数得
Ca v Ma a
Ev
代
§4-4 相似准则
其他相似准则
Ma 称为马赫数,在气流速度接近或超过音速时,要保证
流动相似,还需保证马赫数相等,即
vp vm ap am
或
(Ma) p (Ma) p
§4-5 相似原理应用
模型律的选择
模型律的选择
•从理论上讲, 流动相似应保 证所有作用力 都相似,但难 以实现。
FI
粘性力比尺:
FI
( A ( A
du dy
)
p
du dy
)
m
lv
lv
§4-4 相似准则
惯性力比尺: FI
(Va) p (Va)m
l3a
l 2v2
a v2 l
雷诺准则方程
vl 1
or
(vl
)
p
(vl
)
m
即要保证原型流动和模型流动的粘性力相似,则要求两
者对应的雷诺数 Re 必vl须相等。
相似准则
准则推导依据
动力相似是
决定流动相 似的主要因 素
§4-4 相似准则
弗劳德准则——重力相似
要保证原型和模型任意对应点的流体重力相似, 则据动力相似要求有
原型和模型对应点所受的同名力方向相同,大小 成比例。
FGp FPp F p FI p FGm FPm F m FI m
几何相似是运动相似和动力相似的前提 动力相似是决定流动相似的主要因素 运动相似是几何相似和动力相似的表现
§4-4 相似准则
流动相似的本质 :原型和模型被 同一物理方程所 描述。这个物理 方程即相似准则 。
因为声音在流体中传播速度(音速), a
入柯西数得
Ca v Ma a
Ev
代
§4-4 相似准则
其他相似准则
Ma 称为马赫数,在气流速度接近或超过音速时,要保证
流动相似,还需保证马赫数相等,即
vp vm ap am
或
(Ma) p (Ma) p
§4-5 相似原理应用
模型律的选择
模型律的选择
•从理论上讲, 流动相似应保 证所有作用力 都相似,但难 以实现。
FI
粘性力比尺:
FI
( A ( A
du dy
)
p
du dy
)
m
lv
lv
§4-4 相似准则
惯性力比尺: FI
(Va) p (Va)m
l3a
l 2v2
a v2 l
雷诺准则方程
vl 1
or
(vl
)
p
(vl
)
m
即要保证原型流动和模型流动的粘性力相似,则要求两
者对应的雷诺数 Re 必vl须相等。
相似准则
准则推导依据
动力相似是
决定流动相 似的主要因 素
§4-4 相似准则
弗劳德准则——重力相似
要保证原型和模型任意对应点的流体重力相似, 则据动力相似要求有
流体力学第四章
1.渐变流及其特性
渐变流过水断面近似为平面,即渐变流是流线接近于
平行直线的流动。均匀流是渐变流的极限。
动压强特性:在渐变流同一过水断面上,各点动压强
按静压强的规律式分布,即
注:上述结论只适用于渐变流或均匀流的同一过水断面上 的 各点,对不同过水断面,其单位势能往往不同。
选取:控制断面一般取在渐变流过水断面或其极限情况均匀 流断面上。
即J=JP。 5.总水头线和测压管水头线之间的距离为相应段
的流速水头。
6.如果测压管水头线在总流中心线以上,压强就 是正职;如相反,则压强为负值,则有真空。
4.总流能量方程在推导过程中的限制条件
(1)不可压缩流体;
(2)恒定流;
(3)质量力只有重力,所研究的流体边界是静止 的(或处于平衡状态);
取管轴0-0为基准面,测压管所在断面
1,2为计算断面(符合渐变流),断面的形
心点为计算点,对断面1,2写能量方程(4-
15),由于断面1,2间的水头损失很小,
可视
,取α1=α2=1,得
由此得:
故可解得:
式中,K对给定管径是常量,称为文丘里流 量计常数。
实际流量 : μ——文丘里流量计系数,随流动情况和管
流体力学
第四章 流体动力学基础
本章是工程流体力学课程中最重要的一 章。本章建立了控制流体运动的微分方程, 即理想流体运动微分方程和实际流体的运 动微分方程;并介绍了求解理想流体运动 微分方程的伯努利积分形式;构建了工程 流体力学中应用最广的恒定总流运动的三 大基本方程:连续性方程、伯努利方程 (即能量方程)和动量方程。通过本章的 学习要培养综合运用三大基本方程分析、 计算实际总流运动问题的能力。
道收缩的几何形状而不同。
流体力学-第四章 流体动力学基础
Dt t CV
CS
单位质量流体的能量 e (u V 2 gz) 流体系统的总能量
2
DE ed eV ndS
Dt t CV
CS
E ed
初始时刻系统与控制体重合
Q WSYS Q WCV
ed eV ndS Q W
t CV
CS
§4.2 对控制体的流体力学积分方程
§4.1 系统和控制体,雷诺输运定理
雷诺输运定理:
举例:动量定理运用于流体系统
F Dk Dt
F 是外界作用系统的合力,K 是系统的动量,
k Vd
由于系统不断改变位置、形状大小,组成系统的流体质点的密度和速度随
时间也是变化的,所以系统的动量也是变化的,求其对时间的变化率,即
求该流体系统体积分的物质导数。
取 N M 单位体积的质量
DM 0 Dt
d V ndS 0
t CV
CS
d V ndS 0
t CV
CS
积分形式的连续性方程
§4.2 对控制体的流体力学积分方程
非定常流动情况下:
d V ndS 0
t CV
CS
即单位时间内控制体内流体质量的增加或减少等于同时间内通过控制面流入 或流出的净流体质量。如果控制体内的流体质量不变,则必然同一时间内流 入与流出控制体的流体质量相等。
左端第一项——是控制体内流体动量随时间变化而产生的力,它反映流体运动的非定常性
左端第二项——是单位时间内流体流入和流出控制体的动量之差,它表示流入动量与流出动量
不等所产生的力。
§4.2 对控制体的流体力学积分方程
定常流动条件:
F
FB FS
VV ndS
CS
VV ndS
流体力学第4章流体流动基本原理
mCV qm2 qm1 0 t
28
对稳态流动系统,流体及流动参数均与 时间无关,即
mCV / t 0
因此,质量守恒方程简化为
qm1 qm2
或 1v1 A1 2v2 A2
即稳态流动,输入与输出的质量必然相等。
29
对不可压缩流体的稳态流动,ρ=const,则
v1 A v2 A2 1
CV
vmax
2
R v1R 0
2 2
34
故有
vmax=2v1
例题:一储气罐,罐中空气经管道向外界排出,
已知管道出口处气流密度和压强为均匀分布,而 速度呈抛物线规律分布:
r v vmax (1 2 ) r0
已知排气管r0=0.025m,当储气罐 中p0=0.14MPa,T0=277.8K,测得 管道出口处气流vmax=32m/s,储气 罐和管道的总容积0.32m3。
24
③ 控制体内的质量变化率
对于控制体内密度为ρ的任意微元体积dV,其质 量为ρdV。将ρdV在整个控制体CV积分可得控制体内 的瞬时总质量,再对时间求导得:
控制体内的 质量变化率 =
t
dV
CV
ρ dv
25
④ 质量守恒方程
将上述各式集合在一起即可得到控制体系
统的质量守恒方程:
输出控制体 的质量流量 输入控制体 — 的质量流量
4.2.1 控制体系统的质量守恒方程
根据质量守恒原理,对于质量为m的系统,其质 量守恒方程为
dm ( )系统 0 dt
由输运公式,以控制体为研究对象时质量守恒方程 可表述为
19
输出控制体 的质量流量
—
输入控制体 的质量流量
流体力学第四章 涡旋动力学基础
因此,针对流体的涡旋运动进行分析,介绍涡 旋运动的描述方法、认识涡旋运动的变化规律 及其物理原因是十分必要的
流体涡度:它是反映流体旋转特征或者旋转强度的 一个重要物理量。
涡度为零时,流体运动为无旋的;
涡度不等于零时,则对应流体的涡旋运动。
Chen Haishan NIM NUIST
一般情况:流体运 动可以表示为: V Vr V 无旋运动
涡旋运动
重点讨论涡旋部分 Vr 的变化特征及其产生的原因。
主要内容
第一节 环流定理 第二节 涡度方程
Chen Haishan NIM NUIST
第一节 环流定理
在流场中任取一个封闭的物质
环线 l (形状大小可变,由
流点组成的闭合曲线)。
l
速度环流的定义 V • dl l
它反映了流体沿曲线 l 运动的趋势,是标量,但具有
Chen Haishan NIM NUIST
第四章 涡旋动力学基础
流体的涡旋运动大 量存在于自然界中,如大 气中的气旋、反气旋、龙 卷、台风等,大气中的涡 旋运动对天气系统的形成 和发展有密切的关系。
台风 龙卷
Chen Haishan NIM NUIST
大尺度海洋环流
Chen Haishan NIM NUIST
1
p
dt
l
dV dt
.l
l
F .l
l
1
p.l
环流变化方程:
d dt
l
dV dt
l
l l
l
1
p l
l
l
1
p
右端项的处理主要涉及到 P 与 的关系
Chen Haishan NIM NUIST
正压流体:
流体涡度:它是反映流体旋转特征或者旋转强度的 一个重要物理量。
涡度为零时,流体运动为无旋的;
涡度不等于零时,则对应流体的涡旋运动。
Chen Haishan NIM NUIST
一般情况:流体运 动可以表示为: V Vr V 无旋运动
涡旋运动
重点讨论涡旋部分 Vr 的变化特征及其产生的原因。
主要内容
第一节 环流定理 第二节 涡度方程
Chen Haishan NIM NUIST
第一节 环流定理
在流场中任取一个封闭的物质
环线 l (形状大小可变,由
流点组成的闭合曲线)。
l
速度环流的定义 V • dl l
它反映了流体沿曲线 l 运动的趋势,是标量,但具有
Chen Haishan NIM NUIST
第四章 涡旋动力学基础
流体的涡旋运动大 量存在于自然界中,如大 气中的气旋、反气旋、龙 卷、台风等,大气中的涡 旋运动对天气系统的形成 和发展有密切的关系。
台风 龙卷
Chen Haishan NIM NUIST
大尺度海洋环流
Chen Haishan NIM NUIST
1
p
dt
l
dV dt
.l
l
F .l
l
1
p.l
环流变化方程:
d dt
l
dV dt
l
l l
l
1
p l
l
l
1
p
右端项的处理主要涉及到 P 与 的关系
Chen Haishan NIM NUIST
正压流体:
流体力学 第四章 cn
Ip = = = = = Tm Gm Pm E m S m I m 即λT = λG = λ P = λ E = λ S = λ I Tp Gp Pp Ep Sp
动力相似是运动相似的保证
四、初始条件和边界条件相似
初始条件和边界条件的相似是保证两个流动相似 的充分条件,正如初始条件和边界条件是微分方 程的定解条件一样。 对于非恒定 流,初始条件是必需 的;对于恒定流, 初始条件则失去了实际意义。 边界条件相似是指两个流动相似,其边界性质相 同,如固体 边界上的法线流速 都为零;自由液体 上 压强 均等 于大气压 等等,对于原型和模型 都是 一样的。
为时间比尺(Time Scale)
二、运动相似
w速度相似 意味着各 相应点的 加 速度也是相似的,
即
λl λv λ2 λa = = 2 == = v a m λt λt λl ap
式中λa为加速度比尺(Acceleration Scale) 由此可见,只要速度相似,加速度也必然相似,反 之亦然。 由于速度场的研究是流体力学的重要问题,所以 运动相似通常是模型试验的目的。
四、韦伯准则(Weber Criterion)
当作用力主要为表面张力时
F = S = σl
λ F = λ S = λσ λ l λI = λF
式中λσ为表面张力系数比尺,将上式代入式 得
2 λ ρ λ2 l λ v = λσ λl
化简得
λ ρ λl λ2 v λσ
=1 ρplp v2 p σp ρ mlm v2 m = σm
运动相似是两个流场相应点的速度方向相同,大 up 小成比例,即
um 式中λu为速度比尺(Velocity Scale)
断面平均流速也具有同样比尺,即
动力相似是运动相似的保证
四、初始条件和边界条件相似
初始条件和边界条件的相似是保证两个流动相似 的充分条件,正如初始条件和边界条件是微分方 程的定解条件一样。 对于非恒定 流,初始条件是必需 的;对于恒定流, 初始条件则失去了实际意义。 边界条件相似是指两个流动相似,其边界性质相 同,如固体 边界上的法线流速 都为零;自由液体 上 压强 均等 于大气压 等等,对于原型和模型 都是 一样的。
为时间比尺(Time Scale)
二、运动相似
w速度相似 意味着各 相应点的 加 速度也是相似的,
即
λl λv λ2 λa = = 2 == = v a m λt λt λl ap
式中λa为加速度比尺(Acceleration Scale) 由此可见,只要速度相似,加速度也必然相似,反 之亦然。 由于速度场的研究是流体力学的重要问题,所以 运动相似通常是模型试验的目的。
四、韦伯准则(Weber Criterion)
当作用力主要为表面张力时
F = S = σl
λ F = λ S = λσ λ l λI = λF
式中λσ为表面张力系数比尺,将上式代入式 得
2 λ ρ λ2 l λ v = λσ λl
化简得
λ ρ λl λ2 v λσ
=1 ρplp v2 p σp ρ mlm v2 m = σm
运动相似是两个流场相应点的速度方向相同,大 up 小成比例,即
um 式中λu为速度比尺(Velocity Scale)
断面平均流速也具有同样比尺,即
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时均速度 u
脉动速度u’ u' u u
1 t0 T udt t 0 T
4-3 圆管内紊流流动规律
一、紊流的基本特征及时均分析法
时均分析法 时均压强与脉动压强 1 t0 T p' p p p pdt t 0 T 准定常流——紊流流场中,任意定点处的时均参数 (u ,p) 不随时
4-4 沿程阻力损失的分析和计算
二、沿程损失计算
l c2 hf d 2g 64 层流流动,沿程阻力系数 Re f (Re) 紊流流动,沿程阻力系数不仅与雷诺数有关,还与相对粗糙度 d
f (Re, )
d
有关
尼古拉兹实验与实验曲线 人工粗糙管:在圆管内壁上涂胶,然后贴上具有相同半径的球形沙子, 造成不同粗糙度的圆管
4-4 沿程阻力损失的分析和计算
二、沿程损失计算
莫迪图——确定工业实际管道“λ”的曲线图 莫迪根据尼古拉兹实验结果,结合经验公式及工业管道实验总结绘 出的“λ”随“Re”、“ε/d”而变化的关系曲线图 ' ”为当量绝对粗糙度 图中“
4-4 沿程阻力损失的分析和计算
二、沿程损失计算
4-4 沿程阻力损失的分析和计算
二、沿程损失计算
4-4 沿程阻力损失的分析和计算
二、沿程损失计算
尼古拉兹实验与实验曲线 Re 2000 ),层 Ⅰ区(ab线, 流区λ=f(Re) 2000 Re 4000 ), Ⅱ区(bc线, 过渡区λ=f(Re) 8 7 4000 Re 27 ( d / ) Ⅲ区(cd线, ), 紊流光滑区λ=f(Re) 8 .85 27(d / ) 7 Re 4160(d / 2 ) 0) Ⅳ区(cd、ef之间曲线族, , 紊流过渡区λ=f(Re,ε/d) Re 4160(d / 2 ) 0.85 ),紊流粗糙区λ=f(ε/d) Ⅴ区(ef右侧水平的直线族 尼古拉兹实验曲线意义和不足 意义——揭示了管道流动中“λ”随 “Re”、“ε/d”的变化关系,为 计算“hf”奠定了基础。 不足——人工粗糙管与工业实际管道的粗糙情况不同,上面的结果不 便直接应用
一、雷诺实验
实验结果说明: 临界速度 ccs上临界速度由层流变紊流的临界速度 ccx下临界速度由紊流变层流的临界速度 上临界速度和下临界速度 不相等的原因: 惯性上临界速度的稳定性较差,下临界速度 是稳定不变的。以后所指的临界速度都是指 的下临界速度 管径、流体黏性对流动状态的影响 管径越大,临界速度越小,流体越容易由层 流变为紊流 黏性越小,临界速度越小,流体越容易由层 流变为紊流
用管道输送密度为900kg/m3,动力黏度为0.045pa﹒s的原油,维持平 均流速不超过1m/s,保持层流状态输送,管径不能超过多少
4-1 层流和紊流
四、流态与沿程损失的关系
1、阀门渐开:0→A→B→D 阀门渐关:D→B→E→0 0E段(c< ccx)层流 hf k1c1.0 c1.0 2、分析右图 EA段 不稳定 BD段(c> ccs)紊流 hf k2c1.75~2 c1.75~2 结论:“hf”的定量计算(规律)与流态密切 相关,“hf”是流态的函数
圆管层流流量与沿程阻力成正比,与管径的四次方成正比,与管 长及动力粘度成反比
c qv ghf 2 1 d umax A 32L 2
平均流速为断面最大流速的一半 层流沿程阻力损失计算 8L 32L 64 L c2 64 L c2 L c2 hf c c 2 2 dc gr0 gd d 2g Re d 2g d 2g 64 沿程阻力系数 Re 例题4-3.P115 直径为20mm的水管,水的流速0.11m/s,水温15℃,求管 长22m的沿程阻力损失
( z1
将上式与伯努利方程比较 c1 c2 2 L hf 0 gR 沿程阻力损失与切应力成正比,与流动长度成正比,与半径 和密度成反比
2 L p1 p ) ( z2 2 ) 0 g g gR
4-2 圆管内层流流动规律
二、过流断面上的切应力、速度分布
切应力分布
第四章 黏性流体流动规律
概述
流动阻力损失的有关概念 流动阻力 流动流体的各流层以及流体与固体边界之间的黏性摩擦形成的阻力。 (特点:存在于整个流程,称为沿程阻力) 流体流经固体边界急变区域时产生漩涡摩擦、微团碰撞等形成的阻力。 (特点:存在于急变流区,称为局部阻力) 流动阻力损失“hw” ——单位重量总流流体从断面1-1流至断面2-2,克 服流动阻力而损失的机械能 流动阻力损失的分类 沿程阻力损失“hf”:单位重量总流流体从断面1-1流至断面2-2,克服沿 程阻力而损失的机械能 局部阻力损失“hj” :单位重量总流流体从断面1-1流至断面2-2,克服 局部阻力而损失的机械能 hw的表达式:hw=Σhf +Σhj 提问:1、图示管道流动的Σhf及Σhj各有多少处 2、hf与哪些因素有关,如何确定
间而改变的流动
注意: 时均速度与平均速度的区别
工程上普通测速管、测压计等测量的结果为时均值
4-3 圆管内紊流流动规律
二、紊流结构分布
紊流结构分布 层流底层“δ”:紧靠管壁处一薄层较大速度梯度的层 流区 过渡区:不单独考虑,归为紊流核心区 紊流核心区:流体质点横向脉动较明显的区域,流动主体 层流底层 存在的原因:黏性 34.2d 0.875 厚度 Re 随着雷诺数的增大,层流底层的厚度减小 δ值的大小对流动阻力损失及流动流体与壁面传热的影响 δ增大,流动阻力减小,传热效果变差
4-1 层流和紊流
一、雷诺实验
实验装臵及试验方法 实验结果说明: 层流的概念:流体流动时,质点之
间互不干扰、互不混杂的流动状态 特点:各流层有规则地分层流动 紊流的概念:流体流动时,质点之
间相互干扰、彼此混杂的流动状态
特点: 流体不分层流动,质点运动
的方向无规则
4-1 层流和紊流
4-1 层流和紊流
三、雷诺数的物理含义
Re
惯性力 粘性力
惯性力使流体运动紊乱,黏性力使流体有规则的流动
例题4-1.P112
水流在直径为10cm的管道内流动,流量为qv=4L/s,水温t=15℃,确定 流动状态,同样状态下,流过运动黏度为0.5cm2/s的石油,确定 流动状态
例题4-2.P112
4-2 圆管内层流流动规律
一、流动的基本方程(定常流动)
流段长L,均匀流,流体质点做等速运动,在直圆管上流动没有局 部损失。流动方向上,流体受力分析 表面力 F1 p1 A F2 p2 A 重力在流动方向上的分力 G gLAcos 流段侧面上的摩擦力2RL 0 0 ——单位面积上的摩擦力 流体在流向上受力平衡 p1 A p2 A 2RL 0 gLAcos 0 L cos z1 z2 ,两边除以 gA
4-3 圆管内紊流流动规律
三、水力光滑与水力粗糙
壁面的绝对粗糙度ε:管壁起伏高度的平均点:壁面粗糙对流动阻力的影响可忽略 水力粗糙管——δ< ε
特点:壁面粗糙对流动阻力的影响不可忽略
水力光滑与粗糙是相对的 原因:δ是可以改变的?
思考:当qv增大时,δ如何变化
4-3 圆管内紊流流动规律
第四章 黏性流体流动规律
动力系 梁倩
第四章 黏性流体流动规律
概述
问题的提出 黏性总流的伯努利方程建立了单位重量流体运动时,沿流程“z” 、 “p”、“c”之间的定量关系,但方程中的能量损失“hw”有何特点?如何 确定?此外,还有动能修正系数“α”未解决 本章主要内容 1、管内实际流动分析及“hw”的计算,阻力损失是工程上最关注的问题, 它关系到工程目的能否实现及工程投资的多少 2、黏性总流伯努利方程的主要应用——管道水力计算 3、压力管道中的水击现象 流动阻力损失的有关概念 内因:黏性 引起流动阻力损失的原因是什么 外因:壁面对流体的作用力
四、紊流中的切应力及流速分布特点
在紊流核心区,速度按对数曲线分布
在靠近壁面的层流底层,速度按二次抛物线分布
断面最大时均流速与平均流速的关系
当Re增大时,紊乱程度加剧,c增大,接近 umax
c (0.75 ~ 0.9)umax
4-4 沿程阻力损失的分析和计算
一、影响沿程阻力的因素
流体的流态 层流时,流体流动过程中的沿程阻力产生的原因是,管壁对流体 的吸引力和流体层与层之间的内摩擦力 紊流时,流动阻力的来源有两个,第一,在层流底层,受到内摩 擦力的作用;第二,在紊流核心区,流体质点之间相互混杂、碰 撞,产生能量交换时的附加阻力 管长L 管长越长,沿程阻力越大 流体的流速c 流体的流速c越大,沿程阻力越大 黏度ν 流体的黏性越大,沿程阻力损失也越大 管径d 管径越小,管壁对流体运动的约束力越大,沿程损失也就越大
非圆管道沿程损失的计算
l c2 hf de 2 g dc Re e , 应用经验式或查图确定 de
例题4-4.P120
直径为200mm,长度为2000m的无缝钢管输送石油,平均流速0.8m/s,运 动黏度0.355*10(-4)m2/s,求沿程阻力损失
例题4-5.P120
4-1 层流和紊流
二、流态判别标准——雷诺准则数
雷诺数 流动状态与流速有关,与管径有关,与流体的自身黏性有关 cd Re c—流体的平均流速,d—管道直径,ν—运动黏度 流态判别法——计算管内实际流动的雷诺数与临界雷诺数进行比较 <2320 ——层流 cd Re >2320 ——紊流 <2000 ——层流 cd 工程上 Re >2000 ——紊流
旧铸铁管,当量绝对粗糙度ε=1.5mm,管径d=10cm,管长L=600m,温度 10℃,通过流量60m3/h,求沿程阻力损失hf