高中数学讲义 圆锥曲线中的面积问题

合集下载

高考圆锥曲线面积专题经典题型分类建议收藏

高考圆锥曲线面积专题经典题型分类建议收藏

圆锥曲线面积专题求解多边形面积时,先把面积用相关参数表达,最常见的就是设直线的解析式1、已知直线l :y x -C :2221x a b2y +=(a >b >0)的右焦点,且椭圆的离心率为3(Ⅰ)求椭圆C 的方程;(Ⅱ)过点D (0,1)的直线与椭圆C 交于点A ,B ,求△AOB 的面积的最大值.2、已知椭圆C :12222=+by a x (a >b >0)的离心率为,36短轴一个端点到右焦点的距离为3。

(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为23,求△AOB 面积的最大值。

3、已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<;(Ⅱ)求四边形ABCD 的面积的最小值.4.已知动点A 、B 分别在x 轴、y 轴上,且满足|AB|=2,点P 在线段AB 上,且 ).(是不为零的常数t PB t AP =设点P 的轨迹方程为c 。

(1)求点P 的轨迹方程C ;(2)若t=2,点M 、N 是C 上关于原点对称的两个动点(M 、N 不在坐标轴上),点Q坐标为),3,23(求△QMN 的面积S 的最大值。

5.设)0(1),(),,(22222211>>=+b a bx a y y x B y x A 是椭圆上的两点,已知),(11a y b x m =,),(22ay b x n = ,若0=•n m且椭圆的离心率,23=e 短轴长为2,O为坐标原点.(Ⅰ)求椭圆的方程;(Ⅱ)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值;(Ⅲ)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由6、若点O 和F 分别为椭圆C : 12222=+b y ax (a >b >0)的中心和左焦点,过O 做直线交椭圆于P 、Q 两点,若|PQ |的最大值是4,△PFQ 周长L 的最小值为6. (1)求椭圆C 的方程;(2)直线l 经过定点(0,2),且与椭圆C 交于A ,B 两点,求△OAB 面积的最大值.7、已知椭圆12222=+b y a x (a >b >0)的离心率为,过椭圆右焦点且斜率为1的直线与圆221(2)(2)2x y -+-=相切. (1)求椭圆的方程;(2)设过椭圆右焦点F 且与x 轴不垂直的直线l 与椭圆交于点A ,B ,与y 轴交于点C ,且AB 中点与FC 的中点重合,求△AOB (O 为坐标原点)的面积.8.已知椭圆12222=+b y a x (a >b >0)的离心率为,过椭圆右焦点且斜率为1的直线与圆221(2)(2)2x y -+-=相切. (1)求椭圆的方程;(2)设过椭圆右焦点F 且与x 轴不垂直的直线l 与椭圆交于点A ,B ,与y 轴交于点C ,且AB 中点与FC 的中点重合,求△AOB (O 为坐标原点)的面积.9.已知离心率为45的椭圆的中心在原点,焦点在x 轴上,双曲线以椭圆的长轴为实轴,短轴为虚轴,且焦距为234。

微考点6-2 圆锥曲线中的弦长面积类问题(解析版)

微考点6-2 圆锥曲线中的弦长面积类问题(解析版)

微考点6-2 圆锥曲线中的弦长面积类问题(三大题型)直线与圆锥曲线相交,弦和某个定点所构成的三角形的面积,处理方法:①一般方法:d AB S 21=(其中AB 为弦长,d 为顶点到直线AB 的距离),设直线为斜截式m kx y +=.进一步,d AB S 21==20011221214)(121k m y kx x x x x k ++--++②特殊方法:拆分法,可以将三角形沿着x 轴或者y 轴拆分成两个三角形,不过在拆分的时候给定的顶点一般在x 轴或者y 轴上,此时,便于找到两个三角形的底边长.12PAB PQA PQB A B S S S PQ y y ∆∆∆=+=-=12PAB PQA PQB A B S S S PQ x x ∆∆∆=+=-=③坐标法:设),(),,(2211y x B y x A ,则||211221y x y x S AOB -=∆④面积比的转化:三角形的面积比及其转化有一定的技巧性,一般的思路就是将面积比转化为可以利用设线法完成的线段之比或者设点法解决的坐标形式,通常有以下类型:1.两个三角形同底,则面积之比转化为高之比,进一步转化为点到直线距离之比2.两个三角形等高,则面积之比转化为底之比,进一步转化为长度(弦长之比)3.利用三角形面积计算的正弦形式,若等角转化为腰长之比4.面积的割补和转化⑤四边形的面积计算在高考中,四边形一般都比较特殊,常见的情况是四边形的两对角线相互垂直,此时我们借助棱形面积公式,四边形面积等于两对角线长度乘积的一半;当然也有一些其他的情况,此时可以拆分成两个三角形,借助三角形面积公式求解.⑥注意某条边过定点的三角形和四边形当三角形或者四边形某条边过定点时,我们就可以把三角形,四边形某个定顶点和该定点为边,这样就转化成定底边的情形,最终可以简化运算.当然,你需要把握住一些常见的定点结论,才能察觉出问题的关键.题型一:利用弦长公式距离公式解决弦长问题【精选例题】【例1】已知椭圆()2222:10x y E a b a b +=>>,1F ,2F 分别为左右焦点,点(1P,2P -⎛⎝在椭圆E 上.(1)求椭圆E 的离心率;(2)过左焦点1F 且不垂直于坐标轴的直线l 交椭圆E 于A ,B 两点,若AB 的中点为M ,O 为原点,直线OM交直线3x =-于点N ,求1ABNF 取最大值时直线l 的方程.则2222(2)(2)2x y x -+=-【跟踪训练】1.已知椭圆C :()222210x y a b a b +=>>,圆O :22320x y x y ++--=,若圆O 过椭圆C 的左顶点及右焦点.(1)求椭圆C 的方程;(2)过点()1,0作两条相互垂直的直线1l ,2l ,分别与椭圆相交于点A ,B ,D ,E ,试求AB DE +的取值范围.【点睛】方法点睛:圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.题型二:利用弦长公式距离公式解决三角形面积类问题【精选例题】圆心O 到直线CD 的距离为2||51m d k ==+联立22132y kx mx y =+⎧⎪⎨+=⎪⎩,消去y 得()2223k x ++()()()2226423360km k m ∆=-+->,可得设()11,A x y 、()22,B x y ,则12623km x x k -+=+()2222121236141k m AB kx x x x k=++-=+()()()(2222261322612k km k ⋅++-+【点睛】方法点睛:圆锥曲线中最值与范围问题的常见求法:(特征和意义,则考虑利用图形性质来解决;(首先建立目标函数,再求这个函数的最值,式长最值.P x y满足方程【例3】动点(,)【点睛】求解动点的轨迹方程,可通过定义法来进行求解型的轨迹的定义,由此来求得轨迹方程用不等式的性质、基本不等式等知识来进行求解【例4】已知椭圆C的中心在原点,一个焦点为(1)求椭圆C的标准方程;【点睛】思路点睛:本题第二小问属于直线与圆锥曲线综合性问题,设出过点达定理可得12y y +,12y y ,可求出1142ABF S a r =⋅⋅△,由此可求得直线【跟踪训练】(1)求椭圆C的标准方程;(2)判定AOMV(O为坐标原点)与理由.【答案】(1)2212xy+=;(2)面积和为定值,定值为【分析】(1)根据题意求,a b)方程为22221x ya b+=,焦距为2c,则2221b a c=-=,的标准方程为221 2xy+=.()0,1A,()0,1B-,直线l:x(1)求椭圆C的方程;(2)过B作x轴的垂线交椭圆于点①试讨论直线AD是否恒过定点,若是,求出定点坐标;若不是,请说明理由.△面积的最大值.②求AOD②设直线AD 恒过定点记为M 由上()222481224t m ∆=-+=⨯所以1222423t y y t +=+,122y y =)题型三:利用弦长公式距离公式解决定四边形面积问题【精选例题】(1)求椭圆的标准方程;(2)求四边形ABCD面积的最大值;(3)试判断直线AD与BC的斜率之积是否为定值,若是,求出定值;若不是,请说明理由【答案】(1)2214xy+=;(2)4;(3))当直线1l,2l中的一条直线的斜率不存在、另一条直线的斜率为1AB CD=⨯⨯=.4122当直线1l,2l的斜率都存在且不为0时,【跟踪训练】2.已知焦距为2的椭圆M :于A ,B 两点,1ABF V 的周长为(1)求椭圆M 的方程;F l)斜率不存在时.1l 方程为1x =,2l 方程为1134622ABCD S AB CD =⋅=⋅⋅=四边形斜率为0时.1l 方程为0y =,此时无法构成斜率存在且不为0时.设1l 方程为y =12.已知圆O :224x y +=,点点P 的轨迹为E .(1)求曲线E 的方程;(2)已知()1,0F ,过F 的直线m【点睛】方法点睛:设出直线的方程,与椭圆方程联立,根据韦达定理结合弦长公式得出弦长3.已知椭圆2222:1(x yEa b+=()2,1T,斜率为k的直线l与椭圆(1)求椭圆E的标准方程;(2)设直线AB的方程为6.已知椭圆(2222:1x y C a a b+=两点,且1ABF V 的周长最大值为(1)求椭圆C 的标准方程;(2)已知点P 是椭圆C 上一动点(不与端点重合),则112AF AH AF AF +≤+=故当AB 过右焦点2F 时,ABF V 因为椭圆C 的离心率为c e a =22121,2A F a c A A a =-===则11214A PQ PA A S S =V V ,故PQ =设(,),(02)P P P P x y x <<,则又P 点在22143x y +=上,则又2(2,0)A ,所以直线2A P 的方程为)O 中,由OA l ⊥,2EOF EOA ∠=∠,则EOA V 中,cos 601OA OE =⋅=o ,则S 当直线l 的斜率不存在时,可得:1l x =±,代入方程可得:2114y +=,解得32y =±,可得MN 当直线l 的斜率存在时,可设:l y kx b =+,联立可得))得1(0,3)B ,2(1,0)F ,12B F k =所以直线MN 的斜率为33,所以直线()2231313x y =++=.消去y 并化简得13(1)求椭圆E的方程;(2)是否存在实数λ,使椭圆若不存在,请说明理由;(3)椭圆E的内接四边形ABCD4t4t【点睛】方法点睛:本题(2圆联立求出弦长,然后再结合基本不等式求解出最值11.已知椭圆221:184x yC+=与椭圆(1)求椭圆2C的标准方程:不妨设P 在第一象限以及x 故000022AP AQ k y y k x x -+⋅=⋅=-由题意知直线AP 存在斜率,设其方程为若直线l ,m 中两条直线分别与两条坐标轴垂直,则其中有一条必与直线所以直线l 的斜率存在且不为零,设直线()()1122,,,A x y B x y ,()1y k x ⎧=+。

4圆锥曲线的弦长面积问题-中等难度-讲义

4圆锥曲线的弦长面积问题-中等难度-讲义

圆锥曲线的弦长面积问题知识讲解一、弦长问题设圆锥曲线C ∶(),0f x y =与直线:l y kx b =+相交于()11,A x y ,()22,B x y 两点, 则弦长AB 为:()2221212121141x AB k x x k x x x x k a∆=+-=++-=+()1212122221111141y AB y y y y y y k k ka∆=+-=++-=+或二、面积问题1.三角形面积问题直线AB 方程:y kx m =+ 0021kx y md PH k-+==+002211122a1x ABPkx y mS AB d k k∆∆-+=⋅=+⋅+2.焦点三角形的面积直线AB 过焦点21,F ABF ∆的面积为112121212y ABF c S F F y y c y y a∆∆=⋅-=-=H OyxPBA3.平行四边形的面积直线AB 为1y kx m =+,直线CD 为2y kx m =+d CH ==12AB x =-=ABCDSAB d =⋅==三、范围问题方法:首选均值不等式或对勾函数,其实用二次函数配方法,最后选导数思想 均值不等式 :222(,)a b ab a b R +≥∈变式:2,);()(,)2a b a b a b R ab a b R ++++≥∈≤∈ 作用:当两个正数的积为定值时求出这两个正数的和的最小值;当两个正数的和为定值时求出这两个正数的积的最大值注意:应用均值不等式求解最值时,应注意“一”正“二”定“三”相等圆锥曲线经常用到的均值不等式形式:1)2226464t S t t t==++(注意分0,0,0t t t =><三种情况讨论) 2)224222121212333196123696k AB t k k k=+=+≤+++⨯+++当且仅当2219k k =时,等号成立3)222002200259342593464925y x PQ x y =+⋅+⋅≥+ 当且仅当22002200259259925y x x y ⋅=⋅时等号成立. 4)2282m m S -+===当且仅当228m m =-+时,等号成立 5)2221121k m m S -++==≤=当且仅当221212k m +=时等号成立.经典例题一.选择题(共9小题)1.(2018•德阳模拟)设点P为椭圆C:x249+y224=1上一点,F1、F2分别是椭圆C的左、右焦点,且△PF1F2的重心为点G,若|PF1|:|PF2|=3:4,那么△GPF1的面积为()A.24B.12C.8D.6【解答】解:∵点P为椭圆C:x 249+y224=1上一点,|PF1|:|PF2|=3:4,|PF1|+|PF2|=2a=14∴|PF1|=6,|PF2|=8,又∵F1F2=2c=10,∴△PF1F2是直角三角形,S△PF1F2=12×PF1⋅PF2=24,∵△PF1F2的重心为点G.∴S△PF1F2=3S△GF1F2,∴△GPF1的面积为8,故选:C.2.(2018•邵阳三模)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为2√1313,且两焦点与短轴端点构成的三角形的面积为6,则椭圆C的标准方程是()A .x 216+y 29=1B .x 216+y 213=1C .x 213+y 29=1D .x 213+y 24=1【解答】解:设椭圆半焦距为c ,则{c a=2√131312×2c ×b =6a 2−b 2=c 2,解得a=√13,b=3,c=2.故椭圆方程为:x 213+y 29=1.故选:C .3.(2018•齐齐哈尔三模)已知双曲线x 22−y 2=1的左焦点为F ,抛物线y 2=12x 与双曲线交于A ,B 两点,则△FAB 的面积为( ) A .2B .1+√2C .2+√2D .2+√3【解答】解:双曲线x 22−y 2=1的左焦点为F (﹣√3,0),由{x 22−y2=1y 2=12x可得:A (2,1),B (2,﹣1),则△FAB 的面积为:12×(2+√3)×2=2+√3.故选:D .4.(2018•珠海二模)已知F 是双曲线C :x 2a 2﹣y 2b2=1(a >0,b >0)的右焦点,P是y 轴正半轴上一点,以OP 为直径的圆在第一象限与双曲线的渐近线交于点M ,若点P ,M ,F 三点共线,且△MFO 的面积是△PMO 面积的4倍,则双曲线C 的离心率为( )A .√3B .√5C .√6D .√7【解答】解:如图以OP 为直径的圆在第一象限与双曲线的渐近线y=bax 交于点M ,由△MFO 的面积是△PMO 面积的4倍,可得|MF |=4|MP |, 由OM ⊥PF ,设F (c ,0),可得|MF |=√a 2+b 2=b ,则|PM |=b4,在直角三角形POF 中,由射影定理可得, |OF |2=|MF |•|FP |,即为c 2=b•54b=54(c 2﹣a 2),则c 2=5a 2,即有e=ca=√5.故选:B .5.(2018•重庆模拟)已知抛物线y 2=4x 的焦点为F ,以F 为圆心的圆与抛物线交于M 、N 两点,与抛物线的准线交于P 、Q 两点,若四边形MNPQ 为矩形,则矩形MNPQ 的面积是( ) A .16√3B .12√3C .4√3D .3【解答】解:根据题意画出示意图:依题意,抛物线抛物线y 2=4x 的焦点为F (1,0), ∴圆的圆心坐标为F (1,0).∵四边形MNPQ 是矩形,且PM 为直径,QN 为直径,F (1,0)为圆的圆心, ∴点F 为该矩形的两条对角线的交点,∴点F 到直线PQ 的距离与点F 到MN 的距离相等.∵点F 到直线MN 的距离d=2, ∴直线MN 的方程为:x=3, ∴M (3,2√3),∴则矩形MNPQ 的面积是:4×4√3=16√3. 故选:A .6.(2018•武汉模拟)过点P (2,﹣1)作抛物线x 2=4y 的两条切线,切点分别为A ,B ,PA ,PB 分别交x 轴于E ,F 两点,O 为坐标原点,则△PEF 与△OAB 的面积之比为( )A .√32B .√33 C .12D .34【解答】解:设过P 点的直线方程为:y=k (x ﹣2)﹣1,代入x 2=4y 可得x 2﹣4kx +8k +4=0,①令△=0可得16k 2﹣4(8k +4)=0,解得k=1±√2.∴PA ,PB 的方程分别为y=(1+√2)(x ﹣2)﹣1,y=(1﹣√2)(x ﹣2)﹣1, 分别令y=0可得E (√2+1,0),F (1﹣√2,0),即|EF |=2√2.∴S △PEF =12×2√2×1=√2,解方程①可得x=2k ,∴A (2+2√2,3+2√2),B (2﹣2√2,3﹣2√2), ∴直线AB 方程为y=x +1,|AB |=8,原点O 到直线AB 的距离d=√22,∴S △OAB =12×8×√22=2√2.∴△PEF 与△OAB 的面积之比为12.故选:C .7.(2018•马鞍山三模)已知抛物线C :y 2=4√3x 的准线为l ,过C 的焦点F 的直线交l 于点A ,与抛物线C 的一个交点为B ,若F 为线段AB 的中点,BH ⊥AB 交l 于H ,则△BHF 的面积为( ) A .12√3B .16√3C .24√3D .32√3【解答】解:抛物线C :y 2=4√3x 的准线为为x=﹣√3,焦点F (√3,0), 设直线AB 的方程为y=k (x ﹣√3), 由{y =k(x −√3)x =−√3,解得x=﹣√3,y=﹣2√3k ,∴A (﹣√3,﹣2√3k ), ∵F 为线段AB 的中点, ∴x B ﹣√3=2√3,y B ﹣2√3k=0, ∴x B =3√3,y B =2√3k将点B 坐标代入y 2=4√3x ,可得12k 2=4√3×3√3, 解得k=±√3,不妨令k=√3,∴A (﹣√3,﹣6),B (3√3,6), ∵k BH •k BA =﹣1, ∴k BH =﹣√33, 设H (﹣√3,y H ),∴H −√3−3√3=﹣√33, 解得y H =10,∴|BH |=√(−√3−3√3)2+(10−6)2=8, |BF |=√(3√3−√3)3+62=4√3,∴S △BHF =12|BH |•|BF |=12×8×4√3=16√3,故选:B .8.(2018•新课标Ⅰ)已知双曲线C :x 23﹣y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |=( )A .32B .3C .2√3D .4【解答】解:双曲线C :x 23﹣y 2=1的渐近线方程为:y=±√33x ,渐近线的夹角为:60°,不妨设过F (2,0)的直线为:y=√3(x −2),则:{y =−√33xy =√3(x −2)解得M (32,−√32),{y =√33x y =√3(x −2)解得:N (3,√3), 则|MN |=(3−32)+(√3+√32)=3.故选:B .9.(2008秋•中山区校级月考)斜率为2的直线l 经过抛物线x 2=8y 的焦点,且与抛物线相交于A ,B 两点,则线段AB 的长为( ) A .8B .16C .32D .40【解答】解:设直线l 的倾斜解为α,则l 与y 轴的夹角θ=90°﹣α, cotθ=tanα=2, ∴sinθ=√5,|AB |=8sin 2θ=815=40.故选:D .二.填空题(共6小题)10.(2018•邵阳三模)已知Q 为椭圆C :x 23+y 2=1上一动点,且Q 在y 轴的右侧,点M (2,0),线段QM 的垂直平分线交y 轴于点N ,则当四边形OQMN的面积取最小值时,点Q 的横坐标为32. 【解答】解:设直线MQ 的中点为D ,由题意知ND ⊥MQ ,直线ND 的斜率存在,设Q (x 0,y 0),(y 0≠0,x 0>0),∴点D 的坐标为(x 0+22,y 02),且直线MQ 的斜率k MQ =y 0x 0−2,∴k ND =﹣1k MQ =2−x 0y 0,∴直线ND 的方程为y ﹣y 02=2−x 0y 0(x ﹣x 0+22),令x=0,可得y=x 02+y 02−42y 0,∴N (0,x 02+y 02−42y 0),由x 023+y 02=1可得x 02=3﹣3y 02, ∴N (0,−2y 02−12y 0),∴S四边形OQMN =S△OQM +S△OMN =12×2×|y 0|+12×2×|−2y 02−12y 0|=|y 0|+|2y 02+12y 0|=2|y 0|+12|y 0|,即y 0=±12,x 0=32等号成立,故Q 的横坐标为32,故答案为:3211.(2018•齐齐哈尔二模)已知点P 是双曲线x 22﹣y 2=1 上的一点,F 1,F 2是双曲线的两个焦点,若|PF 1|+|PF 2|=4√2,则△PF 1F 2的面积为 √5 . 【解答】解:不妨设P 在双曲线的右支上,由双曲线的定义可知|PF 1|﹣|PF 2|=2√2,又|PF 1|+|PF 2|=4√2, ∴|PF 1|=3√2,|PF 2|=√2,又|F 1F 2|=2c=2√3,∴cos ∠F 1PF 2=PF 12+PF 22−F 1F 222PF 1⋅PF 2=23,sin ∠F 1PF 2=√53,∴△PF 1F 2的面积为12×3√2×√2×√53=√5.故答案为:√5.12.(2018•沈阳一模)已知正三角形△AOB (O 为坐标原点)的顶点A 、B 在抛物线y 2=3x 上,则△AOB 的边长是 6√3 . 【解答】解:由抛物线的对称性可得∠AOx=30°,∴直线OA 的方程为y=√33x ,联立{y =√33x y 2=3x,解得A (9,3√3).∴|AO |=√81+27=6√3. 故答案为:6√3.13.(2018•甘肃模拟)抛物线C :y 2=4x 的焦点为F ,过准线上一点N 作NF 的垂线交y 轴于点M ,若抛物线C 上存在点E ,满足2NE →=NM →+NF →,则△MNF 的面积为 3√22.【解答】解:准线方程为x=﹣1,焦点为F (1,0), 不妨设N 在第三象限, ∵2NE →=NM →+NF →, ∴E 是MF 的中点,∴NE=12MF=EF ,∴NE ∥x 轴,又E 为MF 的中点,E 在抛物线y 2=4x 上,∴E (12,﹣√2),∴N (﹣1,﹣√2),M (0,﹣2√2),∴NF=√6,MN=√3,∴S △MNF =12×√6×√3=3√22故答案为:3√2214.(2016秋•九龙坡区校级期中)如图所示,过抛物线C :y 2=2px (p >0)的焦点F 作直线交C 于A 、B 两点,过A 、B 分别向C 的准线l 作垂线,垂足为A′,B′,已知四边形AA′B′F 与BB′A′F 的面积分别为15和7,则△A′B′F 的面积为 6 .【解答】解:设△A′B′F 的面积为S ,直线AB :x=my +p2,代入抛物线方程,消元可得y 2﹣2pmy ﹣p 2=0设A (x 1,y 1) B (x 2,y 2),则y 1y 2=﹣p 2,y 1+y 2=2pmS △AA'F =12|AA'|×|y 1|=12|x 1+p 2||y 1|=12(y 122p +p 2)|y 1|S △BB'F =12|BB'|×|y 2|=12|x 2+p 2||y 2|=12(y 222p +p 2)|y 2|∴12(y 122p +p 2)|y 1|×12(y 222p +p 2)|y 2|=p 24(p 22+y 124+y 224)=p 44(m 2+1) S △A′B′F =p2|y 1﹣y 2|=p 2√m 2+1=S∵四边形AA′B′F 与BB′A′F 的面积分别为15和7∴p 44(m 2+1)=(15﹣S )(7﹣S ) ∴14S 2=(15﹣S )(7﹣S ) ∴34S 2﹣22S +105=0 ∴S=6 故答案为:615.(2016春•芒市校级期中)斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |得最大值为 4√105.【解答】解:设直线l 的方程为y=x +t ,代入椭圆x 24+y 2=1消去y 得54x 2+2tx +t 2﹣1=0,由题意得△=(2t )2﹣5(t 2﹣1)>0,即t 2<5. 弦长|AB |=4√2×√5−t 25≤4√105.当t=0时取最大值. 故答案为:4√105.三.解答题(共5小题)16.(2018•焦作四模)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,椭圆的四个顶点围成的四边形的面积为4. (Ⅰ)求椭圆Γ的标准方程;(Ⅰ)直线l 与椭圆Γ交于A ,B 两点,AB 的中点M 在圆x 2+y 2=1上,求△AOB (O为坐标原点)面积的最大值.【解答】解:(Ⅰ)根据题意,椭圆Γ:x 2a2+y2b2=1(a>b>0)的离心率为√32,则c a =√32,得c=√32a,b=12a,所以3x 24c2+3y2c2=1,由椭圆Γ的四个顶点围成的四边形的面积为4,得2ab=4,所以a=2,b=1,椭圆Γ的标准方程为x 24+y2=1.(Ⅰ)根据题意,直线l与椭圆Γ交于A,B两点,当直线l的斜率不存在时,令x=±1,得y=±√32,S△AOB=12×1×√3=√32,当直线l的斜率存在时,设l:y=kx+m,A(x1,y1),B(x2,y2),M(x0,y0),由{y=kx+mx2+4y2=4,得(1+4k2)x2+8kmx+4m2﹣4=0,则x1+x2=−8km1+4k2,x1x2=4m2−41+4k2,所以x0=−4km1+4k2,y=kx0+m=−4k2m1+4k2+m=m1+4k2,将(−4km1+4k2,m1+4k2)代入x2+y2=1,得m2=(1+4k2)216k2+1,又因为|AB|=√1+k2⋅√(x1+x2)2−4x1x2=√1+k2⋅41+4k2√1+4k2−m2,原点到直线l的距离d=√1+k2,所以S△AOB=12×|m|√1+k2×√1+k2⋅41+4k2√1+4k2−m2=2|m|1+4k2√1+4k2−m2=21+4k2×2√16k2+1×√1+4k2×√1−1+4k216k2+1=2√12k 2(1+4k 2)(16k 2+1)2=216k 2+1×√12k 2(1+4k 2)≤216k 2+1×1+16k 22=1.当且仅当12k 2=1+4k 2,即k =±√24时取等号.综上所述,△AOB 面积的最大值为1.17.(2018•南通一模)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b2=1(a>b >0)的离心率为√22,两条准线之间的距离为4√2.(1)求椭圆的标准方程;(2)已知椭圆的左顶点为A ,点M 在圆x 2+y 2=89上,直线AM 与椭圆相交于另一点B ,且△AOB 的面积是△AOM 的面积的2倍,求直线AB 的方程.【解答】解:(1)设椭圆的焦距为2c ,由题意得,c a =√22,2a 2c=4√2,解得a=2,c=b=√2.∴椭圆的方程为:x 24+y 22=1.(2)△AOB 的面积是△AOM 的面积的2倍,∴AB=2AM , ∴点M 为AB 的中点.∵椭圆的方程为:x 24+y 22=1.∴A (﹣2,0).设M (x 0,y 0),则B (2x 0+2,2y 0).由x 02+y 02=89,(2x 0+2)24+(2y 0)22=1, 化为:9x 02﹣18x 0﹣16=0,−2√23≤x 0≤2√23.解得:x0=﹣23.代入解得:y0=±23,∴k AB=±1 2,因此,直线AB的方程为:y=±12(x+2).18.(2018•衡阳一模)已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,离心率为12,直线y=1与C的两个交点间的距离为4√63.(Ⅰ)求椭圆C的方程;(Ⅰ)分别过F1、F2作l1、l2满足l1∥l2,设l1、l2与C的上半部分分别交于A、B 两点,求四边形ABF2F1面积的最大值.【解答】解:(Ⅰ)易知椭圆过点(2√63,1),所以83a2+1b2=1,①…(2分)又c a =12,②…(3分)a2=b2+c2,③…(4分)①②③得a2=4,b2=3,所以椭圆的方程为x 24+y23=1.…(6分)(Ⅰ)设直线l1:x=my﹣1,它与C的另一个交点为D.与C联立,消去x,得(3m2+4)y2﹣6my﹣9=0,…(7分)△=144(m2+1)>0.|AD|=√1+m2⋅12√1+m23m2+4,…(9分)又F2到l1的距离为d=2√1+m,…(10分)所以S△ADF2=12√1+m23m2+4.…(11分)令t=√1+m2≥1,则S△ADF2=123t+1t,所以当t=1时,最大值为3.…(14分)又S四边形ABF2F1=12(|BF2|+|AF1|)⋅d=12(|AF1|+|DF1|)⋅d=12|AB|⋅d=S△ADF2所以四边形ABF2F1面积的最大值为3.…(15分)19.(2018•江苏二模)如图,在平面直角坐标系xOy中,B1,B2是椭圆x2a2+y2b2=1(a>b>0)的短轴端点,P是椭圆上异于点B1,B2的一动点.当直线PB1的方程为y=x+3时,线段PB1的长为4√2.(1)求椭圆的标准方程;(2)设点Q满足:QB1⊥PB1,QB2⊥PB2,求证:△PB1B2与△QB1B2的面积之比为定值.【解答】解:设P(x0,y0),Q(x1,y1).(1)在y=x+3中,令x=0,得y=3,从而b=3.……(2分)由{x 2a 2+y 29=1,y =x +3得x 2a 2+(x+3)29=1. 所以x 0=−6a 29+a 2. ……(4分)因为PB 1=√x 02+(y 0−3)2=√2|x 0|,所以4√2=√2⋅6a 29+a2,解得a 2=18. 所以椭圆的标准方程为x 218+y 29=1. ……(6分)(2)方法一:直线PB 1的斜率为k PB 1=y 0−3x 0,由QB 1⊥PB 1,所以直线QB 1的斜率为k QB 1=−x 0y 0−3. 于是直线QB 1的方程为:y =−x 0y 0−3x +3.同理,QB 2的方程为:y =−x 0y 0+3x −3. ……(8分)联立两直线方程,消去y ,得x 1=y 02−9x 0. …(10分)因为P (x 0,y 0)在椭圆x 218+y 29=1上,所以x 0218+y 029=1,从而y 02−9=−x 022. 所以x 1=−x 02. ……(12分) 所以S △PB 1B 2S △QB 1B 2=|x 0x 1|=2. ……(14分)方法二:设直线PB 1,PB 2的斜率为k ,k',则直线PB 1的方程为y=kx +3.由QB 1⊥PB 1,直线QB 1的方程为y =−1k x +3.将y=kx +3代入x 218+y 29=1,得(2k 2+1)x 2+12kx=0,因为P 是椭圆上异于点B 1,B 2的点,所以x 0≠0,从而x 0=−12k2k 2+1.…(8分)因为P (x 0,y 0)在椭圆x 218+y 29=1上,所以x 0218+y 029=1,从而y 02−9=−x 022. 所以k ⋅k′=y 0−3x 0⋅y 0+3x 0=y 02−9x 02=−12,得k′=−12k . ……(10分)由QB 2⊥PB 2,所以直线QB 2的方程为y=2kx ﹣3.联立{y =−1k x +3,y =2kx −3则x =6k 2k 2+1,即x 1=6k 2k 2+1. ……(12分) 所以S △PB 1B 2S △QB 1B 2=|x 0x 1|=|−12k 2k 2+16k 2k 2+1|=2. ……(14分)20.(2018•黄州区校级模拟)如图,从椭圆C :x 2a 2+y 2b 2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F ,又点A 是椭圆与x 轴正半轴的交点,点B 是椭圆与y 轴正半轴的交点,且AB ∥OP ,|FA |=2√2+2,(Ⅰ)求C 的方程;(Ⅰ)过F 且斜率不为0的直线l 与C 相交于M ,N 两点,线段MN 的中点为E ,直线OE 与直线x=﹣4相交于点D ,若△MDF 为等腰直角三角形,求l 的方程.【解答】解:(Ⅰ)令x=﹣c ,得y =±b 2a .所以P (−c ,b 2a ).直线OP 的斜率k 1=−b 2ac .直线AB 的斜率k 2=−b a .故b 2ac =b a 解得b=c ,a =√2c .由已知及|FA |=a +c ,得a +c =2√2+2, 所以(1+√2)c =2√2+2,解得c=2.所以,a =2√2,b=2所以C 的方程为x 28+y 24=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅰ)易得F (﹣2,0),可设直线l 的方程为x=ky ﹣2,A (x 1,y 1),B (x 2,y 2), 联立方程组x=ky ﹣2和x 2+2y 2=8,消去x,整理得(k2+2)y2﹣4ky﹣4=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)由韦达定理,得y1+y2=4k2+k2,y1y2=﹣42+k2,所以y1+y22=2k2+k2,x1+x22=k(y1+y2)2−2=﹣42+k2,即C(﹣42+k2,2k2+k2),所以直线OC的方程为y=﹣k2x,令x=﹣4,得y=2k,即D(﹣4,2k),所以直线DF的斜率为2k−0−4+2=﹣k,所以直线DF与l恒保持垂直关系,故若△ADF为等腰直角三角形,只需|AF|=|DF|,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)即√4+4k2=√(x1+2)2+y12=√(1+k2)y12,解得y1=±2,又x128+y124=1,所以x1=0,所以k=±1,从而直线l的方程为:x﹣y+2=0或x+y+2=0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)。

圆锥曲线面积问题解题技巧

圆锥曲线面积问题解题技巧

圆锥曲线面积问题解题技巧
哇塞,朋友们!今天咱们就来好好唠唠圆锥曲线面积问题解题技巧这些事儿。

咱就说,对于圆锥曲线,是不是有时候感觉就像一团乱麻,理都理不清呀!
比如说椭圆吧,已知一个椭圆的方程,然后让你求某个图形的面积,这时候该咋办呢?嘿!先别慌!咱得冷静分析。

你看啊,就像解开一团纠结的毛线,得找到那个关键的线头。

拿双曲线来说,假如给你一个双曲线,还有一些条件,让你算一个和它相关的三角形面积。

这就相当于在迷宫里找出口,得有方法呀!比如咱可以通过巧妙运用一些公式和定理,像发现宝藏一样找到解题的关键。

再说说抛物线,那可真是像个调皮的小精灵,稍不注意就给你来个难题。

可咱不能怕呀!咱得勇敢面对呀!就像打游戏冲关一样,一步步找到技巧。

同学小张就曾经在这上面栽过跟头,他老是抓不住重点,急得直跺脚。

我就跟他说:“嘿,别急呀,咱慢慢分析,肯定能找到突破口。

”后来呀,他静下心来,按照一些方法去做,果然就把难题给解决了。

其实呀,解决圆锥曲线面积问题就像攀岩,得一步一个脚印,找好着力点。

有时候看似困难无比,但是只要你掌握了技巧,就会发现其实也没那么难嘛!遇到问题咱就得迎上去,和它正面交锋!绝对不能退缩。

我的观点就是,只要我们认真去学,多练习,多总结,圆锥曲线面积问题的解题技巧一定能被我们牢牢掌握!大家一起加油吧!。

第九讲 圆锥曲线中弦长和面积问题

第九讲 圆锥曲线中弦长和面积问题

∴|AB|= 1+k2|x1-x2| = 1+k2· (x1+x2)2-4x1x2 = 2· -85t2-4×4(t25-1) =452· 5-t2, 当 t=0 时,|AB|max=4 510.故选 C.
变式训练. 过双曲线 x2-y22=1 的右焦点作直线 l 交双曲线于 A,B 两点,若 使得|AB|=λ 的直线 l 恰有三条,则 λ= 44 .
(2)若直线 l:y=kx+m(k,m 为常数,k≠0)与椭圆 Γ 交于不同的两点 M
和 N. (ⅰ)当直线 l 过 E(1,0),且E→M+2E→N=0 时,求直线 l 的方程;
(ⅱ)当坐标原点 O 到直线 l 的距离为 23,且△ MON 的面积为 23时,求 直 线 l 的倾斜角.
解析 (1)∵A1(a,0),B1(0,1),
∴S△MON=12×|MN|× 23=
3 4
3(k2+1)(9k 2+1)
(3k 2+1)2
.
∵△MON 的面积为 23,

3 4
3(k2(+31k)2+(19)k 22+1)= 23,可得 k=± 33,
设直线 l 的倾斜角为 θ,则 tan θ=± 33, 由于 0≤θ<π,∴θ=π6或 θ=56π.
解析 ∵使得|AB|=λ 的直线 l 恰有三条. ∴根据对称性,其中有一条直线与实轴垂直. 此时 A,B 的横坐标为 3,代入双曲线方程,可得 y=±2,故|AB|=4. ∵双曲线的两个顶点之间的距离是 2,小于 4, ∴过双曲线的焦点一定有两条直线使得交点之间的距离等于 4, 综上可知,|AB|=4 时,有三条直线满足题意.∴λ=4.
[方法点拨] 求解弦长的 4 种方法 (1)当弦长的两端点坐标易求时,可直接利用两点间的距离公式求解. (2)联立直线与圆锥曲线方程,解方程组求出两个交点坐标,代入两点 间的距离公式求解. (3)联立直线与圆锥曲线方程,消元得到关于 x(或 y)的一元二次方程, 利用根与系数的关系得到(x1-x2)2,(y1-y2)2,代入两点间的距离公式求解. (4)当弦过焦点时,可结合焦半径公式求解弦长.

圆锥曲线之面积问题

圆锥曲线之面积问题

圆锥曲线之面积问题一般来说,题目会经常考直线与圆锥曲线相交后所围三角形或者四边形的面积。

采用的方法有两种,分割法或者二分之一底乘高。

分割法:所围图形内部有一条线段躺在x 轴或y 轴上,且长度固定。

此时用这条线段分割所围图形即可。

二分之一底乘高:则是用三角形的面积进行计算做题时,优先考虑分割法。

下面用一个引例进行说明。

而该例子中在求最值时,有一个高考常用的处理技巧,必须掌握。

引例 如下图,已知椭圆2212x y +=,左焦点为()11,0F -。

过1F 的任意直线交该椭圆于A 、B 两点,求三角形OAB 面积的最大值解析:法一分割法:三角形OAB 内部有一条线段1OF 躺在x 轴上,而且该线段的长度已知为1,因此用该线段分割非常合适。

设()()1122,,,A x y B x y ,则111112112111||||()221||()21||2OAB OAF OBF SS S OF y OF y OF y y OF =+=+-=-=接下来就是设出直线方程,运用根与系数的关系了。

设该直线为x=ty-1 由()22221223012x ty t y ty x y =-⎧⎪⇒+--=⎨+=⎪⎩ 则12122223,22t y y y y t t +==-++ 则11|2OAB S OF === 接下来求上式的最大值,有一个很重要的技巧,就是换元,把整个根式换掉。

必须掌握,处理如下:通法:令m =2m ≥且2221122m S m m m ==++又对勾函数的单调性知12m m +≥因此S ≤=法二,二分之一底乘以=高:如果我们把点O 到直线的距离设为d ,则显然1||2OAB SAB d = 直线l 仍旧设为x=ty-1|AB|又d =依旧按照联立方程,用根与系数的关系,写出OAB S 的面积公式,接下来的处理就与分割法一样。

先换元,再利用对勾函数的性质即可求出最大值。

在此略去例1 (2014全国1卷)已知点A (0,-2),椭圆E :22221x y a b+=(a>b>0),其离心率2e =,F 是椭圆的右焦点,3AF k = (1)求E 得方程(2)求过点A 的直线l 与E 交于两点P 、Q ,求OPQ S 最大值时直线l 的方程 解析:(1)由202203AF c e k a c c --=====-得到1c b ==因此E :2214x y += (2)如下图因为OA 这条线段躺在y 轴上,且长度已知,因此运用分割法做最好。

高考数学一轮复习专题03 圆锥曲线面积问题(解析版)

高考数学一轮复习专题03 圆锥曲线面积问题(解析版)

F 2F 1OyxBA解析几何专题三:圆锥曲线面积问题一、知识储备 1、三角形面积问题直线AB 方程:y kx m =+ 0021kx y md PH k-+==+00002211122'2'1ABP kx y m kx y mS AB d k A A k ∆-+∆-+∆=⋅=+⋅=+2、焦点三角形的面积直线AB 过焦点21,F ABF ∆的面积为 112121212'ABF c S F F y y c y y A ∆∆=⋅-=-= 2222222222222224()11||S =||d 22AOB a b a A b B C C AB A B a A b B A B∆+-=+++2222222222()C ab a A b B C a A b B+-=+注意:'A 为联立消去x 后关于y 的一元二次方程的二次项系数3、平行四边形的面积直线AB 为1y kx m =+,直线CD 为2y kx m =+ 1221m m d CH k-==+222222121212''11()41()41'''B C AB k x x k x x x x k k A A A ∆=+-=++-=+--⋅=+1212221''1ABCDm m m m SAB d k A A k -∆-∆=⋅=+⋅=+注意:'A 为直线与椭圆联立后消去y 后的一元二次方程的系数. 4、范围问题首选均值不等式,其实用二次函数,最后选导数CDHOyxBA均值不等式 222(,)a b ab a b R +≥∈变式:2,);()(,)2a b a b a b R ab a b R ++++≥∈≤∈ 作用:当两个正数的积为定值时求出这两个正数的和的最小值; 当两个正数的和为定值时求出这两个正数的积的最大值 注意:应用均值不等式求解最值时,应注意“一正二定三相等” 圆锥曲线经常用到的均值不等式形式列举: (1)2226464t S t t t==++(注意分0,0,0t t t =><三种情况讨论)(2)224222121212333196123696k AB t k k k=+=+≤+++⨯+++ 当且仅当2219k k =时,等号成立 (3)222002200259342593464925y x PQ x y =+⋅+⋅≥+= 当且仅当22002200259259925y x x y ⋅=⋅时等号成立. (4)2282m m S -+===当且仅当228m m =-+时,等号成立(5)2221121k m m S -++==≤=当且仅当221212k m +=时等号成立. 二、例题讲解1.(2022·广东高三月考)已知椭圆G :()222210x y a b a b +=>>,且过点()3,1.(1)求椭圆G 的方程;(2)斜率为1的直线l 与椭圆G 交于A 、B 两点,以AB 为底边作等腰三角形,顶点为()3,2P -,求PAB ∆的面积.【答案】(1)221124x y +=;(2)92.【分析】(1)根据椭圆离心率、及所过的点,结合椭圆参数关系求参数,写出椭圆方程.(2)设1122(,),(,)A x y B x y ,AB :y x b =+,其线段AB 中垂线为1y x =--,联立椭圆方程并应用韦达定理求12x x +、12x x ,进而可得12y y +,由AB 中点在中垂线上代入求参数b ,进而求||AB 、P 到AB 的距离,即可求△PAB 的面积. 【详解】(1)由题意,22222911a b a b c c e a ⎧==⎪⎪⎪+⎨==+⎪⎪⎪⎩,解得22124a b ⎧=⎪⎨=⎪⎩,故椭圆G 的方程221124x y+=.(2)令AB 为y x b =+,则AB 中垂线方程为(3)21y x x =-++=--, 联立AB 与椭圆方程得:223()12x x b ++=,整理得22463120x bx b ++-=, 若1122(,),(,)A x y B x y ,则1232b x x +=-,2123124b x x -=, △121222by y x x b +=++=,又1212(,)22x x y y ++在AB 中垂线上,△3144b b-=,可得2b =,即123x x +=-,120x x =,△||AB == 又()3,2P -到AB的距离d △19||PABSAB d =⋅=. 2.(2022·全国高三模拟预测)已知双曲线C :22221x ya b -=()0,0a b >>的左、右焦点分别为1F ,2F ,虚轴上、下两个端点分别为2B ,1B ,右顶点为A ,且双曲线过点,22213B F B A ac a ⋅=-.(1)求双曲线1C 的标准方程;(2)设以点1F 为圆心,半径为2的圆为2C ,已知过2F 的两条相互垂直的直线1l ,2l ,直线1l 与双曲线交于P ,Q 两点,直线2l 与圆2C 相交于M ,N 两点,记PMN ∆,QMN ∆的面积分别为1S ,2S ,求12S S +的取值范围.【答案】(1)2213y x -=;(2)[)12,+∞.【分析】(1)由22213B F B A ac a ⋅=-得223a b =,由双曲线过点得22231a b -=,两个方程联立求出a 和b ,可得双曲线1C 的标准方程;(2)设直线1l :2x my =+,根据垂直关系得直线2l :()2y m x =--,求出弦长||MN 和||PQ ,求出121||||2S S MN PQ +=,再根据参数的范围可求出结果. 【详解】(1)由双曲线的方程可知(),0A a ,()10,B b -,()20,B b ,()2,0F c , 则()22,B F c b =-,()1,B A a b =.因为22213B F B A ac a ⋅=-,所以223ac b ac a -=-,即223a b =.①又双曲线过点,所以22231a b -=.② 由①②解得1a =,b = 所以双曲线1C 的标准方程为2213y x -=. (2)设直线1l :2x my =+,()11,P x y ,()22,Q x y , 则由21l l ⊥,得直线2l :()2y m x =--,即20mx y m +-=. 因为圆心()12,0F -到直线MN的距离d ==所以MN =2d <,故2103m ≤<. 联立221,32,y x x my ⎧-=⎪⎨⎪=+⎩消去x 得()22311290m y my -++=, ()222144363136(1)0m m m ∆=--=+>,则1221231m y y m +=--,122931y y m =-,所以()22126113m PQ y m +=-=-,则1212S S PQ MN +=⋅=, 又2103m ≤<,所以[)1212,S S +∈+∞. 即12S S +的取值范围为[)12,+∞. 【点睛】关键点点睛:设直线1l :2x my =+,用m 表示||MN 和||PQ 是本题的解题关键.3.(2022·浙江高三开学考试)如图,已知抛物线()2:20C y px p =>的焦点为()1,0F ,D 为x 轴上位于F 右侧的点,点A 为抛物线C在第一象限上的一点,且AF DF =,分别延长线段AF 、AD 交抛物线C 于M 、N .(1)若AM MN ⊥,求直线AF 的斜率; (2)求三角形AMN 面积的最小值. 【答案】(1(2)16.【分析】(1)由抛物线的焦点坐标求出p 的值,可得出抛物线C 的方程,设点()2,2A t t ,可知0t >,求出M 、N 的纵坐标,利用斜率公式结合已知条件得出1AM MN k k ⋅=-,可得出关于t 的方程,解出正数t 的值,进而可求得直线AF 的斜率;(2)求出点M 、N 的坐标,求得AM 以及点N 到直线AM 的距离d ,可求得AMN 的面积关于t 的表达式,利用基本不等式可求得AMN 面积的最小值. 【详解】(1)()1,0F ,则12p=,得2p =,所以,抛物线C 的方程为24y x =, 设()2,2A t t ,点A 为抛物线C 在第一象限上的一点,故0t >,设点(),0D d ,由AF DF =得211t d +=-,则22d t =+,得()22,0D t +,所以,221AMt k t =-,直线AM 的方程为2112t x y t-=+, 联立224112y xt x y t ⎧=⎪⎨-=+⎪⎩,得222240t y y t ---=,所以,42M A y y t -==-, 进一步得()2222AN AD tk k t t t ===--+,直线AN 的方程为212x y t t=-++, 联立22124x y t t y x⎧=-++⎪⎨⎪=⎩,得()224420y y t t +-+=,4N A y y t ∴+=-,则42N y t t=--,又AM MN ⊥,22224414444A M M N A M M N AM MN A M M N A M M N A M M Ny y y y y y y y k k y y y y x x x x y y y y ----∴⋅=⋅=⋅=⋅=---++--, 代入得44122422t tt t t⋅=-----,化简得:42230t t --=, 又0t >,t ∴=(3,A,AF k ∴==(2)由(1)知224,2N t t t t ⎛⎫⎛⎫+-- ⎪ ⎪ ⎪⎝⎭⎝⎭,212,M t t ⎛⎫- ⎪⎝⎭, ()222221122A M t AM x x t tt+=++=++=,直线AM 的方程2112t x y t-=+即为()22120tx t y t ---= 所以点N 到直线AM 的距离为()()()222221211t t d tt t++==+,()332331122216AMN t S t t t +⎛⎛⎫==+≥= ⎪ ⎝⎭⎝△, 当且仅当1t =时,S 取到最小值16. 【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.1.(2022·江苏南京·高三月考)已知抛物线1G :24y x =与椭圆2G :22221x y a b+=(0a b >>)有公共的焦点,2G 的左、右焦点分别为1F ,2F ,该椭圆的离心率为12. (1)求椭圆2G 的方程;(2)如图,若直线l 与x 轴,椭圆2G 顺次交于P ,Q ,R (P 点在椭圆左顶点的左侧),且1PFQ ∠与1PF R ∠互补,求1F QR ∆面积S 的最大值.【答案】(1)22143x y +=.(2【分析】(1)由已知条件推导出1c =,结合12e =和隐含条件222a b c =+,即可求出椭圆标准方程; (2)设1(Q x ,1)y ,2(R x ,2)y ,(1,0)F -,1PFQ ∠与1PF R ∠互补,可得110QF RF k k +=,根据已知条件,结合韦达定理、点到距离公式和均值不等式,即可求解. 【详解】解:(1)由题意可得,抛物线的焦点为(1,0),∴椭圆的半焦距1c =,又椭圆的离心率为12,∴12c e a ==,即2a =, 222a b c =+,222413b a c ∴=-=-=,即b =∴椭圆2C 的方程为22143x y +=. (2)设1(Q x ,1)y ,2(R x ,2)y ,(1,0)F -,1PFQ ∠与1PF R ∠互补,∴110QF RF k k +=, ∴1212011y yx x +=++,化简整理,可得1222110x y y x y y +++=①, 设直线PQ 为(0)x my n m =+≠,联立直线与椭圆方程22143x my n x y =+⎧⎪⎨+=⎪⎩,化简整理,可得222(34)63120m y mny n +++-=,∆222224364(34)(312)0b ac m n m n =-=-+->,可得2234n m <+②,由韦达定理,可得21212226312,3434mn n y y y y m m -+=-=++③, 将11x my n =+,22x my n =+代入①,可得12122(1)()0my y n y y +++=④, 再将③代入④,可得2226(4)6(1)3434m n mn n m m -+=++,解得4n =-,PQ ∴的方程为4x my =-,由点(1,0)F -到直线PQ的距离d =,11||2F QRSQR d =⋅= 由②可得,23416m +>,即24m >,设()f m =24m t -=,0t >,()f t ∴= 由均值不等式可知,25625692996t t t t+⋅=, 当且仅当2569t t =时,即163t =,等号成立,当2569t t+取最小值时,()f t 取最大值,即1FQR 面积S 最大,∴()18max f t =, ∴△1FQR 面积S2.(2022·重庆市第十一中学校高三月考)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为点与右焦点的连线构成正三角形. (△)求椭圆C 的标准方程;(△)设过点(0,2)P -的动直线l 与椭圆C 相交于M ,N 两点,当OMN ∆的面积最大时,求l 的方程. 【答案】(△)2214x y +=;(△)2y -或2y =-. 【分析】(△)由题意知,c =c a =222b a c =-,即可求得椭圆的方程; (△)设直线:2l y kx =-,()11,M x y ,()22,N x y ,联立22214y kx x y =-⎧⎪⎨+=⎪⎩,整理得()221416120k x kx +-+=,利用韦达定理,弦长公式结合OMN的面积公式得到OMNS =,利用换元结合基本不等式求解. 【详解】(△)由题意知,c =cos 6c a π==, 2a ∴=,2221b a c =-=所以椭圆的方程为2214x y +=.(△)当l x ⊥轴时不合题意,由题意设直线:2l y kx =-,()11,M x y ,()22,N x y . 联立22214y kx x y =-⎧⎪⎨+=⎪⎩,整理得()221416120k x kx +-+=. 当()216430k ∆=->,即234k >,且1221614k x x k +=-+,1221214x x k =+.从而12||MN x-=.又点O 到直线MN的距离d =所以OMN 的面积1||2OMNSd MN =⋅=t ,则0t >,24444OMNt St t t==++.因为44t t +≥,当且仅当2t =,即2k =±时等号成立,且满足0∆>. 所以,当OMN 的面积最大时,直线l的方程为2y x =-或2y x =-. 【点睛】思路点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.3.(2022·全国高三月考)已知椭圆()2222:10x y E a b a b+=>>的左、右焦点分别是()1F和)2F ,点Р在椭圆E 上,且12PF F △的周长是4+ (1)求椭圆E 的标准方程;(2)已知、、A B C 为椭圆E 上三点,若有0OA OB OC ++=,求ABC ∆的面积. 【答案】(1)2214x y +=;(2【分析】(1)根据题设条件和椭圆的定义得到12124PF PF F F ++=+124PF PF +=,得到2a =,进而求得21b =,即可求得椭圆的方程;()2当直线AB 斜率存在时,设AB 方程为:y kx m =+,联立方程组求得1212,x x x x +,根据0OA OB OC ++=,求得2282(,)1414km m C k k -++,结合点到直线的距离公式和面积公式,求得3332ABCOABS S=⋅=;当直线AB 斜率不存在时,得到直线AB 方程为1x =±,求得332ABCABOS S==. 【详解】(1)由题意,双曲线2222:1xy E a b+=的焦点()1F 和)2F ,可得12F F =因为12PF F △的周长是4+12124PF PF F F ++=+所以124PF PF +=,即24a =,可得2a =,又由222431b a c =-=-=, 所以椭圆E 的方程是2214x y +=.()2当直线AB 斜率存在时,设AB 方程为:y kx m =+,()()()112233,,,,,A x y B x y C x y ,联立方程组2214x y y kx m ⎧+=⎪⎨⎪=+⎩,整理得2221484()40k x kmx m +++-=,则22212122284416(41)0,,1414km m k m x x x x k k -∆=-+>+=-=++ 由0OA OB OC ++=,可得12312300x x x y y y ++=⎧⎨++=⎩,又由122814kmx x k +=-+,可得()12121222214m y y kx m kx m k x x m k +=+++=++=+ 所以332282,1414km m x y k k ==-++, 将()33,x y 代入椭圆方程可得222282441414km m k k ⎛⎫⎛⎫+-= ⎪ ⎪++⎝⎭⎝⎭,整理得22414m k =+, 又O 到直线AB的距离为d =则()2112OABSk =⋅+= 又由0OA OB OC ++=,可得点O 为ABC 的重心,所以3332ABCOABS S=⋅=; 当直线AB 斜率不存在时,根据坐标关系可得,直线AB 方程为1x =±,可得AB112ABOS ==所以13312ABC ABOSS==⨯综上可得:ABC S △. 【点睛】直线与圆锥曲线的综合问题的求解策略:对于直线与圆锥曲线的位置关系的综合应用问题,通常联立直线方程与圆锥曲线方程,应用一元二次方程根与系数的关系,以及弦长公式等进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力.4.(2022·榆林市第十中学高三月考(理))已知1F ,2F 分别是椭圆()2222:10x yE a b a b+=>>的左,右焦点,126F F =,当P 在E 上且1PF 垂直x 轴时,217PF PF =.(1)求E 的标准方程;(2)A 为E 的左顶点,B 为E 的上顶点,M 是E 上第四象限内一点,AM 与y 轴交于点C ,BM 与x 轴交于点D .(i )证明:四边形ABDC 的面积是定值. (ii )求CDM 的面积的最大值.【答案】(1)221123x y +=;(2)(i )证明见解析;(ii )())max 31CDM S =△.【分析】(1)由通径长公式得21b PF a=,结合椭圆定义可得,a b 关系,再由3c =求得,a b ,得椭圆方程;(2)(i )由题意知()A -,(B ,设(),M m n ,()0,C t ,(),0D s ,由三点共线把,s t 用,m n 表示,然后计算四边形面积可得结论;(ii )由(i )只要ABM 面积最大即可,求出椭圆的与AB 平行的切线方程,切点即为M (注意有两个切点,需要确定其中一个),从而得面积最大值. 【详解】解:(1)由题意知21b PF a=,212PF PF a +=,217PF PF =,则182PF a =,得2a b =,又3c =,222a b c =+,解得2a b == 所以E 的标准方程是221123x y +=.(2)(i )由题意知()A -,(B ,设(),M m n ,()0,C t ,(),0D s ,因为A ,C ,M 三点共线,则AC AM λ=,解得t =B ,D ,M 三点共线,则BD BM μ=,解得s =,AD s =+BC t =,221123m n +=,66AD BC st ⋅--+==6612m n +==. 162ABDC S AD BC =⋅=. (ii )因为CDM ABM ABDC S S S =-四边形△△, 所以当ABM S △最大时,CDMS 最大.1:2AB l y x =AB 平行的直线()1:02l y x p p =+<, 与221123x y +=联立,消y 得222260x px p ++-=,()2244260pp ∆=--=,解得p =p =(舍去),两平行线AB l ,l间的距离25d =,())max1312ABM S AB d =⋅=△,则())max 31CDM S =△.5.(2022·山西祁县中学高三月考(理))在平面直角坐标系xOy 中,已知(1,0)F ,动点P 到直线6x =的距离等于2||2PF +.动点P 的轨迹记为曲线C . (1)求曲线C 的方程;(2)已知(2,0)A ,过点F 的动直线l 与曲线C 交于B ,D 两点,记AOB ∆和AOD ∆的面积分别为1S 和2S ,求12S S +的最大值.【答案】(1)221123x y +=;(2)3.【分析】(1)设点P (x ,y ),再根据动点P 到直线x =6的距离等于2|PF |+2列出方程化简即可;(2)设直线l 的方程为x =my +1,联立直线与(1)中所得的椭圆方程,得出韦达定理,再得出S 1+S 2=12|OA ||y 1-y 2|关于m 的表达式,换元求解最值即可 【详解】(1)设点P (x ,y ),当6x ≥时,P 到直线x =6的距离显然小于PF ,故不满足题意; 故()62,6x x -=<,即4x -=整理得3x 2+4y 2=12,即24x +23y =1.故曲线C 的方程为24x +23y =1.(2)由题意可知直线l 的斜率不为0,则可设直线l 的方程为x =my +1,B (x 1,y 1),D (x 2,y 2).联立221143x my x y =+⎧⎪⎨+=⎪⎩,, 整理得(3m 2+4)y 2+6my -9=0,Δ>0显然成立, 所以y 1+y 2=-2634m m +,y 1y 2=-2934m +, 所以|y 1-y 2|故S 1+S 2=12|OA ||y 1|+12|OA ||y 2|=12|OA ||y 1-y2|.设t t ≥1,则m 2=t 2-1,则S 1+S 2=21231tt +=1213t t+. 因为t ≥1,所以3t +1t≥4(当且仅当t =1时,等号成立).故S 1+S 2=1213t t+≤3, 即S 1+S 2的最大值为3.6.(2022·西藏拉萨中学高三月考(理))(1)一动圆过定点(1,0)A ,且与定圆22:(1)16C x y ++=相切,求动圆圆心的轨迹E 的方程.(2)直线l 经过点A 且不与x 轴重合,l 与轨迹E 相交于P 、Q 两点,求CPQ ∆的面积的最大值.【答案】(1)22143x y +=;(2)3. 【分析】(1)设动圆圆心为(),M x y ,半径为R .由与定圆22:(1)16C x y ++=相切,且点A 的圆C 内,由||44||MC R MA =-=-,即||||4MC MA +=,利用椭圆的定义求解;(2)设l 的方程为:1x my -=,代入22143x y +=,由121||2CPQSCA y y =⋅-,结合韦达定理求解. 【详解】(1)设动圆圆心为(),M x y ,半径为R .定圆C 的圆心(1,0)C -,半径为4. 点A 的圆C 内.||44||||||4MC R MA MC MA ∴=-=-∴+=,且4AC > ,∴轨迹E 是以C 、A 为焦点,长轴长为4的椭圆,所以椭圆方程为:22143x y +=. (2)设l 的方程为:1x my -=,代入22143x y +=, 得()2234690m y my ++-=,设()()1122,,P x y Q x y ⋅, 则122634m y y m -+=+,122934y y m -=+,121||2CPQSCA y y =⋅-,=令21(1)t m t =+,则1212CPQS=1()9f t t t=+在[1,)+∞为增函数1t ∴=,即0m =时,CPQ S △取最大值3.7.(2022·山东高三模拟预测)已知双曲线C :()222210,0x y a b a b-=>>的右焦点F 与抛物线28y x =的焦点重合,一条渐近线的倾斜角为30o . (1)求双曲线C 的方程;(2)经过点F 的直线与双曲线的右支交与,A B 两点,与y 轴交与P 点,点P 关于原点的对称点为点Q ,求证:QABS>【答案】(1)2213x y -=;(2)证明见解析.【分析】(1)由题意可得2c =,o tan 30b a ==222c a b =+可求出22,a b ,从而可求出双曲线C 的方程; (2)由题意知直线的斜率存在,设直线方程为:()2y k x =-,可得()02P k -,,()02Q k ,,将直线方程与双曲线方程联立方程组,消去y ,利用根与系数的关系,从而可表示出()()2222248131QABk k Sk +=-,再由直线与双曲线的右支交与,A B 两点,可得231k >,则2310t k =->,代入上式化简可求得结果 【详解】解:(1)由题意得2c =,o tan 30b a ==222c a b =+ 解得2231a b ==,所以双曲线C 的方程为:2213x y -=(2)由题意知直线的斜率存在,设直线方程为:()2y k x =-,得()02P k -,,()02Q k ,, 设()11A x y ,,()22B x y ,,联立()22132x y y k x ⎧-=⎪⎨⎪=-⎩,整理可得()222231121230k x k x k --++=21221231k x x k +=-,212212331k x x k +⋅=- 所以1212QABQPB QPASSSPQ x x =-=-122k x x =- 所以()()2222221212224123124443131QABk k Sk x x x x k k k ⎡⎤+⎛⎫⎡⎤⎢⎥=+-=- ⎪⎣⎦--⎢⎥⎝⎭⎣⎦2()()222248131k k k+=-直线与双曲线右支有两个交点,所以22121222121230,03131k k x x x x k k ++=>⋅=>-- 所以231k >,设2310t k =->,()2221111645334813QABt t St t t ++⎛⎫⋅+⎪⎛⎫⎝⎭==++ ⎪⎝⎭2641564251633383643t ⎛⎫=+->⨯-=⎪⎝⎭所以QAB S >【点睛】关键点点睛:此题考查双曲线方程的求法,考查直线与双曲线的位置关系,解题的关键是将直线方程与双曲线方程联立后,利用根与系数的有关系,从而可表示出()()2222248131QABk k S k+=-,再结合231k >,换元后求其最小值即可,考查计算能力,属于中档题 8.(2022·全国高三专题练习)已知双曲线2222:1(0,0)x y C a b a b -=>>的两个焦点分别为()12,0F -,()22,0F,点(P 在双曲线C 上.(1)求双曲线C 的方程;(2)记O 为坐标原点,过点()0,2Q 的直线l 与双曲线C 交于不同的两点A ,B ,若OAB ∆的面积为求直线l 的方程.【答案】(1)22122x y -=;(2)2y =+和2y =+. 【分析】(1)根据焦点坐标,可得2c =,所以224a b +=,代入双曲线方程,可得()222221044x y a a a-=<<-,将P 点坐标代入,即可求得a 值,即可得答案;(2)设直线l 的方程为2y kx =+,与双曲线C 联立,可得关于x 的一元二次方程,利用韦达定理,可得1212,x x x x +的表达式,代入弦长公式,即可求得AB ,根据点到直线的距离公式,可求得原点到直线l 的距离d ,代入面积公式,结合题意,即可求得k 的值,即可得答案. 【详解】(1)依题意,2c =,所以224a b +=,则双曲线C 的方程为()222221044x y a a a-=<<-,将点P 代入上式,得22252314a a -=-, 解得250a =(舍去)或22a =, 故所求双曲线的方程为22122x y -=.(2)依题意,可设直线l 的方程为2y kx =+,代入双曲线C 的方程并整理,得()221460k x kx ---=.因为直线l 与双曲线C 交于不同的两点,A B ,所以()22210(4)2410k k k ⎧-≠⎪⎨-+->⎪⎩,解得1k k ≠±⎧⎪⎨<⎪⎩(*) 设()()1122,,,A x y B x y ,则12122246,11k x x x x k k +==---,所以||AB =又原点O 到直线l 的距离d =所以11||22OABSd AB =⋅==.又OABS=1=,所以4220k k --=,解得k =(*).故满足条件的直线l 有两条,其方程分别为2y =+和2y =+. 【点睛】解题的关键是熟练掌握弦长公式、点到直线的距离公式等知识,并灵活应用,易错点为:解得k 值,需检验是否满足判别式0∆>的条件,考查计算化简的能力,属中档题.9.(2022·全国高三专题练习)已知双曲线22:1164x y C -=的左、右焦点分别为1F ,2F . (1)求与双曲线C 有共同渐近线且过点()2,3的双曲线标准方程; (2)若P 是双曲线C 上一点,且12150F PF ∠=︒,求12F PF △的面积.【答案】(1)221832y x -=;(2)8-【分析】(1)根据题意,设所求双曲线方程为22(0)164x y k k -=≠,代入点()2,3,求得k 值,即可得答案; (2)不妨设P 在C 的右支上,根据双曲线定义,可得1228PF PF a -==,根据方程可得12F F 的值,在12F PF △中,利用余弦定理可得12PF PF 的值,代入面积公式,即可求得答案. 【详解】(1)因为所求双曲线与22:1164x y C -=共渐近线,所以设该双曲线方程为22(0)164x y k k -=≠, 又该双曲线过点()2,3, 所以49164k -=,解得k =-2, 所以所求双曲线方程为:221832y x -=(2)不妨设P 在C 的右支上,则1228PF PF a -==,122F F c == 在12F PF △中,2222121212121212()280cos15022PF PF F F PF PF PF PF PF PF PF PF +--+-︒===解得1232PF PF =- 所以12F PF △的面积1212111sin (328222F P S F PF PF ∠==⨯-⨯=-【点睛】解题的关键是:掌握共渐近线的双曲线方程的设法,即与22221x y a b-=共渐近线的方程可设为:2222(0)x y k k a b -=≠;与22221x y a b -=共焦点的方程可设为:22221x y a b λλ-=+-,再代入点求解即可,考查分析计算的能力,属中档题.10.(2022·浙江高三开学考试)已知抛物线T :()22y px p N +=∈和椭圆C :2215x y +=,过抛物线T 的焦点F 的直线l 交抛物线于A ,B 两点,线段AB 的中垂线交椭圆C 于M ,N 两点.(1)若F 恰是椭圆C 的焦点,求p 的值;(2)若MN 恰好被AB 平分,求OAB 面积的最大值. 【答案】(1)4p =;(2【分析】(1)根据椭圆方程求出椭圆的焦点坐标,再根据F 恰是椭圆C 的焦点,即可得出答案;(2)设直线l :2p x my =+,()()()()11223344,,,,,,,A x y B x y M x y N x y ,联立222p x my y px⎧=+⎪⎨⎪=⎩,求得AB 的中点坐标,根据因为MN 恰好被AB 平分,则直线MN 的斜率等于m -,再根据点差法求得直线MN 的斜率,求得2m ,根据由AB 的中点在椭圆内,求得p 的最大值,从而可求得OAB 面积的最大值. 【详解】解:(1)在椭圆中,2224c a b =-=,所以2c =, 因为F 恰是椭圆C 的焦点, 所以22p=,所以4p =; (2)设直线l :2px my =+,()()()()11223344,,,,,,,A x y B x y M x y N x y , 联立222p x my y px ⎧=+⎪⎨⎪=⎩,得2220y mpy p --=, 则212122,y y mp y y p +=⋅=-,则2122x x m p p +=+,故AB 的中点坐标为2,2p m p mp ⎛⎫+ ⎪⎝⎭,又因为MN 恰好被AB 平分,则2342x x m p p +=+,342y y mp +=,直线MN 的斜率等于m -,将M 、N 的坐标代入椭圆方程得:223315x y +=,224415x y +=, 两式相减得:()()()()3434343405x x x x y y y y +-++-=, 故234342110y y m x x m-+=--, 即直线MN 的斜率等于22110m m+-, 所以22110m m m+-=-,解得218m =, 由AB 的中点在椭圆内,得2222()15p m p mp ⎛⎫+ ⎪⎝⎭+<,解得26413p <, 因为p Z ∈,所以p 的最大值是2,12y y -== 则OAB面积212122p S y y p =⨯-==≤, 所以,当2p =时,OAB . 11.(2022·普宁市第二中学高三月考)在平面直角坐标系xOy 中,原点为O ,抛物线C 的方程为24x y =,线段AB 是抛物线C 的一条动弦.(1)求抛物线C 的准线方程;(2)求=4OA OB ⋅-,求证:直线AB 恒过定点;(3)过抛物线的焦点F 作互相垂直的两条直线1l 、2l ,1l 与抛物线交于P 、Q 两点,2l 与抛物线交于C 、D 两点,M 、N 分别是线段PQ 、CD 的中点,求FMN 面积的最小值.【答案】(1)准线方程:1y =-;(2)直线AB 恒过定点()0,2,证明见解析;(3)4.【分析】(1)由焦点在y 轴正半轴上,且2p =,即可得准线方程;(2)设直线AB 方程为y kx b =+,与抛物线方程联立由韦达定理和向量数量积的坐标运算,解方程可得b 的值,即可得所过的定点;(3)设1l 的方程为1y kx =+,()33,P x y ,()44,Q x y ,与抛物线方程联立,运用韦达定理和中点坐标公式求M 、N 两点坐标,由两点间距离公式求FM 、FN 的长,再计算12FMN SFM FN ,由基本不等式求最值即可求解.【详解】 (1)由24x y =可得:2p =,焦点为()0,1F ,所以准线方程:1y =-,(2)设直线AB 方程为y kx b =+,()11,A x y ,()22,B x y由24y kx b x y=+⎧⎨=⎩得2440x kx b --=, 所以124x x k +=,124x x b =-,222121212124416x x OA OB x x y y x x b b ⋅=+=+=-+=-, 即2440b b -+=,解得:2b =所以直线2y kx =+过定点()0,2(3)()0,1F ,由题意知直线1l 、2l 的斜率都存在且不为0,设直线1l 的方程为1y kx =+,()33,P x y ,()44,Q x y ,则直线2l 的方程为11y x k=-+, 由241x y y kx ⎧=⎨=+⎩得2440x kx --=, 所以344x x k +=,344x x =-,所以()34122M x x x k =+=,2121M M y kx k =+=+,所以()22,21M k k + 用1k -替换k 可得2N x k =-,221N y k =+,所以222,1N k k⎛⎫-+ ⎪⎝⎭,所以12FMN S FM FN ====224≥=⨯=,当且仅当221k k =即1k =±时,等号成立, 所以FMN 的面积取最小值4.【点睛】方法点睛:解决圆锥曲线中的范围或最值问题时,若题目的条件和结论能体现出明确的函数关系,则可先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求出新参数的范围,解题的关键是建立两个参数之间的等量关系;③利用基本不等式求出参数的取值范围;④利用函数值域的求法,确定参数的取值范围.。

高二数学讲义圆锥曲线中的面积问题

高二数学讲义圆锥曲线中的面积问题

圆锥曲线中的面积问题【知识要点】一、三角形的面积问题(或转化到三角形) 二、对角线互相垂直的四边形的面积问题 三、焦点弦的三角形式及应用【典型例题】1.如图椭圆12222=+by a x (a >b >0)的上顶点为A ,左顶点为B , F 为右焦点,过F 作平行与AB 的直线交椭圆于C 、D 两点. 作平行四边形OCED ,点E 恰在椭圆上. (1)求椭圆的离心率;(2)若平行四边形OCED 的面积为6, 求椭圆方程2.设F 是抛物线G:x 2=4y 的焦点,设A 、B 为抛物线G 上异于原点的两点,且满足0·=FB FA ,延长AF 、BF 分别交抛物线G 于点C,D ,求四边形ABCD 面积的最小值.3.焦点弦的三角形式及应用(1)过抛物线x 2=2ay (a >0)的焦点F 用一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则qp 11+等于( ) A.2a B.a21 C.a D.2a(2)(全国卷Ⅱ理)已知双曲线()222210,0x y C a b a b-=>>:的右焦点为F ,过F 且斜率C 于A B 、两点,若4AF FB =,则C 的离心率为( ) A.65 B.75C.85D.95(3)(全国卷Ⅱ理改)已知直线(2)(0)y k x k =->与抛物线C:x y 82=相交A 、B 两点,F 为C 的焦点。

若FB FA 2=,则k = ( )A. 1 C. 2 D.4. P 、Q 、M 、N 四点都在椭圆2212y x +=上,F 为椭圆在y 轴正半轴上的焦点.已知PF 与FQ 共线,MF 与FN 共线,且0PF MF ⋅=.求四边形PMQN 的面积的最小值和最大值.5.(重庆22)中心在原点O 的椭圆的右焦点为(30)F ,,右准线l 的方程为:12x =. (1)求椭圆的方程;(2)在椭圆上任取三个不同点1P ,2P ,3P ,使122331PFP P FP P FP ==∠∠∠, 证明:123111FP FP FP++为定值,并求此定值.课堂练习1.(山东卷文)设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F ,且和y 轴交于点A,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为 ( ) A.24y x =± B.28y x =± C. 24y x = D. 28y x =2.(四川卷12)已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C上且AK AF =,则AFK ∆的面积为 ( )A.4B.8C.16D.323.(海南卷14)过双曲线221916x y -=的右顶点为A ,右焦点为F,过点F 平行双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为____ __4.(全国二15)已知F 是抛物线24C y x =:的焦点,过F 且斜率为1的直线交C 于A B ,两点.设FA FB >,则FA 与FB 的比值等于5.过抛物线22(0)x py p =>的焦点F 作倾角为30的直线,与抛物线分别交于A 、B 两点(A 在y 轴左侧),则AF FB=6.过椭圆2x 2+y 2=2的上焦点F ,作一直线L 交椭圆于P 、Q 两点,求∆POQ 的面积的最大值。

圆锥曲线面积最值秒杀解法_概述及解释说明

圆锥曲线面积最值秒杀解法_概述及解释说明

圆锥曲线面积最值秒杀解法概述及解释说明1. 引言1.1 概述在数学中,圆锥曲线是一类由一个平面和一个点来确定的曲线。

它包括了圆、椭圆、双曲线和抛物线等不同的类型。

这些曲线在科学、工程和经济等领域中广泛应用。

本文将重点讨论圆锥曲线面积最值问题的解法。

通过寻找圆锥曲线在特定条件下的最大或最小面积,我们可以得到很多有用的结论和应用。

1.2 文章结构本文分为五个主要部分。

首先是引言部分,简要介绍了文章的背景和目标。

接下来,我们将概述并说明解决圆锥曲线面积最值问题的传统方法,包括定义和性质以及最值问题的背景和意义。

然后,我们将详细介绍一种名为“秒杀解法”的新方法,该方法可以快速有效地求解圆锥曲线面积最值问题。

我们将阐述其基本思路、原理,并提供完整演算步骤及示例证明。

在第四部分中,我们将通过实际应用案例研究来验证该秒杀解法的可行性和效果。

这些案例包括工程设计领域的成功实践、经济学模型中的应用和地理信息系统中的空间分析优化。

最后,在结论与展望部分,我们将对整篇文章进行总结,并提出未来研究的方向和展望。

1.3 目的本文的主要目的是介绍一种针对圆锥曲线面积最值问题的新方法——秒杀解法。

通过探讨传统方法和秒杀解法,我们可以深入了解圆锥曲线在不同领域中的应用和意义。

通过具体案例研究,我们将证明秒杀解法在实际问题中的可行性和有效性。

同时,本文也希望能够激发更多关于圆锥曲线面积最值问题求解方法的研究,为相关学科提供更多应用价值和理论支持。

2. 圆锥曲线面积最值秒杀解法概述和说明2.1 圆锥曲线的定义和性质圆锥曲线是指在三维空间中,由一个点(焦点)和一条直线(准线)决定的一类曲线。

常见的圆锥曲线包括椭圆、双曲线和抛物线。

每种圆锥曲线有其独特的性质,如焦点与准线之间的距离关系、离心率等。

2.2 最值问题的背景和意义在数学中,最值问题是指求解函数在某个区间内取得最大或最小值的问题。

对于圆锥曲线而言,我们希望找到使其面积达到最大或最小值的条件和方法。

圆锥曲线的面积计算方法

圆锥曲线的面积计算方法

圆锥曲线的面积计算方法圆锥曲线是解析几何学中的一个重要概念,具有许多重要的性质和应用。

在实际问题中,经常需要计算圆锥曲线的面积以解决各种实际问题。

下面将介绍圆锥曲线的面积计算方法。

1.圆锥曲线的类型圆锥曲线包括椭圆、双曲线和抛物线三种类型,每种类型的圆锥曲线都有不同的面积计算方法。

1.1 椭圆的面积计算方法椭圆是平面上距离两个定点的距离之和等于定点间距离的点的轨迹。

椭圆的面积计算公式为:$$S = \pi ab$$其中$a$、$b$分别为椭圆的长半轴和短半轴。

1.2 双曲线的面积计算方法双曲线是平面上距离两个定点的距离之差等于定点间距离的点的轨迹。

双曲线的面积计算公式为:$$S = \pi ab$$其中$a$、$b$分别为双曲线的焦点之间的距离和顶点到焦点的距离。

1.3 抛物线的面积计算方法抛物线是平面上到定点距离相等的点的轨迹。

抛物线的面积计算公式为:$$S = \frac{4}{3} \pi ab$$其中$a$、$b$分别为抛物线的焦点到顶点的距离和焦点到准线的距离。

2.圆锥曲线面积计算实例以一个椭圆为例,已知椭圆的长轴长度为6,短轴长度为4,可以使用上述公式计算椭圆的面积:$$S = \pi \times 6 \times 4 = 24\pi$$因此,该椭圆的面积为$24\pi$。

3.圆锥曲线的面积计算方法总结通过上述介绍,我们了解到不同类型的圆锥曲线具有不同的面积计算方法。

在实际问题中,需要根据具体情况选择适当的公式进行计算,以得到准确的结果。

掌握圆锥曲线的面积计算方法有助于我们更好地理解和应用解析几何学中的知识,解决实际问题。

4.结论圆锥曲线是解析几何学中的重要内容,面积计算是其中的一个重要问题。

通过本文介绍,我们了解到不同类型的圆锥曲线的面积计算方法,并通过实例进行了说明。

希望本文能够帮助读者更好地理解圆锥曲线的面积计算方法,提高解析几何学的学习和应用能力。

圆锥曲线培优讲义

圆锥曲线培优讲义

一 原点三角形面积公式1. 已知椭圆的离心率为,且过点.若点M (x 0,y 0)在椭圆C 上,则点称为点M 的一个“椭点”.(1)求椭圆C 的标准方程;(2)若直线l :y=kx +m 与椭圆C 相交于A ,B 两点,且A ,B 两点的“椭点”分别为P ,Q ,以PQ 为直径的圆经过坐标原点,试求△AOB 的面积.2. 己知椭圆,过原点的两条直线 和 分别与椭圆交于点 ,和 ,.记 的面积为 .(1)设,.用 , 的坐标表示点 到直线 的距离,并证明 ;(2)设,,,求 的值.(3)设 与 的斜率之积为,求的值,使得无论 与 如何变动,面积 保持不变.3. 已知椭圆()0,01:2222>>=+b by x C αα的左、右两焦点分别为()()0,1,0,121F F -,椭圆上有一点A 与两焦点的连线构成的21F AF ∆中,满足.127,121221ππ=∠=∠F AF F AF (1)求椭圆C 的方程;(2)设点D C B ,,是椭圆上不同于椭圆顶点的三点,点B 与点D 关于原点O 对称,设直线OC OB CD BC ,,,的斜率分别为4321,,,k k k k ,且4321k k k k ⋅=⋅,求22OC OB +的值.4. 在平面直角坐标系xoy 内,动点(,)M x y 与两定点(2,0),(2,0)-,连线的斜率之积为14- (1)求动点M 的轨迹C 的方程;(2)设点1122(,),(,)A x y B x y 是轨迹C 上相异的两点.(I)过点A ,B 分别作抛物线2y =的切线1l 、2l ,1l 与2l 两条切线相交于点(,)N t ,证明:0NA NB =;(Ⅱ)若直线OA 与直线OB 的斜率之积为14-,证明:AOB S ∆为定值,并求出这个定值·5. 已知 、 分别是 轴和 轴上的两个动点,满足,点 在线段 上,且( 是不为 的常数),设点 的轨迹方程为.(1)求点 的轨迹方程 ;(2)若曲线 为焦点在 轴上的椭圆,试求实数 的取值范围;(3)若,点, 是曲线 上关于原点对称的两个动点,点 的坐标为,求的面积 的最大值.6. 已知椭圆的焦点在 轴上,中心在坐标原点;抛物线的焦点在轴上,顶点在坐标原点.在 , 上各取两个点,将其坐标记录于表格中:(1)求 , 的标准方程;(2)已知定点, 为抛物线上一动点,过点 作抛物线的切线交椭圆于 , 两点,求面积的最大值.7. 已知抛物线的焦点为 ,过点 的直线交抛物线于 , 两点.(1)若 ,求直线 的斜率;(2)设点在线段上运动,原点 关于点的对称点为 ,求四边形面积的最小值.8. 设椭圆:的左、右焦点分别是、,下顶点为 ,线段 的中点为 ( 为坐标原点),如图.若抛物线:与 轴的交点为 ,且经过,点.(1)求椭圆 的方程;(2)设, 为抛物线上的一动点,过点作抛物线的切线交椭圆于 、 两点,求 面积的最大值.二 定点定值问题9. 动点P 在圆E :22(1)16x y ++=上运动,定点(1,0)F ,线段PF 的垂直平分线与直线PE 的交点为Q . (Ⅰ)求Q 的轨迹T 的方程;(Ⅱ)过点F 的直线1l ,2l 分别交轨迹E 于A ,B 两点和C ,D 两点,且12l l ⊥.证明:过AB 和CD 中点的直线过定点.10. 在直角坐标系xOy 中,抛物线C 的顶点是双曲线D 抛物线C 的焦点与双曲线D 的焦点相同. (Ⅰ)求抛物线C 的方程;(Ⅱ)若点(,1)P t (0)t >为抛物线C 上的定点,A ,B 为抛物线C 上两个动点.且PA⊥PB ,问直线AB 是否经过定点若是,求出该定点,若不是,说明理由.11. 如图,在平面直角坐标系中,椭圆 的离心率为,直线 与 轴交于点 ,与椭圆 交于两点.当直线 垂直于 轴且点 为椭圆 的右焦点时,弦 的长为.(1)求椭圆 的方程;(2)若点 的坐标为,点 在第一象限且横坐标为 ,连接点与原点 的直线交椭圆 于另一点 ,求 的面积;(3)是否存在点 ,使得为定值?若存在,请指出点 的坐标,并求出该定值;若不存在,请说明理由.12. 已知椭圆的左焦点为F ,不垂直于x 轴且不过F 点的直线l 与椭圆C 相交于A ,B 两点.(1)如果直线FA ,FB 的斜率之和为0,则动直线l 是否一定经过一定点若过一定点,则求出该定点的坐标;若不过定点,请说明理由. (2)如果FA ⊥FB ,原点到直线l 的距离为d ,求d 的取值范围.13. 如图,已知直线:1(0)l y kx k =+>关于直线1y x =+对称的直线为1l ,直线1,l l 与椭圆22:14x E y +=分别交于点A 、M 和A 、N,记直线l的斜率为k .(Ⅰ)求1k k ⋅的值;(Ⅱ)当k 变化时,试问直线MN 是否恒过定点恒过定点,请说明理由.14.如图,椭圆()的离心率是,过点的动直线与椭圆相交于 , 两点.当直线平行于轴时,直线被椭圆截得的线段长为.(1)求椭圆 的方程; (2)在平面直角坐标系中,是否存在与点不同的定点 ,使得恒成立? 若存在,求出点的坐标;若不存在,请说明理由.15.已知动圆过定点,且与直线相切,其中.(1)求动圆圆心的轨迹的方程;(2)设、 是轨迹上异于原点的两个不同点,直线和的倾斜角分别为和,当,变化且为定值时,证明直线恒过定点,并求出该定点的坐标.16. 已知抛物线的准线与 轴交于点,过点 做圆的两条切线,切点为,,.(1)求抛物线 的方程;(2)设, 是抛物线上分别位于轴两侧的两个动点,且( 其中为坐标原点).①求证:直线必过定点,并求出该定点的坐标;②过点作的垂线与抛物线交于, 两点,求四边形面积的最小值.17.18. 如图,在平面直角坐标系xOy 中,设点M(x0,y0)是椭圆C :2212x y +=上一点,从原点O 向圆M:22002()()3x x y y -+-=作两条切线分别与椭圆C 交于点P 、Q ,直线OP 、OQ 的斜率分别记为k1,k2 (1)求证:k1k2为定值;(2)求四边形OPMQ 面积的最大值.19. 如图,在平面直角坐标系xOy 中,已知()00 R x y ,是椭圆22:12412x y C +=上的一点,从原点O 向圆()()2200:8R x x y y -+-=作两条切线,分别交椭圆于P ,Q .(1)若R 点在第一象限,且直线OP ,OQ 互相垂直,求圆R 的方程;(2)若直线OP ,OQ 的斜率存在,并记为12 k k ,,求12 k k ,的值; (3)试问22OP OQ +是否为定值若是,求出该值;若不是,说明理由. 三 中点弦问题20. 椭圆()2222:10x y C a b a b+=>>的长轴长为P 为椭圆C 上异于顶点的一个动点,O 为坐标原点,2A 为椭圆C 的右顶点,点M 为线段2PA 的中点,且直线2PA 与直线OM 的斜率之积为12-. (1)求椭圆C 的方程;(2)过椭圆C的左焦点1F且不与坐标轴垂直的直线l交椭圆C于两点,A B,线段AB的垂直平分线与x轴交于点N,N点的横坐标的取值范围是1,04⎛⎫- ⎪⎝⎭,求线段AB的长的取值范围.21.在平面直角坐标系xoy中,过椭圆2222:1(0)x yC a ba b+=>>右焦点的直线x y+-=交椭圆C于,M N两点,P为,M N的中点,且直线OP的斜率为13.(Ⅰ)求椭圆C的方程;(Ⅱ)设另一直线l与椭圆C交于,A B两点,原点O到直线l的距离为2,求AOB∆面积的最大值.22.如图,椭圆2222:1(0)x yE a ba b+=>>左右顶点为A、B,左右焦点为1212,,4,F F AB F F==(0)y kx m k=+>交椭圆E于点C、D两点,与线段12F F椭圆短轴分别交于M、N两点(M、N不重合),且CM DN=.(1)求椭圆E的方程;(2)设直线,AD BC的斜率分别为12,k k,求12kk的取值范围.23.如图,在平面直角坐标系xoy中,已知椭圆C:)0(12222>>=+babyax的离心率21=e,左顶点为)0,4(-A,过点A作斜率为)0(≠kk的直线l交椭圆C于点D,交y轴于点E.(Ⅰ)求椭圆C的方程;(Ⅱ)已知P为AD的中点,是否存在定点Q,对于任意的)0(≠kk都有EQOP⊥,若存在,求出点Q的坐标;若不存在说明理由;(Ⅲ)若过O 点作直线l 的平行线交椭圆C 于点M ,求||||||OM AE AD +的最小值.24. 已知椭圆过点,且离心率.(1)求椭圆的方程; (2)若椭圆上存在点关于直线对称,求的所有取值构成的集合,并证明对于, 的中点恒在一条定直线上.25. 如图,在直角坐标系中,点到抛物线的准线的距离为.点是上的定点,, 是上的两动点,且线段被直线平分.(1)求, 的值; (2)求面积的最大值.26. 已知抛物线,过其焦点作两条相互垂直且不平行于轴的直线,分别交抛物线于点, 和点,,线段,的中点分别记为,.(1)求面积的最小值; (2)求线段的中点满足的方程.27. 平面直角坐标系xOy 中,椭圆C :22221x y a b+=(0a b >>)的离心率是,抛物线E :22x y =的焦点F 是C 的一个顶点.(1)求椭圆C 的方程;(2)设P 是E 上动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG ∆的面积为1S ,PDM ∆的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.四 定比分点28. 已知点)0,2(-E ,点P 是椭圆F :36)2(22=+-y x 上任意一点,线段EP 的垂直平分线FP 交于点M ,点M 的轨迹记为曲线C . (Ⅰ)求曲线C 的方程;(Ⅱ)过F 的直线交曲线C 于不同的A ,B 两点,交y 轴于点N ,已知m =,BF n NB =,求n m +的值.29. 在直角坐标系xOy 上取两个定点12(A A 再取两个动点1(0 , )N m ,2(0 , )N n ,且2mn =.(Ⅰ)求直线11A N 与22A N 交点M 的轨迹C 的方程;(Ⅱ)过(3 , 0)R 的直线与轨迹C 交于P ,Q ,过P 作PN x ⊥轴且与轨迹C 交于另一点N ,F 为轨迹C 的右焦点,若(1)RP RQ λλ=>,求证:NF FQ λ=.30. 如图,在平面直角坐标系xOy 中,椭圆C :22221x y a b+=()0a b >>的左、右焦点分别为1F ,2F ,P 为椭圆上一点(在x 轴上方),连结1PF 并延长交椭圆于另一点Q ,设11PF FQ λ=. (1)若点P 的坐标为3(1,)2,且2PQF △的周长为8,求椭圆C 的方程;(2)若2PF 垂直于x 轴,且椭圆C 的离心率1,2e ∈⎡⎢⎣,求实数λ的取值范围.五 结论31. 已知椭圆 20.已知椭圆()2222:10x y C a b a b+=>>经过点(2 且离心率等于2,点 A B ,分别为椭圆C 的左右顶点,点P 在椭圆C 上. (1)求椭圆C 的方程;(2) M N ,是椭圆C 上非顶点的两点,满足 OM AP ON BP ∥,∥,求证:三角形MON 的面积是定值.32. 过点 ,离心率为 .过椭圆右顶点 的两条斜率乘积为 的直线分别交椭圆 于 , 两点.(1)求椭圆 的标准方程;(2)直线 是否过定点 ?若过定点 ,求出点 的坐标,若不过点 ,请说明理由.33. 已知椭圆的两个焦点为()1F ,)2F ,M 是椭圆上一点,若120MF MF ⋅=,128MF MF ⋅=.34. (1)求椭圆的方程;35. (2)点P 是椭圆上任意一点,12A A 、分别是椭圆的左、右顶点,直线12PA PA ,与直线2x =分别交于,E F 两点,试证:以EF 为直径的圆交x 轴于定点,并求该定点的坐标.36. 已知抛物线()220x py p =>的焦点为F ,直线4x =与x 轴的交点为P ,与抛物线的交点为Q,且5.4QF PQ =(1)求抛物线的方程;(2)如图所示,过F 的直线l 与抛物线相交于A,D 两点,与圆()2211x y +-=相交于B,C 两点(A ,B 两点相邻),过A,D 两点分别作我校的切线,两条切线相交于点M,求ABM ∆与CDM ∆的面积之积的最小值.37. 已知椭圆 ,其右准线 与轴交于点 ,椭圆的上顶点为 ,过它的右焦点且垂直于长轴的直线交椭圆于点 ,直线 恰经过线段的中点 .(1)求椭圆的离心率;(2)设椭圆的左、右顶点分别是、,且,求椭圆的方程;(3)在(2)的条件下,设 是椭圆右准线 上异于 的任意一点,直线,与椭圆的另一个交点分别为、 ,求证:直线与 轴交于定点.38. 已知点(1,0)A -,(1,0)B ,直线AM 与直线BM 相交于点M ,直线AM 与直线BM的斜率分别记为AM k 与BM k ,且2AM BM k k ⋅=-. (Ⅰ)求点M 的轨迹C 的方程;(Ⅱ)过定点(0,1)F 作直线PQ 与曲线C 交于,P Q 两点,OPQ ∆的面积是否存在最大值若存在,求出OPQ ∆面积的最大值;若不存在,请说明理由.39. 已知一个动圆与两个定圆41)2(22=+-y x 和449)2(22=++y x 均相切,其圆心的轨迹为曲线C. (1) 求曲线C 的方程;(2) 过点F (0,2)做两条可相垂直的直线21,l l ,设1l 与曲线C 交于A,B 两点, 2l 与曲线 C 交于C,D 两点,线段AC ,BD 分别与直线2=x 交于M ,M,N 两点。

第22讲 圆锥曲线解答题中的弦长面积问题3种常考题型(解析版)-2024高考数学常考题型

第22讲  圆锥曲线解答题中的弦长面积问题3种常考题型(解析版)-2024高考数学常考题型

第22讲圆锥曲线解答题中的弦长面积问题3种常考题型【考点分析】考点一:弦长公式设)(11y x M ,,)(22y x N ,根据两点距离公式221221)()(||y y x x MN -+-=.注意:①设直线为y kx m =+上,代入化简,得212||1MN k x x =+-;②设直线方程为m ty x +=,代入化简,得212||1MN t y y =+-③a k MN '∆+=21,其中∆为直线与圆锥曲线联立后得到的一元二次方程的判别式,a '为二次项系数考点二:三角形的面积处理方法①⨯=∆21S 底·高(通常选弦长做底,点到直线的距离为高)②⨯=∆21S 水平宽·铅锤高D E x x AB -⨯=21或E A y y CD S -⨯=∆21③在平面直角坐标系xOy 中,已知OMN △的顶点分别为(00)O ,,11()M x y ,,22()N x y ,,三角形的面积为122112S x y x y =-.考点三:四边形面积处理方法①若四边形对角线AC 与BD 相互垂直,则BD AC S ABCD ⋅=21四边形②将四边形面积转化为三角形面积进行解决【题型目录】题型一:求弦长及范围问题题型二:三角形面积及范围问题题型三:四边形面积及范围问题【典型例题】题型一:求弦长及范围问题【例1】已知椭圆C :22221(0)x y a b a b +=>>的离心率为22且经过点(2,1),直线l 经过()01P ,,且与椭圆C相交于AB 、两点.(1)求椭圆C 的标准方程;(2)当3AB =,求此时直线l 的方程;【例2】已知椭圆()2210x y a b a b+=>>的离心率为12,且点31,2M ⎛⎫ ⎪⎝⎭在椭圆上.(1)求椭圆的方程;(2)过椭圆右焦点2F 作两条互相垂直的弦AB 与CD ,求AB CD +的取值范围.【例3】已知椭圆2210a b a b+=>>()的左焦点1(1,0)F -,长轴长与短轴长的比是2.(1)求椭圆的方程;(2)过1F 作两直线,m n 交椭圆于,,,A B C D 四点,若m n ⊥,求证:11AB CD+为定值.4+【题型专练】1.椭圆C:()222210x y a ba b+=>>左右焦点为1F,2F1,2M⎛⎫⎪⎪⎝⎭在椭圆C上.(1)求椭圆C的标准方程;(2)经过点()2,3A,倾斜角为π4直线l与椭圆交于B,C两点,求BC.2.已知椭圆1C:()222210x y a ba b+=>>过点M⎝且与抛物线2C:22y px=有一个公共的焦点()1,0F.(1)求椭圆1C与抛物线2C的方程;(2)过点F的直线l与椭圆1C交于A,B两点,与抛物线2C交于C,D两点.是否存在这样的直线l,使得=若存在,求出直线l的方程,若不存在,请说明理由.2AB CD3.已知椭圆22:1(0)x y C a b a b +=>>的离心率为2,且过点(2,1)P -.(1)求C 的方程;(2)若,A B 是C 上两点,直线AB 与圆222x y +=相切,求AB 的取值范围.4.已知椭圆()2222:10x yE a ba b+=>>,1F,2F分别为左右焦点,点(1P,2P-⎛⎝⎭在椭圆E上.(1)求椭圆E的离心率;(2)过左焦点1F且不垂直于坐标轴的直线l交椭圆E于A,B两点,若AB的中点为M,O为原点,直线OM交直线3x=-于点N,求1ABNF取最大值时直线l的方程.题型二:三角形面积及范围问题【例1】在平面直角坐标系xOy 中,椭圆E :22221(0)x ya b a b+=>>与椭圆22198x y +=有相同的焦点1F ,2F ,且右焦点2F .(1)求椭圆E 的方程;(2)若过椭圆E 左焦点1F ,且斜率为1的直线l 与椭圆交于M ,N 两点,求2F MN 的面积.【例2】已知椭圆E 的中心为坐标原点O ,对称轴分别为x 轴、y 轴,且过(1,0)A -,(,1)2B -两点.(1)求E 的方程;(2)设F 为椭圆E 的一个焦点,M ,N 为椭圆E 上的两动点,且满足0MN AF ⋅=,当M ,O ,N 三点不共线时,求△MON 的面积的最大值.【例3】已知椭圆W :()222210x y a b a b +=>>的离心率2e =,短轴长为2.(1)求椭圆W 的标准方程;(2)设A 为椭圆W 的右顶点,C ,D 是y 轴上关于x 轴对称的两点,直线AC 与椭圆W 的另一个交点为B ,点E 为AB 中点,点H 在直线AD 上且满足CH OE ⊥(O 为坐标原点),记AEH △,ACD 的面积分别为1S ,2S ,若1325S S =,求直线AB 的斜率.【例4】已知椭圆22:1(0)C a b a b +=>>,过右焦点的直线l 与椭圆C 交于,M N 两点,且当l x ⊥轴时,MN =(1)求椭圆C 的方程;(2)若直线l 的斜率存在且不为0,点,M N 在x 轴上的射影分别为,P Q ,且()04,,,R y N P 三点共线,求证:RMN 与RPQ 的面积相同.【点睛】关键点点睛:联立直线与曲线的方程得到韦达定理是常用和必备的步骤点到直线的距离即可求解面积以及长度以及最值,最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解借助于向量以及两点斜率公式.【例5】已知椭圆222:1(13)9x y C b b+=<<的上、下顶点分别为,A B ,点(),1(0)P t t >在椭圆内,且直线,PA PB分别与椭圆C 交于,E F 两点,直线EF 与y 轴交于点Q .已知tan 3tan PAB PBA ∠∠=.(1)求椭圆C 的标准方程;(2)设AQE 的面积为1,S BQF 的面积为2S ,求12S S 的取值范围.【点睛】关键点点睛:本题考查直线与椭圆方程联立的综合应用,本题的关键是计算繁琐,尤其求点坐标和直线EF的方程时,注意化简的准确性【题型专练】1.已知椭圆()2222:10x yC a ba b+=>>的左,右焦点分别为1F,2F,焦距为12Q⎫-⎪⎭在C上.(1)P是C上一动点,求12PF PF⋅的范围;(2)过C的右焦点2F,且斜率不为零的直线l交C于M,N两点,求1F MN△的内切圆面积的最大值.π2.已知O 为坐标原点,点(M N 皆为曲线Γ上点,P 为曲线Γ上异于,M N 的任意一点,且满足直线PM 的斜率与直线PN 的斜率之积为12-.(1)求曲线Γ的方程:(2)设直线l 与曲线Γ相交于,A B 两点,直线,,OA l OB 的斜率分别为12,,k k k (其中0k >),OAB 的面积为(0)S S ≠,以,OA OB 为直径的圆的面积分别为1S 、2S ,若12,,k k k 范围.进而可得所以22212121211()()()m m m k k k k km x x x x x x =++=+++,所以2121211()0m km x x x x ++=,即22112120x x m km x x x x +⋅+=,即有22(21)0k m -=,又因为0k >,0S ≠,所以0m ≠,2210k -=,解得22k =,所以22||22S m m =⋅⋅-,所以22222222121212121223π(||2)3π6||26||22()2ππ222[(1)(1)]22424222m m S m m m m x x x x x x x x S S ⋅⋅-⋅-⋅-===++-+⋅++⋅+++22422||221(1)1m m m m m =⋅-=-=--≤,当1m =±时取等号.又因为2221k m +>,即202m <<,所以2201(1)1m <--≤,即123π(0,1]22SS S ∈+.【点睛】方法点睛:对于解答直线与圆锥曲线问题的题,常用的方程是设而不解,联立直线方程与圆锥曲线方程,再利用韦达定理、弦长公式进行解答即可.3.已知椭圆C :()222210x y a b a b +=>>的长轴为4,离心率为22(1)求椭圆C 的方程;(2)如图,过点()4,0P 的直线l 与C 交于A ,B ,过A ,B 作直线1l :x t =的垂线,垂足分别为M ,N ,记 AMP ,MNP △,BNP △的面积分别为1S ,2S ,3S ,问:是否存在实数t ,使得1322S S S 为定值?若存在,求出t 的值;若不存在,请说明理由24.已知椭圆22:1(0)C a b a b+=>>经过点且焦距为4,点,A B 分别为椭圆C 的左右顶点,点P 在椭圆C 上.(1)求椭圆C 的方程;(2)设直线,AP BP 的斜率分别为12,k k ,求12k k 的值;(3),M N 是椭圆C 上的两点,且,M N 不在坐标轴上,满足OM ∥AP ,ON ∥BP ,问MON △的面积是否是定值?如果是,请求出MON △的面积;如果不是,请你说明理由.5.已知圆1F:(2216x y+=,点2F,P是圆1F上的一个动点,线段2F P的中垂线l交1F P于点Q.(1)求点Q的轨迹C的方程;(2)若点()2,0A-,过点A的直线l与C交于点M,与y轴交于点N,过原点且与l平行的直线与C交于P、G两点,求()2PAN PAMAOPS SS⋅△△△的值.6.若椭圆2212211:1x y C a b +=与椭圆2222222:1x y C a b +=满足1122(0)a b m m a b ==>,则称这两个椭圆为“相似”,相似比为m .如图,已知椭圆1C 的长轴长是4,椭圆2C的离心率为2,椭圆1C 与椭圆2C(1)求椭圆1C 与椭圆2C 的方程;(2)过椭圆2C 左焦点F 的直线l 与1C 、2C 依次交于A 、C 、D 、B 四点.①求证:无论直线l 的倾斜角如何变化,恒有||||AC DB =.②点M 是椭圆2C 上异于C 、D 的任意一点,记MBD 面积为1S ,△MAD 面积为2S ,当1215S S =时,求直线l 的方程.7.已知椭圆C 的焦点在x 轴上,左右焦点分别为1F 、2F ,离心率2e =,P 为椭圆上任意一点,12PF F △的周长为6.(1)求椭圆C 的标准方程:(2)过点()4,0S 且斜率不为0的直线l 与椭圆C 交于Q ,R 两点,点Q 关于x 轴的对称点为1Q ,过点Q 1与R 的直线交x 轴于T 点,试问TRQ △的面积是否存在最大值?若存在,求出这个最大值:若不存在,请说明理由(5)代入韦达定理求解.题型三:四边形面积及范围问题【例1】已知椭圆C :22x a +22y b=1,过A (2,0),B (0,1)两点.(1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求四边形ABNM 的面积.【例2】设椭圆()2222:10x y C a b a b +=>>的左焦点为F ,上顶点为P ,离心率为2,O 是坐标原点,且OP FP ⋅=(1)求椭圆C 的方程;(2)过点F 作两条互相垂直的直线,分别与C 交于A ,B ,M ,N 四点,求四边形AMBN 面积的取值范围.【例3】椭圆22122:1(0)x y C a b a b +=>>经过点()1,1E 且离心率为2;直线l 与椭圆1C 交于A ,B 两点,且以AB 为直径的圆过原点.(1)求椭圆1C 的方程;(2)若过原点的直线m 与椭圆1C 交于,C D 两点,且()OC t OA OB =+,求四边形ACBD 面积的最大值.【例4】在平面直角坐标系Oxy 中,动圆P 与圆22145:204C x y x ++-=内切,且与圆2223:204C x y x +-+=外切,记动圆P 的圆心的轨迹为E .(1)求轨迹E 的方程;(2)不过圆心2C 且与x 轴垂直的直线交轨迹E 于,A M 两个不同的点,连接2AC 交轨迹E 于点B .(i )若直线MB 交x 轴于点N ,证明:N 为一个定点;(ii )若过圆心1C 的直线交轨迹E 于,D G 两个不同的点,且AB DG ⊥,求四边形ADBG 面积的最小值.数的知识进行求解.【题型专练】1.已知椭圆2222:1(0)x y C a b a b+=>>,离心率为12,其左右焦点分别为1 F ,2F ,点(1,1)A -在椭圆内,P 为椭圆上一个动点,且1||PF PA +的最大值为5.(1)求椭圆C 的方程;(2)在椭圆C 的上半部分取两点M ,N (不包含椭圆左右端点),且122F M F N =,求四边形12F F NM 的面积.【点睛】关键点睛:解答本题的关键是把四边形这样便可以利用公式求三角形的面积了.2.已知()2222:10x y C a b a b +=>>的上顶点到右顶点的距离为2,右焦点为F ,过点F 的直线(不与x 轴重合)与椭圆C 相交于A 、B 两点,直线:2l x =与x 轴相交于点H ,过点A 作AD l ⊥,垂足为D .(1)求椭圆C 的标准方程;(2)①求四边形OAHB (O 为坐标原点)面积的取值范围;②证明直线BD过定点E,并求出点E的坐标.3.已知过点31,2⎛⎫ ⎪⎝⎭的椭圆C :()2210x ya b a b+=>>上的点到焦点的最大距离为3.(1)求椭圆C 的方程;(2)已知过椭圆C :()222210x y a b a b +=>>上一点00(,)P x y 的切线方程为00221xx yy a b +=.已知点M 为直线4x =-上任意一点,过M 点作椭圆C 的两条切线MA ,,,MB A B 为切点,AB 与OM (O 为原点)交于点D ,当MDB∠最小时求四边形AOBM 的面积.则有MDB DEO DOE ∠=∠+∠,∴0000343tan 431414AB ODAB ODy k k y y MDB k k y +⎛⎫-∠===+≥ ⎪+⎝⎭-当且仅当023y =时取等号,此时MDB ∠为锐角,同理根据对称性可求得00y <时023y =-,4.设椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,点P ,Q 为椭圆C 上任意两点,且()110PF QF λλ=<,若2PQF 的周长为8,12PF F △面积的最大值为2.(1)求椭圆C 的方程;(2)设椭圆C 内切于矩形ABCD (椭圆与矩形四条边均相切),求矩形ABCD 面积的最大值.5.已知椭圆122:1(0)C a b a b+=>>的长轴长为4,离心率为12,一动圆2C 过椭圆1C 右焦点F ,且与直线1x =-相切.(1)求椭圆1C 的方程及动圆圆心轨迹2C 的方程;(2)过F 作两条互相垂直的直线,分别交椭圆1C 于P ,Q 两点,交曲线2C 于M ,N 两点,求四边形PMQN 面积的最小值.x。

圆锥曲线中面积型问题

圆锥曲线中面积型问题

圆锥曲线中面积型问题
圆锥曲线中的面积型问题通常涉及到计算某个特定区域的面积,这些区域可能是由圆锥曲线(如椭圆、双曲线或抛物线)和直线或其他曲线围成的。

解决这类问题的一般步骤包括:
1.确定相关方程:需要明确给定的圆锥曲线和其他相关曲线的方程。

这些方程是解决问题的基础。

2.找出交点:接下来,找出这些曲线之间的交点。

这些交点通常是计算面积的关键点。

3.确定积分区间:根据交点,确定需要积分的区间。

对于二维问题,这通常是一个或多个区间;对于三维问题,则可能是一个区域。

4.进行积分计算:使用适当的积分公式或技巧,计算相关区域的面积。

这可能涉及到定积分、二重积分或三重积分,具体取决于问题的维度。

5.简化结果:最后,对计算出的结果进行简化,得出最终答案。

例如,在椭圆中,可能需要计算椭圆与某条直线围成的区域的面积。

需要找出椭圆和直线的交点,然后确定需要积分的区间,接着使用定积分或二重积分进行计算,最后简化结果。

需要注意的是,圆锥曲线中的面积型问题可能比较复杂,需要综合运用数学知识进行分析和计算。

在实际解题过程中,还需要注
意选择合适的计算方法和技巧,以提高解题效率和准确性。

02圆锥曲线中的面积问题

02圆锥曲线中的面积问题

02圆锥曲线中的面积问题一、基础知识:1、面积问题的解决策略:(1)求三角形的面积需要寻底找高,需要两条线段的长度,为了简化运算,通常优先选择能用坐标直接进行表示的底(或高).(2)面积的拆分:不规则的多边形的面积通常考虑拆分为多个三角形的面积和,对于三角形如果底和高不便于计算,则也可以考虑拆分成若干个易于计算的三角形 2、多个图形面积的关系的转化:关键词“求同存异”,寻找这些图形的底和高中是否存在“同底”或“等高”的特点,从而可将面积的关系转化为线段的关系,使得计算得以简化3、面积的最值问题:通常利用公式将面积转化为某个变量的函数,再求解函数的最值,在寻底找高的过程中,优先选择长度为定值的线段参与运算.这样可以使函数解析式较为简单,便于分析4、椭圆与双曲线中焦点三角形面积公式(证明详见“圆锥曲线的性质”)(1)椭圆:设P 为椭圆()222210x y a b a b +=>>上一点,且12F PF θ∠=,则122tan 2PF F S b θ=(2)双曲线:设P 为椭圆()22221,0x ya b a b -=>上一点,且12F PF θ∠=,则1221cot 2PF F S b θ=⋅二、典型例题:例1:设12,F F 为椭圆2214x y +=的左右焦点,过椭圆中心任作一直线与椭圆交于,P Q 两点,当四边形12PFQF 的面积最大时,12PF PF ⋅的值等于___________. 思路:由椭圆中心对称的特性可知,P Q 关于原点中心对称,所以12PF F 与12QF F 关于原点对称,面积相等.且四边形12PFQF 可拆成12PF F 与12QF F 的和,所以四边形12PFQF 的面积最大即12PF F 面积最大,因为121212PF F p p S F F y c y =⋅=⋅,所以当p y 最大时,12PF F 面积最大.即P 位于短轴顶点时,12PF F 面积最大.由2214x y +=可知2,1,a b c ===,所以()())120,1,,P F F ,进而计算出12PF PF ⋅的值为2-例2:已知点P 是椭圆2216251600x y +=上的一点,且在x 轴上方,12,F F 分别为椭圆的左右焦点,直线2PF的斜率为-12PF F 的面积是___________.思路:将椭圆化为标准方程为22110064x y +=,进而可得6c =,所以()()126,0,6,0F F -,计算12PF F 的面积可以以12F F 为底,y P 为高,所以考虑利用条件计算出P 的纵坐标,设(),P x y ,则有26PF y k x ==--所以221625160060x y yx y ⎧+=⎪⎪=-⎨-⎪⎪>⎩可解得y =y =去),所以1212111222PF F S F F y =⋅=⋅⋅=例3:已知F 为抛物线2y x =的焦点,点,A B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=,则ABO 与AFO 面积之和的最小值是___________.思路:由2OA OB ⋅=入手可考虑将向量坐标化,设()()1122,,,A x y B x y ,则12122x x y y +=,进而想到可用韦达定理.所以设AB 与x 轴交于(),0M m 直线:AB x ty m =+.联立方程220y x y ty m x ty m⎧=⇒--=⎨=+⎩,所以2221212120,y y m x x y y m =-<==,所以由12122x x y y +=可得:222m m m -=⇒=,所以122y y =-,不妨设A 在x 轴上方,如图可得:()12112119228ABO AFO S S OM y y OF y y y +=⋅-+⋅=-,由122y y =-可知212y y =-,消元后可得:111192922388ABOAFOSSy y y y +=+≥⋅=,等号成立当且仅当143y =,所以ABOAFOS S+的最小值为3例4:抛物线24y x =的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AFK 的面积是___________.思路:斜率为3可知直线的倾斜角为3π,从而可得3KAF π∠=,所以在计算面积时可利用两边与夹角,所以可得1sin 23AKF S AK AF π=⋅,由抛物线性质可得AK AF =,所以只需求得焦半径AF ,即只需解出A 点横坐标.利用几何关系可得12A x OF FM OF AF =+=+,另一方面,由焦半径公式可得:1A AF x =+,所以可得方程:()1132A A A x OF x x =++⇒=,从而14A AF x =+=,所以21sin 4323AKF S AF π== 小炼有话说:(1)本题的解法是利用题目中的几何关系求解,绕过代数运算,而突破点即为直线的倾斜角3π,所以当题目中出现特殊角时,可以考虑蕴含其中的几何特点,从而使得运算更为简单.(2)本题的A x 也可通过联立方程,使用代数方法解决,方法步骤如下: 由抛物线方程可得:()1,0F ,设():31l y x =-,联立方程:()()22431431y xx x y x ⎧=⎪⇒-=⎨=-⎪⎩,整理可得:231030x x -+= 3x ∴=或13x = 323x y =⎧⎪∴⎨=⎪⎩或13233x y ⎧=⎪⎪⎨⎪=-⎪⎩(舍) 3A x ∴=例5:以椭圆22195x y +=的顶点为焦点,焦点为顶点的双曲线C ,其左右焦点分别为12,F F ,已知点M 的坐标为()2,1,双曲线C 上点()()0000,0,0P x y x y >>满足11211121PF MF F F MF PF F F ⋅⋅=,则12PMF PMF SS-等于___________.思路:可先利用椭圆确定双曲线方程及其焦点坐标,22195x y +=的顶点为()()3,0,3,0-,即为12,F F 的坐标,椭圆的焦点为()()2,0,2,0-,所以双曲线中2,3a c ==,进而5b = 观察11211121PF MF F F MF PF F F ⋅⋅=可联想到投影,即1MF 在1PF 的投影与1MF 在21F F 的投影相等,由几何关系可得1F M 为12PF F ∠的角平分线.由()()22,1,3,0M F 可得21MF k =-,即2F M 平分21PF F ∠,从而M 为12PF F 的内心,且内切圆半径1M r y ==.从而()1212121112222PMF PMF SSPF r PF r r PF PF -=⋅-⋅=-= 例6:已知点P 为双曲线()222210,0x y a b a b-=>>右支上一点,12,F F 分别是双曲线的左右焦点,且212bF F a=,I 为三角形12PF F 的内心,若1212IPF IPF IF F S S S λ=+成立,则λ的值为___________.思路:由三角形内心的性质可得I 到三边的距离相等,所以1212,,IPF IPF IF F 的高均为r ,从而12121212IPF IPF IF F SSSPF PF F F λλ=+⇒=+,即1212F F cPF PF aλ==-,所以只需利用212b F F a=确定,a c 的关系即可.解:I 为三角形12PF F 的内心12211221111,,222IPF IPF IF F S PF r S PF r S F F r ∴=⋅=⋅=⋅12121212IPF IPF IF F S S S PF PF F F λλ=+⇒=+1212F F PF PF λ∴=-P 在双曲线上,且12,F F 是焦点12122,2PF PF a F F c ∴-== caλ∴=即λ为离心率由212b F F a =可得:22222b c ac c a a=⇒=-,两边同时除以2a 得:2210e e --=, 21e ∴=+即21λ=+例7:已知点()0,2A -,椭圆()2222:10x y E a b a b+=>>的离心率为3,F 是椭圆E 的右焦点,直线AF 的斜率为23,O 为坐标原点(1)求E 的方程(2)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ 面积最大时,求l 的方程解:(1)设(),0F c 223AF k c ∴==3c ∴= 3c e a ==23a ∴== 2221b a c ∴=-= 22:14x E y ∴+= 思路:首先设:2PQ y kx =-,()()1122,,,P x y Q x y ,由图像可得12OPQO PQ Sd PQ -=⋅,考虑联立直线与椭圆方程并利用点到直线距离公式和弦长公式用k 表示出,O PQ d PQ -,从而OPQS也可用k 进行表示:222443444343OPQk Sk k -==-+-,再利用均值不等式即可得到最大值.等号成立的条件224343k k -=-即为k 的值.(注意直线与椭圆相交,所以消元后的方程0∆>)(2)设直线:2PQ y kx =-,()()1122,,,P x y Q x y∴联立方程可得:()2222242444y kx x kx x y =-⎧⇒+-=⎨+=⎩,整理后可得: ()224116120kx kx +-+= ,因为方程有两个不等实根()()221648410k k ∴∆=-+>解得:k或k < 12OPQO PQ Sd PQ -=⋅O PQ d -12PQ x =-= 由方程()224116120k x kx +-+=可得:1212221612,4141k x x x x k k +=⋅=++代入PQ 可得:PQ ==2142OPQ S ∴===44=4≥2434k k =⇒-=⇒= 1OPQS∴≤此时k =,l∴的方程为2y x -或2y =- 例8:已知椭圆()2222:10x y C a b a b +=>>的离心率为12,过右焦点F 的直线l 与C 相交于,A B两点,当l 的斜率为1时,坐标原点O 到l(1)求椭圆C 的方程 (2)若,,,P Q M N 是椭圆C 上的四点,已知PF 与FQ 共线,MF 与FN 共线,且0PF MF ⋅=,求四边形PMQN 面积的最小值解:(1)1c e ==,设(),0F c ,则:l y x c =-1O l d c -∴=⇒=,2222,3a b a c ∴==-=,22143x y ∴+=(2)由(1)可得:()1,0F ,因为0PF MF PF MF ⋅=⇒⊥,12PMQN S MN PQ ∴=⋅设()()1122,,,P x y Q x y ,():1PQ y k x =-,联立方程可得:()2234121x y y k x ⎧+=⎪⎨=-⎪⎩,消去x 可得: ()22234112x k x+-=整理后可得:()22224384120k x k x k +-+-=()212212143k PQ x k +∴=-==+ ① 设()1:1MN y x k =--,以1k -替换①中的k 可得: 2222112112124343k k MN k k ⎛⎫+ ⎪+⎝⎭==++()2222121111212224334PMQN k k S MN PQ k k ++∴=⋅=⋅⋅++242242221221727211225121225k k k k k k k k ++++=⋅=⋅++⎛⎫++ ⎪⎝⎭ 设221u k k =+,可得[)2,u ∈+∞,21726112251225PMQN u S u u +⎛⎫∴=⋅=- ⎪++⎝⎭,2u ∴=时,min 28849S = 例9:在平面直角坐标系xOy 中,已知点()1,1A -,P 是动点,且三角形POA 的三边所在直线的斜率满足OP OA PA k k k += (1)求点P 的轨迹方程(2)若Q 是轨迹C 上异于点P 的一个点,且PQ OA λ=,直线OP 与QA 交于点M ,问:是否存在点P 使得PQA 和PAM 的面积满足2PQMPAMSS=?若存在,求出点P 的坐标,若不存在,请说明理由.(1)思路:本题设点(),P x y ,且,O A 已知,直接利用条件列出等式化简即可 解:设(),P x y ,由()()1,1,0,0A O -可得:1,1,1OP OA PA y y k k k x x -==-=+,依题意OP OA PA k k k +=可得: ()()()111111y y y x x x x y x x --=⇒+-+=-+整理后可得: 2y x =,其中0,1x x ≠≠-所以P 的轨迹方程为()20,1y x x x =≠≠-‘(2)思路:从图可得PQA 和PAM 的高相同,从而面积的比值转化为对应底边的比,即22PQMPAMSSQA AM =⇒=,再由PQ OA λ=可得PQ OA ∥,进而22QA AM OP OM =⇒=,由,,O P M 共线再转成向量关系则只需求出M 的坐标即可解出P 的坐标解:设()()221122,,,P x x Q x x PQ OA λ= PQ OA ∴∥1PQ OAk k ==-,即2221212111x x x x x x -=-⇒=---222121121QAx k x x x -∴==-=--+,()()1:121QA y x x ∴+=--- 因为1:OP y x x = ()()11121:y x x M y x x+=---⎧⎪∴⎨=⎪⎩ 可解得12M x =-11,22PQM P QM PAM P QM S QA d S AM d --=⋅=⋅且2PQMPAMSS=2QA AM ∴= PQ OA ∥22QA AM OP OM ∴=⇒=,即2OP OM =- 21P M x x ∴=-= ()1,1P ∴ ,所以存在符合条件的()1,1P例10:设抛物线22y x =的焦点为F ,过点()3,0M的直线与抛物线相交于,A B 两点,与抛物线的准线相交于,2C BF =,则BCF 与ACF 的面积之比BCF ACFS S=___________.思路:由2BF =联想到焦半径公式,从而可解得332B x =<,从而可判断出B 在M 的左侧,作出图像可发现两个三角形具备同“高”的特点(即F 到BC的距离),所以BCF ACF BC SS AC =,若直接从,BC AC 长度出发,则运算量较大,所以考虑将比值视为整体,并进行线段的转移,可过,A B 分别引准线的垂线,从而将B lA lBC d ACd --=,只需联立直线抛物线方程求出A 点横坐标即可.解:由22y x =可得1p =,设()()1122,,,A x y B x y22322222p p BF x x ∴=+=⇒=-=,设F 到直线AB 的距离为d 则1212BCF ACFd BC BC S SAC d AC ⋅==⋅ 过,A B 分别引准线的垂线,AP BQ AP BQ ∴∥,2211122=122p x x BC BQ p AC AP x x ++∴==++ 设(:AB y k x =,联立方程:(22y xy kx ⎧=⎪⎨=-⎪⎩消元可得:(222k x x =整理后可得:()2222230k x x k -++=,12132x x x ∴=⇒= 21142152BCF ACFx S S x +∴-==+小炼有话说:本题设计的精妙之处在于允许有多种解题方向(比如计算坐标,计算底边长)等,但方法层次不同,所耗费的时间也不一样.通过本题要体会以下几点:(1)在抛物线中焦半径与点横坐标的联系,已知焦半径可迅速求出该点的横坐标 (2)处理面积的比值问题时,可考虑两个图形共同的部分(底,高),从而将比值转化为线段的比值(3)在抛物线中常用的辅助线是过抛物线上的点引准线的垂线.本题恰好利用这一点转移了比例,简化了运算。

圆锥曲线中的面积问题(解析版)

圆锥曲线中的面积问题(解析版)

圆锥曲线中的面积问题一、考情分析圆锥曲线中的面积问题常见的是三角形的面积问题,有时也会考查平行四边形的面积或对角线互相垂直的四边形面积问题,求解此类问题通常是借助弦长公式或点到直线距离公式用某些量,如动直线的斜率或截距表示面积,再利用函数、方程或不等式知识求解.二、解题秘籍(一)利用弦长与点到直线距离计算三角形面积若直线与圆锥曲线交于点A ,B ,点P 为定点或满足一定条件的动点,要表示△PAB 的面积,一般是先利用弦长公式求出AB ,再利用点到直线距离公式求出点P 到直线AB 的距离d ,则S ΔPAB =12AB d .【例1】(2023届浙江省名校协作体高三上学期考试)如图,已知双曲线C :x 22-y 2=1,经过点T 1,1 且斜率为k 的直线l 与C 交于A ,B 两点,与C 的渐近线交于M ,N 两点(从左至右的顺序依次为A ,M ,N ,B ),其中k∈0,22 .(1)若点T 是MN 的中点,求k 的值;(2)求△OBN 面积的最小值.【解析】设A x 1,y 1 ,B x 2,y 2联立直线l 与双曲线方程y =k x -1 +1x 22-y 2=0,消去y 得1-2k 2 x 2-4k 1-k x -2(1-k )2=0,由韦达定理可知,x 1+x 2=4k -4k 21-2k 2,x 1⋅x 2=-21-k 21-2k 2联立直线l 与其中一条渐近线方程y =k x -1 +1y =22x,解得x =1-k22-k即x N =1-k 22-k ,同理可得x M =k -122+k ,则x M +x N =4k -4k21-2k 2=x 1+x 2,则可知AB 的中点与MN 中点重合.由于T 1,1 是MN 的中点,所以4k 1-k 1-2k2=2,解得k =12;(2)y =k x -1 +1与x 22-y 2=1联立,消去y 得1-2k 2 x 2-4k 1-k x -2(1-k )2-2=0由(1)知,BN =AM =AB -MN 2.或S △OBN =12S △OAB -S △OMN 由于AB =1+k 222(1-k )2+1-2k 21-2k 2,MN =1+k 222(1-k )21-2k 2,所以BN =1+k 22(1-k )2+1-2k 2-(1-k )2 1-2k 2,又O 到直线的距离d =1-k1+k 2,所以S △OBN =12BN ⋅d =22⋅1-k (1-k )2+1-2k 2-(1-k )21-2k 2=22⋅1-k (1-k )2+1-2k 2+(1-k )2整理得S △OBN =22⋅11+1-2k 2(1-k )2+1,令t =1-k ∈1-22,1 ,则1-2k 2(1-k )2=-2t 2+4t -1t 2=-1t 2+4t -2,当1t =2,即k =12时,1-2k 2(1-k )2的最大值为2,所以S △OBN 的最小值为6-24.(二)三角形中一个顶点到对边上某一点的距离为定值,可把三角形分为两个小三角形分别计算面积若过定点Q 的直线与圆锥曲线交于点A ,B ,点P 为定点或满足一定条件的动点,要表示△PAB 的面积,可先求出点A ,B 到直线PQ 的距离之和d ,则S ΔPAB =12PQ d ,特别的,若PQ 与y 轴垂足,S ΔPAB =12PQ y A -y B ,利用这种方法求面积,可以避免使用弦长公式,减少运算量.【例2】(2022届江苏省扬州市高邮市高三上学期12月学情调研)已知椭圆C :x 2a 2+y 2b2=1a >b >0 上的点到左、右焦点F 1、F 2的距离之和为4,且右顶点A 到右焦点F 2的距离为1.(1)求椭圆C 的方程;(2)直线y =kx 与椭圆C 交于不同的两点M ,N ,记△MNA 的面积为S ,当S =3时求k 的值.【解析】(1)由题意2a =4,a =2,因为右顶点A 到右焦点F 2的距离为1,即a -c =1,所以c =1,则b =a 2-c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(2)设M x 1,y 1 ,N x 2,y 2 ,且OA =2根据椭圆的对称性得S △AMN =12OA ⋅y 1 +12OA ⋅y 2 =12OA ⋅y 2-y 1 =y 2-y 1 ,联立方程组y =kxx 24+y 23=1,整理得3k 2+4 y 2=12,解得y =±12k 24k 2+3,因为△AMN 的面积为3,可得|y 1-y 2|=212k 24k 2+3=3,解得k =±32.(三)对角线互相垂直的四边形面积的计算对角线互相垂直的四边形的面积为两对角线长度乘积的12.【例3】(2023届山东省青岛市高三上学期调研)在平面直角坐标系Oxy 中,动圆P 与圆C 1:x 2+y 2+2x -454=0内切,且与圆C 2:x 2+y 2-2x +34=0外切,记动圆P 的圆心的轨迹为E .(1)求轨迹E 的方程;(2)不过圆心C 2且与x 轴垂直的直线交轨迹E 于A ,M 两个不同的点,连接AC 2交轨迹E 于点B .(i )若直线MB 交x 轴于点N ,证明:N 为一个定点;(ii )若过圆心C 1的直线交轨迹E 于D ,G 两个不同的点,且AB ⊥DG ,求四边形ADBG 面积的最小值.【解析】(1)设动圆P 的半径为R ,圆心P 的坐标为x ,y由题意可知:圆C 1的圆心为C 1-1,0 ,半径为72;圆C 2的圆心为C 21,0 ,半径为12.∵动圆P 与圆C 1内切,且与圆C 2外切,∴PC 1 =72-RPC 2 =12+R⇒PC 1 +PC 2 =4>C 1C 2 =2∴动圆P 的圆心的轨迹E 是以C 1,C 2为焦点的椭圆,设其方程为:x 2a 2+y 2b2=1(a >b >0),其中2a =4,2c =2,∴a =2,b 2=3从而轨迹E 的方程为:x 24+y 23=1(2)(i )设直线AB 的方程为y =k x -1 k ≠0 ,A x 1,y 1 ,B x 2,y 2 ,则M x 1,-y 1 由y =k x -1x 24+y 23=1可得:4k 2+3 x 2-8k 2x +4k 2-12=0∴x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3直线BM 的方程为y +y 1=y 2+y 1x 2-x 1x -x 1 ,令y =0可得N 点的横坐标为:x N =x 2-x 1y 2+y 1y 1+x 1=k x 2-x 1 x 1-1 k x 1+x 2-2+x 1=2x 1x 2-x 1+x 2 x 1+x 2-2=2×4k 2-124k 2+3-8k 24k 2+38k 24k 2+3-2=4∴N 为一个定点,其坐标为4,0(ii )根据(i )可进一步求得:AB =1+k 2x 2-x 1 =1+k 2×x 2+x 12-4x 1x 2=1+k 2×8k 24k 2+3 2-4×4k 2-124k 2+3=12k 2+1 4k 2+3.∵AB ⊥DG ,∴k DG =-1k,则DG =12k 2+13k 2+4∵AB ⊥DG ,∴四边形ADBG 面积S =12AB ×DG =12×12k 2+1 4k 2+3×12k 2+1 3k 2+4=72k 2+1 24k 2+3 3k 2+4(法一)S =72k 2+1 24k 2+3 3k 2+4≥72k 2+1 24k 2+3+3k 2+422=28849等号当且仅当4k 2+3=3k 2+4时取,即k =±1时,S min =28849(法二)令k 2+1=t ,∵k ≠0,∴t >1,则S =72t 212t 2+t -1=72-1t2+1t +12=72-1t -12 2+494当1t =12,即k =±1时,S min =28849(四)把四边形分割成两个三角形求面积如果四边形的一条对角线所在直线的方程确定,通常把该四边形分割为以这条对角线为底边的两个三角形,分别表示出这两个三角形的面积再相加【例4】(2023届THUSSAT 中学生标准学术能力高三9月测试)已知A 、B 分别为椭圆Γ:x 2a2+y 2=1a >1 )的上、下顶点,F 是椭圆Γ的右焦点,C 是椭圆Γ上异于A 、B 的点,点D 在坐标平面内.(1)若∠AFB =π3,求椭圆Γ的标准方程;(2)若a =2,且CA ⊥AD ,CB ⊥BD ,求四边形CADB 面积S 的最大值.【解析】(1)由已知△AFB 是等边三角形,因为AB =2,AF =a ,所以a =2,得椭圆的标准方程为x 24+y 2=1.(2)设C x 1,y 1 ,D x 2,y 2 ,因为CA ⊥AD ,CB ⊥BD ,所以CA ⋅AD =0,CB ⋅BD=0则A 0,1 ,B 0,-1 ,所以CA =-x 1,1-y 1 ,AD=x 2,y 2-1 ,CB =-x 1,-1-y 1 ,BD=x 2,y 2+1 ,所以x 1x 2+y 1-1 y 2-1 =0,x 1x 2+y 1+1 y 2+1 =0,两式相减得y 2=-y 1,带回原式得x 1x 2+1-y 21=0,因为x 214+y 21=1,所以x 2=-x 14,S ▱CADB =S △CAB +S △DAB =x 1 +x 2 =1+14 x 1 ≤52(当x 1=±2时取等)所以四边形CADB 面积S 的最大值为52.(五)利用函数性质求面积最值或范围如果能把三角形或四边形的面积用某一个变量来表示,此时可把面积看作关于该变量的函数,若函数的单调性容易确定,可利用函数单调性求面积最值或范围.【例5】(2023届河南省名校联盟2高三上学期联考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,左、右焦点分别为F 1,F 2,M ,N 是椭圆上关于原点对称的两点,F 1M +F 1N =4.(1)求椭圆C 的方程;(2)椭圆左顶点为A ,上顶点为B ,直线l ∥AB 且交椭圆于P ,Q ,求△PQB 的面积最大时,l 的方程.【解析】(1)由题意得c 2a2=34,化简得3a 2=4c 2=4a 2-b 2 ,则a 2=4b 2.根据对称性得F 1M =F 2N ,故F 2N +F 1N =4,即2a =4,所以a 2=4,b 2=1,故椭圆C 的方程为x 24+y 2=1.(2)由(1)得k AB =12,设P x 1,y 1 ,Q x 2,y 2 ,l 的方程为y =12x +t (t ≠1),代入椭圆方程x 24+y 2=1,整理得x 2+2tx +2t 2-2=0,则x 1+x 2=-2t ,x 1x 2=2t 2-2,Δ=4t 2-42t 2-2 >0,解得-2<t <2且t ≠1.故|PQ |=1+14⋅x 1-x 2 =5⋅2-t 2,点B (0,1)到直线l 的距离为d =|2t -2|5,则S △BPQ =12|PQ |⋅d =12×5⋅2-t 2⋅|2t -2|5=2-t 2 (t -1)2.令f (t )=2-t 2 (t -1)2,则f(t )=-2t (t -1)2+22-t 2 (t -1)=-4(t -1)⋅t -1+174 t -1-174 .当t 变化时,f (t ),f (t )的变化情况如下表:t-2,1-174 1-174,11,1+174 1+174,2f t +-+-f t↗↘↗↘比较f 1-174与f 1+174 知,当t =1-174时,△PQB 面积取最大,此时,l 的方程为y =12x +1-174.(六)利用均值不等式求面积最值或范围如果能把三角形或四边形的面积转化为某些变量的代数式,若对代数式进行恒等变形后能出现和为定值或乘积为定值的式子,可考虑利用均值不等式求最值或范围.【例6】(2022届新疆昌吉教育体系高三上学期诊断)已知抛物线T :y 2=2px p >0 ,点F 为其焦点,点M 、N在抛物线上,且直线MN 过点G -p2,0 ,FM =2FN =6.(1)求抛物线T 的方程;(2)过焦点F 作互相垂直的两条直线,与抛物线T 分别相交于点A 、B 和C 、D ,点P 、Q 分别为AB 、CD 的中点,求△FPQ 面积的最小值.【解析】(1)过点M 、N 分别作抛物线T 的准线l 的垂线,垂足分别为M1、N 1,易知MM 1 =MF ,NN 1 =NF ,因为FM =2FN ,则MM 1 =2NN 1 ,则点N 为MG 的中点,连接ON ,则ON 为△FGM 的中位线,所以,FM =2ON =2NF ,则ON =NF ,所以,点N 在线段OF 的垂直平分线上,则点N 的横坐标为p4,∴FN =p 2+p4=3,解得p =4,所以,抛物线T 的标准方程为y 2=8x .(2)因为F 2,0 ,若直线AB 、CD 分别与两坐标轴垂直,则直线AB 、CD 中有一条与抛物线只有一个交点,不合乎题意.所以,直线AB 、CD 的斜率均存在且不为0,设直线AB 的斜率为k k ≠0 ,则直线AB 的方程为y =k x -2 ,联立y 2=8x y =k x -2,得ky 2-8y -16k =0,则Δ=64+64k 2>0,设A x 1,y 1 、B x 2,y 2 ,则y 1+y 2=8k,设P x P ,y P ,则y P =y 1+y 22=4k ,则x P =y P k +2=4k 2+2,所以P 4k2+2,4k ,同理可得Q 4k 2+2,-4k ,故QF =4k2+2-2 2+-4k 2=16k 4+16k 2=4k 21+k 2 ,PF =16k 4+16k 2=41+k 2k 2,因为PF ⊥QF ,所以S △FPQ =12PF ⋅QF =12×4k 21+k 2×41+k 2k 2=81+k 2 k =8×k +1k≥8×2k ⋅1k =16,当且仅当k =1k,即k =±1时等号成立,故△FPQ 面积的最小值为16.三、跟踪检测1.(2023届江苏省南通市如皋市高三上学期调研)已知点A (2,1)在双曲线C :x 2a 2-y 2a 2-1=1(a >1)上,直线l 交C 于P ,Q 两点,直线AP ,AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan ∠PAQ =22,求△PAQ 的面积.【解析】(1)将点A (2,1)代入x 2a 2-y 2a 2-1=1中,得4a 2-1a 2-1=1,即a 4-4a 2+4=0,解得a 2=2 ,故双曲线方程为x 22-y 2=1;由题意知直线l 的斜率存在,设l :y =kx +m ,设P (x 1,y 1),Q (x 2,y 2),则联立直线与双曲线x 22-y 2=1得:(2k 2-1)x 2+4km x +2m 2+2=0,需满足2k 2-1≠0,Δ=8(m 2+1-2k 2)>0,故x 1+x 2=-4km 2k 2-1,x 1x 2=2m 2+22k 2-1,k AP +k AQ =y 1-1x 1-2+y 2-1x 2-2=kx 1+m -1x 1-2+kx 2+m -1x 2-2=0,化简得:2kx 1x 2+(m -1-2k )(x 1+x 2)-4(m -1)=0,故2k (2m 2+2)2k 2-1+(m -1-2k )-4km 2k 2-1 -4(m -1)=0,即2k 2+(m +1)k +m -1=0 ,即(k +1)(m +2k -1)=0,由题意可知直线l 不过A 点,即m +2k -1≠0,故l 的斜率k =-1.(2)设直线AP 的倾斜角为α,由tan ∠PAQ =22,∴2tan∠PAQ21-tan2∠PAQ 2=22,得tan ∠PAQ 2=22,(负值舍去),由直线AP ,AQ 的斜率之和为0,可知2α+∠PAQ =π,即tan π-2α2=22,则tan π2-α =cos αsin α=22,得k AP =tan α=2,即y 1-1x 1-2=2,联立y 1-1x 1-2=2,及x 212-y 21=1得x 1=10-423,y 1=42-53,将x1=10-423,y1=42-53代入l:y=-x+m中,得m=53,故x1+x2=203,x1x2=689,而|AP|=2+1|x1-2|=3|x1-2|,|AQ|=3|x2-2|,由tan∠PAQ=22,得sin∠PAQ=22 3,故S△PAQ=12|AP|⋅|AQ|sin∠PAQ=2|x1x2-2(x1+x2)+4|=2689-2×203+4=1629.2.(2023届上海市松江二中高三上学期月考)如图,已知A x1,y1、B x2,y2为抛物线Γ:y=14x2的图像上异于顶点的任意两个点,抛物线Γ在点A、B处的切线相交于P x0,y0.(1)写出这条抛物线的焦点坐标和准线方程;(2)求证:x1、x0、x2成等差数列,y1、y0、y2成等比数列;(3)若A,F,B三点共线,求出动点P的轨迹方程及△PAB面积的最小值.【解析】(1)抛物线的标准方程为x2=4y,于是焦点坐标为F(0,1),准线方程为y=-1.(2)y =12x,所以l AP:y=12x1x-x1+14x21=12x1x-14x21l BP:y=12x2x-x2+14x22=12x2x-14x22联立y=12x1x-14x21y=12x2x-14x22,得x0=x1+x22,y0=x1x24,而y1=14x21,y2=14x22于是y20=x21x2216=y1y2,即x0=x1+x22,y20=y1y2故x1,x0,x2成等差数列,y1,y0,y2成等比数列(3)由于A,F,B三点共线,设l AB:y=kx+1联立y=kx+1y=14x2,得x2-4kx-4=0.即动点P的轨迹方程为y=-1设AB中点为C,则Cx1+x22,y1+y22,即C2k,2k2+1S△PAB=12|PC|x1-x2=122k2+216k2+16=41+k232≥4当k=0时取等所以△PAB面积的最小值为43.(2023届浙江省嘉兴市高三上学期9月测试)已知椭圆C:x24+y2b2=10<b<2,直线l1:y=x+m与椭圆C交于A,B两点,且AB的最大值为46 3.(1)求椭圆C的方程;(2)当AB=463时,斜率为-2的直线l2交椭圆C于P,Q两点(P,Q两点在直线l1的异侧),若四边形APBQ的面积为1669,求直线l2的方程.【解析】(1)设A x1,y1,B x2,y2,联立直线l1与椭圆方程得x24+y2b2=1 y=x+m ,消去y得b2+4x2+8mx+4m2-b2=0,又x1,x2是这个方程的两个实根,所以Δ=64m2-16b2+4m2-b2>0x1+x2=-8mb2+4x1x2=4m2-b2b2+4,由弦长公式得AB=1+k2x1-x2=2⋅-8mb2+42-4×4m2-b2b2+4=42bb2+4⋅b2+4-m2,所以当m=0时,AB取到最大值,即ABmax=42bb2+4=436,解得b=2.所以椭圆C的方程为x24+y22=1.(2)设直线l2方程为y=-2x+n,P x3,y3,Q x4,y4,联立直线l2与椭圆方程x24+y22=1y=-2x+n,消去y得9x2-8nx+2n2-4=0,所以Δ=-8n2-4×9×2n2-4>0x3+x4=8n9x3x4=2n2-49,且n∈-32,32,记点P,Q到直线l1的距离分别为d1,d2,又d1=x3-y32,d2=x4-y42且x3-y3x4-y4<0,所以d1+d2=x3-y32+x4-y42=x3-y3-x4-y42=3x3-x42=32x3+x42-4x3x4=328n92-4×2n2-49=2318-n2,所以S APBQ=12|AB|d1+d2=12⋅463⋅2318-n2=46918-n2,因为S APBQ=1696,所以46918-n2=1669,整理得n2=2,所以n=±2满足条件,综上所述直线的方程为l2:y=-2x±2,即为l2:2x+y±2=0.4.(2023届湖北省荆荆宜三校高三上学期9月联考)设椭圆Γ:x2a2+y2b2=1a>b>0,F1,F2是椭圆Γ的左、右焦点,点A1,3 2在椭圆Γ上,点P4,0 在椭圆Γ外,且PF2 =4-3.(1)求椭圆Γ的方程;(2)若B1,-32,点C为椭圆Γ上横坐标大于1的一点,过点C的直线l与椭圆有且仅有一个交点,并与直线PA,PB交于M,N两点,O为坐标原点,记△OMN,△PMN的面积分别为S1,S2,求S21-S1S2+S22的最小值.【解析】(1)因为点A1,3 2在椭圆Γ上,所以1a2+34b2=1,①因为点P4,0在椭圆Γ外,且PF2=4-3,所以c=3,即a2-b2=c2=3,②由①②解得a2=4,b2=1,故椭圆Γ的方程为x24+y2=1.(2)设点M x1,y1,N x2,y2,设直线MN:x=my+t,由椭圆性质以及点C的横坐标大于1可知,t>2,将直线MN代入方程x24+y2=1并化简可得,my+t2+4y2-4=0,即m2+4y2+2mty+t2-4=0,因为直线l与椭圆有且仅有一个交点,所以Δ=4m2t2-4m2+4t2-4=0,即t2=m2+4.直线AP的方程为:x=4-23y;直线BP的方程为l BP:x=4+23y,联立方程x=my+t,x=4-23y,得y1=4-t23+m,同理得y2=t-423-m,所以y1-y2=4-t-43m2-12=43t+4,所以S1=12t y1-y2,S2=124-ty1-y2,所以S21-S1S2+S22=14t2y1-y22-t4-t4y1-y22+14(4-t)2y1-y22=14y1-y22t2-4t+t2+16-8t+t2=14×48t+423t2-12t+16=36-489t+8t2+8t+16,令9t+8=λλ>26,则S21-S1S2+S22=36-48×81λ+282λ+56≥97,当且仅当λ=28,即t=209时,不等式取等号,故当t=209时,S21-S1S2+S22取得最小值97.5.(2023届广东省潮阳实验、湛江一中、深圳实验三校高三上学期联考)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为32,椭圆上一动点P与左、右焦点构成的三角形面积最大值为 3.(1)求椭圆C的方程;(2)设椭圆C的左、右顶点分别为A,B,直线PQ交椭圆C于P,Q两点,记直线AP的斜率为k1,直线BQ 的斜率为k2,已知k1=3k2.①求证:直线PQ恒过定点;②设△APQ和△BPQ的面积分别为S1,S2,求S1-S2的最大值.【解析】(1)由题意ca=32bc=3a2=b2+c2,解得a2=4b2=1,所以椭圆C的方程为x24+y2=1.(2)①依题意A(-2,0),B(2,0),设P x1,y1,Q x2,y2,若直线PQ的斜率为0则P,Q关于y轴对称,必有k AP=-k BQ,不合题意.所以直线PQ斜率必不为0,设其方程为x=ty+n(n≠±2),与椭圆C联立x2+4y2=4x=ty+n,整理得:t2+4y2+2tny+n2-4=0,所以Δ=16t2+4-n2>0,且y1+y2=-2tnt2+4,y1y2=n2-4t2+4.因为P x1,y1是椭圆上一点,即x214+y21=1,所以k AP ⋅k BP =y 1x 1+2⋅y 1x 1-2=y 21x 21-4=1-x 214x 21-4=-14,则k AP =-14k BP =3k BQ ,即12k BP ⋅k BQ =-1因为12k BP ⋅k BQ =12y 1y 2x 1-2 x 2-2 =12y 1y 2ty 1+n -2 ty 2+n -2=12y 1y 2t 2y 1y 2+t (n -2)y 1+y 2 +(n -2)2=12n 2-4t 2+4t 2n 2-4 t 2+4-2t 2n (n -2)t 2+4+(n -2)2=12(n +2)t 2(n +2)-2t 2n +(n -2)t 2+4=3(n +2)n -2=-1,所以n =-1,此时Δ=16t 2+4-n 2 =16t 2+3 >0,故直线PQ 恒过x 轴上一定点D -1,0 .②由①得:y 1+y 2=2t t 2+4,y 1y 2=-3t 2+4,所以S 1-S 2 =12⋅y 1-y 2 ⋅2--1 -12⋅y 1-y 2 ⋅-2--1 =y 1-y 2=y 1+y 2 2-4y 1y 2=4t 2+3t 2+4=4t 2+4 -1t 2+4 2=41t 2+4-1t 2+42=4-1t 2+4-12 2+14,而1t 2+4∈0,14,当1t 2+4=14时S 1-S 2 的最大值为3.6.(2023届重庆市第一中学校高三上学期9月月考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)经过点3,12 ,其右焦点为F 3,0 .(1)求椭圆C 的离心率;(2)若点P ,Q 在椭圆C 上,右顶点为A ,且满足直线AP 与AQ 的斜率之积为120.求△APQ 面积的最大值.【解析】(1)依题可得,c =33a 2+14b 2=1a 2=b 2+c 2,解得a =2b =1c =3,所以椭圆C 的方程为x 24+y 2=1.所以离心率e =32.(2)易知直线AP 与AQ 的斜率同号,所以直线PQ 不垂直于x 轴,故可设PQ :y =kx +m ,k ≠0,P x 1,y 1 ,Q x 2,y 2 ,由x 24+y 2=1y =kx +m可得,1+4k 2 x 2+8mkx +4m 2-4=0,所以x 1+x 2=-8mk 1+4k 2,x 1x 2=4m 2-41+4k 2,Δ=164k 2+1-m 2 >0,而k AP k AQ =120,即y 1x 1-2⋅y 2x 2-2=120,化简可得20kx 1+m kx 2+m =x 1-2 x 2-2 ,20k 2x 1x 2+20km (x 1+x 2)+20m 2=x 1x 2-2(x 1+x 2)+4,20k 2⋅4m 2-41+4k 2+20km ⋅-8mk 1+4k 2+20m 2=4m 2-41+4k 2-2×-8mk 1+4k 2+4化简得6k 2+mk -m 2=0,所以m =-2k 或m =3k ,所以直线PQ :y =k x -2 或y =k x +3 ,因为直线PQ 不经过点A ,所以直线PQ 经过定点-3,0 .设定点B -3,0 ,S △APQ =S △ABP -S △ABQ =12AB y 1-y 2 =52k x 1-x 2 =52k (x 1+x 2)2-4x 1x 2=52k -8km 1+4k 2 2-4×4m 2-41+4k 2=5k 2164k 2+1-m 2 1+4k 2=101-5k 2 k 21+4k 2,因为1-5k 2>0,所以0<k 2<15,设t =4k 2+1∈1,95,所以S △APQ =52-5t 2+14t -9t 2=52-91t -79 2+49≤53,当且仅当t =97即k 2=114时取等号,即△APQ 面积的最大值为53.7.(2023届山东省济南市高三上学期9月考试)已知点F 是抛物线C :x 2=4y 与椭圆y 2a 2+x 2b2=1(a >b >0)的公共焦点,椭圆上的点M 到点F 的最大距离为3.(1)求椭圆的方程;(2)过点M 作C 的两条切线,记切点分别为A ,B ,求△MAB 面积的最大值.【解析】(1)抛物线C 的焦点为F 0,1 ,即c =1,椭圆上的点M 到点F 的最大距离为a +c =3,所以a =2,b 2=3,所以椭圆方程为y 24+x 23=1.(2)抛物线C 的方程为x 2=4y ,即y =x 24,对该函数求导得y =x2,设点A x 1,y 1 ,B x 2,y 2 ,M (x 0,y 0),直线MA 的方程为y -y 1=x12(x -x 1),即y =x 1x2-y 1,即x 1x -2y 1-2y =0,同理可知,直线MB 的方程为x 2x -2y 2-2y =0,由于点M 为这两条直线的公共点,则x 1x 0-2y 1-2y 0=0x 2x 0-2y 2-2y 0=0,所以点A ,B 的坐标满足方程x 0x -2y -2y 0=0,所以直线AB 的方程为x 0x -2y -2y 0=0,联立x 0x -2y -2y 0=0y =x 24,可得x 2-2x 0x +4y 0=0,由韦达定理可得x 1+x 2=2x 0,x 1x 2=4y 0,所以AB =1+x 022⋅x 1+x 2 2-4x 1x 2=1+x 022⋅4x 20-16y 0=x 20+4 x 20-4y 0 ,点M 到直线AB 的距离为d =x 20-4y 0x 20+4,所以S △MAB =12AB ⋅d =12x 20+4 x 2-4y 0 ⋅x 20-4y 0x 20+4=12x 20-4y 0 32,因为x 2-4y 0=3-3y 204-4y 0=-34y 0+83 2+253,由已知可得-2≤y 0≤2,所以当y 0=-2时,△MAB 面积的最大值为82.8.(2023届河北省廊坊市三河市高三上学期段考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且C的左、右焦点与短轴的两个端点构成的四边形的面积为83.(1)求椭圆C 的方程;(2)若直线l :x -my -1=0与x 轴交于点M ,与椭圆C 交于P ,Q 两点,过点P 与x 轴垂直的直线与椭圆C 的另一个交点为N ,求△MNQ 面积的最大值.【解析】(1)设椭圆C 的焦距为2c ,则e =c a =32,即c 2a 2=a 2-b 2a2=34,所以1-b 2a2=34,即a =2b ,又C 的左,右焦点与短轴的两个端点构成的四边形的面积为83,所以4×12bc =83,即bc =43,综上解得a 2=16,b 2=4,所以椭圆C 的方程为x 216+y 24=1.(2)易得M (1,0),设P x 1,y 1 ,Q x 2,y 2 ,则N x 1,-y 1 ,联立直线l 与椭圆C 的方程x =my +1x 216+y 24=1,得m 2+4 y 2+2my -15=0,则y 1+y 2=-2m m 2+4,y 1y 2=-15m 2+4.又S △PQN =12×2y 1 ×x 2-x 1 ,S △PMN =12×2y 1 ×1-x 1 ,易知x 2-x 1与1-x 1同号,所以S △MNQ =S △PQN -S △PMN =y 1 ×x 2-x 1 -1-x 1 =y 1 ×x 2-x 1 -1-x 1 =y 1 ×x 2-1 =y 1 ×my 2 =my 1y 2 =15|m |m 2+4=15|m |+4|m |≤152|m |×4|m |=154,当且仅当|m |=4|m |,即m =±2时等号成立,所以△MNQ 面积的最大值为154.9.(2023届河南省部分学校高三上学期9月联考)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左焦点为F 1-1,0 ,上、下顶点分别为A ,B ,∠AF 1B =90°.(1)求椭圆C 的方程;(2)若椭圆上有三点P ,Q ,M 满足OM =OP +OQ ,证明:四边形OPMQ 的面积为定值.【解析】(1)依题意c =1,又∠AF 1B =90°,所以b =c =1,所以a =b 2+c 2=2,所以椭圆方程为x 22+y 2=1.(2)证明:设M x ,y ,P x 1,y 1 ,Q x 2,y 2 ,因为OM =OP +OQ,所以四边形OPMQ 为平行四边形,且x =x 1+x 2y =y 1+y 2 ,所以x 1+x 2 22+y 1+y 2 2=1,即x 122+y 12+x 222+y 22+x 1x 2+2y 1y 2=1,又x 122+y 12=1,x 222+y 22=1,所以x 1x 2+2y 1y 2=-1,若直线PQ 的斜率不存在,M 与左顶点或右顶点重合,则x P =x Q =22,所以y P =y Q =32,所以S OPMQ =12×2x P ×2y P =62,若直线PQ 的斜率存在,设直线PQ 的方程为y =kx +t ,代入椭圆方程整理得1+2k 2 x 2+4ktx +2t 2-2=0,所以Δ=82k 2+1-t 2 >0,x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2,所以y 1y 2=kx 1+t kx 2+t =k 2x 1x 2+kt x 1+x 2 +t 2=k 2⋅2t 2-21+2k 2+kt ⋅-4kt 1+2k2 +t 2所以2k 2+1 ⋅2t 2-21+2k 2+2kt ⋅-4kt 1+2k2 +2t 2=-1,整理得4t 2=1+2k 2,又PQ =k 2+1x 1-x 2 =k 2+1⋅81+2k 2-t 21+2k 2,又原点O 到PQ 的距离d =tk 2+1,所以S △POQ =12PQ d =2⋅1+2k 2-t 2⋅t 1+2k 2,将4t 2=1+2k 2代入得S △POQ =2⋅3t 2⋅t 4t2=64,所以S OPMQ =2S △POQ =62,综上可得,四边形OPMQ 的面积为定值62.10.(2022届河南省高三上学期联考)已知椭圆E :x 2a 2+y 2b2=1a >b >0 的离心率为12,且椭圆E 经过点1,32 ,过右焦点F 作两条互相垂直的弦AB 和CD .(1)求椭圆E 的方程;(2)当四边形ACBD 的面积取得最小值时,求弦AB 所在直线的方程.【解析】(1)已知可得c a =12a 2=b 2+c 21a 2+94b2=1 ,解得a =2b =3c =1,所以椭圆E 的方程为x 24+y 23=1.(2)当AB 或CD 中有一条直线垂直于x 轴时,不妨设AB ⊥x 轴,因为焦点F 的坐标为1,0 ,所以直线AB 的方程为x =1,将x =1代入椭圆方程可得y =±32,则AB =3,CD =4,四边形ACBD 的面积S =12×4×3=6;当AB 的斜率存在且不为0时,设其斜率为k k ≠0 ,由(1)知F 1,0 ,所以直线AB 的方程为y =k x -1 ,与椭圆E 的方程x 24+y 23=1联立并消去y 得3+4k 2 x 2-8k 2x +4k 2-12=0.设A x 1,y 1 、B x 2,y 2 ,Δ=64k 4-43+4k 2 4k 2-12 =144k 2+1 >0,则x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,AB =1+k 2x 1-x 2 =1+k 2⋅x 1+x 2 2-4x 1x 2=1+k 2⋅64k 43+4k 22-16k 2-483+4k 2=1+k 23+4k 2⋅64k 4-16k 2-48 3+4k 2=121+k 2 3+4k 2.同理可得可得CD =121+1k2 3+4k2=12k 2+1 3k 2+4,所以四边形ACBD 面积S =12AB ×CD =12×122k 2+1 24k 2+3 3k 2+4 =72k 2+1 24k 2+3 3k 2+4≥72k 2+1 24k 2+3+3k 2+422=72×27 2=28849,当且仅当4k 2+3=3k 2+4时,即当k =±1时,等号成立,因为6>28849,故当四边形ACBD 的面积取得最小值时,直线AB 的方程为y =x -1或y =-x +1.11.(2022届河南省县级示范性高中高三上学期尖子生对抗赛)顺次连接椭圆C :x 2a 2+y 2b2=1(a >b >0)的四个顶点,得到的四边形的面积为82,连接椭圆C 的某两个顶点,可构成斜率为22的直线.(1)求椭圆C 的标准方程;(2)已知过点A (-4,0)的直线l 与椭圆C 交于E ,F 两点,点B 在线段EF 上,若|AE ||AF |=|BE ||BF |,求△OAB(O 为坐标原点)面积的取值范围.【解析】(1)依题意得b a=22,2ab =82,解得b =2,a =22, 所以椭圆C 的标准方程是x28+y 24=1.(2)设直线l 的方程为x =ty -4(t ≠0),代入椭圆C 的方程得t 2+2 y 2-8ty +8=0,由Δ>0得t 2>2,|t |>2.设E x 1,y 1 ,F x 2,y 2 ,所以y 1+y 2=8t t 2+2,y 1y 2=8t 2+2,,|EF |=(x 1-x 2)2+(y 1-y 2)2=t 2+1y 1-y 2 ,设|AE ||AF |=|BE ||BF |=λ,则AE =λAF ,EB =λBF AB =AE +EB =λ1-λEF +λ1+λEF =2λ1-λ2EF .原点O 到直线l 的距离d =4t 2+1, 故△OAB 的面积S =12×2λ1-λ2 t 2+1⋅y 1-y 2 ⋅4t 2+1=4λ1-λ2 ⋅y 1-y 2 .因为y 1=λy 2⇒λ=y 1y 2,故S =4y 1y 21-y 21y 22⋅y 1-y 2 =4y 1y 2y 1+y 2=4|t |∈(0,22),故△OAB 面积的取值范围为(0,22).12.(2022届广西“智桂杯”高三上学期联考)如图,已知抛物线:C :x 2=y ,M 0,1 ,N 0,-1 ,过点M 垂直于y 轴的垂线与抛物线C 交于B ,C ,点D ,E 满足CE =λCN ,ND =λNB 0<λ<1 .(1)求证:直线DE 与抛物线有且仅有一个公共点;(2)设直线DE 与此抛物线的公共点为Q ,记△BCQ 与△DEN 的面积分别为S 1,S 2,求S 1S 2的值.【解析】(1)易知B 1,1 ,C -1,1 ,设D x ,y ,由ND =λNB,可得x ,y +1 =λ1,2 ,故有D λ,2λ-1 ,同理E λ-1,1-2λ ,于是直线DE 的方程是y -2λ-1 =4λ-2 x -λ ,即y =4λ-2 x -2λ-1 2①与抛物线方程联立,即y =4λ-2 x -2λ-1 2x 2=y得到x -2λ-1 2=0,此方程有两个相等的根:x =(2λ-1)代入①,得y =2λ-1 2,故直线DE 与抛物线有且仅有一个公共点Q 2λ-1,2λ-1 2(2)S 1=S △BCQ =12BC ⋅h =12×2×1-y Q =12×2×1-2λ-1 2 =4λ-λ2设直线DE 与y 轴交于G ,则G 0,-2λ-1 2 ,于是S 2=S △DEN =12NG ⋅x D -x E =12⋅-2λ-1 2+1 ⋅λ-λ-1 =2λ-λ2故有S1S 2=2.13.(2022届河南省名校联盟高三上学期12月考)已知椭圆C :x 2a2+y 2=1a >1 的离心率为32,F 1,F 2是C的左、右焦点,P 是C 上在第一象限内的一点,F 1关于直线PF 2对称的点为M ,F 2关于直线PF 1对称的点为N .(1)证明:MN ≤4;(2)设A ,B 分别为C 的右顶点和上顶点,直线y =kx k >0 与椭圆C 相交于E ,F 两点,求四边形AEBF 面积的取值范围.【解析】(1)C 的离心率为32,即a 2-1a =32,解得a =2.由题意知PF 1 =PM ,PF 2 =PN ,MN ≤PM +PN =PF 1 +PF 2 =2a =4(2)直线AB ,EF 的方程分别为x +2y =2,y =kx k >0 ,设E x 1,kx 1 ,F x 2,kx 2 ,其中x 1<x 2,由y =kx ,x 24+y 2=1,得x 1=-21+4k 2,x 2=21+4k 2,所以点E ,F 到AB 的距离分别为h 1=x 1+2kx 1-25=21+2k +1+4k 251+4k 2h 2=x 2+2kx 2-25=21+2k -1+4k 251+4k 2又AB =22+1=5所以四边形AEBF 的面积为S =12AB h 1+h 2 =12×5×41+2k 51+4k 2=21+4k 2+4k 1+4k 2=21+4k 1+4k 2=21+41k+4k 当k ∈0,+∞ 时,1k+4k ∈4,+∞ ,则41k+4k ∈0,1 ,所以21+41k+4k ∈2,22 ,即四边形AEBF 面积的取值范围为2,2214.(2022届宁夏石嘴山市高三上学期月考)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左焦点为F ,离心率为12,过点F 且垂直于x 轴的直线交C 于A ,B 两点,AB =3(1)求椭圆的标准方程;(2)若直线l 过点M -4,0 且与椭圆相交于A ,B 两点,求△ABF 面积最大值及此时直线l 的斜率.【解析】(1)由题知:c a =122b 2a =3a 2=b 2+c 2⇒a =2b =3c =1,所以椭圆C :x 24+y 23=1.(2)设直线l 的方程为x =my -4,设A x 1,y 1 、B x 2,y 2 ,与椭圆方程联立得x =my -4x 24+y 23=1,消去x 得3m 2+4 y 2-24my +36=0.则Δ=576m 2-4×363m 2+4 =144m 2-4 >0,所以m 2>4.由根与系数的关系知y 1+y 2=24m 3m 2+4,y 1y 2=363m 2+4,所以S △ABF =32y 1-y 2 =18m 2-43m 2+4.①令t =m 2-4t >0 ,则①式可化为S △ABF =18t 3t 2+16=183t +16t ≤1823t ⋅16t=334.当且仅当3t =16t,即t =163时,等号成立.此时m =±2213,所以直线l 的斜率为±2114.15.已知抛物线C :y 2=2px p >0 的焦点为F ,过点F 的直线l 交抛物线C 于A ,B 两点,当l ⊥x 轴时,AB=2.(1)求抛物线C 的方程;(2)若直线l 交y 轴于点D ,过点D 且垂直于y 轴的直线交抛物线C 于点P ,直线PF 交抛物线C 于另一点Q .①是否存在定点M ,使得四边形AQBM 为平行四边形?若存在,求出定点M 的坐标;若不存在,请说明理由.②求证:S △QAF ⋅S △QBF 为定值.【解析】(1)当l ⊥x 轴时,易得AB =2p ,所以2p =2,解得p =1,所以抛物线C 的方程为y 2=2x ;(2)①解:易知直线l 的斜率存在且不为0,设直线l 的方程为x =my +12m ≠0 ,代入抛物线C 的方程y 2=2x ,并整理得y 2-2my -1=0,设A x 1,y 1 ,B x 2,y 2 ,由根与系数的关系得y 1+y 2=2m ,y 1y 2=-1.所以x 1+x 22=my 1+my 2+12=2m 2+12,所以线段AB 的中点N 的坐标为2m 2+12,m ,连接QM ,若四边形AQBM 为平行四边形,则N 是QM 的中点,易知D 0,-12m,因此P 18m 2,-12m ,设直线PQ 的方程为x =ty +12,代入抛物线C 的方程y 2=2x ,整理得y 2-2ty -1=0,所以y P y Q =-12m ⋅y Q=-1, 故y Q =2m ,因此Q 2m 2,2m ,故可得x M =2m 2+12×2-2m 2=1,y M =2m -2m =0,故点M 的坐标为M 1,0 ,因此存在定点M 1,0 ,使得四边形AQBM 为平行四边形;②证明:点Q 2m 2,2m 到直线l :x =my +12的距离d =2m 2-m ⋅2m -12m 2+1=12m 2+1,由A x 1,y 1 ,F 12,0,可得AF =m 2+1y 1 , 因此S △QAF =12AF ⋅d =14y 1 ,同理可得S △QBF =14y 2 ,所以S △QAF ⋅S △QBF =116y 1y 2 =116,为定值.。

高中数学讲义微专题72 圆锥曲线中的面积问题

高中数学讲义微专题72  圆锥曲线中的面积问题

微专题72 圆锥曲线中的面积问题一、基础知识:1、面积问题的解决策略:(1)求三角形的面积需要寻底找高,需要两条线段的长度,为了简化运算,通常优先选择能用坐标直接进行表示的底(或高)。

(2)面积的拆分:不规则的多边形的面积通常考虑拆分为多个三角形的面积和,对于三角形如果底和高不便于计算,则也可以考虑拆分成若干个易于计算的三角形2、多个图形面积的关系的转化:关键词“求同存异”,寻找这些图形的底和高中是否存在“同底”或“等高”的特点,从而可将面积的关系转化为线段的关系,使得计算得以简化3、面积的最值问题:通常利用公式将面积转化为某个变量的函数,再求解函数的最值,在寻底找高的过程中,优先选择长度为定值的线段参与运算。

这样可以使函数解析式较为简单,便于分析4、椭圆与双曲线中焦点三角形面积公式(证明详见“圆锥曲线的性质”)(1)椭圆:设P 为椭圆()222210x y a b a b+=>>上一点,且12F PF θ∠=,则122tan2PF F Sb θ=(2)双曲线:设P 为椭圆()22221,0x y a b a b-=>上一点,且12F PF θ∠=,则1221cot2PF F Sb θ=⋅二、典型例题:例1:设12,F F 为椭圆2214xy +=的左右焦点,过椭圆中心任作一直线与椭圆交于,P Q 两点,当四边形12PF QF 的面积最大时,12PF PF ⋅的值等于___________思路:由椭圆中心对称的特性可知,P Q 关于原点中心对称,所以12PF F 与12QF F 关于原点对称,面积相等。

且四边形12PF QF 可拆成12PF F 与12QF F 的和,所以四边形12PF QF 的面积最大即12PF F 面积最大,因为121212PF F p p SF F y c y =⋅=⋅,所以当p y 最大时,12PF F 面积最大。

即P 位于短轴顶点时,12PF F 面积最大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微专题72 圆锥曲线中的面积问题一、基础知识:1、面积问题的解决策略:(1)求三角形的面积需要寻底找高,需要两条线段的长度,为了简化运算,通常优先选择能用坐标直接进行表示的底(或高)。

(2)面积的拆分:不规则的多边形的面积通常考虑拆分为多个三角形的面积和,对于三角形如果底和高不便于计算,则也可以考虑拆分成若干个易于计算的三角形2、多个图形面积的关系的转化:关键词“求同存异”,寻找这些图形的底和高中是否存在“同底”或“等高”的特点,从而可将面积的关系转化为线段的关系,使得计算得以简化3、面积的最值问题:通常利用公式将面积转化为某个变量的函数,再求解函数的最值,在寻底找高的过程中,优先选择长度为定值的线段参与运算。

这样可以使函数解析式较为简单,便于分析4、椭圆与双曲线中焦点三角形面积公式(证明详见“圆锥曲线的性质”)(1)椭圆:设P 为椭圆()222210x y a b a b +=>>上一点,且12F PF θ∠=,则122tan 2PF F S b θ=V(2)双曲线:设P 为椭圆()22221,0x y a b a b-=>上一点,且12F PF θ∠=,则1221cot2PF F S b θ=⋅V二、典型例题:例1:设12,F F 为椭圆2214xy +=的左右焦点,过椭圆中心任作一直线与椭圆交于,P Q 两点,当四边形12PF QF 的面积最大时,12PF PF ⋅u u u r u u u u r的值等于___________思路:由椭圆中心对称的特性可知,P Q 关于原点中心对称,所以12PF F V 与12QF F V 关于原点对称,面积相等。

且四边形12PF QF 可拆成12PF F V 与12QF F V 的和,所以四边形12PF QF 的面积最大即12PF F V 面积最大,因为121212PF F p p S F F y c y =⋅=⋅V ,所以当p y 最大时,12PF F V 面积最大。

即P 位于短轴顶点时,12PF F V 面积最大。

由2214xy +=可知2,1,3a b c ===以()()()120,1,3,0,3,0P F F -,进而计算出12PF PF ⋅u u u r u u u u r的值为2-例2:已知点P 是椭圆2216251600x y +=上的一点,且在x 轴上方,12,F F 分别为椭圆的左右焦点,直线2PF的斜率为-,则12PF F V 的面积是( )A.B.C.D.思路:将椭圆化为标准方程为22110064x y +=,进而可得6c =,所以()()126,0,6,0F F -,计算12PF F V 的面积可以以12F F 为底,y P 为高,所以考虑利用条件计算出P 的纵坐标,设(),P x y ,则有26PF y k x ==--,所以22162516006x y yx y ⎧+=⎪⎪=-⎨-⎪>⎪⎩可解得y =或19y =-(舍去),所以1212111222PF F S F F y =⋅=⋅⋅=V 答案:B例3:已知F 为抛物线2y x =的焦点,点,A B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=u u u r u u u r,则ABO V 与AFO V 面积之和的最小值是( ) A. 2 B. 3 C.8D.思路:由2OA OB ⋅=u u u r u u u r入手可考虑将向量坐标化,设()()1122,,,A x y B x y ,则12122x x y y +=,进而想到可用韦达定理。

所以设AB 与x 轴交于(),0M m 直线:AB x ty m =+。

联立方程220y x y ty m x ty m⎧=⇒--=⎨=+⎩,所以2221212120,y y m x x y y m =-<==,所以由12122x x y y +=可得:222m m m -=⇒=,所以122y y =-,不妨设A 在x 轴上方,如图可得:()12112119228ABO AFO S S OM y y OF y y y +=⋅-+⋅=-V V ,由122y y =-可知212y y =-,消元后可得:119238ABO AFO S S y y +=+≥=V V ,等号成立当且仅当143y =,所以ABO AFO S S +V V 的最小值为3例4:抛物线24y x =的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AFK V 的面积是( ) A. 4 B. 33 C. 43 D. 8 思路:斜率为3可知直线的倾斜角为3π,从而可得3KAF π∠=,所以在计算面积时可利用两边与夹角,所以可得1sin 23AKF S AK AF π=⋅V ,由抛物线性质可得AK AF =,所以只需求得焦半径AF ,即只需解出A 点横坐标。

利用几何关系可得12A x OF FM OF AF =+=+,另一方面,由焦半径公式可得:1A AF x =+,所以可得方程:()1132A A A x OF x x =++⇒=,从而14A AF x =+=,所以21sin 4323AKF S AF π==V答案:C小炼有话说:(1)本题的解法是利用题目中的几何关系求解,绕过代数运算,而突破点即为直线的倾斜角3π,所以当题目中出现特殊角时,可以考虑蕴含其中的几何特点,从而使得运算更为简单。

(2)本题的A x 也可通过联立方程,使用代数方法解决,方法步骤如下: 由抛物线方程可得:()1,0F ,设():31l y x =-,联立方程:()()22431431y xx x y x ⎧=⎪⇒-=⎨=-⎪⎩,整理可得: 231030x x -+= 3x ∴=或13x =323x y =⎧⎪∴⎨=⎪⎩或13233x y ⎧=⎪⎪⎨⎪=-⎪⎩(舍) 3A x ∴=例5:以椭圆22195x y +=的顶点为焦点,焦点为顶点的双曲线C ,其左右焦点分别为12,F F ,已知点M 的坐标为()2,1,双曲线C 上点()()0000,0,0P x y x y >>满足11211121PF MF F F MF PF F F ⋅⋅=u u u r u u u u r u u u u r u u u u r u u u r u u u u r ,则12PMF PMF S S -V V 等于( )A. 2B. 4C. 1D. 1-思路:可先利用椭圆确定双曲线方程及其焦点坐标,22195x y +=的顶点为()()3,0,3,0-,即为12,F F 的坐标,椭圆的焦点为()()2,0,2,0-,所以双曲线中2,3a c ==,进而5b =观察11211121PF MF F F MF PF F F ⋅⋅=u u u r u u u u r u u u u r u u u u ru u u r u u u u r 可联想到投影,即1MF u u u u r 在1PF u u u r 的投影与1MF u u u u r 在21F F u u u u r 的投影相等,由几何关系可得1F M 为12PF F ∠的角平分线。

由()()22,1,3,0M F 可得21MF k =-,即2F M 平分21PF F ∠,从而M 为12PF F V 的内心,且内切圆半径1M r y ==。

从而()1212121112222PMF PMF S S PF r PF r r PF PF -=⋅-⋅=-=V V 答案:A例6:已知点P 为双曲线()222210,0x y a b a b -=>>右支上一点,12,F F 分别是双曲线的左右焦点,且212b F F a=,I 为三角形12PF F 的内心,若1212IPF IPF IF F S S S λ=+V V V 成立,则λ的值为( ) A.1222+ B. 231- C. 21+ D. 21-思路:由三角形内心的性质可得I 到三边的距离相等,所以1212,,IPF IPF IF F V V V 的高均为r,从而12121212IPF IPF IF F S S S PF PF F F λλ=+⇒=+V V V ,即1212F F cPF PF aλ==-,所以只需利用212b F F a=确定,a c 的关系即可。

解:I Q 为三角形12PF F 的内心12211221111,,222IPF IPF IF F S PF r S PF r S F F r ∴=⋅=⋅=⋅V V V 12121212IPF IPF IF F S S S PF PF F F λλ=+⇒=+V V V1212F F PF PF λ∴=- P Q 在双曲线上,且12,F F 是焦点12122,2PF PF a F F c ∴-==u u u u r caλ∴=即λ为离心率由212b F F a =可得:22222b c ac c a a=⇒=-,两边同时除以2a 得: 2210e e --=,解得22e ±=1e ∴=+即1λ= 答案:C例7:已知点()0,2A -,椭圆()2222:10x y E a b a b+=>>F 是椭圆E 的右焦点,直线AF,O 为坐标原点 (1)求E 的方程(2)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ V 面积最大时,求l 的方程 解:(1)设(),0F c23AF k c ∴==c ∴=2c e a ==Q2a ∴== 2221b a c ∴=-= 22:14x E y ∴+=思路:首先设:2PQ y kx =-,()()1122,,,P x y Q x y ,由图像可得12OPQ O PQ S d PQ -=⋅V ,考虑联立直线与椭圆方程并利用点到直线距离公式和弦长公式用k 表示出,O PQ d PQ -,从而OPQ S V 也可用k进行表示:24441OPQS k ==++V ,再利用均值不等式即可得到最大值。

=k 的值。

(注意直线与椭圆相交,所以消元后的方程0∆>)(2)设直线:2PQ y kx =-,()()1122,,,P x y Q x y∴联立方程可得:()2222242444y kx x kx x y =-⎧⇒+-=⎨+=⎩,整理后可得: ()224116120kx kx +-+= ,因为方程有两个不等实根()()221648410k k ∴∆=-+>解得:k >k < 12OPQ O PQ S d PQ -=⋅VO PQ d -=12PQ x =-=由方程()224116120k x kx +-+=可得:1212221612,4141k x x x x k k +=⋅=++代入PQ 可得:224141PQ k k ==++2221424141OPQS k k ∴===++V44=+4+≥=24342k k =⇒-=⇒=±1OPQ S ∴≤V 此时2k =±l ∴的方程为2y x =-或2y x =-例8:已知椭圆()2222:10x y C a b a b +=>>的离心率为12,过右焦点F 的直线l 与C 相交于,A B 两点,当l 的斜率为1时,坐标原点O 到l的距离为2(1)求椭圆C 的方程(2)若,,,P Q M N 是椭圆C 上的四点,已知PF u u u r 与FQ uuu r 共线,MF u u u r与FN u u u r 共线,且0PF MF ⋅=u u u r u u u r,求四边形PMQN 面积的最小值解:(1)12c e a ==,设(),0F c ,则:l y x c =-12O l d c -∴==⇒= 2222,3a b a c ∴==-=22143x y ∴+= (2)由(1)可得:()1,0F ,因为0PF MF PF MF ⋅=⇒⊥u u u r u u u r12PMQN S MN PQ ∴=⋅ 设()()1122,,,P x y Q x y ,():1PQ y k x =-,联立方程可得:()2234121x y y k x ⎧+=⎪⎨=-⎪⎩,消去x 可得:()22234112x k x +-=整理后可得:()22224384120k x k x k +-+-=()212221214343k PQ x k k +∴=-==++ ① 设()1:1MN y x k =--,以1k-替换①中的k 可得: 2222112112124343k k MN k k⎛⎫+ ⎪+⎝⎭==++()2222121111212224334PMQNk k S MN PQ k k ++∴=⋅=⋅⋅++ 242242221221727211225121225k k k k k k k k ++++=⋅=⋅++⎛⎫++ ⎪⎝⎭ 设221u k k=+,可得[)2,u ∈+∞ 21726112251225PMQN u S u u +⎛⎫∴=⋅=- ⎪++⎝⎭2u ∴=时,min 28849S =例9:在平面直角坐标系xOy 中,已知点()1,1A -,P 是动点,且三角形POA 的三边所在直线的斜率满足OP OA PA k k k += (1)求点P 的轨迹方程(2)若Q 是轨迹C 上异于点P 的一个点,且PQ OA λ=u u u r u u u r,直线OP 与QA 交于点M ,问:是否存在点P 使得PQA V 和PAM V 的面积满足2PQM PAM S S =V V ?若存在,求出点P 的坐标,若不存在,请说明理由。

相关文档
最新文档