6.2立方根导学案1课时

合集下载

数学人教版七年级下册6.2立方根(第一课时)教案

数学人教版七年级下册6.2立方根(第一课时)教案

6.2立方根(第一课时)教案一、教学目标知识与技能:1、了解立方根的概念,初步学会用根号表示一个数的立方根,让学生体会一个数的立方根的唯一性.2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根,分清一个数的立方根与平方根的区别。

3、能用有理数估计一个无理数的大致范围,使学生形成估算的意识,培养学生的估算能力。

过程与方法1、帮助学生了解数的立方根的概念和性质,会用三次根号表示数的立方根,让学生体会一个数的立方根的惟一性.2、帮助学生了解开立方运算与立方运算之间的互逆关系,掌握用立方运算求一个数的立方根的方法,帮助学生了解用计算器求某些数的立方根的方法..3、帮助学生认识平方根与立方根的区别.情感、态度与价值观1、通过立方根的学习,认识数学与人类生活的密切联系,激发学生的学习兴趣.2、通过探究活动,锻炼克服困难的意志,增强自信心,激发学生的探索热情.二、教学重难点教学重点:了解数的立方根的概念和性质,会用三次根号表示数的立方根,用立方运算求一个数的立方根.教学难点:用立方运算求一个数的立方根,认识平方根与立方根的区别.三、教学方法:讨论比较法、讲练结合,合作,交流,探究.四、教学用具:多媒体、黑板、粉笔五、教学过程:Ⅰ、复习师:请同学们回忆上节课我们是怎样定义平方根的?它的符号怎么表示?生:如果a x =2,那么x 叫做a 的平方根(或二次方根)。

符号表示:“a ±”其中0≥a 师:昨天我们还学习了一种新的运算,是什么运算呢?它是怎么定义的?生:开立方:求一个数a 的平方根的运算,叫做开平方。

↔平方(互为逆运算)师:那么平方根有什么样的性质呢?生:正数有两个平方根,它们是互为相反数;0的平方根还是0;负数没有平方根。

Ⅱ、设计情境,导入新课问题1:要制作一种容积为327m 的正方体形状的包装箱,这种包装箱的棱长应该是多少?你是怎么知道的?设这种包装箱的棱长为m x ,则3x =27.这就是求一个数,使它的立方等于27.因为33=27, 所以x=3. 即这种包装箱的边长应为3 m.本题是已知一个数x 的立方,求这个数的值,而平方根是已知一个数的平方,求这个数,从而学生可以类比平方根的概念归纳出立方根的概念。

人教版数学七年级下册第19课时《6.2立方根(1)》教案

人教版数学七年级下册第19课时《6.2立方根(1)》教案

人教版数学七年级下册第19课时《6.2立方根(1)》教案一. 教材分析《6.2立方根(1)》是人教版数学七年级下册的教学内容,本节课主要让学生掌握立方根的概念、性质和运算法则。

通过学习,学生能理解和掌握立方根的定义,会运用立方根解决一些实际问题。

教材通过引入立方根的概念,引导学生探究立方根的性质和运算法则,培养学生的逻辑思维能力和数学运算能力。

二. 学情分析学生在七年级上学期已经学习了实数的概念,对有理数、无理数有一定的了解。

在此基础上,学生需要进一步理解立方根的概念,并掌握立方根的性质和运算法则。

学生的学习兴趣较高,但部分学生可能对抽象的数学概念理解起来有一定困难,需要教师耐心引导和讲解。

三. 教学目标1.理解立方根的概念,掌握立方根的性质和运算法则。

2.能运用立方根解决一些实际问题,提高学生的数学应用能力。

3.培养学生的逻辑思维能力和数学运算能力,提高学生的数学素养。

四. 教学重难点1.立方根的概念和性质。

2.立方根的运算法则。

3.运用立方根解决实际问题。

五. 教学方法采用启发式教学法、案例教学法和小组合作学习法。

通过引入生活实例,激发学生的学习兴趣;引导学生主动探究立方根的性质和运算法则,培养学生的逻辑思维能力和数学运算能力;小组讨论,提高学生的合作意识和团队精神。

六. 教学准备1.准备相关的教学PPT和多媒体素材。

2.准备练习题和实际问题,用于巩固和拓展学生的知识。

3.准备黑板和粉笔,用于板书。

七. 教学过程1.导入(5分钟)通过一个生活实例引入立方根的概念,如“一个正方体的体积是27立方厘米,求这个正方体的棱长。

”引导学生思考,激发学生的学习兴趣。

2.呈现(10分钟)讲解立方根的定义,引导学生理解立方根的概念。

如“一个数的立方根,就是另一个数,使得这个数的三次方等于另一个数。

”通过PPT和板书,呈现立方根的性质和运算法则,让学生直观地感受和理解。

3.操练(10分钟)进行一些立方根的运算练习,让学生巩固所学知识。

七年级数学下册 6.2 立方根(第1课时)教案 (新版)新人教版

七年级数学下册 6.2 立方根(第1课时)教案 (新版)新人教版
6.2 立方根(第 1 课时)
课题 备课日期
年月日
课型
新授
了解立方根的概念;
掌握立方根的特性,会用符号表示一个数的立方根; 知识与技能
会求一个立方数的立方根.
教 从实际问题出发,揭示立方根概念,领会立方根的求法
过程与方法 学
使学生进一步体验立方与开立方的互逆关系,培养学生逆向思维解

决问题的习惯.
情感态度
检测本节课
三、课堂训练
的教学效果,
1.-27 的立方根是
.
及时反馈
2.如果 0.2 是 x 的立方根,那么= .
学生谈本节
3.整数 a 是整数 b 的平方根,又是整数 c 的立方根,且 c 是 b 的 2 倍, 课学到的知
则 a=____;b=____;c=____.
识以及解题
4.64 的立方根的算术平方根是______.
(8)一个自然数的算术平方根是 a,那么与这个自然数相邻的下一个自然 数的平方根是____________;立方根是____________. 六、教学效果追忆:
五、作业设计
课本 80 页: 1、2、3、5、6、7
补充:
(1)1 的平方根是____;立方根为____;算术平方根为____.
(2)平方根是它本身的数是____.
(3)立方根是其本身的数是____. (4)算术平方根是其本身的数是________. (5) 的立方根为________. (6) 的平方根为________. (7) 的立方根为________ .
体会
5.8 的立方是 8 的立方根的______倍.
6.下列说法正确的是( )
A. 27 的立方根是±3 B.的立方根是

七年级数学人教版下册:6.2立方根导学案

七年级数学人教版下册:6.2立方根导学案

七年级数学人教版下册:6.2立方根导学案《立方根》导学案编辑:备科组长:审核:授课时数:1课时学校:班级:姓名:学习目标:1、理解立方根的概念,会用符号表示一个数的立方根;2、理解开立方与立方互为逆运算,会用立方根的概念求某些数的立方根.学习重点、难点:会用立方根的概念求某些数的立方根.自学引导:1、知识准备:(-1)3=13=03=23=(-2)3=33=(-3)3=2、概念复习(1)一般的,如果一个数x的平方等于a,即x2=a,那么这个数x叫做a的。

(2)平方根的性质:①一个正数有个平方根,它们是;②0的平方根是。

③负数平方根。

,叫做a的算术平方根,记作:;另一个平方根是它的,即。

因此正数a的平方根可以记作。

a称为。

求一个数平方根的运算就叫做。

合作探究:探究点一:立方根的概念阅读教材第5页内容,回答:你知道正方体纸盒的棱长吗?(说说你的算法)如果体积分别为8、27、64…呢?将正确答案填入下表。

正方体的体积棱长上面的问题可以归纳为“已知一个数的立方,求这个的问题”。

一般的,如果一个数x的立方等于a,即x3=a,那么这个数x叫做a的.练一练:求下列各数的立方根(1)729(2)-4(3)-(4)(-5)3探究点二:立方根的性质1、下列各数有立方根吗?若有,求出它们的立方根;若没有,请说明理由.(1)27;(2)0;(3)-27归纳:正数的立方根为;负数的立方根为;0的立方根为;任何数的立方根都只有。

数a的立方根,记作:,读作:a称为,根指数,叫做开立方。

2、自学例4,并按照例4的格式,完成下题:(1)512(2)-(3)(4)0.027探究点三:用计算器开立方自学例5,归纳用计算器开立方的输入顺序:试一试:用计算器给下列各数开立方(精确到0.01)(1)6859(2)17.576(3)5.691课堂检测:1、1的立方根是________,-1的立方根是________,0的立方根是________;64的平方根是______,64的立方根是________;立方根是它本身的数是________.2.12的立方根是,的立方根是3.立方根等于它本身的数是4、=_________,+=_________,=_______.5、一个正方体A的体积是棱长为4厘米的正方体B的体积的,正方体A的棱长是______厘米.6.的平方根是______.7.(3x-2)3=0.343,则x=______.8.若+有意义,则=______.9.若x<0,则=______,=______.10.若x=()3,则=______.学习体会:1、本节课你有哪些收获?2、你还有什么问题或想法需要和大家交流?拓展训练:一、填空:1.下列说法中正确的是()A.-4没有立方根B.1的立方根是±1C.的立方根是D.-5的立方根是2.在下列各式中:=,=0.1,=0.1,-=-27,其中正确的个数是()A.1B.2C.3D.43.若m<0,则m的立方根是()A.B.-C.±D.4.如果是6-x的立方根,那么()A.x<6B.x=6C.x≤6D.x是任意数5.下列说法中,正确的是()A.一个有理数的平方根有两个,它们互为相反数B.一个有理数的立方根,不是正数就是负数C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是-1,0,16.若,那么的值是()A.64B.-27C.-343D.3437.的立方根是()A.±4B.±2C.2D.-2二.计算(1)(2)(3)(4)-+三.解下列方程四.如果的立方根是4,求的算术平方根;五.已知一个正方体的体积是1000,现在要在它的8个角上分别截去8个大小相同的小正方体,截去后余下的体积是488,问截去的每个小正方体的棱长是多少?。

人教版数学七年级下册导学案6.2 立方根 导学案

人教版数学七年级下册导学案6.2   立方根   导学案
集体备课导学案
学段
初中
年级
七年级
学科
数 学
单元
第6单元
课题
6.2立方根
课型
新授
主备学校
初审人
终审人
主备人
合作团队
课标
依据
1、了解立方根的概念,会用根号表示数的立方根。
2、会用立方运算求百以内整数(对应的负整数)的立方根
教学
目标
1.了解立方根的概念,能用根号表示一个数的立方根;了解开立方与立方互为逆运算,会用立方运算求某些数的立方根;理解“两个互为相反数的立方根的关系
点拨升华
反馈
矫正
2
教师就学生的展示点拨
扩展
提升
4
【活动3】例:说出下列各式表示的意义并求值
⑴ ⑵ ⑶ ⑷
(与课本P50例题稍微有些调整,使学生更好的了解立方根的意义)
总结
提高
2
1.立方根的概念、表示方法和性质
2.体会立方根从概念、表示方法和性质等方面的区别
3.两个规律性的计算 =- ;( )3=
体会从特殊---一般----特殊的数学学习方法
(考察数的立方根的性质和表示方法)
2.如果x3=8,那么x=
3.立方根等于本身的数为
4.-3是的平方根,是的立方根
5.表示,并求出下列数的立方根
⑴ -10 ⑵ ⑶ 0 ⑷-0.008
6.下列说法中不正确的是( )
(A) 8的立方根是2 (B) -8的立方根是-2
(C) 的立方根为2 (D )125的立方根为±5
⑴ ⑵ ⑶ (⑷
方根、算术平方根的概念、性质和表示方法
互助
释疑
2
回忆平方根、算术平方根的概念、性质和表示方法,为立方根的学习做准备

人教版七年级下册数学教学设计(教案):6.2立方根(1)

人教版七年级下册数学教学设计(教案):6.2立方根(1)
(2)思考正数、0、负数的立方根各有什么特点?并追问一个正数有几个立方根?一个负数有几个立方根?零的立方根是什么?(学生独立探究,再小组合作交流,给出立方根的性质)
(3)尝试用符号给出数a的立方根的表示方法.( 并问a可以取什么数?)
五、巩固新知 例1 (1)求下列各数的平方根: ;1;0
(2)求下列各数的立方根 ,1,0,-1,-343,-0.729
坝陵中学教师课时备课
总课时:
教学内容
6.2立方根(1)
课型
新授课
教学目标
1、了解立方根的概念,初步学会用根号表示一个数的立方根;
2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根;
3、让学生体会一个数的立方根的惟一性;
4、分清一个数的立方根与平方根的区别;
5、使学生理解“两个互为相反数的立方根的关系,即 .
6、渗透特殊一般-特殊的思想方法。
教学重点
立方根的概念和求法
教学难点
立方根与平方根的区别
教法设计
运用多媒体课件,讲述法、讨论法、问题探究法相结合
教具准备
课件


过程
一、情境导入要制作一种容积为27 m3的正方体形状的包装箱,这种包装箱的边长应该是多少?
在学生充分讨论ቤተ መጻሕፍቲ ባይዱ基础上教师给出解决问题的过程:
二、试一试
八、布置作业课本第52页习题第1、3、5、6题
板书设计
6.2立方根(1)
1、定义
2、例题
3、立方根的特征:
课后反思
例2求下列各式的值
(1) ; (2) ; (3)
(4) ;(5) ; (6)
(7)
请学生思考数的平方根与数的立方根有什么区别与联系呢?(学生小组讨论后,请学生相互补充.)

七年级数学下册第六章实数《6.2立方根(1)》导学案(无答案)新人教版(new)

七年级数学下册第六章实数《6.2立方根(1)》导学案(无答案)新人教版(new)

《6。

2立方根(1)》班级小组姓名评价一、学习目标1.了解立方根的概念和立方与立方根互为逆运算,初步学会用根号表示一个数的立方根; 2。

会用立方运算求某些数的立方根,分清一个数的立方根与平方根的区别;3。

饱含热情,激情展示.二、自主学习1.回顾:(1)我们把求平方根的运算称之为;(2)开平方运算与乘方运算是2.问题:一个正方形的面积是4平方厘米,那么它的边长为______厘米,如果一个正方体的体积是8立方厘米,那么它的棱长是多少厘米呢?上面的例子表明,在实际问题中我们常常遇到,要找一个数,使它的立方等于给定的数.由此我们抽象出下述的概念:这就是说x3=a,那么x叫做a的立方根.如由于33=27,所以3是27的立方根3。

立方根的定义:(1)一般地,若一个数的立方等于a,那么这个数叫做 a 的立方根(或三次方根)。

即:若x3=a,则______是______的立方根。

(2)类似于平方根,一个数a读作“三次根号a”,其中a是__________,3是___________(见如上的图示)。

(3)我们把求立方根的运算称之为它与立方运算是互逆的.据此可算立方根:2的立方是_____,8的立方根是______;—4的立方是_____,— 64 的立方根;0的立方是_____,0的立方根是______;—0.3的立方是______,—0.027的立方根是_____.4.归纳(立方根的特征):任何一个数 a 都只有立方根;一个正数有个正的立方根;一个负数有个负的立方根,0的立方根是。

5.一个数的立方根与平方根的区别:只有_______才有平方根,负数没有平方根,而所有数都有立方根;而且正数有_____个平方根,它们互为_______,0只有_____个平方根,所有数都只有_____个立方根,正数的立方根是_____数,负数的立方根是______数,0的立方根是______.6。

自学检测: 求下列各数的立方根:(1)27 (2)-27 (3)-0.064 (4)0 (5)—512 (6)三、合作探究1.的积是________。

人教版七年级数学下册6.2《立方根》导学案

人教版七年级数学下册6.2《立方根》导学案

人教版义务教育课程标准实验教科书七年级下册6.2《立方根》导学案【学习目标】1.了解立方根和开立方的概念;2.会用根号表示一个数的立方根,掌握开立方运算;3.培养学生用类比的思想求立方根的运算能力。

【教学重点】立方根的概念与性质【教学难点】会求某些数的立方根【教学过程】一、创设情境,复旧导新1、回顾平方根的定义及性质2、用魔方的体积导出立方根【活动一】复习1、16的平方根是;-16的平方根是;0的平方根是2、回顾平方根的定义及性质3、已知一个数的立方,求这个数。

二、启发诱导,探索新知1、归纳立方根的定义2、由探究问题得出开立方的定义3、明确立方与开立方互为逆运算4、点拨立方根的表示方法5、总结立方根的性质6、从定义、性质、表示方法方面归纳平方根与立方根的不同7、想一想:立方根是它本身的数有哪些?平方根呢?算术平方根呢?8、区分几个不同的符号。

【活动二】1、自主学习P49立方根的定义2、完成P49探究练习3、如何表示一个数的立方根4、求下列各数的立方根27(1)-27 (2)27 (3)-8(4)0.216 (5)05、正数有立方根吗?如果有,有几个?负数呢?0呢?6、下列各式分别表示什么意思,并求值(1)364 (2)1253- (3)36427-7、议一议:平方根与立方根的不同8、判断下列说法是否正确,说明理由。

(1)278的立方根是32± (2)25的平方根是5 (3)-64没有立方根 (4)-4的平方根是2±(5)0的立方根和平方根都是0三、引导探究,延伸知识【活动三】1、探究:38-= ; -38= 。

38- -38 327-= ; -327= 。

327- -3272、求下列各数的值,并找出规律。

(1) 332= ;33)2(-= ;33)3(-= ; 334= ;330 =(2) 33)8(= ;33)8(-=33)27(= ;33)27(-= ;33)0(=结论:1、3a -=-3a2、33a =a3、33)(a =a四、课堂小结【活动四】回顾所学知识:1、立方根的定义、性质;2、表示方法;3、开立方。

人教版七年级下册数学教案设计:6.2立方根

人教版七年级下册数学教案设计:6.2立方根






1.问题: 有多大呢?
2.怎样利用计算器来求一个数的立方根?
3.例:求-5的立方根(保留三个有效数字)
小组内个人展示先学成果,相互交流,明确答案。
对疑难问题,小组内共同讨论完成。
提出质疑,组长解答。




教师指导学生归纳总结,并适时点拨、评价。
1.用递缩法求大致范围。
2.用计算器求数的立方根的步骤及方法:输入 → 被开方数 → = → 根据显示写出立方根.
过程与方法:能用有理数估计一个无理数的大致范围,使学生形成估算的意识.
情感态度与价值观:培养学生的估算能力。
重点
用有理数估计一个无理的大致范围。
教具
三角板
难点
用有理数估计一个无理的大致范围。
学具
三角尺
教师活动
学生活动





教师抽查学生的前置性作业的完成情况,并听取各小组组长的汇报。
学生展示前置性作业,小组长批改,并向老师汇报作业中存在的问题。
课时教案
课题
6.2立方根(1)
第1课时
教学目标
知识与技能:了解立方根的概念,初步学会用根号表示一个数的立方根.
过程与方法:了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.
情感态度与价值观:让学生体会一个数的立方根的惟一性.
重点
立方根的概念和求法。
教具
三角板
难点
立方根与平方根的区别。
学具
三角尺




练习:
P51 1
小结:
本节课你有何收获?
学生独立完成练习,小组长批改,小组内纠正。

人教初中数学七下《6.2 立方根》教案1 【经典教学PPT课件】

人教初中数学七下《6.2 立方根》教案1 【经典教学PPT课件】

《立方根》一、教学目标:1、知识技能:(1)了解立方根和开立方的概念,掌握立方根的性质.(2)会用根号表示一个数的立方根.(3)能用开立方运算求数的立方根,体会立方与开立方运算的互逆性.2、能力目标:培养学生的理解能力和运算能力.3、情感目标:体会立方根与平方根的区别与联系.二、教学重点难点:1、教学重点:本节重点是立方根的意义、性质.2、教学难点:本节难点是立方根的求法,立方根与平方根的联系及区别.三、教法分析:定义推导上:采用引导探索法.定义应用上:采用递进练习法.用类比及引导探索由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流,得出立方根的定义,将定义的应用融入到探究活动中.四、学习方法:观察、猜测、交流、讨论、分析、推理、归纳、总结.五、教学过程:(一)知识回顾:口答:(1)平方根的概念?如何用符号表示数a(≥0)的平方根?(2)正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?(二)合作学习:给出一个3×3×3魔方,并提问这是由几个大小相同的单位立方体组成的魔方?(三)想一想:1、要做一个体积为27立方厘米的立方体模型,它的棱要多少长?你是怎么知道的?2、什么数的立方等于-27?归纳:1.立方根的概念:一般地,如果一个数的立方等于a,这个数就叫做a的立方根(也叫做三次方根).即X3=a,把X叫做a的立方根.如53=125则把5叫做125的立方根.(-5)3=-125则把-5叫做-125的立方根.数a a”.2.开立方:求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求. (四)例题讲解例1、求下列各数的立方根:(1)-8 (2) 8(3) (4)0.216 (5)0引导学生根据平方根的性质得出立方根的性质:1、正数有一个正的立方根.2、负数有一个负的立方根.3、0的立方根还是0. 让学生说出平方根,算术平方根以及立方根是本身的数分别是多少?. 练一练:抢答1.判断下列说法是否正确,并说明理由. (1)827的立方根是±23(2)25的平方根是5 (3)-64没有立方根 (4)-4的平方根是±2 (5)0的平方根和立方根都是0 (6)互为相反数的两个数的立方根也互为相反数. 例2、求下例各式的值:(教师讲解,可以提问学生)(五)当堂检测(检查学生掌握情况)计算:(六)归纳小结: 学生概括:1、通过本节课的学习你获得了那些知识?2、你能总结出平方根和立方根的异同点吗? 教师概括:相同点: (1)0的平方根、立方根都有一个是0 (2)平方根、立方根都是开方的结果. 不同点: (1)定义不同. (2)个数不同. (3)表示方法不同.(4)被开方数的取值范围不同. (七)布置作业《垂线》一、选择题:(每小题3分,共18分)827-+1.如图1所示,下列说法不正确的是( )A.点B到AC的垂线段是线段AB;B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段;D.线段BD是点B到AD的垂线段D CB ADCBAO DCBA(1) (2) (3)2.如图1所示,能表示点到直线(线段)的距离的线段有( )A.2条B.3条C.4条D.5条3.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点可以任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是( )A.大于acmB.小于bcmC.大于acm或小于bcmD.大于bcm且小于acm5.到直线L的距离等于2cm的点有( )A.0个B.1个;C.无数个D.无法确定6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( )A.4cmB.2cm;C.小于2cmD.不大于2cm二、填空题:(每小题3分,共12分)1.如图3所示,直线AB与直线CD的位置关系是_______,记作_______,此时,•∠AO D=∠_______=∠_______=∠_______=90°.2.过一点有且只有________直线与已知直线垂直.3.画一条线段或射线的垂线,就是画它们________的垂线.4.直线外一点到这条直线的_________,叫做点到直线的距离.三、训练平台:(共15分)如图所示,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,•求∠DOG的度数.GOFEDCBA四、提高训练:(共15分)如图所示,村庄A 要从河流L 引水入庄, 需修筑一水渠,请你画出修筑水渠的路线图.五、探索发现:(共20分)如图6所示,O 为直线AB 上一点,∠AOC=13∠BOC,OC 是∠AOD 的平分线. (1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.ODC BA答案:一、1.C 2.D 3.C 4.D 5.C 6.D二、1.垂直 AB ⊥CD DOB BOC COA 2.一条 3.所在直线 4.•垂线段的长度 三、∠DOG=55°四、解:如图3所示.lA五、解:(1)∵∠AOC+∠BOC=∠AOB=180°,∴13∠BOC+∠BOC=180°, ∴ 43∠BOC=•1 80°,lA∴∠BOC=135°,∠AOC=45°,又∵OC是∠AOD的平分线,∴∠COD=∠AOC=45°.•(2)∵∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.《垂线》一、选择题:(每小题3分,共18分)1.如图1所示,下列说法不正确的是( )A.点B到AC的垂线段是线段AB;B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段;D.线段BD是点B到AD的垂线段D CB ADCBAO DCBA(1) (2) (3)2.如图1所示,能表示点到直线(线段)的距离的线段有( )A.2条B.3条C.4条D.5条3.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点可以任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是( )A.大于acmB.小于bcmC.大于acm或小于bcmD.大于bcm且小于acm5.到直线L的距离等于2cm的点有( )A.0个B.1个;C.无数个D.无法确定6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( )A.4cmB.2cm;C.小于2cmD.不大于2cm二、填空题:(每小题3分,共12分)1.如图3所示,直线AB与直线CD的位置关系是_______,记作_______,此时,•∠AO D=∠_______=∠_______=∠_______=90°.2.过一点有且只有________直线与已知直线垂直.3.画一条线段或射线的垂线,就是画它们________的垂线.4.直线外一点到这条直线的_________,叫做点到直线的距离.三、训练平台:(共15分)如图所示,直线AB,CD,EF 交于点O,OG 平分∠BOF,且CD ⊥EF,∠AOE=70°,•求∠DOG 的度数.GOFEDCBA四、提高训练:(共15分)如图所示,村庄A 要从河流L 引水入庄, 需修筑一水渠,请你画出修筑水渠的路线图.五、探索发现:(共20分)如图6所示,O 为直线AB 上一点,∠AOC=13∠BOC,OC 是∠AOD 的平分线. (1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.ODC BA答案:一、1.C 2.D 3.C 4.D 5.C 6.D二、1.垂直 AB ⊥CD DOB BOC COA 2.一条 3.所在直线 4.•垂线段的长度 三、∠DOG=55°四、解:如图3所示.l五、解:(1)∵∠AOC+∠BOC=∠AOB=180°,lA∴13∠BOC+∠BOC=180°,∴43∠BOC=•1 80°,∴∠BOC=135°,∠AOC=45°,又∵OC是∠AOD的平分线,∴∠COD=∠AOC=45°.• (2)∵∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.。

SX-7-020第六章6.2立方根导学案附教学反思

SX-7-020第六章6.2立方根导学案附教学反思

回答了好几次问题,都说的挺棒的。 4、教学中我对例 2 的要求规定了三点:先读出下列各式,说明表示的 意义,再求值。既锻炼了学生的语言,又强化了立方根的概念,最后完成求 值,完成解答。从中也是给学生渗透一种学习方法,强化读题的重要性,要 明确题意,才能求解。其实,这也是通过这段时间听指导老师陆春老师的课 学到的,要感谢陆老师。 5、在讲明中 a 的取值范围时,我是在得到立方根的性质:一个正数有 一个正的立方根;一个负数有一个负的立方根,零的立方根是零之后,让学 生思考 a 的取值范围是什么,学生根据性质正数、负数和 0 都有立方根,自 然而然的就可以得到 a 的取值范围,这样很自然,学生也很容易理解,有一 种水到渠成的感觉。 二、不足之处 1、教学中我总是以我的意识为转移,课堂上按着我设计好的路线行驶, 不能发挥学生学习的主动性,不能把学生放出去,总是攥在自己的手里,我 觉得学生应该会的、容易的就少讲,觉得不好理解的就多讲,应该根据学生 的实际情况来定,把学生放出去,掌控好他们,最后再收回来。 2、教学中我受自己的意识影响,缺少原理性的东西,缺少对定义的挖 掘,有些地方没有抓住定义去进一步解释,缺少让学生思考,去想的时间过 程,让学生知道本质的东西有利于学生理解(我总觉得学生都会了就不用过 多解释了) 。 3、教学中没有把平方根的相关知识列出来,所以对于立方根和平方根 的类比就不显得充分、鲜明,我都是用语言来表述的,以后再上这节课时应 该在黑板上写出来,会更好。 4、在教学中,对立方和开立方这一对互逆运算体现的不够,应该让学 生进一步体会立方运算的结果是幂,开立方的结果是立方根。 三、疑惑的地方 教学中,我一直认为,学生都会的东西,就没有必要再去解释、说明、 讲解,我觉得学生都会的地方还要去给解释,再讲,是在浪费时间,学生也 不想再听(这是学生的意见) 。 四、感受与思考: 1、学生预习习惯的养成,学习方法的培育,是培养自学能力的有效途 径。 2、学生理解的效果,取决于教师根据学生的经验,作出的恰当的启发 引导,以及学生参与学习过程的程度,包含主动性、过程性。 3、课堂难度和速度往往以中游学生为标尺,如何培养优生、帮助后进 生?怎样去操作?特别是后进生人群数量庞大,而且又要面对考试评比,课 堂应当怎么办?这是一个值得思考的问题

人教版初一数学下册6.2立方根导学案

人教版初一数学下册6.2立方根导学案

6.2 立方根导学案【学习目标】1. 使学生了解一个数的立方根概念,并会用根号表示一个数的立方根。

2. 用立方运算求某些数的立方根3. 学会用立方根分析和解决实际问题.【学习重点】立方根的概念及性质.【学习难点】求一个数的立方根.【学习过程】一、温故知新1、_________________________________ 平方根的概念:如果一个数x 的等于a ,即x2=a ,那么这个数x就叫做a的_______ (也叫二次方根),求一个数a的平方根的运算,叫做_____ .2、平方根具有什么特征?二、探究新知1. 你能类比平方根的定义给出立方根的定义吗?归纳:立方根的概念:如果一个数x的_____ 于a ,即x3=a ,那么这个数x就叫做_________ (也叫三次方根),求一个数a的立方根的运算,叫做_____ .2. 根据立方根的意义填空,看看正数、0、负数的立方根各有什么特点?因为23 =8,所以8的立方根是()3因为()=0.125,所以0.125的立方根是()3因为()=0,所以0的立方根是()3因为()=£,所以-8的立方根是()因为3一色,所以一A的立方根是()27 27小结:(1) _____________________ 正数的立方根有 ,是 ; (2) _____________________ 负数的立方根有 ,是 ; (3) _________________ 0的立方根是 . 3. 立方根的表示方法:求一个数a 的立方根记做 ________ ,读作“三次根号a ”;其中a 叫 _______ ,3叫 ________ ,3不能 ________ . 三、新知应用例1求下列各数的立方根:(1 -27 ; ( 2)38 ; ( 3) - 5.3. 求下列各式的值:(1) .. 210 ;(2) 3 -0.001 ; (3) -3 -8X 27例2求下列各式的值:£ ;⑶睥3(1^64 ; ( 2)-四、巩固练习1. 下列说法中正确的是( A. - 4没有立方根 C.丄的立方根是13662. 求下列各数的立方根: (1) -丄;B.1的立方根是士 1 D. - 6的立方根是3二(2) -0.008 ;(3) 15彳;10 五、课堂总结谈谈你对本节课的收获与疑惑?六、当堂检测(第1小题8分,第2、3、4题每题4分) 1. 求下列各式的值 (1)3 1000 ;(2)3 -0-064 ;( 3)3 -1 ;(4)2. 下列说法正确的是( ).A 、 一个数的立方根一定比这个数小B 、 一个数的算术平方根一定是正数一个正数的立方根有两个 一个负数的立方根只有一个,3—C D 3.若一需=J 7,则a 的值是(且为负数 A 7B 、-7 C 、一 7D 3438885124.若 a 2 =25 , 3b = -125 , 则 a b 的值为( )A.— 10B. 0C . 0 或一10D . 0, —10或)•\ 810。

人教版七年级下册 第六章实数 6.2立方根(1) 学案 导学案

人教版七年级下册 第六章实数 6.2立方根(1) 学案 导学案

第六章实数6.2立方根(1)学案学习目标初步学会用根号表示一个数的立方根.学习重点分清一个数的立方根与平方根的区别 学习难点用类比的方法探寻出立方根的运算及表示方法,•并能自我总结出平方根与立方根的异同. 一、新知探究1、立方根的概念课件出示:一般地,一个数x 的立方等于a ,即a x =3,那么这个数x 就叫做a 的立方根(也叫做a 的三次方根),记做3a 。

如:823=,则2叫做8的立方根,即283=;()823-=-,则2-是8-的立方根,即283-=-。

其中a 是被开方数,3是根指数,符号3读做“三次根号”。

(符号3a 中的根指数“3”不能省略)1、因为1³= ,所以1是1的立方根,记作 (读作1的立方根等于1);2、因为4³= ,所以 是4的立方根。

记作 (读作8的立方根等于2);2、开立方的概念出示:学生在书上勾画概念例求下列各数的立方根:(1)27-; (2)1258 ; (3)833 ; (4)216.0;(5)5-. 解:同步练习1(独立完成,规范解题格式,做完后同桌互判)求下列各数的立方根:(1)27-; (2)27102; (3)271; (4)064.0-; (5)0 ;同步练习2(学生独立完成,规范解题格式,做完后同桌互判)求下列各式的值:(1)3125; (2)3008.0-; (3)3641; (4)()339二、范例学习 例:求下列各式的值: (1)364 (2)381- (3)36427- (4)312564-- 经计算发现正数,0,负数的立方值与平方值有何不同之处?答:四、巩固练习练习1:求下列各式的值: (1)1;(2)925; (3)2(0.6)-;(4)2a练习2:求下列各数的算术平方根: (1)81 ;(2)24 ; (3)4b例3:下列各式是否有意义,为什么? (1)4-;(2)4-.例4:判断下列说法是否正确,并说明理由. (1)3的算术平方根是9. ( ) (2)256的算术平方根是16. ( )(3)0.3是0.9的算术平方根. ( ) (4)m 2的算术平方根是m. ( )五、课堂小结结论1、一个数的立方值不一定都是正数,一个数的平方值一定是非负数.当底数互为相反数时,立方值是一对互为相反数的数,平方运算的底数互为相反数,但其平方值相等.结论2、一般地,一个数x 的立方等于a ,即a x =3,那么这个数x 就叫做a 的立方根(也叫做a 的三次方根),记做3a。

2023年人教版七年级数学下册第六章《6.2立方根》导学案

2023年人教版七年级数学下册第六章《6.2立方根》导学案

新人教版七年级数学下册第六章《6.2立方根》导学案学科数学教学内容 6.2立方根年级7(2)执教授课时间自主学习目标了解立方根的概念.合作学习目标会求一些数的立方根合作探究目标引导学生类比平方根学习立方根的概念和求法.合作重点学习立方根的概念和求法.合作难点引导学生类比平方根学习立方根的概念和求法.合作关键引导学生类比平方根学习立方根的概念和求法.教学流程教学素材教学环节教师行为学生活动引入课题前置诊断口述倾听1.复习引入你还记得什么是平方根吗?平方根具有什么特任征?创境引入设置问题情境,启发引导小组合作、交流。

展示答案2 要制作一种容积为的正方体形状的包装箱,这种包装箱的棱长应该是多?展示目标口述学生倾听学习内容1 你能类比平方根的定义给出立方根的定义吗?导学1 巡视探讨、交流,立方根的定义:如果一个数的立方等于a,那么这个数就叫做a的立方根(cube root,也叫做三次方根).即若,那么x 叫做a的立方根.自主合作巡视自主独立完成互动交流指导学生评价举手展示求一个数a的立方根的运算叫做开立方.根据立方根的意义填空.你能发现正数、0和负数的立方根各有什么特点吗?立方根的特征:正数的立方根是正数;负数的立方根是负数; 0的立方根是0.巩固达标巡视独立练习学习内容2 一个数a的立方根,记作,读作:“三次根号a”,其中a叫被开方数,3叫根指数,3不能省略.导学2 提问自主合作评价自学互动交流巡视填空,你能发现其中的规律吗?巩固达标巡视举手展示327max33a例2 求下列各式的值:课堂小结问题1:什么是立方根?如何求一个数的立方根?问题2:我们研究立方根的方法与研究平方根的方法之间有什么联系?小结质疑合作与交流作业:51页第1,2,3,4题及长江作业对应练习巩固拓展巡视自主,小组交流33312716423.864--();();()。

人教版数学七年级下册第19课时《6.2立方根(1)》教学设计

人教版数学七年级下册第19课时《6.2立方根(1)》教学设计

人教版数学七年级下册第19课时《6.2立方根(1)》教学设计一. 教材分析《6.2立方根(1)》这一课时主要让学生掌握立方根的概念,了解立方根的性质,以及会求一个数的立方根。

这是初中数学的基础知识,对学生后续学习有重要的影响。

本节课的内容在教材中处于七年级下册,是在学生学习了乘方、平方根等知识的基础上进行学习的,为学生提供了进一步拓展数学知识的基础。

二. 学情分析学生在学习本节课之前,已经掌握了乘方、平方根等基础知识,具备了一定的数学思维能力。

但部分学生对抽象的数学概念理解起来仍有一定的困难,因此,在教学过程中,需要针对这部分学生进行针对性的引导和帮助。

同时,学生对于新知识的接受能力不同,教学过程中应注重因材施教,使每个学生都能在课堂上得到锻炼和提高。

三. 教学目标1.知识与技能目标:让学生掌握立方根的概念,了解立方根的性质,会求一个数的立方根。

2.过程与方法目标:通过自主学习、合作交流等方法,提高学生分析问题、解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的数学思维,使学生感受到数学在生活中的运用。

四. 教学重难点1.重点:立方根的概念,立方根的性质,求一个数的立方根。

2.难点:理解立方根的性质,求一个数的立方根。

五. 教学方法1.自主学习法:引导学生自主探究立方根的概念和性质,提高学生的自主学习能力。

2.合作交流法:让学生在小组内合作讨论,共同解决问题,提高学生的团队协作能力。

3.实例分析法:通过生活中的实例,使学生感受立方根在实际生活中的运用,提高学生的数学应用能力。

六. 教学准备1.教具准备:多媒体课件、黑板、粉笔。

2.学具准备:学生自主学习资料、练习题。

七. 教学过程1.导入(5分钟)利用多媒体课件展示生活中的一些实例,如冰雪融化、化肥撒播等,引导学生思考这些现象与数学知识的联系。

通过实例引入立方根的概念,激发学生的学习兴趣。

2.呈现(10分钟)讲解立方根的概念,引导学生通过自主学习了解立方根的性质。

人教版数学七年级下册6.2 立方根 1教案.doc

人教版数学七年级下册6.2 立方根 1教案.doc

6.2 立方根1.了解立方根的概念及性质,会用根号表示一个数的立方根;(重点) 2.了解开立方与立方是互逆运算,会用开立方运算求一个数的立方根.(难点)一、情境导入填空并回答问题:(1)( )3=0.001;(2)( )3=-2764; (3)( )3=0;(4)若正方体的棱长为a ,体积为8,根据正方体的体积公式得a 3=8,那么a 叫做8的什么呢?二、合作探究探究点一:立方根的概念及性质【类型一】 立方根的概念及性质立方根等于本身的数有________个.解析:在正数中,31=1,在负数中,3-1=-1,又30=0,∴立方根等于本身的数有1,-1,0.故填3.方法总结:不论正数、负数还是零,都有立方根.【类型二】 立方根与平方根的综合问题已知x -2的平方根是±2,2x +y +7的立方根是3,求x 2+y 2的算术平方根.解析:根据平方根、立方根的定义和已知条件可知x -2=4,2x +y +7=27,从而解出x ,y ,最后代入x 2+y 2,求其算术平方根即可.解:∵x -2的平方根是±2,∴x -2=4,∴x =6.∵2x +y +7的立方根是3,∴2x +y +7=27.把x =6代入解得y =8,∴x 2+y 2=62+82=100.∴x 2+y 2的算术平方根为10.方法总结:本题先根据平方根和立方根的定义,运用方程思想列方程求出x ,y 的值,再根据算术平方根的定义求出x 2+y 2的算术平方根.【类型三】 立方根的实际应用已知球的体积公式是V =43πr 3(r 为球的半径,π取3.14),现已知一个小皮球的体积是113.04cm 3,求这个小皮球的半径r .解析:将公式变形为r 3=3V 4π,从而求r .解:由V =43πr 3,得r 3=3V 4π,∴r =33V 4π.∵V =113.04cm 3,π取3.14,∴r ≈33×113.044×3.14=327=3(cm).答:这个小皮球的半径r 约为3cm.方法总结:解此题的关键是灵活应用球的体积公式,并将公式适当变形.探究点二:开立方运算 求下列各式的值:(1)-3343; (2)31027-5; (3)-3-8÷214+(-1)100. 解:(1)-3343=-7;(2)31027-5=3-12527=-53; (3)-3-8÷214+(-1)100=2÷94+1=2÷32+1=2×23+1=73. 方法总结:做开平方或开立方运算时,一般都是利用它们的定义去掉根号;当被开方数不是单独一个数时,则需先将它们进行化简,再进行开方运算.三、板书设计1.每个数a 都只有一个立方根,记为“3a ”,读作“三次根号a ”.2.正数的立方根是正数;0的立方根是0;负数的立方根是负数.3.求一个数a 的立方根的运算叫做开立方,其中a 叫做被开方数.开立方与立方互为逆运算.本节课让学生应用类比法学习立方根的概念、性质和运算.学生在以后的数学学习中,要注意渗透类比的思维方式,让学生在学习新知识的同时巩固已学的知识,并通过新旧对比更好地掌握知识【本文档由书林工作坊整理发布,谢谢你的下载和关注!】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.2立方根导学案(第1课时)
一:回顾旧知
1.一般地,如果一个数的平方等于a ,那么这个数叫做a 的 或 这就是说,如果a x =2,那么x 叫做 a 的
2.正数有 平方根,
它们 0的平方根 ,负数 。

3.求下列各数的平方根:
(1) 49 (2)
254 (3)1061 ( 4) 0.0016 二:自主探究
探究一 : 自学课本第49页探究前的内容,并回答下面的内容:
1、现有一只体积为8cm 3的正方体纸盒,它的每一条棱长是多少?
2、如果一个数的立方等于-27
8,这个数是多少? 3、说出立方根的定义:一般地,如果一个数
x 的立方等于a ,即a x =3,那么这个数就叫做a 的( ),也称为a 的三次方根;如果x 叫做a 的立方根,数a 的立方根记作3a ,读作“( )”
例如:2的立方是8,所以___是____的立方根,记作283=,又如27832
3-
=-)(,____是___的立方根,记作327
832-=-;若a x =3,则x 叫做a 的_____,a 叫做x 的____。

练一练: 求下列各数的立方根:(1)64;(2)0.125;(3)0;(4)-1;(5)827
-. 4、开立方的定义: .5、开立方和立方互为逆运算,因此求一个数的立方根可以通过立方运算来求。

探究二: 自学课本第49页探究,根据立方根胡意义填空。

你能发现正数.0.负数的立方根各有什么特点吗?
(1)因为23=8,所以8的立方根是( );(2)因为( )3
=0.064,所以0.064的立方根是( );
(3)因为( )3=0,所以0的立方根是( );4)因为( )3=-8,所以-8的立方根是( ); (5)因为( )3=827-,所以827
-的立方根是( ). 性质: 正数的立方根是 正 数; 0的立方根是 0 ;负数的立方根是 负 数;
练一练:1.填空1)因为( )3=27所以27的立方根是 ;(2)因为( )3
=-27,所以-27的立方根是 (3)因为( )3=64125,所以64125的立方根是 ;(4)因为( )3=64125-,所以64125-的立方根是 . 2.判断对错:对的画“√”,错的画“×”.
(1)1的平方根是1. (2)1的立方根是1. (3)-1的平方根是-1. (4)-1的立方根是-1(5)4的平方根是±2. (6)27的立方根是±3.
探究三:平方根和立方根的区别,比较平方根和立方根的性质比较
什么数有平方根?什么数有立方根?
二尝试应用1.-81的立方根是 ;0.008的立方根是 ;2. 64的平方根的立方根是 ;364的平方根是 。

3.立方根等于它本身的数有 4.若
x 3=-0.027,则x = ,-3027.0= 5.判断(1)64的立方根是±4(2)3125-=-3125(3)-21是61的立方根 4.负数没有立方根
7.a 的立方根与-a 的立方根的关系是( )1.相等2.互为倒数3.互为相反数
8.求下列各数的立方根:
(1)0.001(2)-6427(3)-164
61 三补偿应用:(1)若8
x 3+27=0,则x= (2)如x-4是16的算术平方根,则x 的立方根是 . (3)如3a -=3,则a= . (4一个数的算术平方根与立方根都等于它本身的数 (1) 0 (2) 0. 1 (3)0.1.-1 (4)±1 (5)64
x 3+125=0,求x 的值. 四补偿提高;
(1)拓展应用
1.已知()31-x +8=0,求x 的值
2.一个正方体的体积扩大到原来的64倍,它的棱长为原来的多少倍?扩大为原来的125倍呢?n 倍呢?
(2)链接中考
1(2012.无锡)已知m+n-5的算术平方根是3,m+n+13的立方根。

2.(2012.安顺)已知一个正方体的棱长是5cm ,再做一个正方体,使它的体积等于原正方体的体积的8倍,求要做的正方体的棱长。

相关文档
最新文档