电源拓扑结构介绍--Buck and Boost
开关电源的基本拓扑结构
总结词
半桥型拓扑结构通过两个开关管和电容器的组合,实现输出电压的调节。
详细描述
在半桥型拓扑结构中,两个开关管交替导通和关断,通过调节占空比来调节输出电压。 这种拓扑结构适用于需要较高电压、大电流输出的应用场景,如逆变器和电机驱动等。
全桥型(Full-Bridge)
总结词
全桥型拓扑结构通过四个开关管的组合 ,实现输出电压的调节。
降压-升压型开关电源工作原理
总结词
根据输入电压和输出电压的大小关系,自动切换降压 或升压模式。
详细描述
在降压-升压型开关电源中,根据输入电压和输出电压 的大小关系,自动切换降压或升压模式。当输入电压 高于输出电压时,自动进入降压模式;当输入电压低 于输出电压时,自动进入升压模式。
反相开关型开关电源工作原理
VS
详细描述
在全桥型拓扑结构中,四个开关管两两交 替导通和关断,通过调节占空比来调节输 出电压。这种拓扑结构适用于需要极高电 压、大电流输出的应用场景,如高压直流 输电等。
03 开关电源的工作原理
降压型开关电源工作原理
总结词
通过控制开关管开通和关断的时间,调节输 出电压的大小。
详细描述
在降压型开关电源中,输入电压首先经过开 关管,通过控制开关管的开通和关断时间来 调节输出电压的大小。当开关管开通时,输 入电压加在负载上,当开关管关断时,输入 电压与负载断开,输出电压因此得到调节。
升压型开关电源工作原理
要点一
总结词
通过控制开关管开通和关断的时间,实现输出电压高于输 入电压的功能。
要点二
详细描述
在升压型开关电源中,当开关管开通时,输入电压同时加 在负载和储能元件上,当开关管关断时,储能元件释放能 量,使输出电压高于输入电压。通过控制开关管的开通和 关断时间,实现输出电压的调节。
开关电源DC-DC buck和boost介绍
输出电流
Iout(retad):额定输出电流。 Iout(min):在正常运行情况下,最小的输出电流。 Iout(max):负载的瞬态承受的输出电流。 Isc:负载短路时的最大极限电流。
电源系统设计指标
动态负载响应时间
当加上阶跃负载时,电源系统响应需要的时间
电压调整率
输入电压变化时,输出电压的变化率,即: 电压调整率=(最高输出电压-最低输出电压)/额定输出电压 X100%
A
V+
B
V-
面积A=面积B
A
V+
B
V-
开关电源的基本分析
分析开关电源中电容和电感的几条原则:
1. 2. 3. 4. 电容两端的电压不能突变 (当电容足够大时,可认为其电压不 变)。 电感中的电流不能突变 (当电感足够大时,可认为其电流恒定 不变)。 流经电容的电流平均值在一个开关周期内为零。 电感两端的伏秒积在一个开关周期内必须平衡。
I C
+ U -
U
It C
2. 在稳态工作的开关电源中流经电容的电流对时间的积分为零。
A
I+
B
I-
面积A=面积B
开关电源的基本分析
电感的基本方程
i(t)
+ u(t) -
di(t ) u(t ) L dt
1. 当一电感突然加上一个电压时, 其中的电流逐渐增加, 并且电感量越大电流增加 越慢.
有源开关(Switch)
二极管(Diode)
电感(Inductor)
电容器(Capacitor)
变压器(Transformer)
开关电源的基本分析
电容的基本方程
i(t) + u(t) -
buck拓扑结构工作原理
buck拓扑结构工作原理Buck拓扑结构工作原理1. 引言Buck拓扑结构是一种常见的DC-DC(直流-直流)转换器拓扑结构,被广泛应用于电源管理系统中。
其工作原理基于能量的存储和转移,通过控制开关管的开关状态来调整输出电压。
2. Buck拓扑结构概述Buck拓扑结构由输入电源、开关管(开关元件)、电感、电容和负载组成。
其基本原理是在一定的开关频率下,通过调节开关管的导通和截止时间来控制输出电压的稳定性。
3. 工作原理详解当开关管导通时,输入电源的电流通过电感流向负载和电容。
此时,电容储存一部分能量,电感储存另一部分能量,并向负载提供电能。
当开关管截止时,电流路径被切断,电感的磁场会导致电流继续流向负载,从而保持输出电压的稳定性。
4. 工作原理的数学描述当开关管导通时,输入电压通过电感和电容储存能量,此时电感电流增加。
根据基尔霍夫电压定律和基尔霍夫电流定律,可以得到以下公式描述开关导通时的电压和电流关系。
V_in = L(di/dt) + V_out其中,V_in为输入电压,L为电感的感值,di/dt为电流变化率,V_out为输出电压。
当开关管截止时,电感的磁场储存的能量被释放,此时电感电流减小。
同样可以根据基尔霍夫电压定律和基尔霍夫电流定律,得到以下公式描述开关截止时的电压和电流关系。
V_out = -L(di/dt)其中,V_out为输出电压,L为电感的感值,di/dt为电流变化率。
通过控制开关管的导通和截止时间,可以调节电感电流的变化率,从而实现对输出电压的精确控制。
5. Buck拓扑结构的优势Buck拓扑结构具有以下优势:- 高效性:通过能量的转移和存储,减小了能量损耗,提高了能量利用效率。
- 稳定性:通过控制开关管的导通和截止时间,可以实现对输出电压的精确控制,从而保持输出电压的稳定性。
- 简单性:Buck拓扑结构由少量的元件组成,结构简单,容易实现。
6. Buck拓扑结构的应用领域Buck拓扑结构广泛应用于电源管理系统中,如:- 电池充电器- 汽车电子系统- 可穿戴设备- 通信设备7. 结论Buck拓扑结构是一种常见的DC-DC转换器拓扑结构,通过能量的存储和转移来实现对输出电压的精确控制。
开关电源各种拓扑集锦
开关电源拓扑六种基本DC/DC变换器拓扑:1、Buck2、Boost3、Buck-Boost4、CUK5、Zeta6、Sepic基本拓扑是Buck,Boost,其他是演变。
Buck为降压变换器,常用的拓扑基本上是Buck的:正激,半桥,全桥,推挽等等。
Boost变换器为Buck的对偶拓扑,是升压变换器,常用于小功率板载电源,大功率PFC电路上,对于隔离的Boost变换器也有推挽,双电感,全桥等电路。
Buck-Boost是反激变换器的原型,属于升降压变换器。
后面三种电路不是很常用,都是升降压变换器。
一、 反激1、单端反激2、双端反激二、 正激1、绕组复位正激2、R CD复位正激3、L CD复位正激4、有源钳位正激● Flyback钳位● Boost钳位5、双管正激6、无损吸收双正激7、有源钳位双正激8、原边钳位双正激9、软开关双正激三、 推挽1、推挽2、无损吸收推挽3、推挽正激推挽变换器是双端变换器。
其实是两个正激变换器通过变压器耦合而来,基本推挽变换器好处是驱动不需隔离,变压器双端磁化,只要两个开关管。
但是,变压器绕组利用率低,开关管电压应力为输入两倍,所以一般只适合低压输入的场合。
而且有个问题就是会出现偏磁,所以要采用电流型控制等方法来避免。
如果将两个双管正激同样耦合,可以构成四开关管的推挽变换器,也就是所谓的双双管正激。
其管子电压应力下降为输入电压。
其他等同。
推挽正激是通过一个电容来解决变换器漏感尖峰,偏磁等问题四、 半桥1、半桥2、不对称半桥3、谐振半桥4、移相半桥五、 全桥1、全桥2、全桥LLC3、移相全桥全桥变换器在大功率场合是最常用了,特别是移项ZVS和ZVZCS 六、 三电平变换器(three level converter)这些三电平是半桥演化而来,同样可以演化出多电平变换器,合适高压输入场合。
而且可以通过全桥的移相控制方式实现软开关。
七、 五种隔离三电平DC/DC变换器1、F orward三电平DC/DC变换器2、F lyback三电平DC/DC变换器3、P ush-Pull三电平DC/DC变换器4、半桥三电平DC/DC变换器5、全桥三电平DC/DC变换器八、 B oost隔离变换器1、双电感Boost2、全桥Boost。
电源常用拓扑结构特点及波形
电源常用拓扑结构特点及波形基本名词电源常见的拓扑结构■Buck降压■Boost升压■Buck-Boost降压-升压■Flyback反激■Forward正激■Two-Transistor Forward双晶体管正激■Push-Pull推挽■Half Bridge半桥■Full Bridge全桥基本的脉冲宽度调制波形这些拓扑结构都与开关式电路有关。
基本的脉冲宽度调制波形定义如下:1、Buck降压特点■把输入降至一个较低的电压。
■可能是最简单的电路。
■电感/电容滤波器滤平开关后的方波。
■输出总是小于或等于输入。
■输入电流不连续(斩波)。
■输出电流平滑。
2、Boost升压特点■把输入升至一个较高的电压。
■与降压一样,但重新安排了电感、开关和二极管。
■输出总是比大于或等于输入(忽略二极管的正向压降)。
■输入电流平滑。
■输出电流不连续(斩波)。
3、Buck-Boost降压-升压特点■电感、开关和二极管的另一种安排方法。
■结合了降压和升压电路的缺点。
■输入电流不连续(斩波)。
■输出电流也不连续(斩波)。
■输出总是与输入反向(注意电容的极性),但是幅度可以小于或大于输入。
■“反激”变换器实际是降压-升压电路隔离(变压器耦合)形式。
4、Flyback反激特点■如降压-升压电路一样工作,但是电感有两个绕组,而且同时作为变压器和电感。
■输出可以为正或为负,由线圈和二极管的极性决定。
■输出电压可以大于或小于输入电压,由变压器的匝数比决定。
■这是隔离拓扑结构中最简单的■增加次级绕组和电路可以得到多个输出。
5、Forward正激■降压电路的变压器耦合形式■不连续的输入电流,平滑的■因为采用变压器,输出可以■增加次级绕组和电路可以获■在每个开关周期中必须对变绕组。
■在开关接通阶段存储在初级6、Two-Transistor Fo 特点■两个开关同时工作。
■开关断开时,存储在变压器■主要优点:■每个开关上的电压永远不会■无需对绕组磁道复位。
电源拓扑结构介绍----正激和反激
TX2
* ***
36 V2 IRF530 R2 C2
TX1
D1N4148
* ***
36 V1 R1 C1
R1 C1
***
***
Q2
(a)Q导通
2012-10-31
(b) Q关断
(C) Q关断,电 20 流断续
3. 反激变换器的工作原理分析
下面讨论flyback工作在电流连续模式下的工作原理:
2012-10-31
5
2012-10-31
2. 带复位绕组的正激变换器的工作原理分析
正激变换器的主要理论波形
2012-10-31 6
下面讨论电感电流连续时forward变换器的工作原理:
1. 模态1 [对应于图 (a)] 在t=0时,Q1导通,Vin通过Q1 加 在原边绕组W1上,因此铁芯磁化,铁芯磁通Ø增加:
在t=Ton时,铁芯磁通Ø的增加量为Vin/W1*D*Ts。 那么副边绕组W2上的电压为:Vw2=W2/W1*Vin=Vin/K12。 式中,K12=W1/W2是原边与副边绕组的匝比。
此时,整流二极管D1 导通,续流二极管D2截止,滤波电
感电流iL1线性增加,这与buck变换器中开关管Q1导通时一样, 只是电压为Vin/K12。
2. 模态2 [对应于图 (b)] 在Ton时刻,关断Q1, 原边绕组和副边绕组中没有电流流过,此时变压器 通过复位绕组进行磁复位,励磁电流iM从复位绕组 W3经过二极管D3回馈到输入电源中去。那么复位 绕组上的电压为:Vw3=-Vin;原边绕组上的电压为: Vw1=-K13*Vin;副边绕组上的电压为:Vw2=-K23*Vin。
D2 D1N4148 C1
R1
Q1
W3
DC-DC电源拓扑及工作模式讲解
DC-DC电源拓扑及其工作模式讲解一、DC-DC电源基本拓扑分类:开关电源的三种基本拓扑结构有Buck、Boost、Buck-boost(反极性Boost)。
如果电感连接到地,就构成了升降压变换器,如果电感连接到输入端,就构成了升压变换器。
如果电感连接到输出端,就构成了降压变换器。
基本拓扑图如下:1.Buck2.Boost3.Buck-Boost二、DC-DC复杂拓扑结构1.反激隔离电源(FlyBack)另外有些隔离电源拓扑就是通过基本拓扑增加变压器或者变化得到的,例如反激隔离电源(FlyBack)。
2.Buck+Boost拓扑本质是用一个降压“加上”一个升压,来实现升降压。
SEPIC拓扑:集成了Boost和Flyback拓扑结构3.Cuk、Sepic、Zeta拓扑通过基本拓扑直接组合,形成了三个有实用价值的拓扑结构:Cuk、Sepic、Zeta。
Cuk的本质是Boost变换器和Buck变换器串联,Sepic的本质是Boost和Buck-Boost串联,Zeta可以看成Buck和Buck-Boost串联。
但是里面有些细节按照电流的方向在演进的过程中调整了二极管的方向,两极串联拓扑节省了复用的器件。
通过这样串联和演进,产生了新的三个电源拓扑。
同时,如果我们把同步Buck拓扑串联同步Boost可以形成四开关Buck-Boost拓扑。
4.四开关Buck-Boost拓扑同时,如果我们把同步Buck拓扑串联同步Boost可以形成四开关Buck-Boost拓扑5.反激、正激、推挽拓扑的演进利用变压器代替电感,可以把Boost演进为一个新拓扑FlyBack即反激变换器(反激的公式来看又是很像Buck-Boost,这里变压器不同于电感,也有说法会说反激是Buck-Boost变过来的)。
可以把Buck电路的开关通过一个变压器进行能量传递,就形成正激变换器。
将两个正激变换器进行并联,可以形成推挽拓扑。
正激的变压器,是直接输送能量过去,而不是像反激变压器那样传递能量。
电源拓扑结构介绍----正激和反激(第4、6周)
2020/7/16
8
此时,整流二极管D1 关断,滤波电感电流iL1通过续 流二极管D2续流,与buck变换器类似。
在此开关模态中,加在Q上的电压VQ为: VQ=Vin+K13*Vin。
电源电压Vin反向加在复位绕组W3上,故铁芯去磁, 铁芯磁通Ø减小: W3*dØ/dt=-Vin
D1N4148
(demagnetizing win**d* ing) D3 D1N4148
Forward 变换器实际上是降压式变换器中插入隔 离变压器而成。变压器中有三个绕组,原边绕组W1, 副边绕组W2,复位绕组W3,图中绕组符号标有“*” 号的一端,表示变压器各绕组的同名端,也就是该绕 组的始端。D3是复位绕组W3的串联二极管。下图a、 b、c 给出了变换器在不同开关模态下的等效电路图。
5
2. 带复位绕组的正激变换器的工作原理分析
正激变换器的主要理论波形
2020/7/16
6
下面讨论电感电流连续时forward变换器的工作原理:
1. 模态1 [对应于图 (a)] 在t=0时,Q1导通,Vin通过Q1 加 在原边绕组W1上,因此铁芯磁化,铁芯磁通Ø增加:
在t=Ton时,铁芯磁通Ø的增加量为Vin/W1*D*Ts。 那么副边绕组W2上的电压为:Vw2=W2/W1*Vin=Vin/K12。 式中,K12=W1/W2是原边与副边绕组的匝比。
2020/7/16
4
D1
470u
TX1 D1N4148
L1
*** ***
36 V1
R1 C1
470u
TX1
L1
*** ***
36
V1
D2
开关电源拓扑之BUCK电路详解
Buck电路原理
上式中,对于Lc和D1 为固定值时,降压变换器的电流连续与否是由R = Vo/Io 值确定的。当R的欧姆值增大时,工作状态将从连续转化为不连续。另一方面 ,如果R和DTs 是固定的,则电感器的L<Lc 时,其工作状态由连续转化为不连 续。当Fs增大时,则保持开关变换器的连续状态工作的Lc降低。 从上图14、图15中可看到输入电流is是脉动的,与降压变换器的连续与否工作 状态无关。这个脉动电流,在实际应用中应受到限制,以免影响其他电器正常 工作。通常,电源Vs 和变换器的输入端之间会加上一些输入滤波器,这种滤 波器必须在开关变换器设计的早期阶段和建立模型过程就要预先进行考虑。否 则,在开关变换器与输入滤波器连接时,可能会引起意外的自激振荡。
+-
D
+
S
L2 C2
R
-
图6:Sepic
S
D
T
L
+
C
R
-
图8:单端反激变换器
开关电源拓扑概述
S1
D1
L
T
S2
D2
+
C
R
-
图9:推挽变换器
D1
L
C1
S1
T
D2
C2
S2
+
C3
R
-
D1
L
S1 S2
T
C
D2 S3 S4
图10:半桥变换器
+
R
-
图11:全桥变换器
之 开关电源拓扑介绍
Buck电路原理
Buck电路原理 Buck变换器又称降压变换器、串联开关稳压电源、三端开关型降压稳 压器。
源的主要组成部分是开关型DC_DC变换器,它是整个变换的核心。
电源拓扑简述(ON Semiconductor)
Power Supply Topologies电源拓扑---A Brief Overview---简述安森美半导体The Most Popular Topologies 最常见的拓扑结构Buck降压Boost升压Buck-Boost降压-升压Flyback反激Forward正激Two-Transistor Forward 双晶体管正激Push-Pull 推挽Half Bridge 半桥Full Bridge 全桥SEPICC’ukThe Basic Pulse-Width Modulated Waveform基本的脉冲宽度调制波形These topologies all relate to switched-mode circuits.这些拓扑结构都与开关式电路有关.Definition of the basic pulse-width modulated waveform is as follows:基本的脉冲宽度调制波形定义如下:T ST ON T OFF D' = 1 - D =T ONT OFF T OFFT OFF T S=Duty Cycle = Duty Ratio = D =T ON T ST ON T ON T OFF =占空比=负荷比=DBuck, Boost and Buck-Boost降压、升压和降压-升压Buck 降压Bucks the input down to a lower voltage.把输入降至一个较低的电压。
Load (R)VinVoutVout =VinD Load (R)VinVout1Vout =VinD 'Boost 升压Boosts the input to a higher voltage.把输入升至一个较高的电压。
Load (R)Vin VoutVout =VinD '- DBuck-Boost 降压-升压A combination of buck and boost.Output is inverted, and its magnitude can be less or greater than the input.降压和升压的组合。
BUCK_BOOST_BUCK-BOOST电路的原理
BUCK BOOST BUCK/BOOST电路的原理Buck变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。
图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。
、Boost变换器:也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器。
开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许在Dy=1的状态下工作。
电感Lf在输入侧,称为升压电感。
Boost变换器也有CCM和DCM两种工作方式、Buck/Boost变换器:也称升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但其输出电压的极性与输入电压相反。
Buck/Boost变换器可看做是Buck变换器和Boost变换器串联而成,合并了开关管。
Buck/Boost变换器也有CCM和DCM两种工作方式,开关管Q也为PWM控制方式。
LDO的特点:①非常低的输入输出电压差②非常小的内部损耗③很小的温度漂移④很高的输出电压稳定度⑤很好的负载和线性调整率⑥很宽的工作温度范围⑦较宽的输入电压范围⑧外围电路非常简单,使用起来极为方便DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。
斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。
其具体的电路由以下几类:】(1)Buck电路——降压斩波器,其输出平均电压U0小于输入电压Ui,极性相同。
(2)Boost电路——升压斩波器,其输出平均电压U0大于输入电压Ui,极性相同。
(3)Buck-Boost电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。
开关电源中常见变换器主电路拓扑
开关电源中常见变换器主电路拓扑1.1 Buck变换器Buck变换器又称降压变换器,Buck型电路拓扑由有源开关(功率MOSFET)、续流二极管D(或由同步整流开关代替)、储能电感L、滤波电容C组成。
其电路如图1-1所示。
电感和输出电容组成一个低通滤波器,滤波后电压以很小的纹波呈现在输出端。
图1-1 Buck变换器拓扑结构1.2 Boost变换器Boost变器又称升压变换器,其电路如图1-2所示。
改变降压变换器中元件的位置就可把它变成升压变换器。
在升压变换器中,开关管导通时在电感中有斜波电流流过。
当开关管断开时,电感中的电流必须保持流动,电感上的电压改变极性,使二极管正向偏置,并释放能量到输出端和输出电容器。
图1-2 Boost变换器拓扑结构1.3 反激变换器反激变换器又称Flyback式变换器,其电路如图1-3所示。
由于反激变换器的电路拓扑结构简单,能提供多组直流输出和升降范围宽,因此广泛应用于中小功率变换场合。
其结构相当于在Boost变换器中,用一个变压器代替升压电感,即构成了反激式变换器。
图1-3 反激电路原理图V1213T111423131211109867451516R12C1R14VZ112R11C5C6VZ212R9R1C10R18R13C8VD312R15VD112R7C3N1MC33262VFB1Comp2Multi3CS 4Z c d5G N D6Dri 7Vcc 8R10R19VD212C7R6VCC Vpfc,inVpfc,out 当开关晶体管VS 被驱动脉冲激励而导通时,Vin 加在开关变压器T 的初级绕组L1上,此时次级绕组L2的极性使VD 处于反偏而截止,因此L2上没有电流流过,此时电感能量储存在L1中,当VS 截止时,L2上电压极性颠倒使VD 处于正偏,L2上有电流流过,在VS 导通期间储存在L1中的能量此时通过VD 向负载释放。
反激式变换器工作波形见图 1-4。
图1-4 反激式变换器工作波形2.PFC 电路PFC 的英文全称为Power Factor Correction ,意思是功率因数校正。
开关电源的基本拓扑结构
开关电源基本拓扑
10
电感电流临界连续(TM)
Io
1 2 iLf
max
iLf
max
Vin Vo Lf
DyTs
(1.14) (1.15)
若用IoG表示临界电流连续的负载电流, then
I oG
Io
1 2
I Lf
max
I oG
Vin Vout 2Lf fs
Dy
(1.16)
开关电源基本拓扑
11
Vin = constant (输入电压恒定)
Vout Lf
Ton
Vin
Vout Lf
Ts Dy
(1.10)
iLf
Vout Lf
Toff
Vout Lf
Ts D
where
D
T' off
Ts
(1 Dy )
Vout Dy Vin Dy D
Io
1 Ts
I Lf max 2
(Ton
T' off
)
1 2 I Lf max(Dy D)
(1.11) (1.12) (1.13)
开关电源基本拓扑
32
From (1.2 ) & (1.4)
Vout Vin
Dy
(1.6)
I0
I Lf
m in
I Lf 2
max
(1.7)
Q 1 iLf Ts 22 2
Vo
Q Cf
(1 Dy )Vo
8Lf C f
f
2 s
(1.8)
开关电源基本拓扑
8
Fig 1.3
开关电源基本拓扑
电流断续时的工作模式 (DCM)
几种常见的开关电源拓扑结构及应用
几种常见的开关电源拓扑结构及应用什么是拓扑呢?所谓电路拓扑就是功率器件和电磁元件在电路中的连接方式,而磁性元件设计,闭环补偿电路设计及其他所有电路元件设计都取决于拓扑。
最基本的拓扑是Buck(降压式)、Boost(升压式)和Buck/Boost(升/降压),单端反激(隔离反激),正激、推挽、半桥和全桥变化器。
下面简单介绍一下常用的开关电源拓扑结构。
Buck电路首先我们要讲的就是Buck电路。
Buck电路也成为降压(step-down)变换器。
它的电路图是下面这样的:晶体管,二极管,电感,电容和负载构成了主回路,下方的控制回路一般采用PWM(脉冲宽度调制)芯片控制占空比决定晶体管的通断。
Buck电路的功能是把直流电压Ui转换成直流电压Uo,实现降压目的。
展开剩余88%反激变换器反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源,与之对应的有正激式开关电源。
反激(FLY BACK),具体是指当开关管接通时,输出变压器充当电感,电能转化为磁能,此时输出回路无电流;相反,当开关管关断时,输出变压器释放能量,磁能转化为电能,输出回来中有电流。
反激式开关电源中,输出变压器同时充当储能电感,整个电源体积小、结构简单,所以得到广泛应用。
应用最多的是单端反激式开关电源。
优点:元器件少、电路简单、成本低、体积小,可同时输出多路互相隔离的电压;缺点:开关管承受电压高,输出变压器利用率低,不适合做大功率电源。
Boost电路Boost(升压)电路是最基本的反激变换器。
Boost变换器又称为升压变换器、并联开关电路、三端开关型升压稳压器。
上面的图就是Boost电路图。
Boost电路是一个升压电路,它的输出电压高于输入电压。
Buck/Boost变换器Buck/Boost变换器:也叫做升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但它的输出电压的极性与输入电压相反。
Buck/Boost变换器可以看做是Buck变换器和Boost变换器串联而成,合并了开关管。