21.2.1直接开平方解一元二次方程
21.2 解一元二次方程(直接开平方法)(教学设计)
章节名称21.2 解一元二次方程(直接开平方法)编号课型新授课备课人上课时间年月日教学目标知识与技能:1)利用开平方法解形如x2=p(p≥0)的方程。
2)利用开平方法解形如(mx+n)2=p(p≥0)的方程。
过程与方法:回顾平方根的知识,通过对实际生活中的问题列出一元二次方程,通过整理并求解的过程,让学生初步掌握利用直接开平方解一元二次方程(形如:x2=p(p≥0)的方法,再通过数学转换的方法,将一个一元二次方程(形如:(mx+n)2=p(p≥0))“降次”为两个一元一次方程,这样就可以通过解一元一次方程来求一元二次方程的解。
情感态度与价值观:1)培养学生主动探究知识、自主学习和合作交流的意识。
2)激发学生对学数学的兴趣,体会学数学的快乐,培养用数学的意识。
教学重点运用直接开平方法解形如(mx+n)2=p(p≥0)的一元二次方程。
教学难点通过平方根的意义解形如x2=p(p≥0)的方程,将知识迁移到根据平方根的意义解形如(mx+n)2=p(p ≥0)的一元二次方程。
板书设计21.2 解一元一次方程(直接开平方法)一般地,对于方程x2=p,1)当p>0时,根据平方根的意义,方程有两个不相等的实数根p2xpx1-==,;2)当p=0时,根据平方根的意义,方程有两个相等的实数根x1=x2=0;3)当p<0时,因为对于任意实数x,都有x2≥0,所以方程无实数根。
教学过程教学环节教生活动设计意图导入新课【课前回顾】师:求下列各数的平方根 1)169 2)8125生:1)±135[多媒体展示][课前回顾]对于方程x2=p,1)当p= 4时,求方程的解?2)当p= 0时, 求方程的解?3)当p=-4时, 方程有解吗?为什么?师:尝试求解方程?生:1)x1=2, x2=﹣22)x1=x2=03)无解,当p<0时,因为对于任意实数x,都有x2≥0,所以方程无解【情景导入】[多媒体展示][情景引入]一桶油漆可刷的面积为1500 dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?师:列出方程,观察方程的样式,解方程求出棱长?生:设正方体的棱长为 x dm,则一个正方体的表面积为 6x2 dm2,则列出方程为:10×6x2=1500 ,化简整理,得x2=25,据平方根的意义,得x=±5,即x1=5, x2=﹣5。
九年级数学上册-解一元二次方程21.2.1配方法第1课时直接开平方法教案新版新人教版
21.2 解一元二次方程21.2.1 配方法第1课时直接开平方法理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重点运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.难点通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x +m)2=n(n≥0)的方程.一、复习引入学生活动:请同学们完成下列各题.问题1:填空(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2p2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3即2t+1=3,2t+1=-3方程的两根为t1=1,t2=-2例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.(2)由已知,得:(x+3)2=2直接开平方,得:x+3=± 2即x+3=2,x+3=- 2所以,方程的两根x1=-3+2,x2=-3- 2解:略.例2 市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材第6页练习.四、课堂小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.五、作业布置教材第16页复习巩固1.。
九年级上册数学21.2 解一元二次方程 直接开平方法
21.2.1 配方法 第1课时 直接开平方法1.学会根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.2.运用开平方法解形如(x +m )2=n 的方程.3.体验类比、转化、降次的数学思想方法,增强学习数学的兴趣.一、情境导入一个正方形花坛的面积为10,若设其边长为x ,根据正方形的面积可列出怎样的方程?用怎样的方法可以求出所列方程的解呢?二、合作探究探究点:直接开平方法 【类型一】用直接开平方法解一元二次方程运用开平方法解下列方程: (1)4x 2=9;(2)(x +3)2-2=0.解析:(1)先把方程化为x 2=a (a ≥0)的形式;(2)原方程可变形为(x +3)2=2,则x +3是2的平方根,从而可以运用开平方法求解.解:(1)由4x 2=9,得x 2=94,两边直接开平方,得x =±32,∴原方程的解是x 1=32,x 2=-32.(2)移项,得(x +3)2=2.两边直接开平方,得x +3=± 2.∴x +3=2或x +3=- 2.∴原方程的解是x 1=2-3,x 2=-2-3.方法总结:由上面的解法可以看出,一元二次方程是通过降次,把一元二次方程转化为一元一次方程求解的,这是解一元二次方程的基本思想;一般地,对于形如x 2=a (a ≥0)的方程,根据平方根的定义,可解得x 1=a ,x 2=-a .【类型二】直接开平方法的应用次方程ax 2=b (ab >0)的两个根分别是m +1与2m -4,则ba=________.解析:∵ax 2=b ,∴x =±ba,∴方程的两个根互为相反数,∴m +1+2m -4=0,解得m =1,∴一元二次方程ax 2=b (ab >0)的两个根分别是2与-2,∴b a =2,∴b a=4,故答案为4.【类型三】直接开平方法与方程的解的综合应用若一元二次方程(a +2)x 2-ax +a 2-4=0的一个根为0,则a =________.解析:∵一元二次方程(a +2)x 2-ax +a 2-4=0的一个根为0,∴a +2≠0且a 2-4=0,∴a=2.故答案为2.【类型四】直接开平方法的实际应用有一个边长为11cm的正方形和一个长为13cm,宽为8cm的矩形,要作一个面积为这两个图形的面积之和的正方形,边长应为多少厘米?分析:要求新正方形的边长,可先求出原正方形和矩形的面积之和,然后再用开平方计算.解:设新正方形的边长为x cm,根据题意得x2=112+13×8,即x2=225,解得x =±15.因为边长为正,所以x=-15不合题意,舍去,所以只取x=15.答:新正方形的边长应为15cm.方法总结:在解决与平方根有关的实际问题时,除了根据题意解题外,有时还要结合实际,把平方根中不符合实际情况的负值舍去.三、板书设计教学过程中,强调利用开平方法解一元二次方程的本质是求一个数的平方根的过程.同时体会到解一元二次方程过程就是一个“降次”的过程.。
21.2.1.1直接开平方解一元二次方程
1.直接开平方法的理论根据是 平方根的定义
2.用直接开平方法可解形如χ2=a(a≥0)或 (χ-a)2=b(b≥0)类的一元二次方程。
3.方程χ2=a(a≥0)的解为:χ= a
方程(χ-a)2=b(b≥0)的解为:χ= a b
x 3.如果x2 64,则 = 8 。
(1). χ2=4
(2). χ2=0 (3). χ2+1=0
对于方程(1),可以这样想:
∵ χ2=4
根据平方根的定义可知:χ是4的( 平方根 ).
∴ χ= 4
即: χ=±2 这时,我们常用χ1、χ2来表示未知数为χ 的一元二次方程的两个根。
∴ 方程 χ2=4的两个根为 χ1=2,χ2=-2.
21.2.1 直接开平方法 解一元二次方程
回顾
1、一元二次方程定义:
等号两边都是整式,只含 有一个未知数(一元),并且未 知数的最高次数是2 (二次)的 方程,叫做一元二次方程。
a x 1.如果 x2 a(a 0) ,则 就叫做 的 平方根 。
2.如果 x2 a(a 0) , 则x = a 。
方程无实数根.
利用平方根的定义直接开平方求一元二
次方程的解的方法叫直接开平方法。
自主学习
第1,2题
对照以上方法,你认为怎样解方程(χ+1)2=4
解:直接开平方,得 x+1=±2
∴ χ1+1=2,χ2+1=-2 ∴ χ1+1=2,χ2+1=-2 ∴ χ1=1,χ2=-3
思考:
如何解以下方程
(1)χ2+6x+9=4 (2) 3(2-χ)2-27=0
如果我们把χ2=4, χ2=0, χ2+1=0变形 为χ2=p呢?
直接开平方法解一元二次方程导学案
21.2.1 第1课时 用直接开平方法解一元二次方程知识点梳理 :解一元二次方程- - -直接开平方法形如x 2=p 或(nx+m )2=p (p ≥0)的一元二次方程可采用 的方法解一元二次方程.◆如果方程化成x 2=p 的形式,那么可得 ;◆如果方程能化成(nx+m )2=p (p ≥0)的形式,那么 . ◎◎◎注意事项:①等号左边是一个数的平方的形式而等号右边是一个非负数. ①降次的实质是由一个二次方程转化为 个一元一次方程. ①方法是根据 的意义开平方.知识点训练:知识点1:解形如x 2=p (p ≥0)的一元二次方程1.方程 12x 2﹣2=0的根为( )A .x =±1B .x =±2C .x =±√2D .x =±2√22.方程9x 2﹣16=0的根是 . 3.解下列方程:(1)x 2﹣3=5; (2)3x 2﹣1=26; (3)12x 2﹣8=0.4.已知x =3是一元二次方程x 2﹣p =0的一个根,求p 的值和方程的另一根.知识点2:解形如(nx+m )2=p (p ≥0)的一元二次方程5.一元二次方程(x+1)2=4的解为 .6.若关于x 的一元二次方程ax 2+k =0的一个根为1,则方程a (x ﹣1)2+k =0的解为 . 7.解下列方程:(1)3(x ﹣1)2=12; (2)2(x ﹣1)2=18. (3)14(3x+1)2=64知识点提升训练:【●基础题●】1.如果2是方程x 2﹣c =0的一个根,这个方程的其他根是( )A .4B .﹣4C .﹣2D .±√22.方程(x ﹣1)2=0的根是( )A .x =﹣1B .x 1=x 2=1C .x 1=x 2=﹣1D .x 1=1,x 2=﹣13.若一元二次方程ax2=b(ab>0)的两个根是m+1与2m﹣7,则m的值是.4.已知关于x的方程(x﹣1)2=5﹣k没有实数根,那么k的取值范围是.5.已知一元二次方程mx2+n=0(m≠0),若方程可以用直接开平方法求解,且有两个实数根,则m、n必须满足的条件是()A.n≠0B.m、n异号或n=0C.n是m的整数倍D.m、n同号6.如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的长.【●提升题●】7.若关于x的一元二次方程a(x﹣h)2+k=0的解是x1=﹣2,x2=1,则关于x 的一元二次方程a(x﹣h+3)2+k=0的解是.8.若(x2+y2﹣5)2=64,则x2+y2等于()A.13 B.13或﹣3 C.﹣3 D.以上都不对9.解下列方程:(1)(x﹣3)2﹣4=0;(2)x2−8x+16=510.已知关于x的方程(x﹣1)2=4m﹣1有两个实数根.(1)求m的取值范围;(2)若方程有一个根为2,求方程的另外一个根.【●拓展题●】11.对于实数a,b,定义运算“◎”如下;a◎b=(a+b)2﹣(a﹣b)2.(1)√3◎√2=.(2)若(m+2)◎(m﹣3)=24,求m的值.。
21.2.1 解一元二次方程-配方法
x1 a ,x2 a
这种解一元二次方程的方法叫做直接开平方法.
2、把一元二次方程的左边配成一个完全平方式, 然后用开平方法求解,这种解一元二次方程的方 法叫做配方法.
注意:配方时, 等式两边同时加上的是一次项 系数一半的平方.
思维拓展
2 1、把方程x -3x+p=0配方得到
(x+m)2=
1 2
(1)求常数p,m的值;
(2)求方程的解。
2、若: x y 4 x 6 y 13 0,
2 2
则x _____ -8
y
理论迁移
1、将代数式x2+6x+2化成(x+p)2+q的形式 为 (x+3)2-7 。 2、比较大小:
6x ≤ x2+9.(填“>”、“<”、“≥”、 3、若代数式2x2-6x+b可化为2(x-a)2-1,则 a+b的值是 5 。
课堂小结
1、一般地,对于形如x2=a(a≥0)的方程,根据平方
根的定义,可解得
例题精讲
例1 用配方法解下列方程:
(1) x2 - 8x +1 =0
(2) 2x2 +1=3x (3) 3x2-6x+4=0
教材P42
2、 3
归纳总结
解一元二次方程的基本思路:
二次方程
降次
一次方程
把原方程变为(mx+n)2=P的形式(其中m、 n、P是常数)。
当P≥0时,两边同时开平方,这样原方 程就转化为两个一元一次方程。 当P<0时,原方程的解又如何?
ห้องสมุดไป่ตู้
把一元二次方程的左边配成一个完全 平方式,然后用直接开平方法求解,这种 解一元二次方程的方法叫做配方法.
21.2.1配方法(第1课时)教案
以根据平方根的意义直接开平方求解,而无论是消元还是降次,都是转化思想的体现,把不
会的向一直的知识转化,调动已学的知识思考通过什么方式进行转化,转化思想不仅仅用在
数学上,在日常生活的解决问题上也会给同学们以启迪.
2.如果方程能化成 或 ( )的形式,那么可得x= 或
注意:
1.根据平方根的定义开平方,不要漏掉负的平方根.
2移项要变号.
作
业
1.教科书习题21.2.1 P6练习题.
2.预习配方法解一元二次方程(第二课时),做《自主学习》P19 4.5.6.7题
教师布置作业,并提出要求.
学生课下独立完成,延续课堂.
教学
重点
理解开平方法的基本思想,会用开平方法解一元二次方程.
教学
难点
通过探究解方程的思路,得出解一元二次方程的基本思路——降次.
二、【教学流程】
教学环节
教学问题设计
师生活动
二次备课
复
习
引
入
请同学们课前预习完成上述方程组,并思考下面的问题:
【问题1】解二元一次方程组和
三元一次方程组的基本思路是
什么?
【问题2】为什么要用这种思路?它体现了什么数学思想?
形状的盒子的全部外表面,你能
算出盒子的棱长吗?
【问题3】你会解方程 吗?
依据是什么?
【追问1】类似的,你能给出下列
方程的解吗?
(1)
(2)
(3)
(4)
【追问2】上述方程有什么共同点?
你能归纳一下这类方程解的情况
吗?
【探究2】对照上面解方程
的过程,你认为应该怎样解方程
人教部初三九年级数学上册 直接开平方解一元二次方程 名师教学PPT课件
解:系数化为1得x2 25 9
由平方根的意义得:
解:由平方根的意义得: 2x 1 3
x5 3
x1
5 3
,
x2
5 3
2x 1 3,或2x 1 3
x1
-1 2
3 ,x2
1 2
3
利用直接开平方法解下列方程
(3)、3(x 1)2 6 0
解:移项得 3(x 1)2 6 系数化为1得(x 1)2 2
人教版数学九年级上册第二十一章
21.2.1 解一元二次方程(1) ——直接开平方法
1、用直接开平方法解形如 x²=p(p≥0)或 (x+m)²=p(p≥0)的方程;
2、理解一元二次方程的解法——直接开 平方法;
3、体会一元二次方程“降次”──转化 的数学思想。
1、如果x2=a,则x叫做a的__平_方_根__; 2、如果x2=a(a≥0),则x=____; 3、如果x2=64,则x=_____.
开方得x 1 2
(4)、x2 4x 4 25
解:原方程整理得 (x 2)2 25
开方得x 2 5
x1 1 2, x2 1- 2
x1 7, x2 3
利用直接开平方法解下列方程 (5)、9x2 5 1
解:移项得 9x2 4
由平方根的意义得 原方程无实数根
直接开平方法 解一元二次方程
由平方根的意义得:
由平方根的意义得:
x 10
x 5
x1 10, x2 10
x1 5, x2 5
例1:利用直接开平方法解下列方程
(3)、4x2 100
思考:
解:两边同时 4得 x2 0的解是什么?
x2 25
x2 4呢?
由平方根的意义得:
人教版数学九年级初三上册 21.2.1 第2课时 配方法解一元二次方程 名师教学教案 教学设计反思
21.2配方法解一元二次方程分层教学导学案51【学习目标】1.会用开平方法解一元二次方程;理解配方的概念并掌握配方的技巧;2.通过自主探索和小组合作,学会运用配方法解一元二次方程;【使用说明和学法指导】1.用15分钟左右的时间认真阅读、探究课本基础知识,理解配方的概念并掌握配方的技巧。
2.认真完成导学案的问题;3.初步评价自己完成学习目标情况,并把自己的疑问写出来,以求课堂上解决。
【课前导学】一、探究新知:知识点1 直接开平方法解一元二次方程:【知识链接1】求一个非负数的平方根:如果92=x ,则x =_______;如果52=x ,则x =_______; 如果02=x ,则x =_______。
试求下列方程的根:(1) 092=-x (2) 2x²-10=0【提示】当满足方程的根不止一个时,为了区分,应把方程的根写为1x 、2x 的形式。
一般情况下,方程根的个数与其次数一样。
【探究1】1、对于方程4)3(2=+x ,你能用上面的方法来求解吗?你是如何解的?2、你能把方程0562=++x x 转化成4)3(2=+x 吗?你是如何转化的?知识点2 配方法解一元二次方程【知识链接2】1、完全平方式——运算形式形如222b ab a +±的二次三项式。
试着写出两个完全平方式:___________________,_____________________。
2、配方——对二次三项式q px x ++2,配上适当的数(不改变式子的值),使得式子中的一部分是一个完全平方式,如342++x x ,将式子加1,再减1(不改变式子的值),即可得1)44(2-++x x ,从而得到1)2(2-+x 。
试着将下列式子配方:(1) 142+-x x (2)4152++x x【探究2】填上适当的数或式,使下列各等式成立对于方程02=++q px x ,可先将方程变形为______2=+px x ,然后将方程左边进行配方(根据等式基本性质,两边同时加上2)2(p(一次项系数的一半的平方)即可),如0562=++x x ,移项得:______62=+x x ,两边同时加上_____,可得____________,从而得__________________,这样就可以用“开平方”的方法求解方程了。
(完整版)21.2.1直接开平方法解一元二次方程练习题1
21.2.1 直接开平方法解一元二次方程要点感知1 对于方程x 2=p.(1)当p>0时,方程有_______的实数根,_______;(2)当p=0时,方程有_______的实数根,_______0;(3)当p<0,方程_______.预习练习1-1 下列方程可用直接开平方法求解的是( )A.9x 2=25B.4x 2-4x-3=0C.x 2-3x=0D.x 2-2x-1=91-2若x 2-9=0,则x=_______.要点感知2 解形如(mx+n)2=p(p ≥0)的一元二次方程,先根据_______的意义,把一元二次方程“_______”转化为两个_______元_______次方程,再求解.预习练习2-1 方程(x-2)2=9的解是( )A.x 1=5,x 2=-1B.x 1=-5,x 2=1C.x 1=11,x 2=-7D.x 1=-11,x 2=7知识点 用直接开平方法解一元二次方程1.下列方程能用直接开平方法求解的是( )A.5x 2+2=0B.4x 2-2x+1=0C.(x-2)2=4D.3x 2+4=22.方程100x 2-1=0的解为( )A.x 1=101,x 2=101-B.x 1=10,x 2=-10C.x 1=x 2=101D.x 1=x 2=101- 3.(丽水中考)一元二次方程(x+6)2=16可化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是( )A.x-6=4B.x-6=-4C.x+6=4D.x+6=-44.(鞍山中考)已知b <0,关于x 的一元二次方程(x-1)2=b 的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根5.关于x 的一元二次方程2x 2-3x-a 2+1=0的一个根为2,则a 的值为( )A.1B.3C.-3D.±36.一元二次方程ax 2-b=0(a ≠0)有解,则必须满足( ) A.a 、b 同号 B.b 是a 的整数倍 C.b=0D.a 、b 同号或b=0 7.对形如(x+m)2=n 的方程,下列说法正确的是( )A.用直接开平方得x=-m ±nB.用直接开平方得x=-n ±mC.当n ≥0时,直接开平方得x=-m ±nD.当n ≥0时,直接开平方得x=-n ±m 8.若代数式(2x-1)2的值是25,则x 的值为_______9.完成下面的解题过程:(1)解方程:2x 2-8=0; (2)解方程:3(x-1)2-6=0.解:原方程化成_______, 解:原方程化成_______,开平方,得_______, 开平方,得_______,则x 1=_______,x 2=_______ .则x 1=_______,x 2=_______.10.用直接开平方法解下列方程:(1)x 2-25=0; (2)4x 2=1; (3)3(x+1)2=31; (4)(3x+2)2=25.11.方程2x 2+8=0的根为( )A.2B.-2C.±2D.没有实数根12.若a 为方程(x-17)2=100的一根,b 为方程(y-4)2=17的一根,且a ,b 都是正数,则a-b 的值为( )A.5B.6C.83D.10-1713.(枣庄中考)x 1,x 2是一元二次方程3(x-1)2=15的两个解,且x 1<x 2,下列说法正确的是( )A.x 1小于-1,x 2大于3B.x 1小于-2,x 2大于3C.x 1,x 2在-1和3之间D.x 1,x 2都小于314.(内江中考)若关于x 的方程m(x+h)2+k=0(m 、h 、k 均为常数,m ≠0)的解是x 1=-3,x 2=2,则方程m(x+h-3)2+k=0的解是( )A.x 1=-6,x 2=-1B.x 1=0,x 2=5C.x 1=-3,x 2=5D.x 1=-6,x 2=215.(济宁中考)若一元二次方程ax 2=b(ab>0)的两个根分别是m+1与2m-4,则a b =_______. 16.已知方程(x-1)2=k 2+2的一个根是x=3,求k 的值和另一个根.17.用直接开平方法解方程:(1)4(x-2)2-36=0; (2)4(3x-1)2-9(3x+1)2=0..18.若2(x 2+3)的值与3(1-x 2)的值互为相反数,求23xx 的值.19.在实数的范围内定义一种运算“*”,其规则为a*b=a 2-b 2,根据这个规则求方程(x+2)*5=0的解.20.自由下落物体的高度h(米)与下落的时间t(秒)的关系为h=4.9t 2,现有一铁球从离地面19.6米高的建筑物的顶部自由下落,到达地面需要多少秒?挑战自我21.如图所示,在长和宽分别是m 、n 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用m ,n ,x 表示纸片剩余部分的面积;(2)当m=12,n=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.参考答案要点感知1 两个不相等, ;,21p x p x =-=两个相等,021==x x ,无实数根预习练习1-1 A 1-2.±3要点感知2 平方根 开平方 一 一预习练习2-1 A1.C.2.A.3.D.4.C.5.D.6.D.7.C.8.3或-29.(1)42=x ,2±=x ,2,-2 (2)2)1(2=-x ,21±=-x ,21-,21+ 10.(1)5,521-==x x ,(2)21,2121-==x x ,(3)34,3221-=-=x x ,(4)37,121-==x x11.D. 12.B. 13. A. 14. B. 15.4 16.2±=k ,另一个根为-117.(1)移项,得4(x-2)2=36,∴(x-2)2=9.∴x-2=±3.∴x 1=5,x 2=-1.(2)移项,得4(3x-1)2=9(3x+1)2,即2(3x-1)=3(3x+1)或2(3x-1)=-3(3x+1). ∴3x+5=0或15x+1=0.∴151,3521-=-=x x . 18.由题意可得2(x 2+3)+3(1-x 2)=0, ∴x 2=9.∴x 1=3,x 2=-3.∴23x x +的值为32或0. 19.由题意可得(x+2)2-52=0,∴x 1=-7,x 2=3.20.当h=19.6时,4.9t 2=19.6.∴t 1=2,t 2=-2(不合题意,舍去). ∴t=2.答:到达地面需要2秒.挑战自我21.(1)mn-4x 2;(2)根据题意得mn-4x 2=4x 2,将m=12,n=4代入上式,得x 2=6. 解得x 1=6,x 2=6-(舍去). 答:正方形的边长为6.。
九年级数学上册21一元二次方程21.2解一元二次方程21.2.1配方法第一课时用直接开平方解一元二次
1.方程x2-64=0解是( D)
A.x=8
B.x=-8
C.x=4
D.x1=8 ,x2=-8
2.方程3x2+9=0根为( D)
A.3
B.-3
C.±3
D.无实数根
3.(滨州)以下方程中,一定有实数解是( B)
A.x2+1=0
B.(2x+1)2=0
C.(2x+1)2+3=0
D.( -a)2=a
4.方程(x+1)2=9解是( C)
∵一元二次方程(x-3)2=1两个解恰好分别是等腰△ABC底边长和腰长, ∴①当底边长和腰长分别为4和2时,4=2+2,此时不能组成三角形; ②当底边长和腰长分别是2和4时,4+4>2,此时能组成三角形, ∴△ABC周长为:2+4+4=10.
第8页
12.当m为何值时,方程
是关于x一元二次方程?
第9页
13.已知:x2+4x+y2-6y+13=0,求xx- 2+2yy2的值. 【解】 已知:x2+4x+y2-6y+13=0, 变形得:(x2+4x+4)+(y2-6y+9)=0, 即(x+2)2+(y-3)2=0, 所以x=-2,y=3.
第10页
21.2.1 配方法
第1课时 用直接开平方法解一元二次方程
1.利用直接开平方法解一元二次方程,其依据是__平__方__根__意义,即:假 如x2=p(p>0),则x1=____,x2=_____.
2.形如(ax+m)2=n(n>0)一元二次方程,也可利用直接开平方法求
解,即:先利用平方根意义把原方程转化为两个_____一__元__一__次__方ax程+m=
A.x=1或x=-1
B.x=3或Байду номын сангаас=-3
C.x1=2或x2=-4
21.2.1配方法、公式法
【跟踪训练】
3.(2011 年甘肃兰州)用配方法解方程 x2-2x-5=0 时,原
方程应变形为( C ) A.(x+1)2=6
B.(x+2)2=9
C.(x-1)2=6
D.(x-2)2=9
4.用配方法解方程:
(1)x2-4x-3=0;
(2)4x2-7x-2=0.
解:(1)移项,得 x2-4x=3. 配方,得 x2-4x+4=3+4,
2.配方法 通过配成___完__全__平__方__形__式___来解一元二次方程的方法叫做 配方法.配方是为了___降__次___ ,把一个一元二次方程转化为 __两__个__一__元__一__次__方__程__来解. 注意:配方法的一般步骤: ①把常数项移到等号的右边; ②把二次项的系数化为 1; ③等式两边同时加上一次项系数一半的平方.
(2)移项,得 2x2+6x=2. 二次项系数化为 1,得 x2+3x=1.
配方,得 x2+3x+322=1+322, 即x+322=143. 两边开平方,得 x+32=± 213, 即 x1=-32- 213,x2=-32+ 213.
(3)去括号整理,得 x2+4x-1=0. 移项,得 x2+4x=1,配方,得(x+2)2=5. 两边开平方,得 x+2=± 5, 即 x1=-2- 5,x2=-2+ 5.
∴x1=2+ 5,x2=2- 5.
知识点 2 配方法(重难点) 【例 2】 用配方法解下列方程: (1)x2+6x+5=0; (2)2x2+6x-2=0; (3)(1+x)2+2(x+1)-4=0. 思路点拨:用配方法解一元二次方程的一般步骤: (1)化二次项系数为 1; (2)移项,使方程左边为二次项和一次项,右边为常数项; (3)配方,方程两边都加上一次项系数一半的平方;
人教版数学九年级上册21.2.1配方法解一元二次方程 教案
配方法解一元二次方程的教案教学内容:本节内容是:人教版义务教育课程标准实验教科书数学九年级上册第21章第2节第1课时。
一、教学目标(一)知识目标1、理解求解一元二次方程的实质。
2、掌握解一元二次方程的配方法。
(二)能力目标1、体会数学的转化思想。
2、能根据配方法解一元二次方程的一般步骤解一元二次方程。
(三)情感态度及价值观通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们学习数学的兴趣。
二、教学重点配方法解一元二次方程的一般步骤三、教学难点具体用配方法的一般步骤解一元二次方程。
四、知识考点运用配方法解一元二次方程。
五、教学过程(一)复习引入1、复习:解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
2、引入:二次根式的意义:若x2=a (a为非负数),则x叫做a的平方根,即x=±√a 。
实际上,x2 =a(a为非负数)就是关于x的一元二次方程,求x的平方根就是解一元二次方程。
(二)新课探究通过实际问题的解答,引出我们所要学习的知识点。
通过问题吸引学生的注意力,引发学生思考。
问题1:一桶某种油漆可刷的面积为1500dm2李林用这桶油漆刚好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?问题1重在引出用直接开平方法解一元二次方程。
这一问题学生可通过“平方根的意义”的讲解过程具体的解答出来,具体解题步骤:解:设正方体的棱长为x dm,则一个正方体的表面积为6x2dm2列出方程:60x2=1500x2=25x=±5因为x为棱长不能为负值,所以x=5即:正方体的棱长为5dm。
1、用直接开平方法解一元二次方程(1)定义:运用平方根的定义直接开方求出一元二次方程解。
(2)备注:用直接开平方法解一元二次方程,实质是把一个一元二次方程“降次”,转化为两个一元二次方程来求方程的根。
问题2:要使一块矩形场地的长比宽多6cm,并且面积为16㎡,场地的长和宽应各为多少?问题2重在引出用配方法解一元二次方程。
21.2.1第1课时用直接开平方法解一元二次方程课件
第1课时 用直接开平方法解 一元二次方程
一、教学目标
1.会利用开平方法解形如x2=p(p≥0)的方程. 2.初步了解形如(x+n)2=p(p≥0)方程的解法. 3.能根据具体问题的实际意义检验结果的合理性.
二、教学重难点
重点 运用直接开平方法解形如(mx+n)2=p(p≥0)的一元二次 方程.
∴原方程的根为 x1=1+2 5,x2=1-2 5;
(2)原方程可化为(y-2)2=8,直接开平方得 y-2=±2 2, ∴原方程的根为 y1=2+2 2,y2=2-2 2; (3)原方程可化为 4(3x-1)2=9(3x+1)2,两边开平方得 2(3x -1)=±3(3x+1), ∴2(3x-1)=3(3x+1)或 2(3x-1)=-3(3x+1),
∴x1=-53,x2=-115.
例3 已知方程(x-3)2=k2+5的一个根是x=6,求k的 值和另一个根. 解:∵方程(x-3)2=k2+5的一个根是x=6,
∴(6-3)2=k2+5,解得k=±2, ∴原方程为(x-3)2=9, ∴另一个根为x=0.
练习
1.教材P6 练习. 2.若x2-2xy+y2=4,则x-y的值为( C )
提出问题: (1)一个正方体有几个面?若一个正方体的棱长为x dm ,则这个正方体的表面积是多少? (2)本题中的等量关系是什么?请概括该等量关系,列 出方程; (3)你能根据平方根的意义解方程 x2=25吗?本题中负 值为什么要舍去?
探究
对照上面解方Biblioteka (1)的过程,你认为应怎样解方程(x+3)²=5?
(1)一元二次方程与一元一次方程有什么不同?二次是 如何转化为一次的?
(2)请谈谈如何降次.
21.2.1解一元二次方程-直接开平方法(解析版)
人教版数学九年级上册同步练习21.2.1解一元二次方程-直接开平方法一.选择题(共12小题)1.方程2ax c =有实数根的条件是( )A. a≠0B. ac≠OC. ac≥OD. c a ≥O 【答案】D【解析】【分析】若方程ax 2=c 有解,那么a≠0,并且ac≥0,由此即可确定方程ax 2=c 有实数根的条件.【详解】∵ax 2=c ,若方程有解,∴a≠0,并且ac≥0, ∴0c a≥. 故选:D.【点睛】考查了直接开平方法解一元二次方程以及方程是否有解的问题,结合方程的形式和非负数的性质即可解决问题.2.对形如(x +m )2=n 的方程,下列说法正确的为( )A. 可用直接开平方法求得根xB. 当n ≥0时,x mC. 当n ≥0时,x mD. 当n ≥0时,x【答案】B【解析】【分析】解形如(x+m)2=n 的方程时,只有当n≥0时,方程有实数解.当n <0时,方程没有实数解.由此即可解答.【详解】(x +m )2=n (n≥0),x+m=∴x m.故选B.【点睛】本题考查了直接开平方法解一元二次方程,用直接开方法求一元二次方程的解的类型有:x2=a (a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.3.方程(x﹣3)2=m2的解是()A. x1=m,x2=﹣mB. x1=3+m,x2=3﹣mC. x1=3+m,x2=﹣3﹣mD. x1=3+m,x2=﹣3+m【答案】B【解析】【分析】方程利用平方根定义开方即可求出解.【详解】方程(x-3)2=m2,开方得:x-3=m或x-3=-m,解得:x1=3+m,x2=3-m,故选:B.【点睛】考查了解一元二次方程-直接开平方法,熟练掌握平方根定义是解本题的关键.4.下列方程中,适合用直接开方法解的个数有()①13x2=1;②(x﹣2)2=5;③14(x+3)2=3;④x2=x+3;⑤3x2﹣3=x2+1;⑥y2﹣2y﹣3=0A. 1B. 2C. 3D. 4 【答案】D【解析】【分析】直接开平方法必须具备两个条件:①方程的左边是一个完全平方式;②右边是非负数.根据这两个条件即可作出判断.【详解】①②③⑤都是或可变形为x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c,而这四种形式都可用直接开平方法,故选:D.【点睛】用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).5.方程(x+2)2=9的适当的解法是A. 直接开平方法B. 配方法C. 公式法D. 因式分解法【答案】A【解析】试题分析:根据方程特征可知选用直接开平方法最简便。
陕西省石泉县后柳中学九年级数学上册教案:21.2.1直接开平方法
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“直接开平方法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调直接开平方法的适用条件和正确运算这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解如何判断和执行直接开平方运算。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与直接开平方法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过实际操作,演示直接开平方法的基本原理。
三、教学难点与重点
1.教学重点
(1)理解直接开平方的概念:直接开平方是一元二次方程求解的一种特殊方法,适用于b² - 4ac = 0的情况。重点强调学生掌握直接开平方的定义及其适用条件。
举例:解一元二次方程x² + 6x + 9 = 0,使学生理解在b² - 4ac = 0时,可以直接开平方求解。
(2)掌握直接开平方方法的步骤:将一元二次方程化为标准形式,判断是否满足直接开平方的条件,然后直接求解。
(3)理解直接开平方的解题原理:学生需要理解直接开平方背后的数学原理,难点在于从理论上掌握直接开平方的依据。
举例:解释为何在b² - 4ac = 0时,可以直接开平方求解,以及这种解法的数学原理。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《直接开平方法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要求解平方的问题?”(如面积计算)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索直接开平方法的奥秘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(当 p≥0 时)
平方根 的意义
降次
x p
2
x a 1.如果 x2 a(a 0) ,则 就叫做 的 平方根 。
2.如果 x2 a(a 0) , 则x = a 。
x 3.如果x2 64,则 = 8 。
(1). χ2=4 (2). χ2-1=0
(1). χ2=25
(2). χ2-900=0
解:(1) χ2=25
(2)移项,得χ2=900
直接开平方,得 χ=±5
直接开平方,得 χ=±30
∴ χ1=5,χ2=-5
∴χ1=30 χ2=-30
例1:用开平方法解方程 9x2=4
解:两边同除以9,得 利用开平方法,得
x2 4 9
x2 3
所以,原方程的根是
2.方程(x-1)2=4的根是( ).
(A)3,-3 (B)3,-1 (C)2,-3 (D)3,-2
填一填
(1) x2 2x __1_2 __ (x __1_)2
(2) x2 8x _4__2__ (x__4_)2
(3)
y2
5
y
(__52_)_2 _
(
y
5
__2 _)2
(4)
y2
1 2
x1 3, x2 5.
上面这种解法中,实质上 是把一个一元二次方程 “降次”,转化为两个一
元一次方程。
用开平方法解下列方程: (1)3x2-27=0; (2)(x+1)2=4 (3)(2x-3)2=7
(1) x1 3, x2 3
(2) x1 1, x2 3
(3)
x1
3
2
7 , x2
3 2
1.直接开平方法的理论根据是 平方根的定义
2.用直接开平方法可解形如χ2=a(a≥0)或 (χ-a)2=b(b≥0)类的一元二次方程。
3.方程χ2=a(a≥0)的解为:χ= a
方程(χ-a)2=b(b≥0)的解为:χ= a b
小结中的两类方程为什么要加条件:a≥0,b≥0呢?
小练习
1.解方程:3x2+27=0得( ). (A)x=±3 (B)x=-3 (C)无实数根 (D)方程的根有无数个
对于方程(1),可以这样想:
∵ χ2=4
根据平方根的定义可知:χ是4的(平方根).
∴ χ= 4
即: χ=±2 这时,我们常用χ1、χ2来表示未知数为χ的一元 二次方程的两个根。 ∴ 方程 χ2=4的两个根为 χ1=2,χ2=-2.
利用平方根的定义直接开平方求一元二 次方程的解的方法叫直接开平方法。
7
2、利用直接开平方法解下列方程:
(1)(χ+1)2-4=0 (2) 12(2-χ)2-9=0
解方程:(x + 3)= 5.
x2-10x+25=9 变形为
x2-10x+16=0 变 形 为
这种方 程怎样 解?
的形式.(a为非负常数)
填空:
(1)方程x2+x=0的根是 X1=0, x2=-;1
(2)x2-25=0的根是 X1=5, x2=。-5
y
(__14_)_2
(
y
__14 _)2
它们之间有什么关系?
1.一般地,对于形如x2=a(a≥0)的方程,
根据平方根的定义,可解得 x1 a,x2 a
这种解一元二次方程的方法叫做直接开平方 法.
列方程10 6x2 1500
由此可得 x2 25
x 5,
即 x1 5,x2 5
这种解法叫做什么? 直接开平方法
经检验,5和-5是方程的根,但是棱长不能是负值, 所以正方体的棱长为5dm.
2.推导求根公式
问题2 解方程 x2 = 25,依据是什么? 解得 x1 = 5,x2 = - 5. 平方根的意义 请解下列方程: x2 = 3,2x2 - 8=0,x2 = 0,x2 = - 2… 这些方程有什么共同的特征?
(1)方程x2=0.25的根是 x1=0.5, x2=-0.5 ; (2)方程2x2=18的根是 x1=3, x2=-3; (3)方程(x+1)2=1的根是 x1=0, x2=-2 .
例4:怎样解方程 (x+1)2=16 ?
解:利用开平方法,得 可得
所以,原方程的根是
x 1 4 x 1 4
或x 1 4
一般地,对于形如x2=d(d≥0)的方程, 根据平方根的定义,可解得 这种解一元二次方程的方法叫做开平方法.
对于一元二次方程x2=d,如果d≥0,那么就可以用 开平方法求它的根。
当d>0时,方程有两个不相等的根:x1 d , x2 d
当d=0时,方程有两个相等的根: x1 x2 0
1、利用直接开平方法解下列方程:
x12 3, Nhomakorabeax2
2 3
.
例2:用开平方法解方程 3x2=-4
解:两边同除以3,得
x2 4 3
因为任何一个实数的平方根不可 能是负数,所以原方程没有实数根。
例3:用开平方法解方程 7x2+21=0
解:移项,得 7x2 21 两边同除以-7,得 x2 3
利用开平方法,得 x 3
所以,原方程的根是 x1 3, x2 3.
直接开平方法 解一元二次方程
1.创设情境,导入新知
你会解哪些方程,如何解的?
二元、三元 一次方程组
一元二次方程
消元 一元一次方程
降次
思考:如何解一元二次方程.
问题1
一桶油漆可刷的面积为1500dm² ,李林用这桶 油漆恰好刷完10个同样的正方体形状的盒子的 全部外表面,你能算出盒子的棱长吗?
设正方体的棱长为xdm,