光栅光谱和光栅常数的测定===

合集下载

光栅衍射实验报告

光栅衍射实验报告

字体大小:大| 中| 小2007-11-05 17:31 - 阅读:4857 - 评论:6南昌大学实验报告--- ---实验日期:20071019学号:+++++++ 姓名:++++++ 班级:++++++实验名称:光栅衍射实验目的:1.进一步掌握调节和使用分光计的方法。

2.加深对分光计原理的理解。

3.用透射光栅测定光栅常数。

实验仪器:分光镜,平面透射光栅,低压汞灯(连镇流器)实验原理:光栅是由一组数目很多的相互平行、等宽、等间距的狭缝(或刻痕)构成的,是单缝的组合体,其示意图如图1所示。

原制光栅是用金刚石刻刀在精制的平面光学玻璃上平行刻划而成。

光栅上的刻痕起着不透光的作用,两刻痕之间相当于透光狭缝。

原制光栅价格昂贵,常用的是复制光栅和全息光栅。

图1中的为刻痕的宽度, 为狭缝间宽度, 为相邻两狭缝上相应两点之间的距离,称为光栅常数。

它是光栅基本常数之一。

光栅常数的倒数为光栅密度,即光栅的单位长度上的条纹数,如某光栅密度为1000条/毫米,即每毫米上刻有1000条刻痕。

图1光栅片示意图图2光线斜入射时衍射光路图3光栅衍射光谱示意图图4载物台当一束平行单色光垂直照射到光栅平面时,根据夫琅和费衍射理论,在各狭缝处将发生衍射,所有衍射之间又发生干涉,而这种干涉条纹是定域在无穷远处,为此在光栅后要加一个会聚透镜,在用分光计观察光栅衍射条纹时,望远镜的物镜起着会聚透镜的作用,相邻两缝对应的光程差为(1)出现明纹时需满足条件(2)(2)式称为光栅方程,其中:为单色光波长;k为明纹级数。

由(2)式光栅方程,若波长已知,并能测出波长谱线对应的衍射角,则可以求出光栅常数d 。

在=0的方向上可观察到中央极强,称为零级谱线,其它谱线,则对称地分布在零级谱线的两侧,如图3所示。

如果光源中包含几种不同波长,则同一级谱线中对不同的波长有不同的衍射角,从而在不同的位置上形成谱线,称为光栅谱线。

对于低压汞灯,它的每一级光谱中有4条谱线:紫色1=435.8nm;绿色2=546.1nm;黄色两条3=577.0nm和4=579.1nm。

光栅常数的测定

光栅常数的测定

光栅常数的测定—作图法一、实验要求根据光栅方程由汞灯的一、二级光谱选择合适的参变量进行测量,如何选定横轴和纵轴进行作图,通过图像怎样得到光栅常数?二、实验目的1. 观察光栅衍射现象和衍射光谱2. 进一步熟悉分光计的调节和使用3. 选定波长已知的光谱线测定光栅常量三、实验仪器分光计、光栅、汞灯、双面反射镜四、实验原理当单色平行光垂直照射到光栅面上,透过各狭缝的光线将向各个方向衍射。

如果用凸透镜将与光栅法线成?角的衍射光线会聚在其焦平面上,由于来自不同狭缝的光束相互干涉,结果在透镜焦平面上形成一系列明条纹.根据光栅衍射理论,产生明条纹的条件为d sinα=kλk= ±1,±2,…(1—1)式中d=a+b为光栅常量,λ为入射光波长,k为明条纹(光谱线)的级数,?k为第k级明条纹的衍射角.(1―1)式称为光栅方程,它对垂直照射条件下的透射式和反射式光栅都适用。

如果入射光为复色光,由(1―1)式可知,波长不同,衍射角也不同,于是复色光被分解.而在中央k=0处,各色光仍然重叠在一起,形成中央明条纹。

在中央明条纹两侧对称分布着k= ±1,±2,…级光谱.每级光谱中紫色谱线靠近中央明条纹,红色谱线远离中央明条纹。

实验中如用汞灯照射分光计的狭缝,经平行光管后的平行光垂直照射到放在载物台上的光栅上,衍射光用望远镜观察,在可见光范围内比较明亮的光谱线如图26―2所示.这些光谱线的波长都是已知的,(1―1)式可转变为:λ=dsi nα用分光计判断不同颜色光的谱线并测出相应的衍射角k。

在坐标轴上画出λ—sinα的函数图像,图像斜率为d,所以可得光栅常数d=sinα五、实验内容(一)调整分光计调好的分光计应使望远镜调焦在无穷远,平行光管射出平行光,望远镜与平行光管共轴并与分光计转轴垂直.平行光管的狭缝宽度调至0.3mm左右,并使狭缝与望远镜里分划板的中央竖线平行而且两者中心重合.要注意消除望远镜的视差.调好后固定望远镜和平行光管的有关螺旋。

光栅衍射及光栅常数的测定新(2

光栅衍射及光栅常数的测定新(2
注意各谱线光的波长:
蓝紫光—435.83nm、绿光—546.07nm、
黄光2—576.96nm和黄光1—579.09nm
实验步骤
一、将分光仪调至工作状态
将游标盘的两个游标锁到身 体的两侧
粗调望远镜水平
粗调(狭缝打开+平行光管水平)
粗调载物台水平( 从三个支
撑螺钉位置水平目测使得三个 位置的狭缝宽度大致相等 )
任意相邻两狭缝间的光程差为:δ=(a+b)sinφ
= ±k k=0, 1, 2, ···
则它们相干加强,形成明条纹。 ➢ 狭缝越多,条纹就越明亮。
d
a b
C
➢ 多缝干涉明条纹也称为主极
B
大明条纹
因此,光栅常数d=a+b越小,各明纹对应的衍射 角越大,相邻条纹间距越大,有利于分辨和测量。
2. 衍射对主极大的影响和缺级现象(不讲)
由明纹公式(光栅方程):
(a b)sin k k 0,1,2,
由单缝衍射的暗纹公式:
a sin k k 1,2,3,
在同一衍射方向同时满足,得缺级公式:
ab k a k
缺 级 公 式
k k a b k d
a
a
k 1,2,3,
实验原理——光谱现象
在本实验中,所用的光源为汞灯,其衍射谱线如
A)干涉各级主极大的衍射光的强度并不相等,因为 受到了单缝衍射分布的影响。
单缝衍射
I
-2
-1
0
多缝干涉
I
-6 -5 -4 -3 -2 -1 0 I 1 2 光栅衍射
-6 -5 -4 -3 -2 -1 0 1 2
1 34
34
2 56
56
sin

光栅常数测定

光栅常数测定

实验5—3 光栅常数测定【实验目的】1. 了解光栅的重要性能和光栅常数的测定。

2. 熟悉“缝”及“孔”的夫琅和费衍射图形。

3. 掌握分光计的调节与使用。

【实验原理】本实验使用的是平面全息光栅,它相当于一组数目极多、排列紧密均匀的平行狭缝。

据夫琅和费的衍射理论可知,当一束平行光垂直照射到光栅平面上时,每条狭缝对光波都会发生衍射,所有狭缝的衍射光又彼此发生干涉。

如衍射角ϕ符合下列条件:sin (0,1,2)d K k ϕλ==±± (5-3-1)图5-3-1 图5-3-2在该衍射角ϕ方向上的光将会加强。

其他方向上将抵消。

(5-3-1)式为光栅方程,式中K 为衍射光谱的级数,λ是光波波长,ϕ为衍射角,d 为相邻两狭缝中相应点之间的距离。

d=a+b 称为光栅常数,a 为透明狭缝宽度,b 为不透明部分的宽度(如图5-3-1)。

如果用会聚透镜把这些衍射后的平行光会聚起来,则在透镜的后焦面上将出现一系列彼此平行的谱线。

在ϕ=0的方向上可观察到中央极强,称为零级“谱线”。

其它级数的谱线对称地分布在零级谱线的两侧(如图5-3-2)。

如光源中包含有几种不同波长的光,对不同波长的光同一级谱线将有不同的衍射角 。

因此透镜的后焦面将出现依波长次序、谱线级数排列的各种颜色的谱线,称为光谱。

【实验仪器】分光计,光栅,汞灯,光学平行平板。

【实验内容与步骤】1.分光计的调节调节分光计总的要求是使平行光管发出平行光,望远镜接收平行光(即望远镜聚焦于无穷远),平行光管和望远镜的光轴与分光计的中心转轴垂直。

调节前应先进行粗调,即用眼睛估测,把载物平台、望远镜和平行光管尽量调成水平,然后再对各部分进行细调。

1) 调节望远镜①目镜的调焦。

目镜调焦的目的是使眼睛通过目镜能很清楚地看到目镜中分划板上的刻线。

先把目镜调焦手轮(11)旋出,然后一边旋进,一边从目镜中观察,直到分划板刻线成像清晰,再慢慢地旋出手轮,至目镜中的像清晰度将被破坏而未破坏时为止。

光栅测量

光栅测量

实验3-15 衍射光栅光栅(又称为衍射光栅)是一种分光用的光学元件。

过去制作光栅都是在精密的刻线机上用金刚石在玻璃表面刻出许多平行等距刻痕作成原刻光栅,实验室中通常使用的光栅是由原刻光栅复制而成的。

后来随着激光技术的发展又制作出全息光栅。

光栅的应用范围很广,不仅用于光谱学(如光栅光谱仪),还广泛用于计量(如直线光栅尺)、光通信(光栅传感器)、信息处理(VCD 、DVD )等方面。

实验原理由许多平行、等距、等宽的狭缝构成的光学元件叫做衍射光栅。

它们每毫米内一般有几十条乃至上千条狭缝,这些缝有些是刻上去的,有些是印上去的,本实验所用的全息光栅,则是用全息技术使一列极密、等距的干涉条纹在涂有乳胶的玻璃片上感光,经处理后,感光的部分成为不透明的条纹,而末感光的部分成透光的狭缝。

每相邻狭缝间的距离d 称为光栅常数。

当一束平行光垂直入射到光栅平面时(见图1),光线通过每一条狭缝之后都将产生衍射,缝与缝之间的衍射光线又将产生干涉。

若用望远镜的物镜L 将它们会聚起来,我们将能在目镜中观察到光栅的衍射条纹(一些直的平行条纹)。

显然这些衍射条纹是衍射和干涉的结果。

如图1所示,若以波长为λ的单色光垂直入射到光栅上,并将衍射方向和入射方向的夹角ϕ称为衍射角。

则当衍射角满足公式sin d K ϕλ=±,当K=0,l ,2…时,在衍射方向上可以看到亮条纹(光谱)。

当K=0时,称为零级光谱,对应于中央亮条纹;当K =1时为一级光谱;K=2时,为二级光谱;……。

式中±号表示它们对称地分布在中央亮条纹的两侧,强度是迅速减弱的。

由光栅方程可以看出,光栅常量愈小,各级明条纹的衍射角就越大,即各级明条纹分得愈开。

对给定长度的光栅,总缝数愈多,明条纹愈亮。

对光栅常数一定的光栅,入射光波长愈大,各级明条纹的衍射角也愈大。

如果是白光(或复色光)入射,则除中央零级明条纹外,其他各级明条纹都按波长不同各自分开,形成光栅光谱。

衍射光栅特性实验报告

衍射光栅特性实验报告

一、实验目的1. 理解衍射光栅的工作原理及其在光谱分析中的应用。

2. 掌握使用衍射光栅测定光波波长和光栅常数的实验方法。

3. 深入理解光栅衍射公式及其适用条件。

4. 分析衍射光栅的色散率、光谱特性等关键参数。

二、实验原理衍射光栅是利用多缝衍射原理使光发生色散的光学元件。

光栅由一组数目极多、平行等距、紧密排列的等宽狭缝构成,分为透射光栅和平面反射光栅。

当一束单色光垂直照射在光栅上时,各狭缝的光线因衍射而向各方向传播,经透镜会聚相互产生干涉,并在透镜的焦平面上形成一系列明暗条纹。

光栅衍射公式为:\[ d \sin \theta = m \lambda \]其中,\( d \) 为光栅常数(即相邻两狭缝间距),\( \theta \) 为衍射角,\( m \) 为衍射级数,\( \lambda \) 为光波波长。

三、实验仪器1. 分光计2. 平面透射光栅3. 低压汞灯(连镇流器)4. 白色光源5. 硅光电池6. 毫米刻度尺四、实验步骤1. 将分光计调整至水平状态,确保光栅垂直于光路。

2. 打开低压汞灯,调节光源与光栅的距离,使光束垂直照射在光栅上。

3. 通过分光计观察衍射光谱,记录不同衍射级数 \( m \) 对应的衍射角\( \theta \)。

4. 利用光栅衍射公式计算光波波长 \( \lambda \) 和光栅常数 \( d \)。

5. 改变光栅常数,观察衍射光谱的变化,分析色散率、光谱特性等参数。

五、实验结果与分析1. 计算光波波长和光栅常数:\[ \lambda = \frac{d \sin \theta}{m} \]\[ d = \frac{\lambda}{m \sin \theta} \]根据实验数据,计算得到光波波长和光栅常数,并与理论值进行比较。

2. 分析色散率:色散率 \( D \) 表示为:\[ D = \frac{d \sin \theta}{\theta} \]随着衍射级数 \( m \) 的增加,色散率 \( D \) 呈线性增加,说明光栅的色散率较高。

用分光计测光栅常数和光波的波长

用分光计测光栅常数和光波的波长

衍射光栅是一种高分辨率的光学色散元件,它广泛应用于光谱分析.随着现代技术的开展,它在计量、无线电、天文、光通信、光信息处理等许多领域中都有重要的应用.【实验目的】1.观察光栅的衍射现象,研究光栅衍射的特点.2.测定光栅常数和汞黄光的波长.3.通过对光栅常数和波长的测量,了解光栅的分光作用,并加深对光的波动性的认识.【实验仪器与用具】分光计1台,光栅1个,低压汞灯1个.【实验原理】普通平面光栅是在一块玻璃片上用刻线机刻画出一组很密的等距的平行线构成的.光波射向光栅,刻痕局部不透光,只能从刻痕间的透明狭缝过.因此,可以把光栅看成一系列密集、均匀而又平行排列的狭缝.图15—1光栅衍射图光照射到光栅上,通过每个狭缝的光都发生衍射,而衍射光通过透镜后便互相干预.因此,本实验光栅的衍射条纹应看做是衍射与干预的总效果.下面我们来分析平行光垂直射到光栅上的情况(图15-1).设光波波长为λ,狭缝和刻痕的宽度分别为a和b,那么通过各狭缝以角度φ衍射的光,经透镜会聚后如果是互相加强,在其焦平面上就得到明亮的干预条纹.根据光的干预条件,光程差等于波长的整数倍或零时形成亮条纹.由图15-1可知,衍射光的光程差为(a+b)sinφ,于是,形成亮条纹的条件为:(a+b)sinφ= Kλ,K = 0,±1,±2,…或d sinφ=Kλ.〔15-1〕式中,d=a+b称为光栅常数,λ为入射光波波长,K为明条纹(光谱线)级数,φ是K级明条纹衍射角.K=0的亮条纹叫中央条纹或零级条纹,K=±1为左右对称分布的一级条纹,K=±2为左右对称的二级条纹,以此类推.光栅狭缝与刻痕宽度之和a+b称为光栅常数.假设在光栅片上每厘米宽刻有n 条刻痕,那么光栅常数d=(a+b)= cm.当a+b时,只要测出某级条纹所对应的衍射角φ,通过式(15-1)即可算出光波波长λ.当λ时,只要测出某级条纹所对应的衍射角φ,通过式(15—1)可计算出光栅常数.图15-2 光栅的放置在λ和a+b一定时,不同级次的条纹其衍射角不同.如a+b很小,那么光栅衍射的各级亮条纹分得很开,有利于精细测量.另外,如果K和a+b一定时,那么不同波长的光对应的衍射角也不同.波长愈长衍射角也愈大,有利于把不同波长的光分开.所以光栅是一种优良的分光元件.【实验容和步骤】1.调整分光计参照实验十六.调整望远镜使其能接收平行光,且其光轴与分光计的中心轴垂直;调整载物台平面水平且垂直于中心轴;调整平行光管发出平行光,且光轴与望远镜等高同轴.2.测定光栅常数(1)放置光栅.按图15—2所示,将光栅放在载物台上,先用目视使光栅平面与平行光管光轴大致垂直(拿光栅时不要用手触摸光栅外表,只能拿光栅的边缘),使入射光垂直照射光栅外表.(2)调节光栅平面与平行光管光轴垂直.接上目镜照明器的电源,从目镜中看光栅反射回来的亮十字像是否与分划板上方的十字线重合.如果不重合,那么旋转游标度盘,先使其纵线重合(注意:此时狭缝的中心线与亮十字的纵线、分划板的纵线三者重合),再调节载物台的调平螺钉2或3使横线重合(注意:绝不允许调节望远镜系统),然后旋紧游标盘止动螺钉,定住游标盘,从而定住载物台.(3)观察干预条纹.去掉目镜照明器上的光源,放松望远镜止动螺钉16,推动支臂旋转望远镜,从目镜观察各级干预条纹是否都在目镜视场中心对称,否那么调节载物台下调平螺钉l,使之中心对称,直到中央明条纹两侧的衍射光谱根本上在同一水平面为止.(4)测衍射角.①推动支臂使望远镜和度盘一起旋转,并使分划板的十字线对准右边绿色谱线第一级明纹的左边缘(或右边缘);旋紧望远镜止动螺钉16,旋转望远镜微调螺钉,准确对准明纹的左边缘(或右边缘,注意对以后各级明纹都要对准同一边缘),从A、B两游标读取刻度数,记为、.同理测出左边绿色谱线第一级明纹的刻度数、,那么第一级明纹的衍射角为(衍射光谱对中央明纹对称,两个位置读数之差的l /2即为衍射角φ) ,如图15—3所示,,.取平均得第一级明纹衍射角的平均值:图15—3衍射角的测定将代入(15-1)式求得d1.②用上述同样的方法测得绿色谱线第二级明纹的衍射角,同理求得d2 ,那么所测光栅常数3.测定待测光波的波长转动望远镜,让十字叉丝依次对准中央条纹左、右两边K=±l、K±2的黄线亮条纹,按上述一样的方法,测出其衍射角、.由于d,将其代入(15-1)式,那么得出λ1、λ2,故说明:为防止漏测数据,测量时也可将望远镜移至最左端,从-2、-l到+1、+2级依次测量.【数据记录及处理】1.测定光栅常数由式(15-1)得d=,绿光波长.表15—1 测定光栅常数数据表计算误差:=(△为衍射角的平均误差).结果表示d=±△d=±.2.测定黄光波长表15—2 测定黄光波长数据表计算误差:△= [△d/d+〔cot 〕△]=,结果= ±△=±.【考前须知】1.光栅是精细光学器件,严禁用手触摸刻痕,以免弄脏或损坏.2.水银灯的紫外线很强,不可直视,以免灼伤眼睛.3.分光计各局部调节一定要细心、缓慢,如发现异常现象,要及时报告.【思考题】1.光栅光谱和棱镜光谱有哪些不同之处"2.用光栅观察自然光,看到什么现象"为什么紫光离中央0级条纹最近,红光离0级条纹最远"3.光狭缝太宽或太窄时,将会出现什么现象"为什么"4.按图15—2放置光栅有何好处"5.用光栅测定光波波长,对分光计的调节有什么要求"6.利用=5893 的纳光垂直入射到1mm 有500条刻痕的平面透射光栅上时,最多能看到几级光谱"1. 进一步熟悉掌握分光计的调节和使用方法;2. 观察光线通过光栅后的衍射现象;3. 测定衍射光栅的光栅常数、光波波长和光栅角色散。

课设-光栅常数测量

课设-光栅常数测量

编号:专业工程设计说明书衍射光栅光栅常数测定题目:院(系):专业:学生姓名:学号:指导教师:职称:摘要光栅常数,是光栅两条刻线之间的距离,用d表示,是光栅的重要参数。

通常所说的衍射光栅是基于夫琅禾费多缝衍射效应工作的,当用不同波长的光照明光栅时,除零级外,不同波长的第一级主极大对应不同的衍射角,即发生了色散现象。

这表明了光栅的分光能力,是光栅分光的原理。

描述光栅结构与光的入射角和衍射角之间关系的公式叫“光栅方程”。

光栅是一维的栅状物体,通常测定其光栅常数时,多用分光计测量,但是分光计价格昂贵,并且操作麻烦,不易掌握,因此我们寻求一种更为简便的测定方法,能够测得光栅常数。

本文运用的是在已知光源波长的情况下,通过测得光栅到成像屏幕的距离和光栅0级和第一级主极大之间的距离计算。

该方法首先要对CCD定标,通过透镜成像后,能够得到物像体的像素值。

再计算光栅成像后通过CCD采集的像素值,即可得到真实光栅间距的大小。

关键词:光栅常数;CCD标定引言 (1)1 实验目的及要求 (1)1.1 课程设计的目的 (1)1.2 课程设计的任务 (1)1.3 课程设计的要求及技术指标 (1)2 方案设计和选择 (2)2.1 利用塔尔博特效应测量光栅常数原理 (2)2.2激光测定法原理 (3)2.3显微镜测光栅常数原理 (3)2.4 分光计测光栅常数 (3)2.5 测量光栅常数光路的选择 (4)3 各组成部分光路的实验原理 (5)3.1 衍射光栅的使用与分光原理 (5)3.2激光测定法光路工作原理 (5)3.3 对CCD进行标定原理 (6)3.4 电荷耦合器件CCD的工作原理 (6)3.4.1 CCD器件 (6)3.4.2 图像采集卡 (7)4 实际光路及测量步骤 (7)4.1 对CCD标定的实际光路及测量步骤 (7)4.1.1 实际光路图如图 (7)4.1.2定标步骤 (8)4.1.3实验结果 (8)4.2测量光栅常数的实际光路及测量步骤 (8)4.2.1实际光路图 (8)4.2.2测量步骤 (9)4.2.3实验结果 (9)5 数据处理及分析系统中各参数对测量结果的影响 (9)5.1 CCD标定的数据处理 (9)5.1.1用MATLAB处理标定图像及计算像素总数N (10)5.2测量光栅常数的数据处理 (11)5.2.1用MATLAB处理衍射光点图像及计算像素总数N (11)5.3 数据计算与误差分析 (12)5.3.1 数据的采集 (12)5.3.2 数据的计算 (13)5.3.3 数据的误差分析 (13)5.4 各参数对测量结果影响的分析 (14)6 结论 (14)谢辞 (16)参考文献: (17)附录 (18)引言光栅是由大量等宽等间距的平行狭缝构成的光学器件。

课设-光栅常数测量

课设-光栅常数测量

编号:专业工程设计说明书衍射光栅光栅常数测定题目:院(系):专业:学生姓名:学号:指导教师:职称:摘要光栅常数,是光栅两条刻线之间的距离,用d表示,是光栅的重要参数。

通常所说的衍射光栅是基于夫琅禾费多缝衍射效应工作的,当用不同波长的光照明光栅时,除零级外,不同波长的第一级主极大对应不同的衍射角,即发生了色散现象。

这表明了光栅的分光能力,是光栅分光的原理。

描述光栅结构与光的入射角和衍射角之间关系的公式叫“光栅方程”。

光栅是一维的栅状物体,通常测定其光栅常数时,多用分光计测量,但是分光计价格昂贵,并且操作麻烦,不易掌握,因此我们寻求一种更为简便的测定方法,能够测得光栅常数。

本文运用的是在已知光源波长的情况下,通过测得光栅到成像屏幕的距离和光栅0级和第一级主极大之间的距离计算。

该方法首先要对CCD定标,通过透镜成像后,能够得到物像体的像素值。

再计算光栅成像后通过CCD采集的像素值,即可得到真实光栅间距的大小。

关键词:光栅常数;CCD标定引言 (1)1 实验目的及要求 (1)1.1 课程设计的目的 (1)1.2 课程设计的任务 (1)1.3 课程设计的要求及技术指标 (1)2 方案设计和选择 (2)2.1 利用塔尔博特效应测量光栅常数原理 (2)2.2激光测定法原理 (3)2.3显微镜测光栅常数原理 (3)2.4 分光计测光栅常数 (3)2.5 测量光栅常数光路的选择 (4)3 各组成部分光路的实验原理 (5)3.1 衍射光栅的使用与分光原理 (5)3.2激光测定法光路工作原理 (5)3.3 对CCD进行标定原理 (6)3.4 电荷耦合器件CCD的工作原理 (6)3.4.1 CCD器件 (6)3.4.2 图像采集卡 (7)4 实际光路及测量步骤 (7)4.1 对CCD标定的实际光路及测量步骤 (7)4.1.1 实际光路图如图 (7)4.1.2定标步骤 (8)4.1.3实验结果 (8)4.2测量光栅常数的实际光路及测量步骤 (8)4.2.1实际光路图 (8)4.2.2测量步骤 (9)4.2.3实验结果 (9)5 数据处理及分析系统中各参数对测量结果的影响 (9)5.1 CCD标定的数据处理 (9)5.1.1用MATLAB处理标定图像及计算像素总数N (10)5.2测量光栅常数的数据处理 (11)5.2.1用MATLAB处理衍射光点图像及计算像素总数N (11)5.3 数据计算与误差分析 (12)5.3.1 数据的采集 (12)5.3.2 数据的计算 (12)5.3.3 数据的误差分析 (13)5.4 各参数对测量结果影响的分析 (14)6 结论 (14)谢辞 (15)参考文献: (16)附录 (17)引言光栅是由大量等宽等间距的平行狭缝构成的光学器件。

武汉大学化学系仪器分析课后习题答案

武汉大学化学系仪器分析课后习题答案

光谱分析导论习题解答1、解:(1)72101067.6101050.111⨯=⨯⨯==-λσ(2)14981047.4107.670/100.3/⨯=⨯⨯==-λνc(3)303010103300/1192=⨯⨯==-σλ(4)80.1)10602.1(1095.6889100.310626.6/1910834=⨯÷⨯⨯⨯⨯===---λνhc h E2、解:由计算公式λν/hc h E ==以及各能级跃迁所处的波长范围可得能量范围分别如下:跃迁类型 波长范围 能量范围/eV 原子内层电子跃迁 10-3nm ~10nm 1.26⨯106~1.2⨯102原子外层电子跃迁 200nm ~750nm 6~1.7 分子的电子跃迁 200nm ~750nm 6~1.7 分子振动能级的跃迁 2.5μm ~50μm 0.5~0.02 分子转动能级的跃迁50μm ~100cm2⨯10-2~4⨯10-7由上表可以看出分子电子能级跃迁1~20eV 分子振动能级跃迁0.05~1eV 分子转动能级跃迁<0.05eV ,其电子光谱,振动光谱以及转动光谱所对应的波长范围分别在紫外-可见区,红外区和远红外微波区。

3、解:棱镜的分光原理是光折射。

由于不同波长的光有其不同的折射率,据此能把不同波长的光分开。

光栅的分光原理是光的衍射与干涉的总效果。

不同波长的光通过光栅作用各有相应的衍射角,据此把不同波长的光分开。

光栅光谱棱镜光谱Sin φ与波长成正比,所以光栅光谱是一个均匀排列的光谱色散率与波长有关,为非均匀排列的光谱 光的波长越短则衍射角越小,因此其谱线从紫到红排列波长越短,其偏向角越大,因此其谱线从红到紫排列复合光通过光栅后,中央条纹(或零级条纹)为白色条纹,在中央条纹两边,对称排列着一级、二级等光谱,由于谱线间距离随光谱级数的增加而增加,出现谱级重叠现象没有谱级重叠现象光栅适用的波长范围比棱镜宽4、解:v cn r i ==θθsin sin ,式中n 为折射率,i θ为入射角,r θ为折射角,c 为光速,v 为玻璃介质中的传播速度。

实验6 分光计测量光栅常数

实验6  分光计测量光栅常数

分光计测定光栅常数及黄光波长(305)一、实验目的1. 观察光栅衍射现象和衍射光谱2. 进一步熟悉分光计的调节和使用3. 选定波长已知的光谱线测定光栅常量二、实验仪器分光计、光栅、汞灯、双面反射镜三、实验原理光栅是一种常用的分光元件,由于它能产生按一定规律排列的光谱线,是各种衍射仪、光谱仪、分光计等光学仪器的必备元件。

光栅衍射公式当单色平行光垂直照射到光栅面上,透过各狭缝的光线将向各个方向衍射.如果用凸透镜将与光栅法线成ϕ角的衍射光线会聚在其焦平面上,由于来自不同狭缝的光束相互干涉,结果在透镜焦平面上形成一系列明条纹.根据光栅衍射理论,产生明条纹的条件为()sin 0,1,2,k d k k ϕλ==±±⋅⋅⋅ (26―1)式中d=a+b 为光栅常量,λ为入射光波长,k 为明条纹(光谱线)的级数,k ϕ为第k 级明条纹的衍射角.(26―1)式称为光栅方程,它对垂直照射条件下的透射式和反射式光栅都适用.如果入射光为复色光,由(26―1)式可知,波长不同,衍射角也不同,于是复色光被分解.而在中央0,0k k ϕ==处,各色光仍然重叠在一起,形成中央明条纹.在中央明条纹两侧对称分布着k = ±1,±2,…级光谱.每级光谱中紫色谱线靠近中央明条纹,红色谱线远离中央明条纹.实验中如用汞灯照射分光计的狭缝,经平行光管后的平行光垂直照射到放在载物台上的光栅上,衍射光用望远镜观察,在可见光范围内比较明亮的光谱线如图26―2所示.这些光谱线的波长都是已知的(参见附表3―10).用分光计判明它的级数k 并测出相应的衍射角k ϕ,就可由(26―1)式求出光栅常量d .四、实验内容1. 将分光计内小灯熄灭,转动望远镜,从最左端的-1级黄色谱线开始测量,依次测到最右端的+1级黄色谱线.为了使分划板竖线对准光谱线,应用望远镜的微调螺钉仔细调节,不能用手直接推动望远镜.2. 为了消除分光计度盘的偏心差,测量每一条谱线的衍射角时要分别测出左右两个游标的示值,然后取平均.3. 由于衍射光谱对中央明条纹是左右对称的,为了减小测量的误差,对于每一条谱线应测出+1级和-1级光谱线的位置,两个位置差值的一半即为1ϕ.4. 完成数据表26―l ,对于k =±1级光谱线,由(26-1)式得1/sin d λϕ=.可不考虑λ的不确定度,d 的合成标准不确定度()()c 111csc cot u d u λϕϕϕ=⋅⋅对于JJY-1型分光计,()4m 11 2.90910rad ϕ-'∆==⨯,于是()1u ϕ∆=41.6810rad -⨯.五、注意事项1. 禁止用手触摸光栅,拿取或移动光栅时应移动光栅座.2. 对于调好的分光计,不能再调平行光管和望远镜上的任何调节螺钉或旋钮(除目镜视度调节手轮以外).3. 测量衍射角时,应锁紧望远镜止动螺钉,用望远镜转角微调螺钉使分划板竖线与光谱线对齐,再读游标示值.六、数据处理七、误差分析八、附原始数据记录表格(注:作实验时记录在原始数据上用)表261。

光栅常数测定

光栅常数测定

光栅常数测定实验5—3 光栅常数测定【实验目的】1. 了解光栅的重要性能和光栅常数的测定。

2. 熟悉“缝”及“孔”的夫琅和费衍射图形。

3. 掌握分光计的调节与使用。

【实验原理】本实验使用的是平面全息光栅,它相当于一组数目极多、排列紧密均匀的平行狭缝。

据夫琅和费的衍射理论可知,当一束平行光垂直照射到光栅平面上时,每条狭缝对光波都会发生衍射,所有狭缝的衍射光又彼此发生干涉。

如衍射角?符合下列条件:sin (0,1,2)d K k ?λ==±± (5-3-1)图5-3-1 图5-3-2在该衍射角?方向上的光将会加强。

其他方向上将抵消。

(5-3-1)式为光栅方程,式中K 为衍射光谱的级数,λ是光波波长,?为衍射角,d 为相邻两狭缝中相应点之间的距离。

d=a+b 称为光栅常数,a 为透明狭缝宽度,b 为不透明部分的宽度(如图5-3-1)。

如果用会聚透镜把这些衍射后的平行光会聚起来,则在透镜的后焦面上将出现一系列彼此平行的谱线。

在?=0的方向上可观察到中央极强,称为零级“谱线”。

其它级数的谱线对称地分布在零级谱线的两侧(如图5-3-2)。

如光源中包含有几种不同波长的光,对不同波长的光同一级谱线将有不同的衍射角。

因此透镜的后焦面将出现依波长次序、谱线级数排列的各种颜色的谱线,称为光谱。

【实验仪器】分光计,光栅,汞灯,光学平行平板。

【实验内容与步骤】1.分光计的调节调节分光计总的要求是使平行光管发出平行光,望远镜接收平行光(即望远镜聚焦于无穷远),平行光管和望远镜的光轴与分光计的中心转轴垂直。

调节前应先进行粗调,即用眼睛估测,把载物平台、望远镜和平行光管尽量调成水平,然后再对各部分进行细调。

1) 调节望远镜①目镜的调焦。

目镜调焦的目的是使眼睛通过目镜能很清楚地看到目镜中分划板上的刻线。

先把目镜调焦手轮(11)旋出,然后一边旋进,一边从目镜中观察,直到分划板刻线成像清晰,再慢慢地旋出手轮,至目镜中的像清晰度将被破坏而未破坏时为止。

实验十 光栅常数的测定

实验十 光栅常数的测定

实验十用透射光栅测定光波的波长及光栅的参数光在传播过程中的反射、折射、衍射、散射等物理现象都与角度有关,一些光学量如折射率、波长、衍射条纹的极大和极小位置等都可以通过测量有关的角度去确定.在光学技术中,精确测量光线偏折的角度具有十分重要的意义.本实验利用分光计通过对不同色光衍射角的测定,来实现光栅常数、光栅角色散及光源波长等物理量的测量.1.进一步练习掌握分光计的调节和使用;2.观察光线通过光栅后的衍射现象;3.学习应用衍射光栅测定光波波长、光栅常数及角色散率的方法.分光计、双面反射镜、平面透射光栅、汞灯.分光计的结构及调节见实验三.汞灯可分为高压汞灯和低压汞灯,为复色光源.实验室通常选用GP20Hg型低压汞灯作为光源,其光谱如表1所示.实验室通常选择强度比较大的蓝紫色、绿色、双黄线作为测量用.汞灯在使用前要预热5-10min,断电后需冷却5-10min,因此汞灯在使用过程中,不要随意开关.表1 GP20Hg型低压汞灯可可见光区域谱线及相对强度衍射光栅是利用多缝衍射原理使入射光发生色散的光学元件,它由大量相互平行、等宽、等间距的狭缝或刻痕所组成.在结构上有平面光栅和凹面光栅之分,同时光栅分为透射式和反射式两大类.本实验所用光栅是透射式光栅,其原理如图10-1所示.图10-1 光栅结构示意图·实验原理 ••若以平行光垂直照射在光栅面上,则光束经光栅各缝衍射后将在透镜的焦平面上叠加,形成一系列间距不同的明条纹(称光谱线).根据夫琅禾费衍射理论,可得光栅方程:)3,2,1,0(sin =±=k k d k λϕ(10-1)式中d=a+b 称为光栅常数(a 为狭缝宽度,b 为刻痕宽度,如图10-1),k 为光谱线的级数,k ϕ为k 级明条纹的衍射角,λ是入射光波长.如果入射光为复色光,则由(10-1)式可以看出,光的波长λ不同,其衍射角k ϕ也各不相同,于是复色光被分解,在中央k =0,k ϕ=0处,各色光仍重叠在一起,组成中央明条纹,称为零级谱线.在零级谱线的两侧对称分布着 3,2,1=k 级谱线,且同一级谱线按不同波长,依次从短波向长波散开,即衍射角逐渐增大,形成光栅光谱,如图10-2.图10-2 光栅衍射1级光谱由光栅方程可看出,若已知光栅常数d ,测出衍射明条纹的衍射角k ϕ,即可求出光波的波长λ.反之,若已知λ,亦可求出光栅常数d .将光栅方程(10-1)式对λ微分,可得光栅的角色散率为:ϕλϕcos d k d d D ==(10-2)衍射角k ϕ较小,为了便于估算,一般可将角色散D 近似写为:λϕ∆∆≈D (10-3)角色散是光栅、棱镜等分光元件的重要参数,它表示单位波长间隔内两单色谱线之间的角距离.由式(10-2)可知,如果衍射时衍射角不大,则ϕcos 近乎不变,光谱的角色散几乎与波长无关,即光谱随波长的分布比较均匀,这和棱镜的不均匀色散有明显的不同.·实验内容与步骤一、分光计及光栅的调节1.按实验三中所述的要求调节好分光计.2.分光计调好之后,将光栅按图3放在载物台上,通过望远镜观察光栅,发现反射回来的叉丝像与分划板的上叉丝不再重合,其原因主要是光栅平面与光栅底座不垂直,这时不能调节望远镜的仰俯,而是通过载物台下的三个螺钉来矫正.具体方法是调节螺钉a 或b ,直到望远镜中从光栅面反射回来的绿十字叉丝像与目镜中的上叉丝重合,至此光栅平面与分光计转轴平行,且垂直于准直管、固定载物台.图10-3 光栅的放置3.调节光栅刻痕与转轴平行转动望远镜,观察光栅光谱线,调节栽物台螺丝c ,使从望远镜中看到的叉丝交点始终处在各谱线的同一高度.调好后,再检查光栅平面是否仍保持与转轴平行,如果有了改变,就要反复调节载物台下的三个螺钉,直到两个要求都满足为止.旋转载物台和望远镜,使分划板的竖线、叉丝反射像的竖线、狭缝的透光方向三线合一,锁定载物台,开始测量. 二、测定光栅常数d方法1:用望远镜观察各条谱线,首先记录白光的角位置,再测量1=k 级的汞灯光谱中紫线(nm 8.435=λ)的角位置,同一游标两次读数之差即为衍射角.重复测5次后取平均值,代入式(10-1)求出光栅常数d ,计算光栅常数的标准不确定度.方法2:用望远镜观察各条谱线,首先测量1-=k 级的汞灯光谱中紫线(nm 8.435=λ)的角位置,转动望远镜,测量1=k 级的汞灯光谱中紫线的角位置,同一游标两次读数之差即为衍射角的2倍.重复测5次后取平均值,代入式(10-1)求出光栅常数d ,计算光栅常数的标准不确定度.(方法1和方法2任选一种)三、测定光波波长选择汞灯光谱中的绿色谱线进行测量,测出相应于1±=k 级谱线的角位置,重复5次后取平均值,算出衍射角.将步骤二中测出的光栅常数d 及衍射角代入式(10-1),就可计算出相应的光波波长.并与标称值进行比较,算出标准偏差. 四、测量光栅的角色散D用汞灯为光源,测量1±=k 级光谱中双黄线的衍射角,双黄线的波长差为2.06nm ,结合测得的衍射角之差ϕ∆,用式(10-3)求出角色散,并算出百分比误差(将D 作为标准值).用汞灯为光源,测量1±=k 级光谱中双黄线各自的衍射角,将第二步中测出的光栅常数d 代入(10-2)式,分别求出双黄线的角色散;双黄线的波长差为2.06nm ,结合测得的双黄线的衍射角之差ϕ∆,再用(10-3)式求出角色散,将求得的角色散的平均值D 并作为标准值,算出百分比误差.1、紫谱线(nm 8.435=λ)±1级衍射角测量数据记录表1.在分光计调节过程中,均要求视野中的像清晰,且无视差;2.狭缝调节要求细而清晰,能分辨汞灯中的黄双线,但要防止狭缝关死,以至损坏狭缝;3.光栅方程是在入射平行光严格垂直光栅表面的前提下成立的,本实验中务必注意;由于光栅具有较大的色散率和较高的分辨本领,故它已被广泛地装配在各种光谱仪器中.采用现代高科技技术可制成每厘米有上万条狭缝的光栅,它不仅适用于分析可见光成分,还能用于红外和紫外光波.干涉成像光谱仪、激光高度计、CCD立体相机将共同完成获取月球表面三维立体影像;γ射线谱仪、X射线谱仪将携手对月球表面有用元素及物质类型的含量和分布进行辨析。

实验十 光栅常数的测定

实验十 光栅常数的测定

实验十用透射光栅测定光波的波长及光栅的参数光在传播过程中的反射、折射、衍射、散射等物理现象都与角度有关,一些光学量如折射率、波长、衍射条纹的极大和极小位置等都可以通过测量有关的角度去确定.在光学技术中,精确测量光线偏折的角度具有十分重要的意义.本实验利用分光计通过对不同色光衍射角的测定,来实现光栅常数、光栅角色散及光源波长等物理量的测量.·实验目的1.进一步练习掌握分光计的调节和使用;2.观察光线通过光栅后的衍射现象;3.学习应用衍射光栅测定光波波长、光栅常数及角色散率的方法.·实验仪器分光计、双面反射镜、平面透射光栅、汞灯.分光计的结构及调节见实验三.汞灯可分为高压汞灯和低压汞灯,为复色光源.实验室通常选用GP20Hg型低压汞灯作为光源,其光谱如表1所示.实验室通常选择强度比较大的蓝紫色、绿色、双黄线作为测量用.汞灯在使用前要预热5-10min,断电后需冷却5-10min,因此汞灯在使用过程中,不要随意开关.表1 GP20Hg型低压汞灯可可见光区域谱线及相对强度颜色紫紫紫蓝紫蓝紫蓝紫蓝绿λnm404.66 407.78 410.81 433.92 434.75 435.84 491.60 /相对强度1800 150 40 250 400 4000 80颜色绿黄绿黄黄橙红深红λnm546.07 567.59 576.96 579.07 607.26 623.44 690.72 /相对强度1100 160 240 280 20 30 250 衍射光栅是利用多缝衍射原理使入射光发生色散的光学元件,它由大量相互平行、等宽、等间距的狭缝或刻痕所组成.在结构上有平面光栅和凹面光栅之分,同时光栅分为透射式和反射式两大类.本实验所用光栅是透射式光栅,其原理如图10-1所示.图10-1 光栅结构示意图·实验原理 ••若以平行光垂直照射在光栅面上,则光束经光栅各缝衍射后将在透镜的焦平面上叠加,形成一系列间距不同的明条纹(称光谱线).根据夫琅禾费衍射理论,可得光栅方程:)3,2,1,0(sin =±=k k d k λϕ(10-1)式中d=a+b 称为光栅常数(a 为狭缝宽度,b 为刻痕宽度,如图10-1),k 为光谱线的级数,k ϕ为k 级明条纹的衍射角,λ是入射光波长.如果入射光为复色光,则由(10-1)式可以看出,光的波长λ不同,其衍射角k ϕ也各不相同,于是复色光被分解,在中央k =0,k ϕ=0处,各色光仍重叠在一起,组成中央明条纹,称为零级谱线.在零级谱线的两侧对称分布着 3,2,1=k 级谱线,且同一级谱线按不同波长,依次从短波向长波散开,即衍射角逐渐增大,形成光栅光谱,如图10-2.图10-2 光栅衍射1级光谱由光栅方程可看出,若已知光栅常数d ,测出衍射明条纹的衍射角k ϕ,即可求出光波的波长λ.反之,若已知λ,亦可求出光栅常数d .将光栅方程(10-1)式对λ微分,可得光栅的角色散率为:ϕλϕcos d k d d D ==(10-2)衍射角k ϕ较小,为了便于估算,一般可将角色散D 近似写为:λϕ∆∆≈D(10-3)角色散是光栅、棱镜等分光元件的重要参数,它表示单位波长间隔内两单色谱线之间的角距离.由式(10-2)可知,如果衍射时衍射角不大,则ϕcos 近乎不变,光谱的角色散几乎与波长无关,即光谱随波长的分布比较均匀,这和棱镜的不均匀色散有明显的不同.·实验内容与步骤一、分光计及光栅的调节1.按实验三中所述的要求调节好分光计.2.分光计调好之后,将光栅按图3放在载物台上,通过望远镜观察光栅,发现反射回来的叉丝像与分划板的上叉丝不再重合,其原因主要是光栅平面与光栅底座不垂直,这时不能调节望远镜的仰俯,而是通过载物台下的三个螺钉来矫正.具体方法是调节螺钉a 或b ,直到望远镜中从光栅面反射回来的绿十字叉丝像与目镜中的上叉丝重合,至此光栅平面与分光计转轴平行,且垂直于准直管、固定载物台.图10-3 光栅的放置3.调节光栅刻痕与转轴平行转动望远镜,观察光栅光谱线,调节栽物台螺丝c ,使从望远镜中看到的叉丝交点始终处在各谱线的同一高度.调好后,再检查光栅平面是否仍保持与转轴平行,如果有了改变,就要反复调节载物台下的三个螺钉,直到两个要求都满足为止.旋转载物台和望远镜,使分划板的竖线、叉丝反射像的竖线、狭缝的透光方向三线合一,锁定载物台,开始测量. 二、测定光栅常数d方法1:用望远镜观察各条谱线,首先记录白光的角位置,再测量1=k 级的汞灯光谱中紫线(nm 8.435=λ)的角位置,同一游标两次读数之差即为衍射角.重复测5次后取平均值,代入式(10-1)求出光栅常数d ,计算光栅常数的标准不确定度.方法2:用望远镜观察各条谱线,首先测量1-=k 级的汞灯光谱中紫线(nm 8.435=λ)的角位置,转动望远镜,测量1=k 级的汞灯光谱中紫线的角位置,同一游标两次读数之差即为衍射角的2倍.重复测5次后取平均值,代入式(10-1)求出光栅常数d ,计算光栅常数的标准不确定度.(方法1和方法2任选一种)三、测定光波波长选择汞灯光谱中的绿色谱线进行测量,测出相应于1±=k 级谱线的角位置,重复5次后取平均值,算出衍射角.将步骤二中测出的光栅常数d 及衍射角代入式(10-1),就可计算出相应的光波波长.并与标称值进行比较,算出标准偏差. 四、测量光栅的角色散D用汞灯为光源,测量1±=k 级光谱中双黄线的衍射角,双黄线的波长差为2.06nm ,结合测得的衍射角之差ϕ∆,用式(10-3)求出角色散,并算出百分比误差(将D 作为标准值).用汞灯为光源,测量1±=k 级光谱中双黄线各自的衍射角,将第二步中测出的光栅常数d 代入(10-2)式,分别求出双黄线的角色散;双黄线的波长差为2.06nm ,结合测得的双黄线的衍射角之差ϕ∆,再用(10-3)式求出角色散,将求得的角色散的平均值D 并作为标准值,算出百分比误差.·实验数据测量1、紫谱线(nm 8.435=λ)±1级衍射角测量数据记录表测量序号+1级位置读数-1级位置读数中央零级白光位置读数衍射角φ1φ’1φ2φ’2φ0φ’0123452、其余谱线±1级衍射角测量数据记录表谱线颜色测量序号+1级位置读数-1级位置读数中央零级白光位置读数衍射角θ1θ’1θ2θ’2θ0θ’0绿1 2 3 4 5黄1 1 2 3黄2123·实验注意事项1.在分光计调节过程中,均要求视野中的像清晰,且无视差;2.狭缝调节要求细而清晰,能分辨汞灯中的黄双线,但要防止狭缝关死,以至损坏狭缝;3.光栅方程是在入射平行光严格垂直光栅表面的前提下成立的,本实验中务必注意;·历史渊源与应用前景由于光栅具有较大的色散率和较高的分辨本领,故它已被广泛地装配在各种光谱仪器中.采用现代高科技技术可制成每厘米有上万条狭缝的光栅,它不仅适用于分析可见光成分,还能用于红外和紫外光波.干涉成像光谱仪、激光高度计、CCD立体相机将共同完成获取月球表面三维立体影像;γ射线谱仪、X射线谱仪将携手对月球表面有用元素及物质类型的含量和分布进行辨析。

光栅测量——精选推荐

光栅测量——精选推荐

光栅测量实验3-15 衍射光栅光栅(⼜称为衍射光栅)是⼀种分光⽤的光学元件。

过去制作光栅都是在精密的刻线机上⽤⾦刚⽯在玻璃表⾯刻出许多平⾏等距刻痕作成原刻光栅,实验室中通常使⽤的光栅是由原刻光栅复制⽽成的。

后来随着激光技术的发展⼜制作出全息光栅。

光栅的应⽤范围很⼴,不仅⽤于光谱学(如光栅光谱仪),还⼴泛⽤于计量(如直线光栅尺)、光通信(光栅传感器)、信息处理(VCD 、DVD )等⽅⾯。

实验原理由许多平⾏、等距、等宽的狭缝构成的光学元件叫做衍射光栅。

它们每毫⽶内⼀般有⼏⼗条乃⾄上千条狭缝,这些缝有些是刻上去的,有些是印上去的,本实验所⽤的全息光栅,则是⽤全息技术使⼀列极密、等距的⼲涉条纹在涂有乳胶的玻璃⽚上感光,经处理后,感光的部分成为不透明的条纹,⽽末感光的部分成透光的狭缝。

每相邻狭缝间的距离d 称为光栅常数。

当⼀束平⾏光垂直⼊射到光栅平⾯时(见图1),光线通过每⼀条狭缝之后都将产⽣衍射,缝与缝之间的衍射光线⼜将产⽣⼲涉。

若⽤望远镜的物镜L 将它们会聚起来,我们将能在⽬镜中观察到光栅的衍射条纹(⼀些直的平⾏条纹)。

显然这些衍射条纹是衍射和⼲涉的结果。

如图1所⽰,若以波长为λ的单⾊光垂直⼊射到光栅上,并将衍射⽅向和⼊射⽅向的夹⾓?称为衍射⾓。

则当衍射⾓满⾜公式sin d K ?λ=±,当K=0,l ,2…时,在衍射⽅向上可以看到亮条纹(光谱)。

当K=0时,称为零级光谱,对应于中央亮条纹;当K =1时为⼀级光谱;K=2时,为⼆级光谱;……。

式中±号表⽰它们对称地分布在中央亮条纹的两侧,强度是迅速减弱的。

由光栅⽅程可以看出,光栅常量愈⼩,各级明条纹的衍射⾓就越⼤,即各级明条纹分得愈开。

对给定长度的光栅,总缝数愈多,明条纹愈亮。

对光栅常数⼀定的光栅,⼊射光波长愈⼤,各级明条纹的衍射⾓也愈⼤。

如果是⽩光(或复⾊光)⼊射,则除中央零级明条纹外,其他各级明条纹都按波长不同各⾃分开,形成光栅光谱。

衍射光栅常数与光波长的测量方案

衍射光栅常数与光波长的测量方案

衍射角

20°26'
246°46' 247°55' 251°54' 257°4' 257°5' 257°35' 259°35'
66°48' 67°55' 71°55' 77°2' 77°5' 77°38' 79°34'
287034' 286°26' 282°29' 277°18' 277°15' 276°34' 274°38'
4316.729 0.000353
绿光波长 5461埃
8.43148E-05 7.10899E-09
波长不确定度(埃) 2
3
3
5
5
4
①、光栅常数
k 2 d 3.3199 0.0004 m
k 1 d 3.316 0.002 m
2019/9/4
重庆邮电大学理学院物理实验中心
级级
本实验通过测量绿光(波长已知)的衍射角可计算出光栅常
数d,再通过测量紫光、双黄线的衍射角,可计算出紫光和
2两019种/9/4黄光的波长。 重庆邮电大学理学院物理实验中心
5
2、谱线半角宽度
特别注意:k级主极大左是 kN-1,右kN+1级极小!
d sink k

k,
d
sin(k


2019/9/4
光栅衍射光谱示意图
重庆邮电大学理学院物理实验中心
11
1 ( 1 1 1 1 )
22
2
右游标 左游标
右边绿色光谱
θ+1 2θ 0º白色光谱 θ-1

光栅常数的实验报告

光栅常数的实验报告

得分教师签名批改日期一、实验设计方案1、实验目的1.1、了解光栅的分光特性;1.2、掌握什么是光栅常数以及求光栅常数的基本原理与公式;1.3、掌握一种测量光栅常数的方法。

2、实验原理2.1、测量光栅常数光栅是由许多等宽度a(透光部分)、等间距b(不透光部分)的平行缝组成的一种分光元件。

当波长为λ的单色光垂直照射在光栅面上时,则透过各狭缝的光线因衍射将向各方向传播,经透镜会聚后相互干涉,并在透镜焦平面上形成一系列间距不同的明条纹。

根据夫琅和费衍射理论,衍射光谱中明条纹的位置由下式决定:(a+b)sinφk=kλ(k=0,± 1,± 2,⋯)(2.1.1)式中 a+b=d称为光栅常数, k为光谱级数,φk为第 k级谱线的衍射角。

见图 2.1.2,k=0对应于φ =0,称为中央明条纹,其它级数的谱线对称分布在零级谱线的两侧。

如果入射光不是单色光,则由式( 2.1.1)可知,λ不同,φk也各不相同,于是将复色光分解。

而在中央 k=0,φ k=0处,各色光仍然重叠在一起,组成中央明条纹。

在中央明条纹两侧对称地分布 k=1,2,⋯级光谱线,各级谱线都按波长由小到大,依次排列成一组彩色谱线,如图 2.1.2所示。

根据式(2.1.1),如能测出各种波长谱线的衍射角φk,则从已知波长λ的大小,可以算出光栅常数 d;反之,已知光栅常数d,则可以算出波长λ。

本试验则是已知波长λ 求光栅常数。

2.2、注意事项2.2.1、光源必须垂直入射光栅,否则会引起较大的误差。

2.2.2、所有装置尽量处于同一水平面上,这样才能发生明显的衍射。

图 2.1.2光栅衍射谱2.3、实验装置光栅(分光)750 接口钠灯光传感器转动传感器计算机和数据处理软件 DataStudio实验装置说明:钠灯提供光源,光通过光栅后到达屏上,并通过光传感器传到计算机中,我们手动屏,是光传感器能接收并将其数据传到计算机上,而我们转动的角度会通过转动传感器传给计算机(不过要加以计算,有 60 倍的关系)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光栅光谱和光栅常数的测定
实验十用透射光栅测定光波的波长及光栅的参数
光在传播过程中的反射、折射、衍射、散射等物理现象都与角度有关,一些光学量如折射率、波长、衍射条纹的极大和极小位置等都可以通过测量有关的角度去确定.在光学技术中,精确测量光线偏折的角度具有十分重要的意义.本实验利用分光计通过对不同色光衍射角的测定,来实现光栅常数、光栅角色散及光源波长等物理量的测量.
·实验目的
1.进一步练习掌握分光计的调节和使用;
2.观察光线通过光栅后的衍射现象;
3.学习应用衍射光栅测定光波波长、光栅常数及角色散率的方法.
·实验仪器
分光计、双面反射镜、平面透射光栅、汞灯.
分光计的结构及调节见实验三.
汞灯可分为高压汞灯和低压汞灯,为复色光源.实验室通常选用GP20Hg型低压汞灯作为光源,其光谱如表1所示.实验室通常选择强度比较大的蓝紫色、绿色、双黄线作为测量用.汞灯在使用前要预热5-10min,断电后需冷却5-10min,因此汞灯在使用过程中,不要随意开关.
表1 GP20Hg型低压汞灯可可见光区域谱线及相对强度颜色紫紫紫蓝紫蓝紫蓝紫蓝绿/λnm404.66 407.78 410.81 433.92 434.75 435.84 491.60 相对强度1800 150 40 250 400 4000 80
颜色绿黄绿黄黄橙红深红/λnm546.07 567.59 576.96 579.07 607.26 623.44 690.72 相对强度1100 160 240 280 20 30 250
衍射光栅是利用多缝衍射原理使入射光发生色散的光学元件,它由大量相互平行、等宽、等间距的狭缝或刻痕所组成.在结构上有平面光栅和凹面光栅之分,同时光栅分为透射式和反射式两大类.本实验所用光栅是透射式光栅,其原理如图10-1所示.
图10-1 光栅结构示意图
·实验原理 ••
若以平行光垂直照射在光栅面上,则光束经光栅各缝衍射后将在透镜的焦平
面上叠加,形成一系列间距不同的明条纹(称光谱线).根据夫琅禾费衍射理论,可得光栅方程:
(10-1)
式中d=a+b 称为光栅常数(a 为狭缝宽度,b 为刻痕宽度,如图10-1),k 为光谱线的级数,为k 级明条纹的衍射角,是入射光波长.
如果入射光为复色光,则由(10-1)式可以看出,光的波长不同,其衍射

也各不相同,于是复色光被分解,在中央k =0,=0处,各色光仍重叠在一起,组成中央明条纹,称为零级谱线.在零级谱线的两侧对称分布着级谱线,且同一级谱线按不同波长,依次从短波向长波散开,即衍射角逐渐增大,形成光栅光谱,如图10-2.
)
3,2,1,0(sin =±=k k d k λϕk ϕλλk ϕk ϕ 3,2,1=k
图10-2 光栅衍射1级光谱
由光栅方程可看出,若已知光栅常数d ,测出衍射明条纹的衍射角,即可
求出光波的波长.反之,若已知,亦可求出光栅常数d .
将光栅方程(10-1)式对微分,可得光栅的角色散率为:
(10-2)
衍射角较小,为了便于估算,一般可将角色散D 近似写为:
λ
ϕ∆∆≈
D (10-3)
角色散是光栅、棱镜等分光元件的重要参数,它表示单位波长间隔内两单色
谱线之间的角距离.由式(10-2)可知,如果衍射时衍射角不大,则近乎不变,光谱的角色散几乎与波长无关,即光谱随波长的分布比较均匀,这和棱镜的不均匀色散有明显的不同.
·实验内容与步骤
一、分光计及光栅的调节
1.按实验三中所述的要求调节好分光计.
2
.分光计调好之后,将光栅按图3放在载物台上,通过望远镜观察光栅,发现反射回来的叉丝像与分划板的上叉丝不再重合,其原因主要是光栅平面与光栅底座不垂直,这时不能调节望远镜的仰俯,而是通过载物台下的三个螺钉来矫正.具体方法是调节螺钉a 或b ,直到望远镜中从光栅面反射回来的绿十字叉丝像与目镜中的上叉丝重合,至此光栅平面与分光计转轴平行,且垂直于准直管、
k ϕλλλϕλϕcos d k
d d D =
=
k ϕϕcos
固定载物台.
图10-3 光栅的放置
3.调节光栅刻痕与转轴平行
转动望远镜,观察光栅光谱线,调节栽物台螺丝c ,使从望远镜中看到的叉
丝交点始终处在各谱线的同一高度.调好后,再检查光栅平面是否仍保持与转轴平行,如果有了改变,就要反复调节载物台下的三个螺钉,直到两个要求都满足为止.旋转载物台和望远镜,使分划板的竖线、叉丝反射像的竖线、狭缝的透光方向三线合一,锁定载物台,开始测量. 二、测定光栅常数d
方法1:用望远镜观察各条谱线,首先记录白光的角位置,再测量1=k 级的汞灯光谱中紫线(nm 8.435=λ)的角位置,同一游标两次读数之差即为衍射角.重复测5次后取平均值,代入式(10-1)求出光栅常数d ,计算光栅常数的标准不确定度.
方法2:用望远镜观察各条谱线,首先测量1-=k 级的汞灯光谱中紫线(nm 8.435=λ)的角位置,转动望远镜,测量1=k 级的汞灯光谱中紫线的角位置,同一游标两次读数之差即为衍射角的2倍.重复测5次后取平均值,代入式(10-1)求出光栅常数d ,计算光栅常数的标准不确定度.(方法1和方法2任选一种)
三、测定光波波长
选择汞灯光谱中的绿色谱线进行测量,测出相应于级谱线的角位置,重复5次后取平均值,算出衍射角.将步骤二中测出的光栅常数d 及衍射角代入式(10-1),就可计算出相应的光波波长.并与标称值进行比较,算出标准偏差. 四、测量光栅的角色散D
用汞灯为光源,测量级光谱中双黄线的衍射角,双黄线的波长差为2.06nm ,结合测得的衍射角之差,用式(10-3)求出角色散,并算出百分比误差(将D 作为标准值).
1±=k 1±=k ϕ∆
用汞灯为光源,测量级光谱中双黄线各自的衍射角,将第二步中测出的光栅常数d 代入(10-2)式,分别求出双黄线的角色散;双黄线的波长差为2.06nm ,结合测得的双黄线的衍射角之差,再用(10-3)式求出角色散,将求得的角色散的平均值D 并作为标准值,算出百分比误差.
·实验数据测量
1、紫谱线(nm 8.435=λ)±1级衍射角测量数据记录表
测量 序号 +1级位置读数
-1级位置读数
中央零级白光位置读数
衍射角 φ1
φ’1
φ2
φ’2
φ0
φ’0
1 2 3 4 5
2、其余谱线±1级衍射角测量数据记录表
谱线 颜色 测量 序号
+1级位置读数 -1级位置读数 中央零级白光位置读数
衍射角 θ1 θ’1 θ2 θ’2 θ0 θ’0 绿
1 2
3 4 5
黄1 1 2 3 黄2
1 2 3
·实验注意事项
1.在分光计调节过程中,均要求视野中的像清晰,且无视差;
2.狭缝调节要求细而清晰,能分辨汞灯中的黄双线,但要防止狭缝关死,以至损坏狭缝;
1±=k ϕ∆
3.光栅方程是在入射平行光严格垂直光栅表面的前提下成立的,本实验中务必注意;
·历史渊源与应用前景
由于光栅具有较大的色散率和较高的分辨本领,故它已被广泛地装配在各种光谱仪器中.采用现代高科技技术可制成每厘米有上万条狭缝的光栅,它不仅适用于分析可见光成分,还能用于红外和紫外光波.
干涉成像光谱仪、激光高度计、CCD立体相机将共同完成获取月球表面三维立体影像;γ射线谱仪、X射线谱仪将携手对月球表面有用元素及物质类型的含量和分布进行辨析。

·与中学物理的衔接
衍射光栅的内容在高中《物理》(选修3-4)中介绍得非常简单,实验器材也不容易获得,这不利于教师的教学及学生知识的系统掌握.中学阶段主要是分析和研究光谱.因此,实验过程中,要注意观察并描述光栅光谱的特点,增强对光栅光谱认识的同时,锻炼一下语言的描述能力.知道白光是由色光组成的,了解色光混合的现象.
·自主学习
本实验的构思亮点:利用分光计能精确测量角度的优势,来确定光栅常数的微小变化及波长的微小差别。

操作难点:分光计望远镜的调整,及零级光谱测量前三线合一的确定.
1.调节分光计的基本步骤是什么?
2.按游标原理,读出图10-4中的角度数.
3.应用分光计进行测量之前,应调节到何种状态?
4.为什么测量之前要求三线合一,若不重合,对结果有何影响?
5. 已知什么量?哪个是待测量?如何控制变量?关注仪器的分度值及单位.按要求处理实验数据,完成实验报告.
图10-4 游标盘读数
·实验探究与设计
尝试设计实验方案,用钠光灯做光源,找到零级的位置,并测量钠光灯的波长,完成实验.。

相关文档
最新文档