体育单招历年数学试卷分类汇编-数列
体育单招测试题数学及答案
体育单招测试题数学及答案一、选择题(每题2分,共20分)1. 下列哪个数是整数?A. 3.14B. -2C. 0.5D. π2. 已知函数 f(x) = 2x - 1,求 f(3) 的值。
A. 5B. 4C. 3D. 23. 一个圆的半径是 5 厘米,它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π4. 如果一个三角形的两边长分别是 3 和 4,且这两边夹角为 60 度,那么这个三角形的面积是多少?A. 3√3B. 4√3C. 6√3D. 8√35. 等差数列 3, 7, 11, ... 的第 10 项是多少?B. 41C. 47D. 516. 一个直角三角形的两条直角边分别为 6 厘米和 8 厘米,斜边的长度是多少?A. 10 厘米B. 12 厘米C. 14 厘米D. 16 厘米7. 已知集合 A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。
A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 2, 3, 4, 5}8. 一个数的平方根是 2,这个数是多少?A. 4B. -4C. 8D. -89. 一个数的立方根是 2,这个数是多少?A. 2B. 4C. 8D. 1610. 已知等比数列 2, 6, 18, ... 的公比是 3,求第 5 项。
B. 108C. 162D. 324二、填空题(每题2分,共10分)11. 一个数的相反数是 -5,这个数是 _______。
12. 若 a + b = 10,且 a - b = 2,则a × b = _______。
13. 一个数的绝对值是 7,这个数可以是 _______ 或 _______。
14. 已知一个等差数列的首项是 5,公差是 3,求第 6 项。
15. 已知一个等比数列的首项是 2,公比是 2,求第 4 项。
三、解答题(每题10分,共20分)16. 求函数 y = x^2 - 4x + 4 的顶点坐标。
体育单招数学卷及答案
全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数 学一、选择题:本大题共10小题,每小题5分,共50分。
1、已知集合}1|2||{<-=x x M ,}02|{2<-=x x x N ,则=N M( )A 、}20|{<<x xB 、}30|{<<x xC 、}21|{<<x xD 、}31|{<<x x 2、已知α是第四象限的角,且23)sin(-=-απ,则=+)cos(απ( )A 、21- B 、21 C 、22-D 、223、三个球的表面积之比为1:2:4,它们的体积依次为1V ,2V ,3V ,则( )A 、124V V =B 、1322V V =C 、234V V =D 、2322V V =4、已知点A (-2,0),C (2,0).ABC ∆的三个内角C B A ∠∠∠,,的对边分别为c b a ,,,且c b a ,,成等差数列,则点B 一定在一条曲线上,此曲线是 ( )A 、圆B 、椭圆C 、双曲线D 、抛物线5、数列}{n a 的通项公式为nn a n ++=11,如果}{n a 的前n 项和等于3,那么=n( )A 、8B 、9C 、15D 、166、一个两头密封的圆柱形水桶装了一些水,当水桶水平横放时,桶内的水浸了水桶横截面周长的41. 当水桶直立时,水的高度与桶的高度的比值是 ( )A 、41B 、4πC 、π141-D 、π2141-7、已知函数)1(-=x f y 是偶函数,则函数)2(x f y =图象的对称轴是 ( )A 、1=xB 、1-=xC 、21=x D 、21-=x 8、ABC ∆中A ∠,B ∠和C ∠的对边分别是a ,b 和c ,满足ba cA C 3233cos cos +-=,则C∠的大小为( )A 、3πB 、6π C 、32πD 、65π9、已知0>ω,)2,2(ππϕ-∈. 如果函数)sin(ϕω+=x y 的最小正周期是π,且其图象关于直线12π=x 对称,则取到函数最小值的自变量是 ( )A 、Z k k x ∈+-=,125ππ B 、Z k k x ∈+-=,65ππC 、Z k k x ∈+=,61ππD 、Z k k x ∈+=,121ππ10、某班分成8个小组,每小组5人. 现要从班中选出4人参加4项不同的比赛. 且要求每组至多选1人参加,则不同的选拔方法共有 ( )A 、444854A C (种)B 、154448C A C (种)C 、444845A C (种)D 、444405A C (种)二、填空题:本大题共10小题,每小题5分,共50分。
(完整版)体育单招历年数学试卷分类汇编-数列,推荐文档
1.(2013年第7题)若等比数列的前项和为,则 .n 5na +a =2.(2013年第13题)等差数列共有20项,其奇数项之和为130,偶数项之和为150,则该数列的公差为 .3.(2012年第9题)等差数列的前项和为,若,则 .{}n a n n S 11,19,100k k a a S ===k =4.(2012年第15题)已知是等比数列,,则 .{}n a 1236781,32a a a a a a ++=++=129a a a +++= 5.(2011年第9题)是等差数列的前项和,已知,则公差 .n S {}n a n 3612,6S S =-=-d =6.(2011年第14题)已知是等比数列,,则 .{}n a 12123,231a a a a a ≠+==1a =7.(2010年第5题)等差数列中,,公差,若数列前项的和为,则 .{}n a 12a =12d =-N 0N S =N =8.(2010年第13题)是各项均为正数的等比数列,已知,则 .{}n a 334512,84a a a a =++=123a a a ++=9.(2009年第17题)是等比数列,是公差不为零的等差数列,已知,{}n a {}n a 1122351,,a b a b a b ====(Ⅰ) 求和的通项公式;{}n a {}n b (Ⅱ)设的前项和为,是否存在正整数,使;若存在,求出。
若{}n b n S n 7n a S =n 不存在,说明理由。
10.(2008年第9题)是等比数列的前项和,已知,公比,则 .n S n 21S =2q =4S =11.(2008年第17题)已知是等差数列,,则的通项公式为 .{}n a 1236a a a +=={}n a n a =12. (2005年第4题)设等差数列的前项和为,已知,则 .{}n a n n S 3316,105a S ==10S =13. (2005年第22题)已知数列的前项和为满足。
体育对口单招数学试试卷(答案)
体育对口单招数学卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分)1.若集合2{|20},{|log (1)1},M x x N x x =->=-< 则M N =()A.{|23}x x <<B.{|1}x x <C.{|3}x x >D.{|12}x x <<2.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则a、b 满足()A.a+b=1B.a-b=1C.a+b=0D.a-b=03.已知{}n a 为等差数列,3177,10,n a a a S =+=为其前n 项和,则使得n S 达到最大值的n 等于()A.4B.5C.6D.74.已知三棱锥的三视图如图所示,其中侧视图为直角三角形,俯视图为等腰直角三角形,则此三棱锥的体积等于()A.23B.33C.223D.2335、方程43)22(log =x 的解为()A.4=xB.2=xC.2=xD.21=x 6、下列各组函数是同一函数的是()①3()2()2f x x g x x x =-=⋅-与②2()()f x x g x x ==与③001()()f x x g x x ==与④22()21()21f x x xg x t t =--=--与A.①②B.①③C.③④D.①④7、下列命题是假命题的是()A.(0,),sin 2x x x π∀∈>B.000,sin cos 2x R x x ∃∈+=C.,30x x R ∀∈>D.00,lg 0x R x ∃∈=8.关于x,y 的方程y mx n =+和221x y m n +=在同一坐标系中的图象大致是()9.已知()2nx -的二项展开式有7项,则展开式中二项式系数最大的项的系数是()A.-280B.-160C.160D.56010.若有7名同学排成一排照相,恰好甲、乙两名同学相邻,并且丙、丁两名同学不相邻的概率是()A.421 B.121 C.114 D.2711、已知定义在R 上的函数12)(-=-m x x f (m 为实数)为偶函数,记)3(log 5.0f a =,)5(log 2f b =,)2(m f c =,则c b a ,,的大小关系为()A、cb a <<B、b ac <<C、bc a <<D、a b c <<12、不等式152x x ---<的解集是()A、(,4)-∞B、(,1)-∞C、(1,4)D、(1,5)13、函数x x y 2cos sin =是()A、偶函数B、奇函数C、非奇非偶函数C、既是奇函数,也是偶函数14、若(12)a+1<(12)4-2a,则实数a 的取值范围是()A、(1,+∞)B、(12,+∞)C、(-∞,1)D、(-∞,12)15、化简3a a 的结果是()A、aB、12a C、41a D、83a 16、下列计算正确的是()A、(a3)2=a9B、log36-log32=1C、12a -·12a =0D、log3(-4)2=2log3(-4)17、三个数a=0.62,b=log20.3,c=30.2之间的大小关系是()A、a<c<bB、a<b<cC、b<a<cD、b<c<a 18、8log 15.021+-⎪⎭⎫⎝⎛的值为()A、6B、72C、16D、3719、下列各式成立的是()A、()52522n m n m +=+B、(b a )2=12a 12b C、()()316255-=-D、31339=20、设2a=5b=m,且1a +1b=3,则m 等于()A、310B、10C、20D、100二、填空题:(共20分)1.已知二次函数3)(2-+=bx ax x f (0≠a ),满足)4()2(f f =,则=)6(f ________;2.设12)(2++=x ax x p ,若对任意实数x ,0)(>x p 恒成立,则实数a 的取值范围是________________;3.已知m b a ==32,且211=+b a ,则实数m 的值为______________;4.若0>a ,9432=a ,则=a 32log ____________;三、解答题:(本题共3小题,共40分)1.计算:1033cos 3)27lg0.012p +-++2.等差数列{an}中,a2=13,a4=9.(1)求a1及公差d;(2)当n 为多少时,前n 项和Sn 开始为负?3.如下是“杨辉三角”图,由于印刷不清在“▯”处的数字很难识别.(1)第6行两个“15”中间的方框内数字是多少?(2)若2)nx 展开式中最大的二项式系数是35,从图中可以看出n 等于多少?该展开式中的常数项等于多少?参考答案:一、选择题1-5题答案:DCBAA6-10题答案:BDDBA11-15题答案:BABAB;16-20题答案:BBCDA.二、填空题1.-3;2.),1( ;3.6;4.3;三、解答题1.参考答案.62.参考答案.(1)115a =,2d =-;(2)当17n =时,前n 项和n S 开始为负。
体育单招数学试题及答案
体育单招数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是整数?A. 0B. 1C. 3.5D. 2答案:C2. 若a > 0且b < 0,下列哪个不等式是正确的?A. a + b > 0B. a - b > 0C. a * b > 0D. a / b > 0答案:B3. 已知x² - 5x + 6 = 0,求x的值。
A. 2B. 3C. 1, 2D. 2, 3答案:D4. 圆的半径为5,求圆的面积。
A. 25πC. 75πD. 100π答案:B5. 函数f(x) = 2x - 3,当x = 2时,f(x)的值为多少?A. -1B. 1C. 3D. 5答案:B6. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。
A. 5B. 6C. 7D. 8答案:A7. 一个数的平方根是4,这个数是多少?A. 16B. -16C. 8D. -8答案:A8. 已知一个数列的前三项为1, 4, 7,求第四项。
B. 11C. 12D. 13答案:B9. 一个长方体的长、宽、高分别为2, 3, 4,求其体积。
A. 24B. 36C. 48D. 52答案:A10. 一个正六边形的内角是多少度?A. 120°B. 135°C. 150°D. 180°答案:B二、填空题(每题2分,共20分)1. 一个数的绝对值是其本身的数是______或______。
答案:正数;02. 一个数的相反数是其本身的数是______。
答案:03. 一个数的倒数是其本身的数是______。
答案:±14. 若a和b互为倒数,则ab=______。
答案:15. 一个数的平方等于9,这个数可以是______或______。
答案:3;-36. 一个数的立方等于-27,这个数是______。
答案:-37. 一个数的平方根是2,这个数是______。
体育单招历年数学试卷分类汇编-二项式定理、排列组合、概率
二项式定理、排列组合1.(2013年第6题)已知3230123(1)x a a x a x a x +=+++,则0123a a a a +++=( )A .7B .8C .9D .102. (2013年第8题)把4个人平均分成2组,不同的分组方法共有( )A .5种B .4种C .3种D .2种3. (2013年第14题)有3男2女,随机挑选2人参加活动,其中恰好为1男1女的概率为 .4. (2012年第5题)已知9()x a +的展开中常数项是-8,则展开式中3x 的系数是( )A .168B .-168C .336D .-3365. (2012年第8题)在10名教练员中选出主教练1人,分管教练2人,组成教练组,不同的选法共有( )A .120种B .240种C .360种D .720种6. (2012年第14题)某选拔测试包含三个不同科目,至少两个科目为优秀才能通过测试,设某学员三个科目获优秀的概率分别为56,46,46,则该学员通过测试的概率是 . 7. (2011年第10题)将3名教练员与6名运动员分为3组,每组1名教练员与2名运动员,不同的分法有( )A .90种B .180种C .270种D .360种8. (2011年第11题)261(2)x x+的展开式中常数项是 . 9. (2011年第17题)甲、乙两名篮球运动员进行罚球比赛,设甲罚球命中率为0.6,乙罚球命中率为0.5,(Ⅰ) 甲、乙各罚球3次,命中1次得1分,求甲、乙得分相等的概率;(Ⅱ) 命中1次得1分,若不中则停止罚球,且至多罚球3次,求甲得分比乙多的概率;10. (2010年第10题)篮球运动员甲和乙的罚球命中率分别是0.5和0.6,假设两人罚球是否命中相互无影响,每人各次罚球是否命中也相互无影响,若甲、乙两人各连续2次罚球都至少有1次未命中的概率为p ,则( )A .0.40.55p <≤B .0.450.50p <≤C .0.550.60p <≤D .0.450.50p <≤11. (2010年第11题)已知4343243210(2)3(2)2(2)x x x a x a x a x a x a -+---=++++,则0a = .12. (2010年第15题)4位运动员和2位教练员排成一排照相,若要求教练员不相邻且都不站在两端,则可能的排法共有 种。
体育对口单招数学卷(答案) (9)
体育对口单招数学卷(满分120分,考试时间90分钟)一、选择题:(本题共20小题,每小题2.5分,共50分)1.在8)2(-x 的展开式中,x 的指数为正偶数的所有项的系数和为()(A)3281(B)-3281(C)-3025(D)30252.已知集合=A {2|-x ≤x ≤7},}121|{-<<+=m x m x B ,且∅≠B ,若A B A = ,则()(A)-3≤m ≤4(B)-3<<m 4(C)42<<m (D)m <2≤43.定义在R 上的偶函数)(x f 在(-∞,0]上单调递增,若21x x >,021>+x x ,则()(A))()(21x f x f >(B))()(21x f x f >-(C))()(21x f x f -<(D))(1x f ,)(2x f 的大小与1x ,2x 的取值有关4、若实数a>0,则下列等式成立的是()A.()224--= B.33122a a -=C.()21-=- D.4141a a-⎛⎫= ⎪⎝⎭5、已知数列{}n a 是等比数列,其中3a 2=,6a 16=,则该数列的公比q 等于()A.143B.2C.4D.86、某职业学校的一个数学兴趣小组有4名男生和3名女生,若从这7名学生中任选3名参加数学竞赛,要求既有男生又有女生,则不同选法的种数是()A.60B.31C.30D.107、直线12y =+的倾斜角为()A、90°B、180°C、120°B、150°210y ++=与直线30x +=的位置关系是()A、两线平行B、两线垂直C、两线重合B、非垂直相交9.在ABC ∆中,2π>C ,若函数)(x f y =在[0,1]上为单调递减函数,则下列命题正确的是()(A))(cos )(cos B f A f >(B))(sin )(sin B f A f >(C))(cos )(sin B f A f >(D))(cos )(sin B f A f <10.下列命题中,正确的是()(A)||||||b a b a ⋅=⋅(B)若)(c b a -⊥,则c a b a ⋅=⋅(C)2a ≥||a (D)cb ac b a ⋅⋅=⋅⋅)()(11、设集合M={1,2,3,4,5},集合N={1,4,5},集合T={4,5,6},则N T M )(=()A、{2,4,5,6}B、{1,4,5}C、{1,2,3,4,5,6}D、{2,4,6}12、已知集合{|3A x x n ==+2,N n ∈,},{6,8,10,12,14}B =,则集合A B 中的元素个数为()A、5B、4C、3D、213、已知集合A {}12x x =-<<,{03}B x x =<<,则A B = ()A、(-1,3)B、(-1,0)C、(0,2)D、(2,3)14、已知集合A {}2,1,0,1,2=--,{}(1)(2)0B x x x =-+<,则A B =()A、{-1,0}B、{0,1}C、{-1,0,1}D、{0,1,2}15、若集合}25|{<<-=x x A ,}33|{<<-=x x B ,则=B A ()A、}23|{<<-x xB、}25|{<<-x xC、}33|{<<-x x D、}35|{<<-x x 16、已知集{1,2,3},B {1,3}A ==,则A B = ()A、{3}B、{1,2}C、{1,3}D、{1,2,3}17、已知集合{}{}3,2,3,2,1==B A ,则()A、A=BB、=B A ∅C、B A ⊆D、AB ⊆18、若集合{}1,1M =-,{}2,1,0N =-,则M N = ()A、{0,-1}B、{1}C、{-2}D、{-1,1}19、设A,B 是两个集合,则“A B A = ”是“A B ⊆”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件20、设集合A={0,2,a},B={1,a2},若A∪B={0,1,2,5,25},则a 的值为()A、0B、1C、2D、5二、填空题:(本题共3小题,共20分)1.若复数z 满足zi=l-i,则z=_______.2.圆x+y=5的一条经过点(1,-2)的切线方程为_______.3.设实数x,y 满足(x-2)²+y²-3,则圆心坐标是______.三、解答题:(本题共3小题,共50分.解答应写出文字说明、证明过程或演算步骤.)1.已知正方体1111ABCD A B C D -,点E 为11A D 中点,直线11B C 交平面CDE 于点F .(1)求证:点F 为11B C 中点;(2)若点M 为棱11A B 上一点,且二面角M CF E --的余弦值为53,求111A M AB .2.已知集合A={}{}B A B A x x B x x ,,71,40求<<=<<.观察下列三角形数表,假设第n 行的第二个数为),2(+∈≥N n n a n (1)依次写出第六行的所有6个数;(2)试猜想1+n a 与n a 的关系式,并求出{}n a 的通项公式.设c b a ,,分别是ABC ∆的三个内角A 、B 、C 所对的边,S 是ABC ∆的面积,已知4,5,a b S ===.(1)求角C ;(2)求c 边的长度.3、解:(1)由题知5,435===b a S 设c b a ,,分别是ABC ∆的三个内角A 、B 、C 所对的边,S 是ABC ∆的面积,已知4,5,a b S ===.(1)求角C ;(2)求c 边的长度.参考答案:一、选择题1-5题答案:DDCDB;6-10题答案:CCDCB 11-15题答案:BDAAA;16-20题答案:CDBCD.二、填空题1.答案:-1-i 2.答案:x-2y-5=03.答案:(2,0)三、解答题1、【解答】(1)证明:连结DE ,在正方体1111ABCD A B C D -中,11//CD C D ,11C D ⊂平面1111A B C D ,CD ⊂/平面1111A B C D ,则//CD 平面1111A B C D ,因为平面1111A B C D 平面CDEF EF =,所以//CD EF ,则11//EF C D ,故1111////A B EF C D ,又因为1111//A D B C ,所以四边形11A B FE 为平行四边形,四边形11EFC D 为平行四边形,所以11A E B F =,11ED FC =,而点E 为11A D 的中点,所以11A E ED =,故11B F FC =,则点F 为11B C 的中点;(2)解:以点1B 为原点,建立空间直角坐标系,如图所示,设正方体边长为2,设点(,0,0)M m ,且0m <,则(0,2,2)C -,(2,1,0)E -,(0,1,0)F ,故(2,0,0),(0,1,2),(,1,0)FE FC FM m =-=-=-,设平面CMF 的法向量为(,,1)m a b = ,则00m FM m FC ⎧⋅=⎪⎨⋅=⎪⎩,即020ma b b -=⎧⎨-=⎩,所以2a m =,2b =,故2(,2,1)m m = ,设平面CDEF 的法向量为(,,1)n x y = ,则00n FE n FC ⎧⋅=⎪⎨⋅=⎪⎩ ,即2020x y -=⎧⎨-=⎩,所以0x =,2y =,故(0,2,1)n =,因为二面角M CF E --的余弦值为3,则|||cos ,|||||3m n m n m n ⋅<>===,解得1m =±,又0m <,所以1m =-,故11112A M A B =.【点评】本题考查了立体几何的综合应用,涉及了线面平行的性质定理的应用,二面角的应用,在求解有关空间角问题的时候,一般会建立合适的空间直角坐标系,将空间角问题转化为空间向量问题进行研究,属于中档题.2、题,参考答案:(1,4);(0,7)3、题:参考答案:C ab S sin 21=Csin 542135⨯⨯=∴23sin =∴C又 C 是ABC ∆的内角3π=∴C 或32π=C (2)当3π=C 时,3cos2222πab b a c -+=215422516⨯⨯⨯-+=21=21=∴c 当32π=C 时,22222cos 3c a b ab π=+-215422516⨯⨯⨯++==6161=∴c。
2024年全国普通高等学校运动训练、民族传统体育专业单招考试数学试卷(答案解析)
2024年全国普通高等学校运动训练、民族传统体育专业单招考试数学试卷一、单项选择题1.已知集合{}22|1A x x y =+=,{}2|B y y x ==,则A B = ()A.[]0,1 B.[)0,+∞ C.{}1,1- D.{}0,12.已知复数()()23ai i ++在复平面内对应的点在直线y x =上,则实数a =()A.-2B.-1C.1D.23.若log 0a b <(0a >且1a ≠),221b b ->,则()A.1a >,1b >B.01a <<,1b >C.1a >,01b << D.01a <<,01b <<4.我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则说法不正确的是()A.相邻两个节气晷长减少或增加的量为一尺B.春分和秋分两个节气的晷长相同C.立冬的晷长为一丈五寸D.立春的晷长比立秋的晷长短5.有三个筐,一个装着柑子,一个装着苹果,一个装着柑子和苹果,包装封好然后做“柑子”“苹果”“混装”三个标签,分别贴到上述三个筐上,由于马虎,结果全贴错了,则()A.从贴有“柑子”标签的筐里拿出一个水果,就能纠正所有的标签B.从贴有“苹果”标签的筐里拿出一个水果,就能纠正所有的标签C.从贴有“混装”标签的筐里拿出一个水果,就能纠正所有的标签D.从其中一个筐里拿出一个水果,不可能纠正所有的标签6.已知向量OP =,将OP 绕原点O 逆时针旋转45︒到'OP 的位置,则'OP =()A.()1,3B.()3,1-C.()3,1D.()1,3-7.已知函数()f x 对任意,x y R ∈,都有()()()2f x y f x f y +=,且()11f =,则01()ni f i ==∑()A.21n - B.122n -C.112n-D.122n-8.已知正四棱柱1111ABCD A B C D -,设直线1AB 与平面11ACC A 所成的角为α,直线1CD 与直线11A C 所成的角为β,则()A.2βα=B.2αβ= C.αβ= D.2παβ+=二、多项选择题9.随着我国经济结构调整和方式转变,社会对高质量人才的需求越来越大,因此考研现象在我国不断升温.某大学一学院甲、乙两个本科专业,研究生的报考和录取情况如下表,则性别甲专业报考人数乙专业报考人数性别甲专业录取率乙专业录取率男100400男25%45%女300100女30%50%A.甲专业比乙专业的录取率高B.乙专业比甲专业的录取率高C.男生比女生的录取率高D.女生比男生的录取率高10.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<,将()y f x =的图像上所有点向左平移6π个单位,然后纵坐标不变,横坐标缩短为原来的12,得到函数()y g x =的图像.若()g x 为偶函数,且最小正周期为2π,则()A.()y f x =图像关于点(,0)12π-对称B.()f x 在5(0,)12π单调递增C.()()2x f x g =在5(0,)4π有且仅有3个解 D.()g x 在5()124ππ,有且仅有3个极大值点11.已知抛物线()220y px p =>上三点()11,A x y ,()1,2B ,()22,C x y ,F 为抛物线的焦点,则()A.抛物线的准线方程为1x =-B.0FA FB FC ++=,则FA ,FB ,FC 成等差数列C.若A ,F ,C 三点共线,则121y y =-D.若6AC =,则AC 的中点到y 轴距离的最小值为212.已知函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=,且11f e e⎛⎫= ⎪⎝⎭,则()A.1'0f e ⎛⎫= ⎪⎝⎭B.()f x 在1x e=处取得极大值C.()011f << D.()f x 在()0,∞+单调递增三、填空题13.()()52x y x y +-的展开式中24x y 的系数为________.14.已知l 是平面α,β外的直线,给出下列三个论断,①//l α;②αβ⊥;③l β⊥.以其中两个论断为条件,余下的论断为结论,写出一个正确命题:________.(用序号表示)15.已知双曲线()222210,0x y a b a b-=>>过左焦点且垂直于x 轴的直线与双曲线交于P ,Q 两点,以P ,Q ,则双曲线的离心率为________.16.我国的西气东输工程把西部的资源优势变为经济优势,实现了气能源需求与供给的东西部衔接,工程建设也加快了西部及沿线地区的经济发展输气管道工程建设中,某段管道铺设要经过一处峡谷,峡谷内恰好有一处直角拐角,水平横向移动输气管经过此拐角,从宽为27米峡谷拐入宽为8米的峡谷.如图所示,位于峡谷悬崖壁上两点E 、F 的连线恰好经过拐角内侧顶点O (点E 、O 、F 在同一水平面内),设EF 与较宽侧峡谷悬崖壁所成角为θ,则EF 的长为________(用θ表示)米.要使输气管顺利通过拐角,其长度不能低于________米.2024年全国普通高等学校运动训练、民族传统体育专业单招考试数学试卷答案解析一、单项选择题1.已知集合{}22|1A x x y =+=,{}2|B y y x ==,则A B = ()A.[]0,1 B.[)0,+∞ C.{}1,1- D.{}0,1【分析】集合{}22|1A x x y =+=是x 的取值范围,{}2|B y y x ==是函数的值域,分别求出再求交集.【详解】解:2210,11y x x =-≥-≤≤,{}[)2|0,B y y x ===+∞A B = [][)[]1,10,+=0,1=-∞ 故选:A【点睛】考查求等式中变量的范围以及集合的交集运算;基础题.2.已知复数()()23ai i ++在复平面内对应的点在直线y x =上,则实数a =()A.-2B.-1C.1D.2【答案】C 【解析】【分析】化简复数,求出对应点,代入直线方程求解即可.【详解】因为()()236(23)ai i a a i ++=-++,所以对应的点为()6,23a a -+,代入直线y x =可得623a a -=+,解得1a =,故选:C【点睛】本题考查了复数的运算法则、几何意义,直线的方程,考查了推理能力与计算能力,属于基础题.3.若log 0a b <(0a >且1a ≠),221b b ->,则()A.1a >,1b >B.01a <<,1b >C.1a >,01b << D.01a <<,01b <<【分析】先由221b b ->得,20b b ->,又由0b >,可得1b >,而log 0a b <,可得01a <<【详解】解:因为221b b ->,所以20b b ->,因为0b >,所以1b >,因为log 0a b <,1b >,所以01a <<,故选:B【点睛】此题考查的是指数不等式和对数不等式,属于基础题4.我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则说法不正确的是()A.相邻两个节气晷长减少或增加的量为一尺B.春分和秋分两个节气的晷长相同C.立冬的晷长为一丈五寸D.立春的晷长比立秋的晷长短【答案】D 【解析】【分析】由题意可知夏至到冬至的晷长构成等差数列,其中115a =寸,13135a =寸,公差为d 寸,可求出d ,利用等差数列知识即可判断各选项.【详解】由题意可知夏至到冬至的晷长构成等差数列{}n a ,其中115a =寸,13135a =寸,公差为d 寸,则1351512d =+,解得10d =(寸),同理可知由冬至到夏至的晷长构成等差数列{}n b ,首项1135b =,末项1315b =,公差10d =-(单位都为寸).故选项A 正确;春分的晷长为7b ,7161356075b b d ∴=+=-= 秋分的晷长为7a ,716156075a a d ∴=+=+=,所以B 正确;立冬的晷长为10a ,10191590105a a d ∴=+=+=,即立冬的晷长为一丈五寸,C 正确; 立春的晷长,立秋的晷长分别为4b ,4a ,413153045a a d ∴=+=+=,41313530105b b d =+=-=,44b a ∴>,故D 错误.故选:D【点睛】本题主要考查了等差数列的通项公式,等差数列在实际问题中的应用,数学文化,属于中档题.5.有三个筐,一个装着柑子,一个装着苹果,一个装着柑子和苹果,包装封好然后做“柑子”“苹果”“混装”三个标签,分别贴到上述三个筐上,由于马虎,结果全贴错了,则()A.从贴有“柑子”标签的筐里拿出一个水果,就能纠正所有的标签B.从贴有“苹果”标签的筐里拿出一个水果,就能纠正所有的标签C.从贴有“混装”标签的筐里拿出一个水果,就能纠正所有的标签D.从其中一个筐里拿出一个水果,不可能纠正所有的标签【答案】C 【解析】【分析】若从贴有“柑子”或“苹果”标签的筐内拿出一个水果,无法判定剩余水果是一种还是两种,不能纠正所有标签,若从“混装”标签中取出一个,就能判断其余两个筐内水果.【详解】如果从贴着苹果标签的筐中拿出一个水果,如果拿的是柑子,就无法判断这筐装的全是柑子,还是有苹果和柑子;同理从贴着柑子的筐中取出也无法判断,因此应从贴着苹果和柑子的标签的筐中取出水果.分两种情况:(1)如果取出的是柑子,那说明这筐全是柑子,则贴有柑子的那筐就是苹果,贴有苹果的那筐就是苹果和柑子.(2)如果取出的是苹果,那说明这筐全是苹果,那贴有苹果的那筐就是柑子,贴有柑子的那筐就是苹果和柑子.故选:C【点睛】解决本题的关键在于,其中贴有混装的这筐肯定不是苹果和柑子混在一起,所以能判断不是苹果就是柑子,考查了逻辑推理能力,属于容易题.6.已知向量OP =,将OP 绕原点O 逆时针旋转45︒到'OP 的位置,则'OP =()A.()1,3B.()3,1-C.()3,1D.()1,3-【答案】D 【解析】【分析】设向量OP与x 轴的夹角为α,结合三角函数的定义和两角和与差的正弦、余弦函数公式,求得cos ,sin ,cos(),454si (5n )αααα++︒︒,得到点P '的坐标,进而求得'OP.【详解】由题意,向量OP =,则OP =设向量OP与x 轴的夹角为α,则cos αα==,所以4545sin sin 452210cos()cos cos ααα︒︒-︒=-+=223104545cos s sin()sin co in 452210s ααα︒︒+︒=++=,可得cos()(14510OP α+=-=︒-,45sin()310OP α︒+== 所以'(1,3)OP =-.故选:D.【点睛】本题主要考查了向量的坐标表示,以及三角函数的定义的应用和两角和与差的正弦、余弦函数的综合应用,着重考查推理与运算能力.7.已知函数()f x 对任意,x y R ∈,都有()()()2f x y f x f y +=,且()11f =,则01()ni f i ==∑()A.21n -B.122n -C.112n-D.122n-【答案】B 【解析】【分析】利用赋值法再结合条件,即可得答案;【详解】由所求式子可得(0)0f ≠,令0x y ==可得:(0)(0)(0)(0)22f f f f ⋅=⇒=,令1x y ==可得:(1)(1)1(2)22f f f ⋅==,令1,2x y ==可得:2(1)(2)1(3)22f f f ⋅==,令2x y ==可得:3(2)(2)1(4)22f f f ⋅==,∴11()2n f n -=,∴111011001(12)112222222()122n nni n n i i f i +---==-==++++==--∑∑ ,故选:B.【点睛】本题考查根据抽象函数的性质求函数的解析式,等比数列求和,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将抽象函数具体化.8.已知正四棱柱1111ABCD A B C D -,设直线1AB 与平面11ACC A 所成的角为α,直线1CD 与直线11A C 所成的角为β,则()A.2βα=B.2αβ= C.αβ= D.2παβ+=【答案】D 【解析】【分析】分别在正四棱柱中找到α和β,将α和β放在同一个平面图形中找关系即可.【详解】作正四棱柱1111ABCD A B C D -如下图:∵在正四棱柱1111ABCD A B C D -中,1AA ⊥平面1111D C B A ,∴111AA B D ⊥∵底面1111D C B A 是正方形∴1111B D AC ⊥又∵1111AA AC A ⋂=∴11BD ⊥平面1111D C B A ∴1B AO ∠是直线1AB 与平面11ACC A 所成的角,即1=B AO α∠∵11CD A B∥∴11BA C ∠是直线1CD 与直线11A C 所成的角,即11=BA C β∠∵11A B B A =,11A O B O =,OA OB =∴11A BO B AO △≌△∴111=BA C AB O β∠∠=∵11B D ⊥平面1111D C B A ∴1B O OA⊥∴11+=+2B AO AB O παβ∠∠=故选:D【点睛】本题主要考查直线与平面和异面直线的夹角,属于中档题.二、多项选择题9.随着我国经济结构调整和方式转变,社会对高质量人才的需求越来越大,因此考研现象在我国不断升温.某大学一学院甲、乙两个本科专业,研究生的报考和录取情况如下表,则性别甲专业报考人数乙专业报考人数性别甲专业录取率乙专业录取率男100400男25%45%女300100女30%50%A.甲专业比乙专业的录取率高B.乙专业比甲专业的录取率高C.男生比女生的录取率高D.女生比男生的录取率高【答案】BC 【解析】【分析】根据数据进行整合,甲专业录取了男生25人,女生90人;乙专业录取了男生180人,女生50人;结合选项可得结果.【详解】由题意可得甲专业录取了男生25人,女生90人;乙专业录取了男生180人,女生50人;甲专业的录取率为259028.75%100300+=+,乙专业的录取率为1805046%400100+=+,所以乙专业比甲专业的录取率高.男生的录取率为2518041%100400+=+,女生的录取率为905035%300100+=+,所以男生比女生的录取率高.故选:BC.【点睛】本题主要考查频数分布表的理解,题目较为简单,明确录取率的计算方式是求解的关键,侧重考查数据分析的核心素养.10.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<,将()y f x =的图像上所有点向左平移6π个单位,然后纵坐标不变,横坐标缩短为原来的12,得到函数()y g x =的图像.若()g x 为偶函数,且最小正周期为2π,则()A.()y f x =图像关于点(,0)12π-对称B.()f x 在5(0,)12π单调递增C.()()2x f x g =在5(0,)4π有且仅有3个解 D.()g x 在5()124ππ,有且仅有3个极大值点【答案】AC 【解析】【分析】根据题意求得2ω=,6π=ϕ,进而求得()cos 4g x x =,()sin(26f x x π=+,然后对选项逐一判断即可.【详解】解:将()y f x =的图像上所有点向左平移6π个单位后变为:sin 6x ωπωϕ⎛⎫++ ⎪⎝⎭,然后纵坐标不变,横坐标缩短为原来的12后变为:sin 26x ωπωϕ⎛⎫++ ⎪⎝⎭,所以()sin 26g x x ωπωϕ⎛⎫=++⎪⎝⎭.因为()g x 的最小正周期为2π,所以222ππω=,解得:2ω=.所以()sin 43g x x πϕ⎛⎫=++ ⎪⎝⎭,又因为()g x 为偶函数,所以,32ππφkπk Z +=+∈,所以6,k k Z πϕπ=+∈.因为0ϕπ<<,所以6π=ϕ.所以()sin 4cos 42g x x x π⎛⎫=+= ⎪⎝⎭,()sin(26f x x π=+.对于选项A ,因为()sin 2()sin 0012126f πππ⎡⎤-=-+==⎢⎥⎣⎦,所以()y f x =图像关于点(,0)12π-对称,故A 正确.对于选项B ,因为x ∈5(0,)12π时,2,66x πππ⎛⎫+∈ ⎪⎝⎭,设26t x π=+,则()sin ,,6f t t t ππ⎛⎫=∈ ⎪⎝⎭,因为()f t 在,6π⎛⎫π⎪⎝⎭不是单调递增,所以()f x 在5(0,)12π不单调递增,故B 错误.对于选项C ,()cos 22x g x =,()sin(2)6f x x π=+,画出(),2x f x g ⎛⎫⎪⎝⎭在5(0,4π图像如图所示:从图中可以看出:(),2x f x g ⎛⎫⎪⎝⎭在5(0,4π图像有三个交点,所以()()2x f x g =在5(0,)4π有且仅有3个解,故C 正确.对于选项D ,()cos 4g x x =在5()124ππ,的图像如图所示:从图中可以看出()g x 在5(124ππ,有且仅有2个极大值点,故D 选项错误.故选:AC .【点睛】本题主要考查正弦型函数、余弦型函数的周期、对称中心、奇偶性、单调性等,考查学生数形结合的能力,计算能力等,属于中档题.11.已知抛物线()220y px p =>上三点()11,A x y ,()1,2B ,()22,C x y ,F 为抛物线的焦点,则()A.抛物线的准线方程为1x =-B.0FA FB FC ++=,则FA ,FB ,FC 成等差数列C.若A ,F ,C 三点共线,则121y y =-D.若6AC =,则AC 的中点到y 轴距离的最小值为2【答案】ABD 【解析】【分析】把点(1,2)B 代入抛物线22y px =即可得到本题答案;根据抛物线的定义,以及0FA FB FC ++=,可得122x x +=,从而可证得2FA FC FB += ;由A ,F ,C 三点共线,得121211y y x x =--,结合22112211,44x y x y ==,化简即可得到本题答案;设AC 的中点为00(,)M x y ,由AF CF AC +≥,结合1201122AF CF x x x +=+++=+,即可得到本题答案.【详解】把点(1,2)B 代入抛物线22y px =,得2p =,所以抛物线的准线方程为1x =-,故A 正确;因为1122(,),(1,2),(,),(1,0)A x y B C x y F ,所以11(1,)FA x y =-,(0,2)FB = ,22(1,)FC x y =- ,又由0FA FB FC ++=,得122x x +=,所以121142FA FC x x FB +=+++== ,即FA ,FB,FC 成等差数列,故B 正确;因为A ,F ,C 三点共线,所以直线斜率AF CF k k =,即121211y y x x =--,所以122212111144y y y y =--,化简得,124y y =-,故C 不正确;设AC 的中点为00(,)M x y ,因为AF CF AC +≥,1201122AF CF x x x +=+++=+,所以0226x +≥,得02x ≥,即AC 的中点到y 轴距离的最小值为2,故D 正确.故选:ABD【点睛】本题主要考查抛物线定义的应用以及抛物线与直线的相关问题,考查学生的分析问题能力和转化能力.12.已知函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=,且11f e e⎛⎫= ⎪⎝⎭,则()A.1'0f e ⎛⎫= ⎪⎝⎭B.()f x 在1x e=处取得极大值C.()011f << D.()f x 在()0,∞+单调递增【答案】ACD 【解析】【分析】根据题意可设()21ln 2f x x x bx =+,根据11f e e⎛⎫= ⎪⎝⎭求b ,再求()f x '判断单调性求极值即可.【详解】∵函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=即满足()()2'ln xf x f x x x x-=∵()()()2'f x xf x f x x x '-⎛⎫=⎪⎝⎭∴()ln f x x x x '⎛⎫=⎪⎝⎭∴可设()21ln 2f x x b x =+(b 为常数)∴()21ln 2f x x x bx=+∵211111ln 2b f e e e e e ⎛⎫=⋅+= ⎪⎝⎭,解得12b =∴()211ln 22f x x x x =+∴()112f =,满足()011f <<∴C 正确∵()()22111ln ln =ln 10222f x x x x '=+++≥,且仅有1'0f e ⎛⎫= ⎪⎝⎭∴B 错误,A、D 正确故选:ACD【点睛】本题主要考查函数的概念和性质,以及利用导数判断函数的单调性和极值点,属于中档题.三、填空题13.()()52x y x y +-的展开式中24x y 的系数为________.【答案】15-【解析】【分析】把5()x y -按照二项式定理展开,可得5(2)()x y x y +-的展开式中24x y 的系数.【详解】()5051423455555233245551(2)()(2)x y x y x y C x C x y C x y C x y C x y C y +-=+⋅⋅⋅+⋅-⋅+⋅-⋅-,故它的展开式中24x y 的系数为5543215C C -=-,故答案为:15-.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.14.已知l 是平面α,β外的直线,给出下列三个论断,①//l α;②αβ⊥;③l β⊥.以其中两个论断为条件,余下的论断为结论,写出一个正确命题:________.(用序号表示)【答案】若①③,则②或若②③,则①(填写一个即可);【解析】【分析】利用空间直线与平面的位置关系进行判断,//l α,αβ⊥时,l 与β可能平行或者相交.【详解】因为//l α,αβ⊥时,l 与β可能平行或者相交,所以①②作为条件,不能得出③;因为//l α,所以α内存在一条直线m 与l 平行,又l β⊥,所以m β⊥,所以可得αβ⊥,即①③作为条件,可以得出②;因为αβ⊥,l β⊥,所以//l α或者l α⊂,因为l 是平面α外的直线,所以//l α,即即②③作为条件,可以得出①;故答案为:若①③,则②或若②③,则①(填写一个即可);【点睛】本题主要考查空间位置关系的判断,稍微具有开放性,熟悉空间的相关定理及模型是求解的关键,侧重考查直观想象的核心素养.15.已知双曲线()222210,0x y a b a b-=>>过左焦点且垂直于x 轴的直线与双曲线交于P ,Q 两点,以P ,Q ,则双曲线的离心率为________.【答案】32【解析】【分析】首先求,P Q 两点的坐标,代人圆心到直线的距离,由已知条件建立等式求得2b a =,最后再求双曲线的离心率.【详解】设(),0F c -,当x c =-,代人双曲线方程22221c ya b-=,解得:2b y a =±,设2,b Pc a ⎛⎫- ⎪⎝⎭,2,b Q c a ⎛⎫-- ⎪⎝⎭根据对称性,可设与两圆相切的渐近线是by x a =,则,P Q 两点到渐近线的距离22bc b bc b ---++=,c b > ,上式去掉绝对值为22bc b bc b c c +-+=,即52b a =,那么32c a ==.∴双曲线的离心率32e =.故答案为:32【点睛】本题考查双曲线的离心率,重点考查转化与化归的思想,计算能力,属于基础题型.16.我国的西气东输工程把西部的资源优势变为经济优势,实现了气能源需求与供给的东西部衔接,工程建设也加快了西部及沿线地区的经济发展输气管道工程建设中,某段管道铺设要经过一处峡谷,峡谷内恰好有一处直角拐角,水平横向移动输气管经过此拐角,从宽为27米峡谷拐入宽为8米的峡谷.如图所示,位于峡谷悬崖壁上两点E 、F 的连线恰好经过拐角内侧顶点O (点E 、O 、F 在同一水平面内),设EF 与较宽侧峡谷悬崖壁所成角为θ,则EF 的长为________(用θ表示)米.要使输气管顺利通过拐角,其长度不能低于________米.【答案】(1).278sin cos θθ+(2).【解析】【分析】分别计算出OE 、OF ,相加可得EF 的长;设()2780sin cos 2f πθθθθ⎛⎫=+<< ⎪⎝⎭,利用导数求得()f θ的最小值,即可得解.【详解】如下图所示,过点O 分别作OA AE ⊥,OB BF ⊥,则OEA BOF θ∠=∠=,在Rt OAE △中,27OA =,则27sin sin OA OE θθ==,同理可得8cos OF θ=,所以,278sin cos EF OE OF θθ=+=+.令()2780sin cos 2f πθθθθ⎛⎫=+<< ⎪⎝⎭,则()3333222222278cos tan27cos8sin8sin27cos8 sin cos sin cos sin cosfθθθθθθθθθθθθθ⎛⎫-⎪-⎝⎭=-+='=,令()00fθ'=,得327tan8θ=,得03tan2θ=,由22003tan2sin cos1sin0θθθθ⎧=⎪⎪+=⎨⎪>⎪⎩,解得sin13cos13θθ⎧=⎪⎪⎨⎪=⎪⎩,当00θθ<<时,()0fθ'<;当02πθθ<<时,()0fθ'>.则()()min1313f fθθ===.故答案为:278sin cosθθ+;.【点睛】本题考查导数的实际应用,求得函数的解析式是解题的关键,考查计算能力,属于中等题.。
全国体育单招数学真题分类2011-2015
全国体育单招数学真题分类2011-20151.给定集合M={x|0<x<1},集合N={x|-1<x<1},则M∩N=M。
2.已知集合M={x|x>1},N={x|x≤2},则M∩N=(1,2]。
3.已知集合M={x|-2<x<2},N={x|-3<x<-1},则M∩N=(-2,-1)。
4.设集合A={x|0<x<7,x∈N},则A的元素共有6个。
5.已知集合A={x|x=3n,n∈N},B={x|x=3n+1,n∈N},C={x|x=3n+2,n∈N},其中真命题是①和③。
6.给定函数y=x+5(x≠-5)的反函数为y=x-5(x≠0)。
7.已知函数f(x)=4ax+1/(2x)(a>0)有最小值8,则a=1/2.8.函数y=x/(2x+1)-1的反函数是y=(x+1)/(2-x)(x≠-1/2)。
9.函数f(x)=ln((1-x)/(1+x))的定义域是(-1,1)。
10.下列函数中,减函数的是y=-x+1.一、函数1.函数f(x)=2x-x^2的值域是[A。
+∞),其中A为f(x)的最大值。
2.已知f(x)是奇函数,当x>0时,f(x)=x^2+ln(x+1/x^2),则当x<0时,f(x)=-x^2+ln(-x+1/x^2)。
二、不等式1.不等式|x-1|/x<1的解集是{x|0<x<1}。
2.不等式x+1>x-1的解集是{x|全体实数}。
3.不等式log2(4+3x-x^2)≤log2(4x-2)的解集为{x|-1<x<4}。
4.不等式x^2+x-2<x+5的解集为{x|(-3.-2]∪[1.+∞)}。
5.不等式(1-2x)/(x+3)>0的解集是{x|(-∞。
-3)∪(1/2.+∞)}。
6.若0<a<1,且loga(2a+1)<loga(3a)<1,则a的取值范围是(1/3.1/2)。
体育对口单招数学试卷(答案) (7)
体育对口单招数学卷(满分120分,考试时间120分钟)一、选择题:(本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知a,b 是两条不重合的直线,,β是两个不重合的平面,下列命题中正确的是()(A)//a b ,//b α,则//a α(B)a,b α⊂,//a β,//b β,则//αβ(C)a α⊥,//b α,则a b⊥(D)当a α⊂,且b α⊄时,若b ∥,则∥b2.设变量,x y 满足约束条件:34,|3|2y x x y z x y x ≥⎧⎪+≤=-⎨⎪≥-⎩则的最大值为()A.10B.8C.6D.43.已知三棱锥的三视图如图所示,其中侧视图为直角三角形,俯视图为等腰直角三角形,则此三棱锥的体积等于()(A)3(B)3(C)223(D)2334.函数2log ||x y x =的图象大致是()5、设,6.0,6.05.16.0==b a 6.05.1=c ,则c b a ,,的大小关系是()A.c b a <<B.bc a <<正视图俯视图C.c a b <<D.ac b <<6.函数sin 24y x π⎛⎫=+ ⎪⎝⎭在一个周期内的图像可能是()7.在ABC △中,若2AB BC CA === ,则AB BC ⋅ 等于()A.-B. C.-2 D.28.如图所示,若,x y 满足约束条件0210220x x x y x y ⎧⎪⎪⎨--⎪⎪-+⎩≥≤≤≥则目标函数z x y =+的最大值是()A.7B.4C.3D.19.登山运动员共10人,要平均分为两组,其中熟悉道路的4人,每组都需要分配2人,那么不同的分组方法种数为()(A)240(B)120(C)60(D)3010.四个条件:a b >>0,b a >>0,b a >>0,0>>b a 中,能使b a 11<成立的充分条件的个数是()(A)1(B)2(C)3(D)311、已知54cos ,0,2=⎪⎭⎫ ⎝⎛-∈x x π,则x tan =()A、34B、34-C、43D、43-12、在∆ABC 中,AB=5,BC=8,∠ABC=︒60,则AC=()A、76B、28C、7D、12913、直线012=+-y x 的斜率是();A、-1B、0C、1D、214、已知11tan(),tan(),tan()62633πππαββα++=-=-+=则()A.16B.56C.﹣1D.115、已知函数()sin cos (0)()()44f x a x b x ab f x f x ππ=-≠-=+满足,则直线0ax by c ++=的斜率为()A.1C.D.﹣116、直线043=+-y x 与直线23--=x y 的位置关系是()A、相交B、平行C、重合D、垂直17、3a =是直线230ax y a ++=和直线3(1)7x a y a +-=-平行的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分又不必要条件18、两点()2,1-M 与()0,1N 间的距离是()A .1B .1-C .22D .219、=++6tan 6cos 6sin πππ()A、233B、321+C、2331+D、36521+20、函数⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-=62cos 362sin 4y ππx x 的最小正周期为()A、πB、π2C、8D、4二、填空题:(共20分)1.函数f(x)=sin2x 的图像可以由g(x)=sin 2x-号)的图像向左平移___个单位得到.2.sin15°.cos15°=___3.若曲线y=f(x)上存在三点A、B、C,使AB BC = ,则称点曲线有“中位点”,下列曲线:①y=cosx,②1y x =,③322y x x =+-,④y=cosx+x2,⑤12y x x =-++,有“中位点”的有_______(写出所有满足要求的序号)4.设集合}4|||}{<=x x A ,}034|{2>+-=x x x B ,则集合A x x ∈|{且=∉}B A x __________;三、解答题:(本题共3小题,共50分.解答应写出文字说明、证明过程或演算步骤.)1.设)(x f 是定义在),0(+∞上的增函数,当),0(,+∞∈b a 时,均有)()()(b f a f b a f +=⋅,已知1)2(=f .求:(1))1(f 和)4(f 的值;(2)不等式2()2(4)f x f <的解集.2.体育场北区观众席共有10500个座位.观众席座位编排方式如图所示,由内而外依次记为第1排、第2排、…….从第2排起,每一排比它前一排多10个座位,且最后一排有600个座位.(1)北区观众席共有多少排?(2)现对本区前5排的座位进行升级改造,改造后各排座位数组成数列{bn}.{bn}满足:①b1等于原第1排座位数的一半;②bn=bn-1+n2(n=2,3,4,5).求第5排的座位数.3.电影《流浪地球》上映期间,一场电影的票价定为50元时,电影院满座,满座时可容纳600人.若票价每提高5x(x∈N)元,售出票数就减少30x 张.(1)若票价为60元,求实际售出的电影票数;(2)写出一场电影的票房收入R(元)与x 的函数关系式;(3)已知放映一场电影所需的总成本为600(20-x)元,若不考虑其他因素,票价定为多少时,电影院能获得最大利润?参考答案:一、选择题1-5题答案:CADAC6-10题答案:ACBCC16-20题答案:ABBAB21-25题答案:DCCCB二、填空题1.答案:0.252.答案:0.253.①③⑤4.]3,1[三、解答题解:(1))()()(b f a f b a f +=⋅ 令1==b a )1()1()11(f f f +=⋅0)1(=∴f令2==b a 2)2()2()4(=+=f f f 2)4(=∴f (2) 2()2(4)f x f <)4()4()(2f f x f +<∴)16()(2f x f <∴)(x f 是定义在),0(+∞上是增函数⎪⎩⎪⎨⎧><∴01622x x ⎩⎨⎧≠<<-∴044x x 不等式解集为)4,0()0,4( -2.参考答案.(1)21排;(2)254个3.参考答案.(1)540张;(2)2150150030000 (,20)R x x x x =-++危N ;(3)票价定为85元时,电影院能获得最大利润。
2020-2021年体育单招文化课数学真题分类复习试卷
体育单招文化课数学真题分类复习试卷1.(2011年真题)设集合M = {x |0<x <1},集合N ={x | -1<x <1},则( ) A . M ∩N =M B . M ∪N =N C . M ∩N =N D . M ∩N = M ∩N2.(2012年真题)已知集合{}1,M x x =>{}22,N x x =≤则MN =( )A . {1,x x <≤B .{}1,x x <≤C . {,x x ≤D . {.x x ≥ 3.(2013年真题)已知},13|{},22|{-<<-=<<-=x x N x x M 则=N M ( ) A .}23|{<<-x x B .}13|{-<<-x x C .}12|{-<<-x x D .}21|{<<-x x 4.(2015年真题)若集合},270|{N x x x A ∈<<=,则A 的元素共有 ( ) A . 2个 B . 3个 C . 4个 D . 无穷多个5.(2016年真题)已知集合M ={2,4,6,8},N ={1≤x ≤5},则=N M =( ) A .{2,6} B .{4,8} C .{2,4} D .{2,4,6,8}6.(2017年真题)设集合M ={1,2,3,4, 5},N ={1,3,6},则=N M ( ) A .{1,3} B .{3,6} C .{1,6} D .{1,2,3,4,5,6}7.(2018年真题)设集合M ={1,2,3,4},N ={2,4,6, 8},则=N M ( ) A .{∅} B .{1,3} C .{2,4} D .{1,2,3,4,6,8}从真题可以看出,每年有一个集合运算的选择题,同时兼顾考查简单不等式的知识,所以同学们一定要熟练掌握集合的交、并、补运算,同时熟练掌握一元一次不等式、一元二次不等式、简单的分式不等式的解法,那么这道选择题6分就抓住了。
【2020】年全国普通高等学校运动训练、民族传统体育专业体育单招数学试卷含解析
2020年全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数学一、选择题:本大题共10小题,每小题6分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项的字母填写在题后的括号内。
1.已知集合A={x|4<x<10},B={x|x=n2,n∈N},则A∩B=()A. ∅B.{3}C.{9}D.{4,9}2.1, 3的等差中项是()A.1B.2C.3D.43.函数f(x)=sin2x+cos2x的最小正周期是()A.2πB.3π2C.π D.π24.函数f(x)=√3−4x+x2的定义域是()A.RB.[1,3]C.(-oo,1]U[3,+oo)D.[0,1]5.函数y=1√x2−2x+2图象的对称轴为()A. x= 1B. x=12C. x= −12D. x= -16.已知,则()A. 35B.310C.−310D. −357.函数f(x)=ln(-3x2+1)的单调递减区间为()A.(0,√33) B.(−√33,0) C.(−√32,√32) D.(−√33,√33)8.若一个椭圆的两个焦点三等分它的长轴,则该椭圆的离心率为()A. B. C. D.9.双曲线x2a2−y2b2=1(a>0,b>0)的两条渐近线的倾斜角分别为α和β,则cosα+β2=()A.1B.√32C.12D.010.已知a=0.20.3,b=0.30.3,c=0.2−0.2,则()A. a<b<cB. b<a<cC. b<c<aD. a<c<b二、填空题:本大题共6小题,每小题6分,共36分。
把答案填在题中横线上。
11.从1,2,3,4,5中任取3个不同数学,这3个数字之和是偶数的概率为____________12.已知向量a, b满足|a|=2,|a+b|=1,且a与b的夹角为150°,则|b|=___________13.不等式log1x>2的解集是____________214.等比数列{an}中,若a1+a2=3,a4+a5=12,则a3=____________215.(x−3y)5的展开式中x2y3的系数为______________16.若平面α, β, r满足α⊥γ,α∩r=a,β⊥γ,β∩r=b,有下列四个判断:①a//β②当α//β时,a//b③a⊥β④当α∩β=c时,c⊥γ其中,正确的是_____________(填写所有正确判断的序号)三、解答题:本大题共3小题,每小题18分,共54分。
2024年全国高考体育单招考试数学模拟试卷试题(含答案) (2)
2024年全国普通高等学校运动训练、武术与民族传统项目体育专业单独统一招生考试数学模拟试卷(一)一、选择题:(本大题共8小题,每小题8分,共64分)1.己知集合M={-1,1},下列选项正确的是( )在此处键入公式。
A.「1}∈MB.a ∈MC.-1CMD.{-1}∈M2.在正方体ABCD-A₁B₁C₁D₁中,下列直线与AC成60°角的是()A.B₁C₁B.BC₁C.D₁DD.B₁D3.袋子中有5个大小相同的小球,其中3个白球,2个黑球,每次从袋子中随机摸出1个球,摸出的球不再放回.在第1次摸到白球的条件下,第2次摸到黑球的概率为( )A 8 D4.,等差数列{a,}的前n 项和为s₁, 若a¹=2,s₃=12, 则a₆=( )A.8B.10C.12D.145.己知两条直线L1:x+ay+6=0,L2:(a-2)x+3ay+2a=0,若L₁Di₂,则a=( )A.-1或0可B.-1可C.0豆D-1 或06..为弘扬我国古代的“六艺文化”某夏令营主办单位计划利用暑期开设“礼”,“乐”,”射”“御”,“书”“数”六门体验课程,每周一门,连续开设六周,若课程“乐”不排在第一周,课程“御”不排在最后一周,则所有可能的排法种数为()A.216B.480C.504D.6247.已知空间中三个互不相同的平面a、β、Y,两条不同的直线a、b,下列命题正确的是( )A.若αOβ,βOy, 则aOyB.若aDa,bOβ,a//b,则a//βC.若a//a,a//β,aOb, 则bOβD.若aOβ,βDy、则a//γ8.已知单位向量a, 满足a.则a与b夹角的大小为( )AG D.B.二、填空题(本大题共4小题,每小题8分,共32分)9.(1+2x)? 的展开式中x², 的系数是 (用数字作答)。
10.若实数a,b 满;则ab 的最小值为。
11.若椭圆C的焦点为F₁(-1.0)和F₂ (1,0),过F₁的直线交C 于A,B 两点,且△ABF₂的周长为12,则C 的方程为12.已知函数y=loga(x-3)-1的图像恒过定点P, 则点P 的坐标是三、解答题:(本大题共3小题,每小题18分,共54分解答应写出文字说明、证明过程或演算步骤。
体育对口单招数学试卷(包含答案) (2)
4. (1, 2) ; 5. (3,1) ;
三、问答题:
cosÐ ABC = - 1
3 15
1、参考答案.(1)
4 ;(2) 2
sin B = 12
cosC = 16
2、参考答案.(1) 13 ,A 是锐角;(2)
65
是____________________; 3.已知 f (x) lg(x2 8x 7) 在 (m , m 1) 上是增函数,则 m 的取值范围是________________; 4.已知函数 f (x) sin x 5x ,x (1,1) ,如果 f (1 a) f (1 a2 ) 0 ,则 a 的取值范围是____________;
2. 在△ABC 中,
5,
13 .
(1)求 sinB,并判断 A 是锐角还是钝角;
(2)求 cosC.
参考答案:
一、选择题:
1-5 题答案:DACDD
6-10 题答案:BCBCC
11-15 题答案:CDCCB
16-20 题答案:ABBAA;
21-25 题答案:DCCCB.
二、填空题:
1.答案: 9 2.{1,0,1} ; 3.[1,3] ;
A.{2}
B.{2,3}
C.{3,4,}
D.{2,3,4}
7.已知 z=2-i,则( z(z + i) =( ) A. 6-2i
B. 4-2i
C. 6+2i
D. 4+2i
8.已知圆锥的底面半径为 2 ,其侧面展开图为一个半圆,则该圆锥的母线长为( ) A.2
B.2 2 C.4
D.4 2
9.设二次函数 f (x) ax2 bx c ,如果 f (x1) f (x2)(x1 x2) ,则 f (x1 x2) 等于(
2023年体育单招数学试卷
2023年体育单招数学试卷一、选择题(每题1分,共5分)1.下列函数中,奇函数是()A.y=x^3B.y=x^2C.y=|x|D.y=x+1/x2.已知函数f(x)=x^22x+1,那么f(x)的最小值是()A.0B.1C.-1D.无法确定3.下列等比数列中,公比是3的数列是()A.1,3,9,27,B.2,6,18,54,C.3,6,12,24,D.4,12,36,108,4.已知三角形ABC中,角A、角B、角C的对边分别为a、b、c,那么根据正弦定理,下列哪个选项是正确的?()A.a/sinA=b/sinB=c/sinCB.a/sinB=b/sinC=c/sinAC.a/sinC=b/sinA=c/sinBD.a/sinA=b/sinC=c/sinB5.下列方程中,不是一元二次方程的是()A.x^2+2x+1=0B.x^22x+1=0C.x^2+2x1=0D.x+2x+1=0二、判断题(每题1分,共5分)1.两个奇函数的乘积是偶函数。
()2.任何数列都有通项公式。
()3.两个等差数列的乘积还是等差数列。
()4.三角形的内角和为180度。
()5.一元二次方程的判别式Δ=b^24ac。
()三、填空题(每题1分,共5分)1.若函数f(x)=x^33x,那么f'(x)=_______。
2.若等差数列的首项为1,公差为2,那么第10项为_______。
3.若等比数列的首项为2,公比为3,那么第5项为_______。
4.若三角形ABC中,角A=30度,角B=60度,那么角C=_______度。
5.若一元二次方程ax^2+bx+c=0的解为x1=2,x2=3,那么b=_______。
四、简答题(每题2分,共10分)1.请简述函数的单调性及其判定方法。
2.请简述等差数列与等比数列的定义及其通项公式。
3.请简述三角形的内角和定理及其应用。
4.请简述一元二次方程的判别式及其意义。
5.请简述函数的极值及其判定方法。
(完整版)体育单招历年数学试卷分类汇编-直线方程123,推荐文档
历年年体育单招数学分类汇编 直线方程1、(2017 年第 9 题)已知点 A (-5,4), B (3,-2) ,则以 AB 为直径的圆的方程为 ()A. (x +1)2 + (y +1)2 = 25B. (x +1)2 + ( y -1)2 = 25C. (x +1)2 + (y +1)2 = 100D. (x +1)2 + ( y -1)2 = 1002、(2014 年第 14 题)过圆(x - 1)2 + ( y + 2)2 = 10 与 y 轴正半轴的交点作该圆的切线,切线的方程是3、(2013 年第 3 题)若l 直线(-2, 3) 过点,且与直线2x + 3y + 4 = 0 垂直,则l 的方程为 .3x - 2 y +12 = 0 4、(2011 年第 7 题)已知直线l 过点(1,-1) ,且与直线 x - 2 y - 3 = 0 垂直,则l 的方程为 .2x + y -1 = 0 5、(2010 年第 3 题)已知直线4x - 3y -12 = 0 与 x 轴及 y 轴分别交于 A 点和 B 点,则过点 A 、 B 和坐标原点的圆3 的圆心坐标为 .6、(2009 年第 6 题)( , -2) 2 已知斜率为-1的直线l 过坐标原点,则l 被圆 x 2 + y 2 + 4x = 0 所截得的弦长为.2 7、(2008 年第 8 题)已知直线l : y = 2x -1,则原点到直线l 的距离是 .58、(2005 年第 15 题)若直线l 过点(3, 2) 且与直线 y = 2x - 3 垂直,则直线l 的方程为 .x + 2 y - 7 = 0 9、(2004 年第 11 题)5 2直线3x -3y +1 = 0 的倾斜角为. 60︒10、(2009 年第11 题)已知∆ABC 三个顶点的坐标是A(3, 0) ,B(-1, 0) ,C(2, 3) ,过 A 作BC 的垂线,则垂足的坐标是.11、(2004 年第5 题)圆(x -1)2 + ( y - 2)2 = 9 与直线3x + 4 y -11 = 0 的位置关系是()A.相离B.相交且直线不过圆心C.相切D.相交且直线过圆心“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
贵州体育单招考试数学卷(答案) (1)
单独考试招生文化考试数学试题卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题2.5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.等差数列}a {n 前四项和为40,末四项和为72,所有项和为140,则该数列共有()A.9项B.12项C.10项D.13项2.已知平面向量与向量)1,3( a =,)3,x (-= b ,且b a ⊥,则x =()A.3B.1C.-1D.-33.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是()A.3cm 3100πB.3cm 3208π3cm 3500πD.3cm 33416π4.函数)0x 1(3y 1x <≤-=+的反函数是()A.)0x (x log 1y 3>+= B.)0x (x log 1y 3>+-= C.)3x 1(x log 1y 3<≤+= D.)3x 1(x log 1y 3<≤+-=5.α-απ<α<π=ααsin cos ,24,83cos sin 则且的值是()A.21B.-21C.41D.-416.已知抛物线的顶点为原点,焦点在y 轴上,抛物线上点)2,m (- 到焦点的距离为4,则m 的值为()A.4B.-2C.4或-4D.2或-27.函数1x 11y --=()A.在),1(∞+ 内单调递增B.在),1(∞+ 内单调递减C.在),1(∞+- 内单调递增D.在),1(∞+- 内单调递减210y ++=与直线30x +=的位置关系是()A、两线平行B、两线垂直C、两线重合B、非垂直相交9、在圆:22670x y x +--=内部的点是())B、(-7,0)C、(-2,7)B、(2,1)10.函数2()|1|x f x x =+的定义域为()A、[-5,+∞)B、(-5,+∞)C、[-2,-1)∪(-1,+∞)B、(-2,-5)∪(-1,+∞)11、设集合M={1,2,3,4,5},集合N={1,4,5},集合T={4,5,6},则N T M )(=()A、{2,4,5,6}B、{1,4,5}C、{1,2,3,4,5,6}D、{2,4,6}12、已知集合{|3A x x n ==+2,N n ∈,},{6,8,10,12,14}B =,则集合A B 中的元素个数为()A、5B、4C、3D、213、已知集合A {}12x x =-<<,{03}B x x =<<,则A B = ()A、(-1,3)B、(-1,0)C、(0,2)D、(2,3)14、已知集合A {}2,1,0,1,2=--,{}(1)(2)0B x x x =-+<,则A B =()A、{-1,0}B、{0,1}C、{-1,0,1}D、{0,1,2}15、若集合}25|{<<-=x x A ,}33|{<<-=x x B ,则=B A ()A、}23|{<<-x xB、}25|{<<-x xC、}33|{<<-x x D、}35|{<<-x x 16、已知集{1,2,3},B {1,3}A ==,则A B = ()A、{3}B、{1,2}C、{1,3}D、{1,2,3}17、已知集合{}{}3,2,3,2,1==B A ,则()A、A=BB、=B A ∅C、B A ⊆D、AB ⊆18、若集合{}1,1M =-,{}2,1,0N =-,则M N = ()A、{0,-1}B、{1}C、{-2}D、{-1,1}19、设A,B 是两个集合,则“A B A = ”是“A B ⊆”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件20、设集合A={0,2,a},B={1,a2},若A∪B={0,1,2,5,25},则a 的值为()A、0B、1C、2D、5二、填空题:(共20分)1.tana=0.5,求=_______2.若sina=,则=______.三、解答题:(本题共3小题,共50分.解答应写出文字说明、证明过程或演算步骤.)1.已知等比数列{an }的前n项和为Sn,Sn=2an﹣2,{bn}为等差数列,b3=a2,b2+b6=10.(1)求数列{an },{bn}的通项公式;(2)求数列{an (2bn﹣3)}的前n项和Tn.2.“扶贫帮困”是中华民族的传统美德,某校为帮扶困难同学,采用如下方式进行一次募捐:在不透明的箱子中放入大小均相同的白球七个,红球三个,每位献爱心的参与这投币20元有一次摸奖机会,一次性从箱中摸球三个(摸完球后将球放回),若有一个红球,奖金10元,两个红球奖金20元,三个全为红球奖金100元.(1)求献爱心参与者中奖的概率;(2)若该次募捐有900为献爱心参与者,求此次募捐所得善款的数学期望.3.如图,四边形ABCD是矩形,AB=3,BC=3,=2,PE⊥平面ABCD,PE=.(1)证明:平面PAC⊥平面PBE;(2)求二面角A﹣PB﹣C的余弦值.参考答案:一、选择题1-5题答案:CBCDB 6-10题答案:CADDC 11-15题答案:BDAAA 16-20题答案:CDBCD 二、填空题1.答案:解析:2.答案:三、解答题1.已知等比数列{an }的前n项和为Sn,Sn=2an﹣2,{bn}为等差数列,b3=a2,b2+b6=10.(1)求数列{an },{bn}的通项公式;(2)求数列{an (2bn﹣3)}的前n项和Tn.【解答】解:(1)根据题意,等比数列{an }中Sn=2an﹣2,当n=1时,有S1=2a1﹣2=a1,解可得a1=2,当n≥2时,an =Sn﹣Sn﹣1=(2an﹣2)﹣(2an﹣1﹣2),变形可得an=2an﹣1,则等比数列{an }的a1=2,公比q=2,则数列{an }的通项公式an=2×2n﹣1=2n,对于{bn },b3=a2=4,b2+b6=2b4=10,即b4=5,则其公差d=b4﹣b3=1,则其通项公式bn =b3+(n﹣3)×d=n+1,(2)由(1)的结论:an =2n,bn=n+1,a n (2bn﹣3)=(2n﹣1)•2n,则有Tn=1×2+3×22+5×23+…+(2n﹣1)×2n,①则有2T=1×22+3×23+5×24+…+(2n﹣1)×2n+1,②n=2+2(22+23+…+2n)﹣(2n﹣1)×2n+1,①﹣②可得:﹣Tn=(2n﹣3)•2n+1+6.变形可得:Tn2.“扶贫帮困”是中华民族的传统美德,某校为帮扶困难同学,采用如下方式进行一次募捐:在不透明的箱子中放入大小均相同的白球七个,红球三个,每位献爱心的参与这投币20元有一次摸奖机会,一次性从箱中摸球三个(摸完球后将球放回),若有一个红球,奖金10元,两个红球奖金20元,三个全为红球奖金100元.(1)求献爱心参与者中奖的概率;(2)若该次募捐有900为献爱心参与者,求此次募捐所得善款的数学期望.【解答】解:(1)设“献爱心参与者中奖”为事件A,则献爱心参与者中奖的概率.(2)设一个献爱心参与者参加活动,学校所得善款为X,则X=20,10,0,﹣80,则,,,,∴X的分布列为:X20100﹣80P若只有一个参与者募捐,学校所得善款的数学期望为元,所以,此次募捐所得善款的数学期望为元.3.如图,四边形ABCD是矩形,AB=3,BC=3,=2,PE⊥平面ABCD,PE=.(1)证明:平面PAC⊥平面PBE;(2)求二面角A﹣PB﹣C的余弦值.【解答】(1)证明:连接BE交AC于F,∵四边形ABCD是矩形,AB=,BC=1,,∴CE=,则,∵∠ABC=∠BCD=,∴△ABC∽△BCE,则∠BEC=∠ACB,∵∠BEC+∠ACE=∠ACB+∠ACE=,∴AC⊥BE,∵PE⊥平面ABCD,∴AC⊥PE,∵PE∩BE=E,∴AC⊥平面PBE,∵AC⊂平面PAC,∴平面PAC⊥平面PBE;(2)解:取PB中点G,连接FG,AG,CG,∵PE⊥平面ABCD,∴PE⊥DC,∵PE=,∴PC=3=BC,得CG⊥PB,∵CG∩AC=C,∴PB⊥平面ACG,则AG⊥PB,∴∠AGC是二面角A﹣PB﹣C的平面角,∵AB∥CD,AB=CD,DE=2EC,∴,∵CE=,AC=6,∴CF=,AF=,∵BC⊥CD,BC⊥PE,∴BC⊥平面PCD,∴BC⊥PC,∴PB=,则CG=,∵FG⊥AC,∴FG=FC=,在Rt△AFG和Rt△CFG中,求得tan∠AGF=3,tan∠CGF=1.∴tan∠AGC=tan(∠AGF+∠CGF)=.∴cos∠AGC=.∴二面角A﹣PB﹣C的余弦值为﹣.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(2013年第7题)
若等比数列的前n 项和为5n
a +,则a = . 2.(2013年第13题)
等差数列共有20项,其奇数项之和为130,偶数项之和为150,则该数列的公差为 .
3.(2012年第9题)
等差数列{}n a 的前n 项和为n S ,若11,19,100k k a a S ===,则k = .
4.(2012年第15题)
已知{}n a 是等比数列,1236781,32a a a a a a ++=++=,则129a a a +++= .
5.(2011年第9题)
n S 是等差数列{}n a 的前n 项和,已知3612,6S S =-=-,则公差d = .
6.(2011年第14题)
已知{}n a 是等比数列,12123,231a a a a a ≠+==,则1a = .
7.(2010年第5题)
等差数列{}n a 中,12a =,公差12
d =-,若数列前N 项的和为0N S =,则N = . 8.(2010年第13题)
{}n a 是各项均为正数的等比数列,已知334512,84a a a a =++=,则123a a a ++= .
9.(2009年第17题)
{}n a 是等比数列,{}n a 是公差不为零的等差数列,已知1122351,,a b a b a b ====, (Ⅰ) 求{}n a 和{}n b 的通项公式;
(Ⅱ)设{}n b 的前项和为n S ,是否存在正整数n ,使7n a S =;若存在,求出n 。
若不存在,说明理由。
10.(2008年第9题)
n S 是等比数列的前n 项和,已知21S =,公比2q =,则4S = .
11.(2008年第17题)
已知{}n a 是等差数列,1236a a a +==,则{}n a 的通项公式为n a = .
12. (2005年第4题)
设等差数列{}n a 的前n 项和为n S ,已知3316,105a S ==,则10S = .
13. (2005年第22题)
已知数列{}n a 的前n 项和为n S 满足235(1,2,3,)n n S a n n =-+=。
求
(Ⅰ) 求123,,a a a ;
(Ⅱ)数列{}n a 的通项公式。
14. (2004年第7题)
在等差数列{}n a 中,若34567450a a a a a ++++=,则28a a += .
15. (2004年第12题)
已知等比数列的公比为2,且前4项的和为1,那么前8项之和为 .
16. (2004年第20题)
设{}n a 为等比数列,{}n b 为等差数列,且10b =,若数列{}n c 中,123,1,2n n n c a b c c c =+===,求数列{}n c 的前10项和。