二次函数线段最大值优秀课件
二次函数4-平行于y轴动线段的最大值--第四讲
1.“平行于 y 轴的动线段长度的最大值”的问题: 例 1:如图,已知二次函数 y ax2 4x c 的图像与坐标轴交于点 A(1,0) 和点 C(0,5) 。 (1)求该二次函数的解析式; (2)连接 BC ,一条平行于 y 轴的直线 l 在 B、C 两点间运动,直 线l 交抛物线于点 M ,交线段 BC 于点 N ,求线段 MN 的最大值?
2
1
学习就是不断的记住、忘记和再记住的过程,唯有每天坚持学习,方能进步!——周云华
如图,直线 y x 2 与抛物线 y ax2 bx 6 (a 0) 相交于 A ( 1 , 5 ) ,
22
B ( 4 , c ) 两点,点 P 是线段 AB 上异于 A、B 的动点,过点 P 作 PC x 轴于点 D ,交抛物线于点 C 。 (1)求该抛物线的解析式; (2)是否存在这样的点 P ,使线段 PC 的长有最大值?若存在, 求出这个最大值,若不存在,请说明理由;
二次函数的最值问题课件
顶点法
总结词
利用二次函数的顶点坐标求最值。
详细描述
根据二次函数的顶点公式$(h, k)$,代入原函数求出最值。当$a > 0$时,函数有最小值;当$a < 0$时,函数有 最大值。
导数法
总结词
通过求导数判断函数的单调性,进而 找到最值点。
详细描述
对二次函数求导得到$f'(x) = 2ax + b$,令导数等于0得到临界点$x = frac{b}{2a}$,通过判断单调性找到最 值点。
复杂的二次函数最值问题
总结词
运用配方法或公式法求最值
详细描述
对于复杂的二次函数,可以通过配方法或公式法求出最值 。配方法是通过配方将二次函数转化为顶点式,再利用顶 点式求最值;公式法是利用公式直接求出二次函数的最值 。
总结词
利用导数求最值
详细描述
对于复杂的二次函数,可以利用导数求出函数的极值点, 再根据极值点的位置和函数的单调性判断最值的位置,从 而求出最值。
总结词
结合实际背景求解
详细描述
对于实际应用中的二次函数最值问题,需要结合实际背景 进行分析。例如,在物理学中,可以利用二次函数的最值 求解物体的最大速度、最小压力等;在经济学中,可以利 用二次函数的最值求解成本最低、利润最大等问题。
06
总结与思考
二次函数最值问题的总结
定义与性质
二次函数最值问题主要研究的是 二次函数在特定条件下的最大值 或最小值。这些条件可能包括函 数的开口方向、顶点位置、定义
详细描述
二次函数是数学中常见的一种函数形式,其一般形式为 y=ax^2+bx+c,其中a、b、c为常数,且a≠0。a决定了抛 物线的开口方向和宽度,b决定了抛物线的左右位置,c决定 了抛物线的上下位置。
《二次函数》优质PPT课件(共65页ppt)
抛物线
y 2x 32 1
2
y 1 x 12 5
3
y 2x 32 5
y 0.5x 12
y 3 x2 1 4
y 2x 22 5
y 0.5x 42 2 y 3 x 32
4
开口方向
向上 向下 向上 向下 向下 向上 向上 向下
对称轴
直线x=-3 直线x=-1 直线x=3 直线x=-1 直线x=0 直线x=2 直线x=-4 直线x=3
__10_0___x棵橙子树,这时平均每棵树结_______个橙6子00。 5x
(3)如果果园橙子的总产量为y个,那么y与x
之间的关系式为_____y____6_0_0__5_x_。100 x
y 5x2 100 x 60000
y 5x2 100 x 60000 在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?
-2
-1
2
4
6
-2
y x2
-3
-4
-5
1.二次函数所描述的关系 2.结识抛物线 3.刹车距离与二次函数 4.二次函数的图象 5.用三种方式表示二次函数 6.何时获得最大利润 7.最大面积是多少 8.二次函数与一元二次方程
影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系 数。
有研究表明,晴天在某段公路上行驶时,速度为v(km/h)的 汽车的刹车距离s(m)可以由公
x
1 2 3 4 5 6 7 8 9 10 11 12 13 14
棵
y 个
60095
60180
60255
60320
60375
60420
60455
60480
60495
60500
精品课件-二次函数背景下的线段最值问题
通过观察、分析、对比等方法,提高学生分析问题, 解决问题的能力,进一步强化分类归纳综合的思想,提 高综合能力。 • 情感目标:
通过自己的参与和教师的指导,体会及感悟化归与转 化、数形结合、数学建模等数学思想方法,享受学习数 学的快乐,提高应用数学的能力。
分析:第一步,找点P, 利用直线外一点与直线 上各点连接的所有线段 中,垂线段最短 。
第二步,解析法或几何 法求点P的坐标。
链接中考
(2015•漳州)如图,抛物线 yx22x3与x轴交于
A,B两点,与y轴交于点C,点D为抛物线的顶点,请 解决下列问题. (1)填空:点C的坐标为( 0 , 3 ), 点D的坐标为( 1 , 4 ); (2)设点P的坐标为(a,0),当|PD﹣PC|最大时, 求a的值并在图中标出点P的位置;
代入可得
,解得
,
∴直线DC的解析式为y=x+3, 将点P的坐标(a,0)代入得a+3=0,
求得a=﹣3, 如图1,点P(﹣3,0)即为所求
探究三
(6)点P在第一象限的抛物线上,PQ⊥x轴交BC于Q, 求PQ的最大值;
分析:第一步,设P点的坐标;
第二步,求直线B段PQ的函数关 系式,最后求出最值。
二次函数背景下的线段最 值问题
(2015•漳州卷第25题)
如图,抛物线 yx22x3与x轴交于A,B两点, 与y轴交于点C,点D为抛物线的顶点,请解决下列问题.
(1)填空:点C的坐标为( , ), 点D的坐标为( , );
(2)设点P的坐标为(a,0), 当|PD﹣PC|最大时, 求a的值并在图中标出点P的位置;
y x 2 2 x 3 x 1 2 4
九下数学课件利用二次函数解决实际问题中的最值问题(课件)
【归纳总结】
最大值问题的一般步骤:
(1)利用应用题中已知条件和学过有关数学公式列出关系数;
(2)把关系式转化为二次函数的关系式;
(3)求二次函数的最大值或最小值.
知识点一 根据文字语言解决问题
【变式1】某工厂2019年产品的产量为100吨,该产品产量的年平均增长
率为x(x>0),设2021年该产品的产量为y吨,则y关于x的函数表达式为
解:设药店每天获得的利润为W元,由题意得
W=(x-50)(-2x+220)=-2(x-80)2+1 800.
∵-2<0,
∴当x=80时,W有最大值,最大值是1 800.
答:每桶消毒液的销售价定为80元时,药店每天获得的利润最大,最
大利润是1 800元.
知识点二 根据函数的图像解决问题
【变式2】一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场
k=-500,
解得
5k+b=9 500,
b=12 000.
∴y=-500x+12 000.
知识点二 根据函数的图像解决问题
(2)在销售过程中要求售价不低于进价,且不高于15元/件.若某一周该商品的销
售量不少于6 000件,求这一周该商场销售这种商品获得的最大利润和售价
分别为多少?
解:根据“在销售过程中要求售价不低于进价,且不高于 15 元/
随着售价增加,销售量在减少.商家决定当售价为60元/件时,改变销售
策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销
售量y(件)与售价x(元/件)满足如图所示的函数关系(其中40≤x≤70,且x为整
数).
(1)写出y与x的函数表达式;
知识点二 根据函数的图像解决问题
二次函数背景下的几何问题——线段最值问题
二次函数背景下的几何问题——线段最值问题线段最值问题是在二次函数背景下的一种几何问题,主要是求解一个线段的最大值或最小值。
这个问题可以通过二次函数的图像和相关的数学理论来解决。
在解决这类问题时,我们可以利用二次函数的性质和相关的数学技巧来找到线段的最值点,从而得出最值。
首先,我们来回顾一下二次函数的一般形式:f(x) = ax^2 + bx+ c,其中a、b、c都是常数且a不等于0。
根据二次函数的图像特点,我们知道它是一个抛物线,可以是开口向上(a>0)或开口向下(a<0)的。
对于线段最值问题,我们通常要确定线段的端点,然后找出其中的最大值或最小值点。
这可以通过以下步骤来完成:1.确定二次函数的图像形状:根据二次函数的参数a的值,确定抛物线是开口向上还是开口向下。
2.确定线段的端点:线段的端点可以是给定的数值,也可以通过求解二次函数的解来确定。
根据二次函数的性质,它的两个解(也就是x的值)对应着抛物线与x轴的交点,即抛物线的顶点和x轴的两个交点。
3.求解最值点:对于线段的最大值点,我们需要找到抛物线的顶点,并通过计算确定它的y坐标值。
通过二次函数的解析式,我们可以知道抛物线的顶点坐标是(-b/2a, f(-b/2a))。
同样的,对于线段的最小值点,我们也可以通过类似的方法来解决。
4.判断最值点是否在线段上:在找到最值点之后,我们需要判断它是否在给定的线段上。
这可以通过将最值点的x坐标值与线段的端点的x坐标值进行比较来实现。
如果最值点的x坐标值位于线段的端点之间,则最值点就在线段上。
通过以上步骤,我们可以很容易地求解线段的最值问题。
当然,在实际应用中,可能会碰到更复杂的情况,例如线段与其他二次函数曲线的交点等。
但是,通过理解二次函数的性质和运用相关的数学知识,我们可以应对这些情况并解决问题。
总结而言,线段最值问题是在二次函数背景下的一种几何问题,通过确定二次函数的图像形状、线段的端点、求解最值点和判断最值点是否在线段上,我们可以解决线段的最值问题。
二次函数中线段长度的最值问题
1:如图1,抛物线2
23y x x =-++ 与X 轴交与点A 和点B ,与y 轴
交于点C ,在直线BC 上方的抛物线上有一点P ,过点P 作y 轴的 平行线交直线BC 于点Q ,求线段PQ 的最大值。
2:如图2,抛物线2
23y x x =-++ 与X 轴交与点A 和点B ,与y 轴
交于点C ,在直线BC 上方的抛物线上有一点P ,过点P 作X 轴的 平行线交直线BC 于点Q ,求线段PQ 的最大值。
3:如图3,抛物线2
23y x x =-++ 与X 轴交与点A 和点B ,与y 轴
交于点C ,在直线BC 上方的抛物线上有一点P ,过点P 作直线
的垂线于点E ,求线段PE 的最大值。
4:如图4,抛物线2
23y x x =-++ 与X 轴交与点A 和点B ,与y 轴
交于点C ,在直线BC 上方的抛物线上有一点P ,过点P 作x 轴的平行线交直线BC 于点D ,过点P 作y 轴的平行线交直线BC 点Q ,求三角形PDQ 周长的最大值;
5:如图5,抛物线2
23y x x =-++ 与X 轴交与点A 和点B ,与y 轴
交于点C ,在直线BC 上方的抛物线上有一点P ,作BC PQ ⊥点,过点P 作x 轴的平行线交直线BC 于点M ,求PMQ ∆最大值;
图4。
二次函数求线段最大值
二次函数求线段最大值介绍二次函数是数学中常见的函数类型之一,具有一系列重要的性质和应用。
在本文中,我们将讨论如何利用二次函数求解线段的最大值问题。
通过深入探讨二次函数的性质和求解最优化问题的方法,我们将为读者提供一种全面、详细的解决方案。
二次函数的概述二次函数是形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数,且a不等于0。
它是一个关于x的二次多项式函数,其中包含了一元二次方程的特殊情况。
二次函数的图像通常是一个抛物线,其开口方向由a的正负决定。
求解线段最大值的问题我们考虑一个简单的问题:给定一条线段,在一定范围内选择一个点,使得该点到线段两个端点的距离之和最大。
这个问题在几何学和优化问题中经常出现,例如在寻找物体最远位置的路径规划中。
为了解决这个问题,我们可以使用二次函数和数学优化的方法。
数学建模1.假设线段的两个端点分别为(A, B),其中A的横坐标小于B的横坐标。
2.我们需要找到一个点C,使得AC + BC的和最大。
3.假设C的横坐标为x,则C的纵坐标可以通过二次函数的表达式来计算。
求解过程1.首先,我们可以将线段的两个端点坐标用二次函数的形式表示。
2.然后,我们需要计算AC + BC的和,即二次函数上两点之间的距离之和。
–AC的距离可以由已知点坐标的差值计算得到。
–BC的距离可以由已知点坐标的差值计算得到。
3.将AC + BC的表达式进行化简,并求导数。
4.令导数为0,求解方程得到最值点的横坐标。
5.将最值点的横坐标代入二次函数的表达式,计算得到最值点的纵坐标。
6.最后,得到线段上到两个端点距离之和最大的点的坐标。
举例说明我们通过一个具体的例子来说明如何求解线段最大值的问题。
假设有一条线段,其两个端点的坐标分别为A(1, 2)和B(5, 6)。
我们需要找到线段上到端点A和B距离之和最大的点的坐标。
1.首先,我们将线段的两个端点坐标用二次函数的形式表示:–端点A的坐标表示为:f(x) = x^2 - 2x + 3–端点B的坐标表示为:f(x) = x^2 - 10x + 312.计算AC + BC的和,即二次函数上两点之间的距离之和:–AC的距离 = |x^2 - 2x + 3 - 2|–BC的距离 = |x^2 - 10x + 31 - 6|–AC + BC的和 = |x^2 - 2x + 3 - 2| + |x^2 - 10x + 31 - 6|3.将AC + BC的表达式进行化简,并求导数:–AC + BC的和 = |x^2 - 2x + 1| + |x^2 - 10x + 25|–求导数:d(AC + BC)/dx = (2x - 2) + (2x - 10)4.令导数为0,求解方程得到最值点的横坐标:–(2x - 2) + (2x - 10) = 0–4x - 12 = 0–x = 35.将最值点的横坐标代入二次函数的表达式,计算得到最值点的纵坐标:–f(3) = 3^2 - 2*3 + 3 = 9 - 6 + 3 = 66.结果分析:–线段上到端点A和B距离之和最大的点的坐标为(3, 6)。
二次函数中的线段最大值问题
——线段最大值
教学目标
? 知识目标:根据二次函数的有关知识构建 数学模型,解决二次函数背景下的线段最 大值问题;
? 能力目标:通过观察分析,进一步强化转 化思想,提高综合能力;
? 情感目标:通过自己的参与和老师的指导, 体会数学建模、数形结合、化归与转化等 数学思想方法,享受学习数学的快乐,提 高应用数学的能力。
典型例题: 如图,已知二次函数 y=-x2-2x+3的图象 交x轴于A、B两点(A在B左边),交 y轴于C点。
(1)求A、B、C三点的坐标和直线 AC的解析式;
解: A
,B
,C
,
直线AC:
(2)点P是直线AC上方抛物线上一 动点(不与A,C重合), 过点P作y轴 平行线交直线 AC于Q点,求线段 PQ 的最大值;
练习:
课后作业:
变式2:点P是直线AC上方抛物线上 一动点(不与 A,C重合),求 P点到 直线AC距离的最大值
变式3:点P是直线AC上方抛物线上 一动点(不作PH⊥AC于 H点,求△PQH周长的最大值。
变式4:点P是直线AC上方抛物线 上一动点(不与A,C重合),连接 PA,PC,求△PAC面积的最大值
高一数学二次函数求最值PPT课件
例3:若x∈ x 1 x 1,求函数
y =x2+ax+3的最小值:
y
O -1 1 x
例3:若x∈ x 1 x 1,求函数
y =x2+ax+3的最值:
y
O -1 1 x
例3:若x∈ x 1 x 1,求函数
y =x2+ax+3的最值:
y
O -1 1 x
例3:若x∈ x 1 x 1,求函数
的对称轴为x=-1,
∴f(x)在[0,2]上单
调递增,
∴f(x)的最小值为
f(0)=a,即a=4
变1:若最大值为
8,求a的值
-3 -1 O 2 x
变2:已知函数f(x)=x2+2x+a(0≤x≤2)
的最小值是4,求a的值。
y
解:∵f(x)=x2+2x+a 的对称轴为x=-1,
∴f(x)在[0,2]上单 调递增,
2009年9月15日
给定二次函数:y=2x2-8x+1,我们怎
么求它的最值。
解:y=2(x-2)2-7,由图象知,
y
当x=2时,y有最小值, ymin=f(2)=-7,
O
2
x
没有最大值。
-7
小结、二次函数y=ax2+bx+c (a≠0)中,
当自变量x=
b 2a
时, y取得最小值
例1.当x∈[2,4]时,求函数y=f(x)
=2x2-8x+1的最值。
y
分析:此题和上题 有何不同
因 y=2(x - 2)2 - 7,是否当x=2时,y 取得最小值?为什 么?
OLeabharlann 2 4x-7变 1 : x∈[-1 , 4] 时 ,
2022年九年级中考数学专题复习 课件 二次函数中的最值问题(线段和面积最值)
解:过点M作MG∥y轴交AC于点G
∴△MFG∽△OFC
设M(t,-t2-2t+3)(-3<t<0),
H
∴ MF MG FO OC
∵OC=3
则G(t,t+3)
∴MG=yM-yN
=-t2-3t
G
∵-1<0,∴MG有最大值
∴MF 1 MG FO 3 MF
∴当MG最大时, FO 最大 ∵A(-3,0),C(0,3)
二次函数中的最值问题
复习巩固
1.二次函数的一般式
y=ax2+bx+c(a≠0)
a(x b )2 4ac b2
2a
4a
顶点坐标为:(
b
4ac b2
,
)
2a 4a
对称轴是直线 x b
2a
2.区间最值的解决方法 判断区间与对称轴的位置关系
线段最值问题
问题背景:在平面直角坐标系中,二次函数y=ax2+bx+c的图象与x轴交 于A(-3,0),B(1,0)两点,与y轴交于点C(0,3). (1)求二次函数的表达式;
24
(3)点M为直线AC上方抛物线上一动点,过M点作MN∥y轴交直线AC 于点N,作ME⊥AC于点E,求△MEN周长的最大值,并求出此时点M的 坐标;
解:∵MN∥y轴,ME⊥AC
∴△MEN∽△AOC
∴MN=yM-yN =-t2-3t
∴△MEN为等腰直角三角形
∴ME NE 2 MN 2
∴C△MEN=MN+ME+NE =( 2 1 )MN
∵-1<0,∴MN有最大值
∴当t=
b 2a
=
3 2
时,
∴MNmax=
9 4
∴当MN最大时,△MEN的周长最大
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021/3/10
竖直线段
A x y y
, 1
B x y
, 2
O
x
AB= y1-y2 =y1-y2
上减下
水平线段
y
A x1, y B x2, y
O
x
AB= x1-x2 =x2-x1
右减左
典型例题:
如图,已知二次函数y=-x2-2x+3的图象交x轴于A、B两点(A在 B左边),交y轴于C点。 (1)求A、B、C三点的坐标和直线AC的解析式; 解: A (-3,0) ,B (1,0) ,C (0,3) , 直线AC: y=x+3
y
P
H
C
A
B
O
x
8
y
y=x+3
P
45
Q
(3, 0) A
45 45
D
M C (0,3)
PM=PQ
水平线段 转化 竖直线段
B1,0
O
x
y=-x2-2x+3
变式2:
点P是直线AC上方抛物线上一动点(不与A,C重合),求P
点到直线AC距离的最大值:9 2
PQmax=
9 4
P
y8
斜线段 转化 竖直线段
问题:你能求出△PQH周
长的最大值吗?
(3, 0) A 45
45
Q
45
D
2
2
H
C
(0,
3)
PH=
2
CP△QPmQaHx=
PHmax=
=P9PQQQ+PHH=+Q2HPQ
=4P9Q2+
2 2
PQ+
2 2
=( 82 +1)PQ
PQ
O
B1,0斜C△线PQx段Hmax=转化9( 24 1竖) 直线段
三角形周长 转化竖直线段
点P是直线AC上方抛物线上一动点(不与A,C重合),连接 PA,PC,求△PAC面积的最大值;
A(-1,0) C (0,3) D (2,3)
直线AD的解析式为 y= x+1
(2)如图,直线AD上方的抛物线 上有一点F,过点F作FG ⊥ AD于点 G,作FH ∥ x轴交直线AD于点H, 求△ FGH的周长的最大值;
y(0,3) CQF Nhomakorabea小结:1,2,4 一个数学思想: 转化思想
两个基本线段:竖直线段和水平线段
PQmax=
9 4
P
H
Q
(3, 0)A
D
y
C(0, 3)
B1,0
O
S△PAC= S△PAQ+ S△PCQ
= =
1 12
PQ·AD+ 12PQ·OD PQ(AD+OD)
= 12 PQ·AO
2
= 3 PQ
2
xS三△角PA形C面m积ax=287转化 竖直线段
12 13 14
(2015 ·重庆中考B卷26题)如图,抛物线y= -x2 +2x+3的图象与x 轴交于A、B两点(点A在点B左边),与y轴交于点C,点D和点 C关于抛物线的对称轴对称,直线AD与y轴交于点E. (1)求直线AD的解析式;
y
y=x+3
C (0,3)
(3, 0) A
O B 1,0 x
(2)点P是直线AC上方抛物线上一动点(不与A,C重合) 过点P作y轴平行线交直线AC于Q点,求线段PQ的最大值;
y
y=x+3
P
C (0,3)
(3, 0) A Q
B 1,0
O
x
y=-x2-2x+3
变式1:
点P是直线AC上方抛物线上一动点(不与A,C重合),过点 P作x轴平行线交直线AC于M点,求线段PM的最大值;
四个转化:水平线段 斜线段
转化 竖直线段 转化 竖直线段
三角形周长 转化 竖直线段
三角形面积 转化 竖直线段
变式3:
点P是直线AC上方抛物线上一动点(不与A,C重合),连接 PA,PC,求△PAC面积的最大值;
y
P
H
C
A
B
O
x
8
变式3:
点P是直线AC上方抛物线上一动点(不与A,C重合),连接 PA,PC,求△PAC面积的最大值;