【精品试题】(专题训练 状元笔记)数学:1.1 生活中的立体图形(北师大版七年级上册)

合集下载

七年级数学上册 1.1 生活中的立体图形 1.1.2 立体图形的构成同步练习 (新版)北师大版

七年级数学上册 1.1 生活中的立体图形 1.1.2 立体图形的构成同步练习 (新版)北师大版

1.1.2 立体图形的构成1.下雨时汽车的雨刷把玻璃上的雨水刷干净属于下列哪个选项的实际应用( ) A .点动成线 B .线动成面 C .面动成体 D .以上都不对2.将图8中的三角形绕直线l 旋转一周后,能得到如图9所示的图形的是()3.如图所示的立体图形是由________个面组成的,其中有________个面是平的,有________个面是曲的;面与面相交成________条线,其中曲的线有________条4.如图所示的几何体中,由4个面围成的几何体是()5.如图所示,陀螺是由下面哪两个几何体组合而成的( )A .长方体和圆锥B .长方形和三角形C .圆和三角形D .圆柱和圆锥6.下列几何体:①正方体;②圆柱;③圆锥;④长方体;⑤球;⑥五棱柱,其中有两个底面的是( )A .②④⑥B .①②⑥C .②③⑤D .①②④⑥ 7.观察图13中的圆柱和棱柱,通过想象回答下列问题: (1)该圆柱和棱柱各由几个面组成?这些面是平的还是曲的? (2)该圆柱的侧面与底面相交形成几条线?这些线是直的还是曲的? (3)该棱柱的侧面与下底面相交形成几条线? (4)该棱柱共有几个顶点?经过一个顶点有几条棱?8.下列几何体中,不能由一个平面图形通过旋转得到的是()9.如图所示的几何体是由下列哪个图形绕虚线旋转一周得到的( )周后形成的立体图形是( )2211. “枪打一条线,棍打一大片”这个现象说明:______________12.如图,画出旋转过程中得到的立体图形的示意图.图1913.我们曾学过圆柱的体积计算公式:V=Sh=πr2h(r是圆柱的底面半径,h是圆柱的高).现有一个长方形,它的长为2 cm,宽为1 cm,以它的一条边所在的直线为轴旋转一周,得到的几何体的体积是多少?第2课时立体图形的构成1.B 2.B 3.4 3 1 6 24.C5.D6.D7.解:(1)圆柱有3个面,底面是平的,侧面是曲的;六棱柱有8个面,这些面都是平的.(2)圆柱的侧面与底面相交形成2条线,这些线都是曲的.(3)该棱柱的侧面与下底面相交形成6条线.(4)该棱柱共有12个顶点,经过一个顶点有3条棱.8.D9.D10.D11.点动成线,线动成面12.解:如图所示:13.解:当以长方形的长所在的直线为轴旋转时,如图①所示,得到的圆柱的底面半径为1 cm,高为2 cm,其体积V=π×12×2=2π(cm3).当以长方形的宽所在的直线为轴旋转时,如图②所示,得到的圆柱的底面半径为2 cm,高为1 cm,其体积V=π×22×1=4π(cm3).综上可得,得到的几何体的体积是2πcm3或4πcm3.3。

1.1生活中的立体图形同步练习2024—2025学年北师大版数学七年级上册

1.1生活中的立体图形同步练习2024—2025学年北师大版数学七年级上册

1.1生活中的立体图形同步练习一、单选题1.下列几何体中,不属于多面体的是()A.B.C.D.2.如图是一个直六棱柱,它的棱共有多少条().A.6B.8C.12D.18 3.以AB为轴旋转一周后得到的立体图形是()A.B.C.D.4.如图,将直角三角形绕其斜边旋转一周,得到的几何体为()A.B.C.D.5.夜晚时,我们看到的流星划过属于()A.点动成线B.线动成面C.面动成体D.以上答案都不对6.中国扇文化有着深厚的文化底蕴;历来中国有“制扇王国”之称.如图,打开折扇时,随着扇骨的移动形成一个扇面,这种现象可以用数学原理解释为()A.点动成线B.线动成面C.面动成体D.两点确定一条直线7.下列物体中,给我们以“圆柱”形象的是()A.B.C.D.8.下列说法错误的是()A.长方体、正方体都是棱柱B.三棱柱的侧面是三角形C.直六棱柱有六个侧面且侧面为长方形D.棱柱的底面都是多边形9.将一个等腰三角形绕它的底边旋转一周得到的几何体为()A.B.C.D.10.下列说法不正确的是()A.长方体是四棱柱B.八棱柱有8个面C.六棱柱有12个顶点D.经过棱柱的每个顶点有3条棱二、填空题11.分针旋转一周时,形成一个圆面,用数学知识可以理解为.12.若一个棱柱有9个面,则它是棱柱.13.用32个棱长1cm的白色小正方体与32个棱长1cm的蓝色小正方体拼成一个大正方体.如果使蓝色的面向外露的面积最大,那么这个大正方体的6个面上有( )2cm是蓝色的.14.将如图所示的直角三角形线直线l旋转一周,得到的立体图形是,以上过程可以说明的数学知识是;15.如图,请在每个几何体右边写出它们的名称:(1);(2);(3);(4);(5);(6);(7);(8).16.图中的大长方形长10厘米、宽8厘米,小长方形长4厘米、宽3厘米,以长边中点连线(图中的虚线)为轴,将图中的阴影部分旋转一周得到的几何体的表面积为平方厘米.三、解答题17.如图,已知一个直四棱柱的底面边长都是1cm,高为2cm,请求出:(1)四棱柱有______条棱,______个面;(2)四棱柱所有棱长的和;(3)四棱柱的侧面积总和.18.一个正n棱柱,它有24条棱,一条侧棱长为12cm,一条底面边长为5cm.(1)试判断它是几棱柱?(2)求此棱柱的侧面积是多少?19.如图1至图3是将正方体截去一部分后得到的多面体.(1)根据要求填写表格:面数(f)顶点数(v)棱数(e)图1图2图3(2)猜想f、v、e三个数量间有何关系;(3)根据猜想计算,若一个多面体有顶点数2013个,棱数4023条,试求出它的面数. 20.把下列物体与其对应的立体图形连接起来:21.我们知道,将一个长方形绕它的一条边所在的直线旋转一周,得到的几何体是圆柱.现有一个长为6cm,宽为4cm的长方形,将这个长方形绕某条边所在直线旋转一周,求所得圆柱的体积是多少?(结果保留 )22.如图是一张长方形纸片,长方形的长为8cm,宽为4cm.(1)若将此长方形纸片绕它的一边所在直线旋转一周,形成的几何体是什么?(2)求将此长方形纸片绕它的一边所在直线旋转一周形成的几何体的体积.(结果保留π)。

北师大版七年级上册《1.1生活中的立体图形》同步练习含答案

北师大版七年级上册《1.1生活中的立体图形》同步练习含答案

北师大新版七年级上册《1.1 生活中的立体图形》同步练习一.选择题(共12小题)1.下列说法错误的是()A.长方体和正方体都是四棱柱B.五棱柱的底面是五边形C.n棱柱有n条侧棱,n个面D.若棱柱的底面边长相等,则它的各个侧面面积相等2.如图所示的平面图形绕直线l旋转一周,可以得到的立体图形是()A.B.C.D.3.如图,一个有盖的圆柱形玻璃杯中装有半杯水,若任意放置这个水杯,则水面的形状不可能是()A.B.C.D.4.下列关于长方体面的四个说法错误的是()A.长方体的每个面都是长方形B.长方体中每两个面都互相垂直C.长方体中相对的两个面的面积相等D.长方体中与一个面垂直的面有四个5.如图所示立方体中,过棱BB1和平面CD1垂直的平面有()A.1个B.2个C.3个D.0个6.如图,模块①由15个棱长为1的小正方体构成,模块②﹣⑥均由4个棱长为1的小正方体构成.现在从模块②﹣⑥中选出三个模块放到模块①上,与模块①组成一个棱长为3的大正方体.下列四个方案中,符合上述要求的是()A.模块②,⑤,⑥ B.模块③,④,⑥ C.模块②,④,⑤ D.模块③,⑤,⑥7.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是()A.正方体B.球C.圆锥D.圆柱体8.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()A.B.C.D.9.面与面相交,形成的是()A.点B.线C.面D.体10.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.11.将下列图形绕着直线旋转一周正好得到如图所示的图形的是()A.B.C.D.12.将一个棱长为3的正方体的表面涂上颜色,分割成棱长为1的小正方体(如图).设其中一面、两面、三面涂色的小正方体的个数分别为为x1、x2、x3,则x1、x2、x3之间的关系为()A.x1﹣x2+x3=1 B.x1+x2﹣x3=1 C.x1﹣x2+x3=2 D.x1+x2﹣x3=2二.填空题(共10小题)13.若一个正方体所有棱的和是60cm,则它的体积是cm3.14.一个棱柱共有18个顶点,所有的侧棱长的和是72厘米,则每条侧棱长是厘米.15.第一行的图形绕虚线转一周,能形成第二行的某个几何体,用线连起来.16.如图所示图形绕图示的虚线旋转一周,(1)能形成,(2)能形成,(3)能形成.17.棱柱侧面的形状可能是一个三角形(判断对错)18.五棱柱有个面,个顶点,条侧棱,n棱柱有个面,个顶点,条棱.19.将一个半圆绕它的直径所在的直线旋转一周得到的几何体是.20.某产品是长方体,它的长、宽、高分别为10cm、8cm、6cm,将12个这种产品摆放成一个大的长方体,则此大长方体的表面积最少为cm2.21.10个棱长为1的正方体,如果摆放成如图所示的上下三层,那么该物体的表面积为;依图中摆放方法类推,继续添加相同的正方体,如果该物体摆放了上下100层,那么该物体的表面积为.22.将如图所示半圆形薄片绕轴旋转一周,得到的几何体是,这一现象说明.三.解答题(共5小题)23.底面半径为10cm,高为40cm的圆柱形水桶中装满了水.小明先将桶中的水倒满3个底面半径为3cm,高为5cm的圆柱形杯子,如果剩下的水倒在长、宽、高分别为50cm,20cm和12cm的长方体容器内,会满出来吗?若没有满出来,求出长方体容器内水的高度(π取3).24.(1)用斜二侧画法补画下面的图形,使之成为长方体的直观图(虚线表示被遮住的线段;只要在已有图形基础上画出长方体,不必写画法步骤).(2)在这一长方体中,从同一顶点出发的三条棱出发的三条棱的棱长之比是5:7:2,其中最长的棱和最短的棱长之差为10cm,求这个长方体的棱长和总和.25.棱长为a的正方体,摆放成如图所示的形状.(1)如果这一物体摆放三层,试求该物体的表面积;(2)依图中摆放方法类推,如果该物体摆放了上下20层,求该物体的表面积.26.如图是一个长为4cm,宽为3cm的长方形纸片(1)若将此长方形纸片绕长边或短边所在直线旋转一周,能形成的几何体是,这能说明的事实是.(2)求:当此长方形纸片绕长边所在直线旋转一周时(如图1),所形成的几何体的体积.(3)求:当此长方形纸片绕短边所在直线旋转一周时(如图2),所形成的几何体的体积.27.探究:将一个正方体表面全部涂上颜色(1)把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体,我们把仅有i个面涂色的小正方体的个数记为x i,那么x3=,x2=,x1=,x0=;(2)如果把正方体的棱四等分,同样沿等分线把正方体切开,得到64个小正方体,那么x3=,x2=,x l=,x0=;(3)如果把正方体的棱n等分(n≥3),然后沿等分线把正方体切开,得到n3个小正方体,那么:x3=,x2=,x1=,x0=;参考答案一.选择题1.C.2.C.3.C.4.B.5.A.6.A.7.D.8.A.9.B.10.B.11.A.12.C.二.填空题13.125.14.8.15..16.圆柱;圆锥;球.17.×.18.7,10,5,(n+2),2n,3n.19.球20.1936.21.30300.22.球,面动成体.三.解答题23.解:3×102×40﹣3×32×5×3=12000﹣405=11595(cm3),长方体的容积为:50×20×12=12000cm3.∵12000>11595,∴不会满出来.11595÷(50×20)=11.595cm.∴长方体容器内水的高度11.595cm.24.解:(1)如图所示:(2)设这三条棱的棱长分别为5xcm、7xcm、2xcm,7x﹣2x=10,解得:x=2,则棱长的总和为4(7×2+5×2+2×2)=112cm.25.解:(1)6×(1+2+3)•a2=36a2.故该物体的表面积为36a2;(2)6×(1+2+3+…+20)•a2=1260a2.故该物体的表面积为1260a2.26.解:(1)若将此长方形纸片绕长边或短边所在直线旋转一周,能形成的几何体是圆柱,这能说明的事实是面动成体;(2)绕长边旋转得到的圆柱的底面半径为3cm,高为4cm,体积=π×32×4=36πcm3;(3)绕短边旋转得到的圆柱底面半径为4cm,高为3cm,体积=π×42×3=48πcm3.故答案为:圆柱;面动成体.27.解:(1)根据长方体的分割规律可得x3=8,x2=12,x1=6,x0=1;(2)把正方体的棱四等分时,顶点处的小正方体三面涂色共8个;有一条边在棱上的正方体有24个,两面涂色;每个面的正中间的4个只有一面涂色,共有24个;正方体正中心处的8个小正方体各面都没有涂色.故x3=8,x2=24,x1=24,x0=8;(3)由以上可发现规律:三面涂色8,二面涂色12(n﹣2),一面涂色6(n﹣2)2,各面均不涂色(n﹣2)3。

北师版七年级上1.1生活中的立体图形同步习题有答案和解析

北师版七年级上1.1生活中的立体图形同步习题有答案和解析

第一章丰富的图形世界1生活中的立体图形第1课时生活中的立体图形预习要点:1.写出下列几何体名称。

2.在下图中标出六棱柱的顶点、侧棱、侧面和底面3.在棱柱中,相邻两个面的交线叫做,相邻两个侧面的交线叫做,棱柱的所有长都相等,棱柱的上、下底面的形状相同。

侧面的形状都是。

4.长方体、正方体都是棱柱,棱往可以分为和,的侧面是长方形。

5.(2019•丽水)下列图形中,属于立体图形的是()A.B.C.D.6.下列说法正确的是()①教科书是长方形;②教科书是长方体,也是棱柱;③教科书的表面是长方形.A.①②B.①③C.②③D.①②③7.埃及金字塔类似于几何体()A.圆锥B.圆柱C.棱锥D.棱柱8.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球9.六棱柱有面.10.在正方体、长方体、球、圆柱、圆锥、三棱柱这些几何体中,不属于柱体的有,属于四棱柱的有.11.若一直棱柱有10个顶点,那么它共有条棱.同步小题12道一.选择题1.下列几何图形是立体图形的是()A.扇形B.长方形C.正方体D.圆2.下面的几何体中,属于棱柱的有()A.1个B.2个C.3个D.4个3.下列物体的形状类似于球的是()A.乒乓球B.羽毛球C.茶杯D.白织灯泡4.下列几何图形中,属于圆锥的是()A.B.C.D.5.三棱柱的顶点个数是()A.3 B.4 C.5 D.66.下列说法不正确的是()A.长方体与正方体都有六个面B.圆锥的底面是圆C.棱柱的上下底面是完全相同的图形D.五棱柱有五个面,五条棱二.填空题7.下列图形中,是柱体的有.(填序号)8.如果一个六棱柱的一条侧棱长为5cm,那么所有侧棱之和为.9.一个棱柱的棱数恰是其面数的2倍,则这个棱柱的顶点个数是.10.若一个直棱柱共有12个顶点,所有侧棱长的和等于60,则每条侧棱的长为.三.解答题11.将下列几何体与它的名称连接起来.12.如图,一个正五棱柱的底面边长为2cm,高为4cm.(1)这个棱柱共有多少个面?计算它的侧面积;(2)这个棱柱共有多少个顶点?有多少条棱?(3)试用含有n的代数式表示n棱柱的顶点数、面数与棱的条数.第2课时图形变换预习要点:1.图形是由点、线、面构成的。

数学北师大版七年级上册1.1《生活中的立体图形》同步训练(含解析)

数学北师大版七年级上册1.1《生活中的立体图形》同步训练(含解析)

20212021数学北师大版七年级上册1.1《生活中的立体图形》同步训练一、选择题1.下面几何体中,全是由曲面围成的是()A.圆柱B.圆锥C.球D.正方体2.下列说法错误的是()A. 长方体、正方体都是棱柱B. 三棱柱的侧面是三角形C. 直六棱柱有六个侧面、侧面为矩形D. 球体的三种视图均为同样大小的图形3.下列立体图形中,有五个面的是()A. 四棱锥B. 五棱锥C. 四棱柱D. 五棱柱4.将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A. B. C. D.5.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是()A. 3B. 9C. 12D. 18二、填空题6.一个直棱柱有12条棱,则它是________棱柱.7.一个几何体的面数为12,棱数为30,它的顶点数为________.8.如图,在长方体ABCDEFGH中,与平面ADHE垂直的棱共有________条.9.两个完全相同的长方体的长.宽.高分别为5cm.4cm.3cm,把它们叠放在一起组成个新长方体,在这个新长方体中,体积是________cm3,最大表面积是________cm2.10.一只小蚂蚁从如图所示的正方体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数一数,小蚂蚁有________种爬行路线.三、解答题11.从棱长为2的正方体毛坯的一角挖去一个棱长为1的小正方体,得到一个如图的零件,求:(1)这个零件的表面积(包括底面);(2)这个零件的体积.12.有3个棱长分别是3cm,4cm,5cm的正方体组合成如图所示的图形.其露在外面的表面积是多少?(整个立体图形摆放在地上)13.现有一个长为5cm,宽为4cm的长方形,绕它的一边旋转一周,得到的几何体的体积是多少?14.已知长方形的长为4cm.宽为3cm,将其绕它的一边所在的直线旋转一周,得到一个几何体,(1)求此几何体的体积;(2)求此几何体的表面积.(结果保留π)15.观察图形,回答下列问题:(1)图 是由几个面组成的,这些面有什么特征?(2)图②是由几个面组成的,这些面有什么特征?(3)图①中共形成了多少条线?这些线都是直的吗?图②呢?(4)图①和图②中各有几个顶点?答案解析部分一、选择题1.【答案】C【考点】几何体的表面积【解析】【解答】解:A、圆柱由上下两个平面和侧面一个曲面组成,不符合题意;B、圆锥由侧面一个曲面和底面一个平面组成,不符合题意;C、球只有一个曲面组成,符合题意;D、正方体是由六个平面组成,不符合题意.故答案为:C.【分析】圆锥两个面围成,一个曲面,一个平面;圆柱三个面围成,一个曲面,两个平面;正方体由6个面围成,六个面都是平面;球球只有一个曲面组成。

北师大版七年级上册数学1.1生活中的立体图形(定稿)

北师大版七年级上册数学1.1生活中的立体图形(定稿)

(4 )
(5 )
(6)
锥体: (5)
球体: (3)
柱体: (1)(2)(4)(6)
练习4
1
2
3
有曲面:(3)(4)(5) 无曲面: (1)(2)(6)
4
5
6
有顶点: (1)(2)(5)(6) 无顶点: (3)(4)
知识点2
棱柱是按底面的边数来命名的
三棱柱
棱 柱
四棱柱
五棱柱
• • • • • • 六棱柱
棱锥
1.生活中常见的立体图形分为球体、柱体、椎体
圆柱
棱柱
柱 体



棱锥
圆锥
球体
1.生活中常见的立体图形分为球体、柱体、椎体
棱柱

柱体 圆柱

图 球体
棱柱:两个面互相平行且相同, 其余各面都是平行四边形
圆柱:两个底面平行且为圆面, 侧面是曲的面

棱锥
锥体
圆锥
棱锥:有一个面是多边形,其余 各面是有一个公共顶点的三角形
圆锥:底面是圆,侧面是曲的面
2.常见的几何体的分类
(1)按照围成几何体的面有无曲面分类: 有曲面: 无曲面:
(2)按照有无顶点分类: 有顶点: 无顶点:
练习1
下列图形中为圆柱的是 (4)
圆台
(5)
棱台
上述图形中为棱柱的是 (2)
练习2
观察下面的几何体,哪些是棱柱?
练习3
(1 )
(2)
(3 )
有多个顶点.
补充:圆柱与圆锥有什么相同点与不同点?
底面、侧面、顶点
几何体 图形
不同点大小相同 的底面; 无顶点.
有一个底面, 有一个顶点.

《1.1生活中的立体图形》同步能力提升训练(附答案)2021-2022学年七年级数学北师大版上册

《1.1生活中的立体图形》同步能力提升训练(附答案)2021-2022学年七年级数学北师大版上册

2021年北师大版七年级数学上册《1.1生活中的立体图形》同步能力提升训练(附答案)1.三棱柱的顶点个数是()A.3B.6C.9D.122.若一个棱柱有24条棱,则它的底面一定是()A.四边形B.六边形C.八边形D.十二边形3.下面的几何体中,哪一个不能由平面图形绕某直线旋转一周得到()A.B.C.D.4.几何图形都是由点、线、面、体组成的,点动成线,线动成面,面动成体,下列生活现象中可以反映“点动成线”的是()A.流星划过夜空B.打开折扇C.汽车雨刷的转动D.旋转门的旋转5.一个直棱柱一共有21条棱,那么这个棱柱的底面的形状是.6.已知有一个长为5,宽为3的长方形,若以这个长方形的长边所在的直线为轴,将它旋转一周,则所得的几何体的体积为(结果保留π).7.如果将两个棱长分别为3cm、5cm、7cm的相同的长方体拼成一个大长方体,那么它们的表面积(前后)最多减少(cm)2.8.如果一个棱柱是由15个面围成的,那么这个棱柱是棱柱.9.在几何图形“线段、圆、圆锥、正方体、角、棱锥”中,属于立体图形的共有个.10.若一个棱柱有十个顶点,则它有个面,有条棱.11.笔尖可以看作一个点,这个点在纸上运动时就形成了线,这可以说点动成线;汽车的雨刷在档风玻璃上画出一个扇面,这可以说.12.薄薄的硬币在桌面上转动时,看上去像球,这说明了.13.长为4,宽为2的矩形绕其一边旋转构成一个圆柱的最大体积为.(结果保留π)14.如图所示,下列图形绕着虚线旋转一周得到的几何体分别是:(1);(2);(3).15.一根长方体木料长2米,当把它按如图方式截成4个小长方体木料时,表面积比原来增加了84平方厘米,则原来的体积是立方厘米.16.一个直棱柱有八个面,所有侧棱长的和为36cm,则每条侧棱的长是cm.17.以三角形一直角边为轴旋转一周形成.18.已知一个直角三角形的两直角边分别是6cm,8cm.将这个直角三角形绕它的一直角边所在直线旋转一周,可以得到一个圆锥,则这个圆锥的体积是cm3.(结果用π表示)19.有一个硬纸做成的礼品盒,用彩带扎住(如图),打结处用去的彩带长18厘米.(1)共需要彩带多少厘米?(2)做这样一个礼品盒至少要多少硬纸?(3)这个礼品盒的体积是多少?(π取3.14)20.已知一个直棱柱有8个面,它的底面边长都是5cm,侧棱长都是4cm.(1)它是几棱柱?它有多少个顶点?多少条棱?(2)这个棱柱的所有侧面的面积之和是多少?参考答案1.解:一个直三棱柱是由两个三边形的底面和3个长方形的侧面组成,根据其特征及欧拉公式V+F﹣E=2可知,它有6个顶点.故选:B.2.解:n棱柱有3n条棱,又24÷3=8,因此底面是八边形,故选:C.3.解:A.将“半圆”绕着其直径所在的直线,旋转一周所形成的几何体是“球”,因此选项A不符合题意;B.由于正方体的六个面都是“平面”,因此不可能是某个平面图形旋转得到的,因此选项B符合题意;C.将“直角三角形”绕着一条直角边所在的直线,旋转一周所形成的几何体是“圆锥”,因此选项C不符合题意;D.将“长方体”绕着一条边所在的直线,旋转一周所形成的几何体是“圆柱”,因此选项D不符合题意;故选:B.4.解:A、流星划过夜空,属于点动成线,本选项符合题意.B、打开折扇,属于线动成面,本选项不符合题意.C、汽车雨刷的转动,属于线动成面,本选项不符合题意.D、旋转门的旋转,属于面动成体,本选项不符合题意,故选:A.5.解:设这个棱柱为n棱柱,∵一个直n棱柱有3n条棱,∴21÷3=7,七棱柱的底面形状为七边形,故答案为:七边形.6.解:长方形绕一边旋转一周,得圆柱,所得的几何体的体积为:π×32×5=45π.故答案为:45π.7.解:将两个长方体拼在一起时,接触面积越大减小的面积越大,∴将长是7cm,宽是5cm的两个面拼在一起时减少的面积最多,即7×5×2=70(cm2),故答案为:70.8.解:一个棱柱是由15个面围成的,则有2个底面,13个侧面,因此此立体图形是十三棱柱,故答案为:十三.9.解:在几何图形“线段、圆、圆锥、正方体、角、棱锥”中,属于立体图形的有圆锥、正方体、棱锥共3个.故答案为:3.10.解:由棱柱的特点可知,这是一个五棱柱,故它有7个面,有15条棱.故答案为:7、15.11.解:汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.故答案为:线动成面.12.解:从运动的观点可知,薄薄的硬币在桌面上转动时,看上去像球,这种现象说明面动成体.故答案为:面动成体.13.解:分两种情况:①绕长所在的直线旋转一周得到圆柱体积为:π×22×4=16π(cm3);②绕宽所在的直线旋转一周得到圆柱体积为:π×42×2=32π(cm3).16πcm3<32πcm3.故答案为:32π14.解:(1)绕虚线旋转可得球;(2)绕虚线旋转可得圆柱;(3)绕虚线旋转可得圆锥;故答案为:球;圆柱;圆锥.15.解:∵截成4个小长方体木料时,表面积比原来增加了6个长方形∴每一个长方形的面积为84÷6=14平方厘米,∴原来的体积为:14×200=2800立方厘米,故答案为:2800.16.解:∵一个直棱柱有八个面,∴这个直棱柱是六棱柱,因此每条侧棱的长为36÷6=6(cm),故答案为:6.17.解:以三角形一直角边为轴旋转一周形成圆锥,故答案是:圆锥.18.解:分两种情况:①×π×82×6=×π×64×6=128π(cm3);②×π×62×8=×π×36×8=96π(cm3).∴这个圆锥的体积是128π或96π立方厘米.故答案为:128π或96π.19.解:(1)50×4+20×4+18=298(cm),(2)π×()2×2+π×20×50=200π+1000π=1200π(cm2),(3)π×()2×50=5000π≈15700(cm3),答:做这样一个礼品盒共需要彩带298厘米;至少要1200π平方厘米的硬纸;这个礼品盒的体积约为15700立方厘米.20.解:因为一个直棱柱有8个面,所以它是六棱柱,所以有12个顶点,18条棱,答:它是六棱柱,它有12个顶点,18条棱;(2)因为六棱柱的底面边长都是5cm,侧棱长都是4cm.所以侧面展开后是长为5×6=30cm,宽为4cm的长方形,因此侧面积为30×4=120(cm2),答:这个棱柱的所有侧面的面积之和是120cm2.。

(名师整理)最新北师大版数学七年级上册第1章第1节《生活中的立体图形》精品习题课件

(名师整理)最新北师大版数学七年级上册第1章第1节《生活中的立体图形》精品习题课件

【点拨】根据柱体、锥体的定义及组成作答. 【答案】B
7.下列说法正确的是( A ) A.三棱柱有九条棱 B.正方体不是四棱柱 C.五棱柱则下列说法正确的是( B ) A.这个棱柱有4个侧面 B.这个棱柱有5条侧棱 C.这个棱柱的底面是十边形 D.以上都不正确
解:相同点:底面为圆, 侧面为曲面; 不同点:题图①有两个底 面,题图②有一个底面.
(2)比较图①与图③的异同点;
解:相同点:都有两个底面,且 两个底面平行且相等; 不同点:题图①的底面为圆,侧 面为曲面;题图③的底面为五边 形,侧面为五个长方形.
(3)比较图②与图③的异同点.
解:相同点:无; 不同点:题图②有一个底面, 且底面为圆,侧面为曲面;题 图③有两个底面,且底面为五 边形,侧面为五个长方形.
点――动→线直曲线线――――动动→→平曲面面――动→体(立体图形)
33
光读书不思考也许能使平庸之辈知识 丰富,但它决不能使他们头脑清醒。
—— 约·诺里斯
*9.【中考•南京】不透明的袋子中装有一个几何体模型, 两位同学摸该模型并描述它的特征.
甲同学:它有4个面是三角形.乙同学:它有8条棱. 该模型的形状对应的立体图形可能是( ) A.三棱柱 B.四棱柱 C.三棱锥 D.四棱锥
【点拨】本题考查了关于棱锥与棱柱的面数、棱数的问题, 熟悉棱柱、棱锥的特征是解题的关键.
(2)这个五棱柱的所有侧面的面积之和是多少?
解:这个五棱柱的所有侧面的面积之和是4×7×5= 140(cm2).
(3)这个五棱柱一共有多少条棱?它们的长度之和是多少?
解:这个五棱柱一共有15条棱,它们的长度之和是 4×10+5×7=75(cm).
14.【2019•凉山州】观察下列立体图形,并把下表补充 完整.

北师大版七年级数学上册 1 1 生活中的立体图形同步练习(Word版含答案)

北师大版七年级数学上册 1 1 生活中的立体图形同步练习(Word版含答案)

北师大版七年级上 1.1 生活中的立体图形一、选择题(共10小题)1. 如图所示,几何体的主视图是( )A. B.C. D.2. 图中几何体的俯视图是( )A. B.C. D.3. 用4个小立方体搭成如图摆放的几何体,下面视图是几何体主视图的是( )A. B.C. D.4. 如图,由三个小立方体搭成的几何体的俯视图是( )A. B.C. D.5. 如图是某物体的三视图,则这个物体的形状是( )A. 四面体B. 直三棱柱C. 直四棱柱D. 直五棱柱6. 如图是一个几何体的三视图,则该几何体的展开图可以是( )A. B.C. D.7. 如图,立体图形由小正方体组成,这个立体图形有小正方体( )A. 9个B. 10个C. 11个D. 12个8. 将如图所示的直角梯形绕直线l旋转一周,得到的立体图形是( )A. B.C. D.9. 下列四个图形中是正方体的平面展开图的是( )A. B.C. D.10. 已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为( )A. πB. 4πC. π或4πD. 2π或4π二、填空题(共5小题)11. 下列图形中,是平面图形的有,是立体图形的有.12. 如图所示,将图沿实线折起来得到一个正方体,那么“5”的对面是(填编号).13. 有底面为正方形的直四棱柱容器A和圆柱形容器B,容器材质相同,厚度忽略不计.如果它们的主视图是完全相同的矩形,那么将B容器盛满水,全部倒入A容器,则结果是.(填“溢出”“刚好装满”“未装满”)14. 如图,已知某几何体的三视图,则这个几何体是.15. 在市委、市政府的领导下,全市人民齐心协力,努力将我市创建为“全国文明城市”,为此学生小红特制了一个正方体玩具,其展开图如图所示,则原正方体中与“文”字所对的面上标的字应是.三、解答题(共5小题)16. 将图①的正方体切去一块,不同的切法可以得到图②−⑤的几何体,它们各有多少个面?多少条棱?多少个顶点?17. 如图所示是由几个小正方块所组成的几何体俯视图,小正方形中的数字表示在该位置小正方块的个数,请你画出这个几何体的正视图和左视图.18. 如图是一个食品包装盒的表面展开图.(1)请写出这个包装盒的多面体形状的名称.(2)请根据图中所标的尺寸,计算这个多面体的表面积和体积.19. 如图所示是n个小正方体搭成的几何体的俯视图,请分别画出它的主视图和左视图.20. 如图中的一些积木是由16块棱长为2cm的正方体堆成的,它的表面积是多少平方厘米?答案1. A2. D3. C4. A5. B6. A7. C8. C【解析】图是一个直角梯形,上底短,下底长,绕对称轴旋转后上底形成的圆小于下底形成的圆, 因此得到的立体图形应该是一个圆台.9. B10. C【解析】题意可知,圆柱底面圆的周长为 4π 或 2π,∴ 圆柱底面圆的半径为 2 或 1,∴ 圆柱底面圆的面积为 4π 或 π.11. ①②④⑤⑥⑧,③⑦⑨【解析】根据平面图形和立体图形的区别,进行辨别即可.12. 113. 未装满14. 四棱锥15. 城16. 图形面(个)棱(条)顶点(个)②71510③7149④7138⑤712717. 如图所示:18. (1)长方体.(2)表面积是4ab+2b2,体积是ab2.19. 如图所示:20. 上面和下面的面积为2×9×(2×2)=72(cm2);前面和后面的面积为2×7×(2×2)=56(cm2);两个侧面的面积为2×8×(2×2)=64(cm2);中间缺口处还有2个面,其面积为2×(2×2)=8(cm2).因为72+56+64+8=200(cm2),所以这个几何体的表面积为200cm2.。

《生活中的立体图形》新题精炼 2022年北师大版数学七上

《生活中的立体图形》新题精炼 2022年北师大版数学七上

生活中的立体图形新题精炼根底稳固 1.如图1—1—17观察以下实物模型,其形状是圆柱体的是〔 〕2.以下图形中不是立体图形的是〔 〕3.如图1—1—18是一个生日蛋糕盒,这个盒子有几条棱〔 〕A .6条B .12条C .18条D .24条4.以下立体图形中,有五个面的是〔 〕A .四棱锥B .五棱锥C .四棱柱D .五棱柱5.将下面的直角梯形绕直线l 旋转一周,可以得到如图1—1—19立体图形的是〔 〕6. 汽车的雨刷把玻璃上的雨水刷干净属于的实际应用是〔 〕A .点动成线B .线动成面C .面动成体D .以上都不对7.假设一个棱柱的底面是一个七边形,那么它的侧面必须有_____个长方形,它一共有_____个面,______个顶点.8.一个棱柱有18条棱,那么它的底面一定是______边形.A .B .C .D . 1—1—17A .B .C .D . 1—1—19 1—1—189.六棱柱有_____个顶点,有_______条侧棱.10.如图1—1—20至少找出以下几何体的4个共同点.11.〔1〕如图1—1—21下面这些根本图形和你很熟悉,试一试在括号里写出它们的名称.〔2〕将这些几何体分类,并写出分类的理由.如图1—1—22下面的图形表示四棱柱的是〔 〕能力提升12.多面体是由多个平面围成的几何体,如图1—1—23以下几何体中,属于多面体的有〔 〕A .2个B .3个C .4个D .5个1—1—20 〔 〕 〔 〕 〔 〕 〔 〕 〔 〕1—1—21 1—1—23 1—1—2213.假设一个直四棱柱的底面是边长为1cm的正方形,侧棱长为2cm,那么这个直棱柱的体积是______________cm3.14.〔1〕探索:如果把一个多面体的顶点数记为V,棱数记为E,面数记为F,填写下表.〔3〕验证:再找出一个多面体,数一数它有几个顶点,几条棱,几个面,看看面数、顶点数、棱数是否满足上述关系.〔4〕应用〔2〕的结论对所有的多面体都成立,伟大的数学家欧拉证明了这个关系式,上述关系式叫做欧拉公式.根据欧拉公式,想一想会不会有一个多面体,它有10个面,30条棱,20个顶点?新题精炼答案根底稳固1.D思路导引:圆柱的上下底面都是圆,所以正确的选项是D.2.C思路导引:圆是平面图形3.C思路导引:观察图形可知上下面的棱数都是6,侧面的棱数是6.那么这个盒子的棱数为:6+6+6=18.4.A思路导引:要明确棱柱和棱锥的组成情况,棱柱有两个底面,棱锥有一个底面.5.B面动成体.由题目中的图示可知:此几何体是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.6.B 思路导引:汽汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.7.7,9,14思路导引: n棱柱有个侧面且都是长方形,有〔n+2〕个面,2n个顶点.8.六思路导引: n棱柱有3n条棱,两个底面共有2n条,每个底面n条棱,即故底面有n条边.9.7.12,6思路导引通过观察六棱柱可知,六棱柱有12个顶点、有六条侧棱.点拨:我们知道四棱柱有8个顶点,五棱柱有10个顶点,六棱柱有四个顶点……,以此类推n棱柱有2×n个顶点.10.思路导引:观察图形,可以从图形的组成、侧面等答复.解:答案不惟一,如:都由平面组成,侧面都是长方形,都有上下底面,都有侧棱等.11.〔1〕针对立体图形的特征,直接填写它们的名称即可.〔2〕可以按柱体、锥体和球进行分类,也可以按平面和曲面进行分类,方法不同,答案不同,只要合理即可.解:〔1〕从左向右依次是:球、圆柱、圆锥、长方体、三棱柱.〔2〕观察图形,按柱、锥、球划分,那么有圆柱、长方体、三棱柱为柱体;圆锥为锥体;球为球体.能力提升12.A思路导引:根据多面体意义,没有曲面参与围成,故只有第二、四符合要求.13.2思路导引:根据棱柱体积等于底面积乘以高代入求解即可.1.3 截一个几何体一、判断题1.用一个平面去截一个正方体,截出的面一定是正方形或长方形.〔〕2.用一个平面去截一个圆柱,截出的面一定是圆.〔〕3.用一个平面去截圆锥,截出的面一定是三角形.〔〕4.用一个平面去截一个球,无论如何截,截面都是一个圆.〔〕二、填空题5.用一个平面去截一个球体所得的截面图形是__________.6.如图1,长方体中截面BB1D1D是长方体的对角面,它是__________.7.在正方体中经过从一个顶点出发的三条棱的中点的截面是_________.三、选择题8.用一个平面去截圆锥,得到的平面不可能是〔〕9.用一个平面去截一个圆柱,得到的图形不可能是〔〕10.用一个平面去截一个正方体,截面图形不可能是〔〕A.长方形; B.梯形; C.三角形; D.圆11.用一个平面去截一个几何体,如果截面的形状是圆,那么这个几何体不可能是〔〕A.圆柱; B.圆锥; C.正方体; D.球12.截去四边形的一个角,剩余图形不可能是〔〕A.三角形; B.四边形; C.五边形; D.圆四、解答题13.用平面去截一个正方体,截面的形状可能是平行四边形吗?截一截,想一想.14.用一个平面去截圆锥,可以得到几种不同的图形?动手试一试.15.指出以下几何体的截面形状.______________________ 16.编写一道自己感兴趣并与本节内容相关的题,解答出来.参考答案一、1.×2.×3.×4.√二、5.圆6.矩形7.三角形三、8.C9.D 10.D11.C12.D 四、13.可能14.略15.四、五边形圆形16.略。

北师大版七年级数学上册《生活中的立体图形》知识全解(含答案)

北师大版七年级数学上册《生活中的立体图形》知识全解(含答案)

1.1 生活中的立体图形新知概览:知识要点课标要求中考考点生活中常见几何体的基本特征及其分类认识常见几何体的基本特征,能对这些几何体进行正确的识别和简单的分类识别柱体、锥体、球体棱柱的特征知道常见几何体的特征求棱柱的棱数,面数图形的构成要素认识点、线、面,理解“点动成线、线动成面、面动成体”探索平面图形旋转的旋转体知识全解知识点1生活中常见几何体的基本特征及其分类知识衔接:几何图形包括立体图形和平面图形.1.平面图形:数学上所说的平面没有边界,可以向四面八方无限延伸.如果一个图形的各个部分都在同一个平面内,那么这个图形是平面图形,常见的平面图形有三角形、正方形、长方形、平行四边形、梯形、圆等.2.如图1—1—1我们学过长方体,正方体等称为立体图形,这样的几何图形上的点不都在在同一平面内.知识详解:(1)几何体的分类:(2)几何体的基本特征:体是由面围成的;面有两种,平面和曲面.①柱体的相同点是上下两个面完全相同.不同点是圆柱的底面是圆,侧面是一个曲面,直棱柱底面是多边形,侧面都是长方形;②锥体相同点是都有一个顶点.不同点是圆锥的底面是一个圆,侧面是一个曲面,棱锥的底面是一个多边形,侧面都是三角形;③球体由一个曲面围成.知识警示:(1)立体图形是由一个或几个面围成的,如:球是有一个面围成的,而长方体是由六个面围成的,组成棱柱和棱锥的面都是平的,而组成圆锥、圆柱、球的面都是曲的.(2)我们直研究直棱柱,不作特殊说明,棱柱都指直棱柱;(3)长方体、正方体是棱柱;(4)几何体的分类可按“有无顶点”、“有无曲面”等不同的标准来区分.【试练例题1】如图1—1—2所示,请分别指出下列物体的形状分别类似于哪种几何体.思路导引:观察实物轮廓、分析轮廓特征、抽象几何体.直棱柱 柱体 棱柱 圆柱 锥体棱锥几何体 圆锥球体 斜棱柱 1—1—2解:茶叶盒类似棱柱;地球仪类似球体;魔方类似棱柱;字典类似棱柱;金字塔类似棱锥;彩笔类似棱柱.方法:由实物的形状想象几何体是一个观察、体验、抽象的过程,解决此类问题应从实物的轮廓特征入手,抽象出几何体,进而确定是哪种几何体,即“有物悟形”、“由形命名”.【试练例题2】如图1—1—3将下列几何体进行分类,并说明理由.1—1—3思路导引:把几何体进行分类,一定要注意根据不同的分类标准,分类情况不尽相同,切记不要混淆分类标准,分类要做到不重不漏.解:如一类是(1)(2)(4)(5)是柱体,另一类(3)(7)是椎体,第三类(6)是球体;或一类是(1)(4)(5)(7),有平面围成,另一类(2)(3)(6),有曲面参与围成.方法:几何体分类,先确定分类标准,按有无曲面来分较常用,在此标准下几何体可分为多面体(围成几何体的面都是平面)和旋转体(由平面图形旋转形成,围成几何体的面有曲面).【试练例题3】如图1—1—4所示,陀螺是由下面哪两个几何体组合而成的()1—1—4A. 长方体和圆锥B. 长方形和三角形C. 圆和三角形D. 圆柱和圆锥思路导引:根据立体图形的特征对图进行分析知:该图上部分是圆柱,下部分是圆锥.解:D.方法:先判断原几何体是曲面还是平面围成,再判断是否能分割为柱体、锥体还是球体.知识点2棱柱的相关概念及特征知识衔接:1.在小学里我们认识了六种常见的几何体,它们分别是长方体、正方体、圆柱、圆锥和球体.2.我们通过学习,已知道圆柱的侧面展开图是长方形.知识详解:(1)在棱柱里,任何相邻的两个面的交线都叫做棱,相邻两个侧面的交线交做侧棱,棱柱的所有侧棱都相等.棱柱的上、下底面是相同的图形,都是多边形,侧面都是长方形.(2)棱柱的特征是:①有两个面互相平行;②其余各面都是平行四边形;③每相邻两个四边形的公共边互相平行.知识警示:一般地,n棱柱有2n个顶点,3n条棱(其中有n条是侧棱),(n+2)个面(2个底面,n个侧面).【试练例题4】如图1—1—5所示棱柱(1)这个棱柱的底面是____________边形.(2)这个棱柱有____________个侧面,侧面的形状是____________边形.1—1—5 (3)侧面的个数与底面的边数____________.(填“相等”或“不相等”)(4)这个棱柱有____________条侧棱,一共有____________条棱.(5)如果CC′=3 cm,那么BB′=____________cm.思路导引(1)观察图形,易知此棱柱为三棱柱;所以底面是3边形,这个棱柱有3个侧面,侧面形状是四边形;利用棱柱侧棱都相等,可求得BB′.答案:1.(1)三(2)3 四(3)相等(4)3 9 (5)3.方法:结合图形解决棱柱的问题,知识就显得较为容易.知识点3棱柱的分类知识详解:人们通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三角形、四边形、五边形、六边形……知识警示:(1)底面是n边形的棱柱称为n棱柱,长方体和正方体都是四棱柱.(2)正方体的六个面形状、大小都相同,都是正方形,正方体的12条棱都相等.【试练例题5】如图1—1—6请说出下面物体是哪种棱柱.1—1—6思路导引根据棱柱的分类,观察这几个棱柱的底面,分别是三角形、四边形、六边形,所以这几个物体分别是:三棱柱、四棱柱、六棱柱.答案:三棱柱、四棱柱、六棱柱.方法:判断棱柱的种类,我们可以看棱柱底面是几边形,即可判断其是几棱柱.知识点4图形的构成要素知识详解:1.几何图形都是由点、线、面、体组成的.(1)点是构成图形的基本元素,是线与线相交的地方,即线与线相交成点.点无大小之分,只有位置之别;(2)线无粗细,可以有长度,它可分为直线、曲线,面与面相交成线;(3)面无厚薄,可分为平面、曲面.平面是向四周无限延伸的.2.用运动观点看几何基本图形之间的关系:点动成线,线动成面,面动成体.如:流星可以看作一个点,它划破夜空,就形成了线;直升飞机的螺旋桨快速旋转形成了一个圆面,这可以说线动成面;三角板绕它的一条直角边旋转一周,形成一个圆锥体.点动成线,线动成面,面动成体,这样就组合成了各种各样的几何图形,形成了丰富多彩的图形世界.知识警示:(1)线、面、体都是由点组成的,即点是构成图形的基本元素;(2)面与面的交线可能是直线,也可能是曲线;(3)点是最简单的几何图形. 【试练例题6】用数学的眼光去观察问题,你会发现很多图形都能看成是动静结合,舒展自如的.如图1—1—7绕虚线旋转得到的几何体是( )思路导引:根据旋转及线动成面的知识可得旋转后的图形为:两边为圆锥,中间为圆柱,结合实际生活经验此题易解.解:D.方法:长方形绕其一边所在直线旋转一周形成了一个圆柱; 半圆绕其直径所在直线旋转一周形成球;三角形形绕其一边所在直线旋转一周形成圆锥.1—1—7 A B C D。

七年级数学上册 1.1 生活中的立体图形同步练习 北师大版(2021年整理)

七年级数学上册 1.1 生活中的立体图形同步练习 北师大版(2021年整理)

七年级数学上册1.1 生活中的立体图形同步练习(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册1.1 生活中的立体图形同步练习(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册1.1 生活中的立体图形同步练习(新版)北师大版的全部内容。

1。

1生活中的立体图形A基础知识训练1。

(2016•丽水中考)下列图形中,属于立体图形的是()2.(2016•滨湖中学月考)下列说法正确的是( )①教科书是长方形;②教科书是长方体,也是棱柱;③教科书的表面是长方形.A.①② B.①③C.②③ D.①②③3。

(2016•阴平中学月考)如图所示为8个立体图形.其中,是柱体的序号为;是锥体的序号为;是球的序号为.4.如图,在长方体ABCD-EFGH中,与平面ADHE垂直的棱共有条.5.(2016•枣庄实验期中)汽车的雨刷把玻璃上的雨水刷干净,是运用了的原理.6。

如图,把下列物体和与其相似的图形连接起来.B基本技能训练1(2016•台儿庄39中模拟)下面图形中为圆柱的是()2.(2016•龙口期中)若一个棱柱有10个顶点,则下列说法正确的是()A.这个棱柱有4个侧面B.这个棱柱有5条侧棱C.这个棱柱的底面是十边形D.这个棱柱是一个十棱柱3.(2015•本溪二模)将如图所示的几何图形,绕直线l旋转一周得到的立体图形( )4.硬币在桌面上快速地转动时,看上去象球,这说明了.5。

(2016•枣庄十五中月考)如图:将一个长方形形沿它的长或宽所在的直线l旋转一周,回答下列问题:(1)得到什么几何体?(2)长方形的长和宽边分别为6厘米和4厘米,分别绕它的长或宽所在直线旋转一周,得到不同的几何体,它们的体积分别为多少?(结果保留π)6。

北师大版七年级数学上册第一章 1、生活中的立体图形(练习题及答案)

北师大版七年级数学上册第一章 1、生活中的立体图形(练习题及答案)

1.生涯中蕴含着大量的几何图形,这些几何图形可以抽象为几何体.罕有的几何体有().().().().().和()等.2.几何图形包含立体图形和(),几何图形是由().().()构成.面有平面和(),面不分厚薄;线有直线和(),线不分粗细.面与面订交得到(),线与线订交得到(),点不分大小.3.从活动的角度看,点动成(),线动成(),面动成().(例如,把笔尖看做一个点,笔尖在纸上移动就能形成一条线,即点动成线.点动成线的实例还有:流星划过天空.粉笔在黑板上划动.保龄球滚动过的路线等.钟表的分针扭转一周形成一个圆面,即线动成面.线动成面的实例还有:汽车上的雨刷扫过玻璃窗.用刷子涂油漆等.长方形绕它的一边扭转一周就能形成一个圆柱,即面动成体.面动成体的实例还有:以三角形的一边为轴扭转一周形成的几何体等)4.如图所示的立体图形,是由()个面构成的,个中有()个平面,有()个曲面;面与面订交成()条线,个中曲线有()条.5.立体图形的辨认.几何图形的特点:(1)圆柱:两个底面是(),正面是().如().()等.(2)圆锥:底面是(),正面是(),像锥子.如().()等.(3)长方体:有6个面,底面是(),相对的两个面平行且().如().()等.(4)正方体:6个面是大小完整雷同的().如().()等.(5)棱柱:所有()都相等,底面是(),上.下底面的(),正面的外形都是().(6)球:由一个()构成,圆圆的.如足球.乒乓球等.(7)棱锥:一个面是多边形,其余各面是一个有公共极点的().多边形的面称为棱锥的(),其余各面称为棱锥的().依据()可将棱锥分为三棱锥.四棱锥……谈重点从哪几个方面熟悉几何体的特点①有几个面围成,是平面照样曲面;②有无极点,有几个极点;③正面是平面照样曲面;④底面是什么外形,是多边形照样圆,有几个底面等.6.请在每个几何体下面写出它们的名称.7.如图,鄙人面四个物体中,最接近圆柱的是( ).8.几何体的分类(1)几何体按柱.锥.球的特点分为:(2)按围成的面分为:9.在粉笔盒.三棱镜.乒乓球.易拉罐瓶.书本.热水瓶胆等物体中,外形相似于棱柱的有( ).A.1个B.2个C.3个D.4个10.将下列几何体分类,并解释来由.11.几何体的形成(1)长方形绕其一边地点直线扭转一周得到();(2)直角三角形绕其一条直角边地点直线扭转一周得到();(3)半圆绕其直径地点直线扭转一周得到().扭转体的形成①平面图形扭转会形成();②平面图形绕某一向线扭转一周才可以形成();③由平面图形扭转而得到的几何体有:().().()以及().12.我们曾学过圆柱的体积盘算公式:V=Sh=πR2h(R是圆柱底面半径,h为圆柱的高),现有一个长方形,长为2 cm,宽为1 cm,以它的一边地点的直线为轴扭转一周,得到的几何体的体积是若干?13.典题精讲如图所示的立体图形,是由________个面构成的,面与面订交成________条线.14.变式练习下图是把一圆柱体纵向切开后的图形.问:图中有几个面,有几个面是平的?有几个面曲直的?有几条线?它们是直的照样曲的?线与线订交成若干点?15.写出图1-1-4中所示立体图形的名称.16.绿色通道:分类是数学进修中一种很主要的思惟办法,应留意的是:按统一尺度区分.变式练习下面图形中,属于立体图形的有()①正方形②圆③球④棱柱⑤圆锥⑥六边形A.①③④B.②④⑤C.③④⑤D.③④⑤⑥答案:1. 长方体.正方体.圆柱.圆锥.球棱柱2. 平面图形点.线.面;曲面曲线线点3.线面体4.4 3 1 6 25.(1)等圆曲面(2)圆曲面 (3)长方形完整雷同(4)正方形(5)侧棱长多边形外形雷同平行四边形(6)曲面(7)三角形底面正面底面的边数6.三棱柱圆柱长方体圆锥四棱柱正方体球7.C解析:圆柱是“直”的,与弯管B有显著差别;D中的饮料瓶的盖确切可以算作是圆柱,但它在该物中只占很小的一部分,该物体从整体上讲更接近于棱柱;A中烟囱高低粗细不合,不是圆柱,故应消除A,B,D;作为柱体的本质特点之一是“粗细”处处雷同,而与高.矮(长.短)无关,C中玩具硬币尽管扁一些,但是最接近圆柱,所以应选C. 8.略9. C解析:粉笔盒.三棱镜.书本可以算作棱柱,乒乓球是球体,易拉罐瓶是圆柱,热水瓶胆既不是棱柱,也不是圆柱和球体.故答案选C.10.剖析:分类时,先肯定分类尺度.分类尺度不合,所属类别也不合,同时应留意分类要不重不漏.解:(1)按柱.锥.球划分:①②④⑤为一类,它们都是柱体;③⑦为一类,它们都是锥体;⑥为一类,它是球体.(2)按围成几何体的面是平面或曲面分:①④⑤⑦为一类,它们是多面体;②③⑥为一类,它们是扭转体.(3)按几何体有无极点分:①③④⑤⑦为一类,它们都有极点;②⑥为一类,它们都无极点.11.圆柱圆锥球体几何体几何体圆柱.圆锥.球以及它们的组合体.12.剖析:问题中的几何体可由两种方法扭转得到.一种是绕这个长方形的长地点的直线扭转,另一种是绕这个长方形的宽地点的直线扭转,其成果不合,留意不要漏解.解:(1)当以长方形的宽地点的直线为轴扭转时,如图(1)所示,得到的圆柱的底面半径为 2 cm,高为 1 cm.,所以,其体积是V1=π×22×1=4π(cm3)(2)当以长方形的长地点的直线为轴扭转时,如图(2)所示,得到的圆柱的底面半径为 1 cm,高为 2 cm,所以,其体积是V2=π×12×2=2π(cm3)所以,得到的几何体的体积是4π cm3或2π cm313.解析:任何图形都是由点.线.面构成的.点.线.面的变更构成了不合的图形.在数面时可先数底面,再数正面;数线时,可先数底面与正面的订交线.答案:4 614.图中有4个面,3个面是平面,1个正面曲直面;有6条线,4条是直的,2条曲直的;线与线订交成4个点.15.解析:分解各类几何体的特点,卖力地不雅察并给出断定.答案:(1)四棱柱;(2)圆柱;(3)长方体;(4)圆锥;(5)正方体;(6)棱锥.16.答案:C。

北师版初一数学生活中的立体图形1(新编201912)

北师版初一数学生活中的立体图形1(新编201912)

说一说生活中哪些物体的形状 类似于棱柱、圆柱、圆锥与球。
棱柱有直Байду номын сангаас柱和斜棱柱。
本册书只 讨论直棱 柱简称棱

直棱柱(棱柱) 斜棱柱
按柱、锥、球划分 (1) (2) (4) (6) (7)是一类,是柱体 (5)是锥体 (3)是球体
按面的曲或平划分 (3)(4)(5)是一类,组成它们的面中至少有一 个是曲的 (1)(2)(6)(7)一类,组成它们的各面都是平 的
1生活中的立体图形
(1)图中哪些物体的形状与长方体、正方体类似?
(2)图中哪些物体的形状与圆柱、圆锥类似?描述 一下圆柱与圆锥的相同点与不同点。
(3)请找出图中与笔筒形状类似的物体。 (4)请找出图中与地球形状类似的物体。
2019/12/26
用自己的语言描述棱柱与圆柱的 相同点与不同点。
用自己的语言描述棱柱与圆柱的 相同点与不同点。
1生活中的立体图形
常见的几何体
圆柱 圆锥 正方体 长方体
棱柱

相同点:圆柱和棱柱都是由两个形状相同的底面构成,都给 人一种直立的感觉。
不同点:圆柱的两个底面是圆形,而棱柱的底面是多边形。 圆柱的侧面只有一个是曲面,而棱柱的侧面是多个都是平面。
;我爱查吧 https:/// 我爱查吧

文字有三句话,各有一处语病,请选择两句加以修改。(4分) ①在甲型H1N1流感防控工作的关键时刻,在我省一套信息化应急指挥系统正式启动。②通过这套指挥系统,使省疾病预防控制中心工作人员可随时向省领导汇报全省甲型HlNl流感的防控情况,省领导也可以通过该系统对防控工作发出 指令。③采取信息化应急指挥系统,对于处理甲型H1N1流感这样的突发事件具有重要作用。 - 下面这段文字有三句话,各有一处语病,请选择两句加以修

七年级数学上册 1.1生活中的立体图形1 北师大

七年级数学上册 1.1生活中的立体图形1 北师大
1生活中的立体图形
(1)图中哪些物体的形状与长方体、正方体类似?
(2)图中哪些物体的形状与圆柱、圆锥类似?描述 一下圆柱与圆锥的相同点与不同点。 (3)请找出图中与笔筒形状类似的物体。
(4)请找出图中与地球形状类似的物体。
2018/122018/12/4
圆锥
正方体
长方体
棱柱

用自己的语言描述棱柱与圆柱的 相同点与不同点。
2018/12/4
1生活中的立体图形
常见的几何体
圆柱
2018/12/4
圆锥
正方体
长方体
棱柱

2018/12/4
用自己的语言描述棱柱与圆柱的 相同点与不同点。
相同点:圆柱和棱柱都是由两个形状相同的底面构成,都给 人一种直立的感觉。 不同点:圆柱的两个底面是圆形,而棱柱的底面是多边形。 圆柱的侧面只有一个是曲面,而棱柱的侧面是多个都是平面。
2018/12/4
说一说生活中哪些物体的形状 类似于棱柱、圆柱、圆锥与球。
2018/12/4
棱柱有直棱柱和斜棱柱。
本册书只讨论 直棱柱简称棱 柱
直棱柱 (棱柱)
2018/12/4
斜棱柱
按柱、锥、球划分 (1) (2) (4) (6) (7)是一类,是柱体 (5)是锥体 (3)是球体
按面的曲或平划分 (3)(4)(5)是一类,组成它们的面中至少有一 个是曲的 (1)(2)(6)(7)一类,组成它们的各面都是平 的

北师大版七年级数学上1.1.1生活中的立体图形(一)

北师大版七年级数学上1.1.1生活中的立体图形(一)

初中数学试卷
1.1.1生活中的立体图形(一)
一、基础训练
1、物体的形状似于圆柱的有_____________ ___,类似于圆锥的有_________________ ____;类似于球的有__________________;
2、正方体有_____个顶点,经过每个顶点有_ ________条棱,这些棱都____________.
3、圆柱,圆锥,球的共同点是_____________ ________________.
4.在乒乓球、橄榄球、足球、羽毛球、冰球中,是球体的有;5.将下列几何体分类,柱体有:,锥体有(填序号);
6.正方体是一个立体图形,它是由________个面,_______条棱,________个顶点组成的;
二、基础延伸
练一练:判断下列叙述是否正确
1.柱体上下两个面一样大。

2.圆柱、圆锥的底面都是圆。

3.棱柱的底面是三角形。

4.棱锥的侧面是三角形。

5.球体不是多面体。

6.圆锥是多面体。

7.柱体都是多面体。

8.棱锥、棱柱是多面体。

三、能力拓展
1、请观察丰富多彩的生活世界,有哪些物体的形状与下列几何体类似?
(1) 六面体(2) 圆柱 (3)圆锥 (4) 棱锥
2、请写出下列几何体的名称
4、请说出生活中至少4个规则的物体,并说出和它们类似的立体图形?
5、动手做一做.
将一个长方体切去一部分,看一看剩余的部分是几面体呢?
6、至少找出下列几何体的4个共同点。

四.创新提高
1、如图1-4,一长方体土地,用两条直线把它分成形状相同,大小相等的四块, 你能做到吗,能用不同的方法完成这个任务吗?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章丰富的图形世界
1.1 生活中的立体图形
专题一立体图形的识别与分类
1.下面几何体中,全是由曲面围成的是()
A.圆柱B.圆锥C.球D.正方体
2.下列说法错误的是()
A.长方体、正方体都是棱柱B.三棱柱的侧面是三角形
C.直六棱柱有六个侧面、侧面为长方形D.球体的三种视图均为同样大小的图形
3.如图,在一个棱长为6cm的正方体上摆放另一个正方体,使得上面正方体的四个顶点
恰好均落在下面正方体的四条棱上,则上面正方体体积的可能值有()
A.1个B.2个
C.3个D.无数个
4.如图,左排的平面图形绕轴旋转一周,可以得到右排的立体图形,那么与甲、乙、丙、丁各平面图形顺序对应的立体图形的编号应为()
A.③④①②B.①②③④C.③②④①D.④③②①
5.在下列几何体中,由三个面围成的有,由四个面围成的有.(填序号)
6.如图,在直六棱柱中,棱AB与棱CD的位置关系为,大小关系是.
7.用五个面围成的几何体可能是.
8.若一个直四棱柱的底面是边长为1cm的正方形,侧棱长为2cm,则这个直棱柱的所有棱长的和是cm.
9.由一个平面图形绕着它的一条边所在的直线旋转一周形成的几何体,叫做旋转体.如果有一个几何体,围成它的各个面都是多边形,那么这个几何体叫做多面体.在你所熟悉的立体图形中,旋转体有,多面体有.(要求各举两个例子)
10.一只小蚂蚁从如图所示的正方体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数一数,
小蚂蚁有种爬行路线.
11.探究:
将一个正方体表面全部涂上颜色,试回答:
(1)把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体,我们把仅有i个面涂色的小正方体的个数记为x i,那么x3=,x2=,x1=,x0=;
(2)如果把正方体的棱四等分,同样沿等分线把正方体切开,得到64个小正方体,与(1)同样的记法,则x3=,x2=,x l=,x0=;
(3)如果把正方体的棱n等分(n≥3),然后沿等分线把正方体切开,得到n3个小正方体,与(1)同样的记法,则x3=,x2=,x1=,x0=.
状元笔记:
【知识要点】
1.认识常见几何体的基本特征,能对这些几何体进行正确的识别和简单的分类.
2.认识点、线、面,了解有关点、线及某些基本图形的一些简单性质.
3.认识棱柱的某些特征,开始学习较为规范的几何语言.
【温馨提示】
经历从现实世界抽象出几何图形的过程,能以实物简图形式直观地给圆柱、圆锥、正方体、长方体、棱柱等几何体的命名.通过丰富的实例,认识图形是由点、线、面构成的;另外,通过观察,认识“点动成线、线动成面、面动成体”的几何事实.
【方法技巧】
围成几何体的面有曲面和平面两种.
参考答案:
1.C 解析:A.圆柱由上下两个平面和侧面一个曲面组成;B.圆锥由侧面一个曲面和底面一个平面组成;C.球只有一个曲面组成;D.正方体是由四个平面组成.
2.B 解析:棱柱由上下两个底面以及侧面组成,上下两个底面可以是全等的多边形,所以表面可能出现三角形,侧面是四边形;长方体、正方体都是棱柱;三棱柱的侧面是应是四边形,故B错.
3.D 解析:因为上面正方体的棱长不确定,所以根据正方体体积公式可知,上面正方体体积的可能值有无数个.
4.A 解析:甲旋转后得到③,乙旋转后得到④,丙旋转后得到①,丁旋转后得到②,故与甲、乙、丙、丁各平面图形顺序对应的立体图形的编号应为③④①②.
5.(2)(6)解析:(1)和(3)有6个面,(2)有两个底面和一个侧面,共3个面,(4)只有一个面,(5)有两个面,(6)有4个面.
6.平行相等
7.四棱锥或三棱柱解析:如果有一个底面则是四棱锥,如果有两个底面则是三棱柱.
8.16 解析:∵直四棱柱的底面是边长为1cm的正方形,∴两个底面的8条棱长之和是8cm.∵侧棱长
为2cm,∴4条侧棱长之和是2×4=8(cm).∴这个直棱柱的所有棱长和是8+8=16(cm).
9.圆柱、圆锥六棱柱、三棱锥
10.6 解析:根据正方体的特点,依次找到由顶点A沿着棱爬向B,只能经过三条棱的路线即可,如图所示,走法有:①A﹣C﹣D﹣B;②A﹣C﹣H﹣B;③A﹣E﹣F﹣B;④A﹣E﹣D﹣B;⑤A﹣G﹣F﹣B;
⑥A﹣G﹣H﹣B.共有6种走法.
11.解:(1)根据长方体的分割规律可得x3=8,x2=12,x1=6,x0=1.
(2)把正方体的棱四等分时,顶点处的小正方体三面涂色共8个;有一条边在棱上的正方体有24个,两面涂色;每个面的正中间的4个只有一面涂色,共有24个;正方体正中心处的8个小正方体各面都没有涂色.故x3=8,x2=24,x1=24,x0=8.
(3)由以上可发现规律:三面涂色8个,两面涂色12(n﹣2)个,一面涂色6(n﹣2)2个,各面均不涂色(n﹣2)3个.。

相关文档
最新文档