人教版数学八年级上册《全等三角形》教案
八年级数学上人教版《三角形全等的判定》教案
![八年级数学上人教版《三角形全等的判定》教案](https://img.taocdn.com/s3/m/31a911c7b8d528ea81c758f5f61fb7360a4c2b77.png)
《三角形全等的判定》教案【教学目标】1.让学生掌握三角形全等的判定方法,包括SSS、SAS、ASA、AAS等判定方法。
2.让学生能够应用三角形全等的判定方法解决实际问题。
3.培养学生的逻辑推理能力和证明能力。
【教学内容】1.三角形全等的定义和性质。
2.三角形全等的判定方法:SSS、SAS、ASA、AAS等。
3.应用三角形全等的判定方法解决实际问题。
【教学重点与难点】1.重点:三角形全等的判定方法及其应用。
2.难点:如何应用三角形全等的判定方法进行证明和解决实际问题。
【教具准备】1.黑板、粉笔。
2.教科书、学习辅导资料。
3.多媒体教学设备。
【教学过程】一、导入新课:通过复习上节课内容,引出三角形全等的概念,介绍三角形全等的性质。
二、新课学习:介绍三角形全等的判定方法,包括SSS、SAS、ASA、AAS等判定方法。
通过举例和讲解,让学生理解并掌握这些判定方法。
同时,引导学生思考这些判定方法的应用场景和实际意义。
三、巩固练习:通过一系列的练习题,让学生加深对三角形全等判定方法的理解和应用。
可以包括证明题和应用题等类型,让学生在练习中掌握如何应用三角形全等的判定方法进行证明和解决实际问题。
四、归纳小结:通过总结本节课学到的知识,让学生明确三角形全等的重要性和应用价值,同时引导学生思考如何运用三角形全等解决实际问题。
强调证明过程中的逻辑性和严谨性,培养学生的逻辑推理能力和证明能力。
五、布置作业:根据学生的学习情况,布置适量的作业,包括概念题、证明题和应用题等类型,让学生巩固本节课学到的知识。
同时,鼓励学生自主寻找和解决实际问题,培养他们的数学应用能力。
六、教学反思:通过本节课的教学,反思自己在教学内容的组织和安排、教学方法的选择和实践以及教学效果的反馈和反思等方面是否存在问题和不足之处,以便在今后的教学中加以改进和提高。
同时,也要关注学生的学习情况和反馈意见,及时调整教学策略和方法,以提高教学质量和效果。
人教版八年级上册数学教学设计《12.1 全等三角形》
![人教版八年级上册数学教学设计《12.1 全等三角形》](https://img.taocdn.com/s3/m/e61216bbf9c75fbfc77da26925c52cc58bd69035.png)
人教版八年级上册数学教学设计《12.1 全等三角形》一. 教材分析《12.1 全等三角形》是人教版八年级上册数学的一个重要章节,主要内容包括全等三角形的概念、全等三角形的性质、全等三角形的判定方法等。
本章通过全等三角形的学习,培养学生对几何图形的认识和理解,提高学生的空间想象力,为后续几何学习打下基础。
二. 学情分析八年级的学生已经掌握了三角形的基本知识,对三角形的性质和判定方法有一定的了解。
但全等三角形作为三角形的一个重要分支,其概念和性质较为抽象,学生理解和掌握全等三角形的难度较大。
因此,在教学过程中,要注重引导学生从实际问题中抽象出全等三角形的概念,并通过大量的实例分析,使学生熟练掌握全等三角形的性质和判定方法。
三. 教学目标1.了解全等三角形的概念,掌握全等三角形的性质和判定方法。
2.培养学生对几何图形的认识和理解,提高学生的空间想象力。
3.培养学生运用全等三角形的知识解决实际问题的能力。
四. 教学重难点1.全等三角形的概念及其性质。
2.全等三角形的判定方法。
3.全等三角形在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出全等三角形的概念。
2.通过大量的实例分析,使学生熟练掌握全等三角形的性质和判定方法。
3.运用多媒体辅助教学,提高学生的空间想象力。
4.采用小组合作学习的方式,培养学生的团队合作精神。
六. 教学准备1.准备相关教学课件和教学素材。
2.设计具有代表性的例题和练习题。
3.准备全等三角形的模型或图片,用于直观展示。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实际问题,如拼图、制作模型等,引导学生思考:如何判断两个三角形是否完全相同?从而引出全等三角形的概念。
2.呈现(10分钟)介绍全等三角形的定义、性质和判定方法。
通过PPT展示全等三角形的图形,让学生直观地感受全等三角形的特征。
同时,给出全等三角形的判定方法,如SSS、SAS、ASA、AAS等。
人教版八年级数学上册第十二章《全等三角形》全章教案
![人教版八年级数学上册第十二章《全等三角形》全章教案](https://img.taocdn.com/s3/m/b20ff633e87101f69e31957b.png)
12. 1 全等三角形教学目标: 1 了解全等形及全等三角形的的概念;2理解全等三角形的性质3在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉,4学生通过观察、发现生活中的全等形和实际操作中获得全等三角形的体验在探索和运用全等三角形性质的过程中感受到数学的乐趣重点:探究全等三角形的性质难点:掌握两个全等三角形的对应边,对应角教学过程:观察下列图案,指出这些图案中中形状与大小相同的图形问题:你还能举出生活中一些实际例子吗?这些形状、大小相同的图形放在一起能够完全重合。
能够完全重合的两个图形叫做全等形能够完全重合的两个三角形叫做全等三角形一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。
“全等”用表示,读作“全等于”两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如ABC和 DEF 全等时,点 A 和点 D,点 B 和点 E,点 C 和点 F 是对应顶点,记作ABC DEF把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角思考:如上图, 12。
1-1 ABC DEF ,对应边有什么关系?对应角呢?全等三角形性质:全等三角形的对应边相等;全等三角形的对应角相等。
思考:(1)下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角BCACoOA DB DACDCBD AB(2)将ABC 沿直线BC平移,得到DEF ,说出你得到的结论,说明理由?ADB EC F(3)如图,ABE ACD , AB与AC,AD与AE是对应边,已知: A 43 , B 30 ,求ADC 的大小。
ADECB小结:作业: P33—1,2,312.2三角形全等的判定(1)教学目标①经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.②掌握三角形全等的“边边边”条件,了解三角形的稳定性.③通过对问题的共同探讨,培养学生的协作精神.教学难点三角形全等条件的探索过程.一、复习过程,引入新知多媒体显示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等.反之,这六个元素分别相等,这样的两个三角形一定全等.二、创设情境,提出问题根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?组织学生进行讨论交流,经过学生逐步分析,各种情况逐渐明朗,进行交流予以汇总归纳.三、建立模型,探索发现出示探究 1,先任意画一个△ ABC,再画一个△ A'B'C' ,使△ ABC与△ A'B'C' ,满足上述条件中的一个或两个.你画出的△ A'B'C' 与△ ABC一定全等吗 ?让学生按照下面给出的条件作出三角形.(1)三角形的两个角分别是 30°、 50°.(2)三角形的两条边分别是 4cm,6cm.(3)三角形的一个角为 30°,—条边为 3cm.再通过画一画,剪一剪,比一比的方式,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.出示探究 2,先任意画出一个△ A'B'C' ,使 A'B' =AB,B'C' =BC,C'A' =CA,把画好的△ A'B'C' 剪下,放到△ ABC上,它们全等吗 ?让学生充分交流后,在教师的引导下作出△A'B'C' ,并通过比较得出结论:三边对应相等的两个三角形全等.四、应用新知,体验成功实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.鼓励学生举出生活中的实例.给出例 l ,如下图△ ABC是一个钢架, AB=AC,AD是连接点 A 与 BC中点D 的支架,求证△ ABD≌△ ACD.AB D C让学生独立思考后口头表达理由,由教师板演推理过程.例 2如图是用圆规和直尺画已知角的平分线的示意图,作法如下:①以 A 为圆心画弧,分别交角的两边于点 B 和点 C;②分别以点 B、C为圆心,相同长度为半径画两条弧,两弧交于点 D;③画射线 AD.AD就是∠ BAC的平分线.你能说明该画法正确的理由吗?例3 如图四边形 ABCD中, AB=CD,AD=BC,你能把四边形 ABCD分成两个相互全等的三角形吗 ?你有几种方法 ?你能证明你的方法吗 ?试一试.A DB C五、巩固练习教科书第 37 页的思考及练习.六、反思小结回顾反思本节课对知识的研究探索过程、小结方法及结论,提炼数学思想,掌握数学规律.七、布置作业1.必做题:教科书第43 页习题 12.2 中的第 1、2 题.2.选做题:教科书第44 页第 9 题.12.2三角形全等的判定(2)教学目标①经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力.②在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.③通过对问题的共同探讨,培养学生的协作精神.教学难点指导学生分析问题,寻找判定三角形全等的条件.知识重点应用“边角边”证明两个三角形全等,进而得出线段或角相等.教学过程(师生活动)一、创设情境,引入课题多媒体出示探究3:已知任意△ ABC,画△ A'B'C' ,使 A'B' =AB,A'C' =AC,∠A' =∠ A.教帅点拨,学生边学边画图,再让学生把画好的△A'B'C' ,剪下放在△ ABC 上,观察这两个三角形是否全等.二、交流对话,探求新知根据前面的操作,鼓励学生用自己的语言来总结规律:两边和它们的夹角对应相等的两个三角形全等.(SAS)补充强调:角必须是两条相等的对应边的夹角,边必须是夹相等角的两对边.三、应用新知,体验成功出示例 2,如图,有—池塘,要测池塘两端A、B 的距离,可先在平地上取一个可以直接到达 A 和 B 的点 C,连接 AC并延长到 D,使 CD= CA,连接 BC并延长到E,使 CE=CB.连接 DE,那么量出 DE的长就是 A、B 的距离,为什么 ?让学生充分思考后,书写推理过程,并说明每一步的依据.(若学生不能顺利得到证明思路,教师也可作如下分析:要想证 AB=DE,只需证△ ABC≌△ DEC△ABC与△ DEC全等的条件现有还需要)明确证明分别属于两个三角形的线段相等或者角相等的问题,常常通过证明这两个三角形全等来解决.补充例题:1、已知:如图 AB=AC,AD=AE,∠BAC=∠DAEA求证:△ABD≌△ ACE B证明 : ∵∠ BAC=∠DAE(已知)CD E∠ BAC+ ∠ CAD= ∠ DAE+ ∠CAD∴∠ BAD=∠CAE在△ ABD与△ ACEAB=AC(已知)∠BAD= ∠CAE (已证)AD=AE(已知)∴△ ABD≌△ ACE(SAS)思考:求证: 1.BD=CE2.∠B=∠C3.∠ADB=∠AEC变式 1:已知:如图, AB⊥AC,AD⊥AE,AB=AC,AD=AE.BA求证:C⑴ △DAC≌△EAB1. BE=DCFMDE2.∠B= ∠ C3.∠ D= ∠ E4.BE⊥CD四、再次探究,释解疑惑出示探究 4,我们知道,两边和它们的夹角对应相等的两个三角形全等.由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么 ?让学生模仿前面的探究方法,得出结论:两边及其中一边的对角对应相等的两个三角形不一定全等.教师演示:方法 ( 一) 教科书 39 页图 12.2-7 .方法 (二)通过画图,让学生更直观地获得结论.五、巩固练习教科书第 39 页,练习 (1)(2).六、小结提高1.判定三角形全等的方法;2.证明线段、角相等常见的方法有哪些?让学生自由表述,其他学生补充,让学生自己将知识系统化,以自己的方式进行建构.七、布置作业1.必做题:教科书第43 页,习题 12.2 第 3、4 题.2.选做题:教科书第44 页第 10 题.3.备选题:(1)小明做了一个如图所示的风筝,测得 DE=DF,EH=FH,你能发现哪些结沦 ? 并说明理由.(2)如图,∠ 1=∠ 2,AB=AD,AE=AC,求证 BC=DE.12.2三角形全等的判定(3)教学目标①探索并掌握两个三角形全等的条件:“ASA”“AAS”,并能应用它们判别两个三角形是否全等.②经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理等能力;并通过对知识方法的总结,培养反思的习惯,培养理性思维.③敢于面对教学活动中的困难,能通过合作交流解决遇到的困难.教学重点理解,掌握三角形全等的条件:“ASA”“AAS”.教学难点探究出“ ASA”“AAS”以及它们的应用.教学过程(师生活动)创设情境复习:师:我们已经知道,三角形全等的判定条件有哪些?生:“SSS”“SAS”师:那除了这两个条件,满足另一些条件的两个三角形是否也可能全等呢 ?今天我们就来探究三角形全等的另一些条件。
第12章全等三角形教案
![第12章全等三角形教案](https://img.taocdn.com/s3/m/b07bce2d02d276a200292ef1.png)
八年级数学上册教案第12章 《全等三角形》教案12.1全等三角形的性质【教学目标】1.知识与技能目标掌握怎样的两个图形是全等形,了解全等形,了解全等三角形的的概念及表示方法。
掌握全等三角形的性质。
2.过程与方法目标:围绕全等三角形的这一中心。
让学生找出它的对应顶点、对应边、对应角,进而引入本节问题的主题,强化了本课的中心问题-----全等三角形的性质。
【重点难点】重点:全等三角形的性质难点:寻找全等三角形中的对应元素【教学过程】课前准备 :全等三角形纸片一、引入新课全等形定义:能够完全重合的两个图形叫做全等形。
全等三角形定义:能够完全重合的两个三角形叫做全等三角形“全等”用“≌”表示,读“全等于”,记作:△ABC ≌△A ′B ′C ′二、 探究1.全等三角形中的对应元素问题:你手中的两个三角形是全等的,但是如果任意摆放能重合吗?两个全等三角形任意摆放时,并不一定能完全重合,只有当把相同的角重合到一起(或相同的边重合到一起)时它们才能完全重合。
这时我们把重合在一起的顶点、角、边分别称为对应顶点、对应角、对应边。
表示两个全等三角形时,通常把表示对应顶点字母写在对应的位置上,这样便于确定两个三角形的对应关系。
①对应顶点:全等三角形中互相重合的顶点叫做对应顶点。
②对应边:全等三角形中互相重合的边叫做对应边。
③对应角:全等三角形中互相重合的角叫做对应角。
2.全等三角形的性质全等三角形的对应边相等。
全等三角形的对应角相等。
用几何语言表示全等三角形的性质如图:∵∆ABC ≌ ∆DEF∴AB =DE ,AC =DF ,BC =EF (全等三角形对应边相等)∠A =∠D ,∠B =∠E ,∠C =∠F (全等三角形对应角相等)3.探求全等三角形对应元素的找法1.下图中的各对三角形是全等三角形,怎样改变其中一个三角形的位置,使它能与另一个三角形完全重合?用式子表示全等关系.并说出其中的对应关系.回答:两个全等的三角形经过一定的转换可以重合。
人教版八年级(上册)全等三角形教案
![人教版八年级(上册)全等三角形教案](https://img.taocdn.com/s3/m/4865e6b9f7ec4afe05a1df92.png)
课题:12.1全等三角形【教学目标】知识与技能目标:掌握怎样的两个图形是全等形,了解全等形,了解全等三角形的的概念与表示方法。
掌握全等三角形的性质。
体会图形的变换思想,逐步培养动态研究几何意识。
初步会用全等三角形的性质进行一些简单的计算。
过程与方法目标:围绕全等三角形的对应元素这一中心,。
设计一系列问题,给出三组组合图形,让学生找出它的对应顶点、对应边、对应角,进面引入本节问题的主题,强化了本课的中心问题-----全等三角形的性质,经历理解性质的过程。
,体会图形的变换思想,逐步培养学生动态研究几何图形的意识。
情感与态度目标:学生在富有趣味的活动中进行全等三角形的学习,提供学生发现规律的空间,激发学生学习兴趣。
教学重点:全等三角形的性质教学难点:寻找全等三角形中的对应元素教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。
学情分析:这节课是学了三角形的基本知识后的一节课、只要实际操作不出错、学生一定能学好。
课前准备:全等三角形纸片【教学教程】一、创设情境,引入新课1、问题:各组图形的形状与大小有什么特点?一般学生都能发现这两个图形是完全重合的。
归纳:能够完全重合的两个图形叫做全等形。
2.学生动手操作新- 课-标- 第- 一-网⑴在纸板上任意画一个三角形ABC,并剪下,然后说出三角形的三个角、三条边和每个角的对边、每个边的对角。
⑵问题:如何在另一纸板再剪一个三角形DEF,使它与△ABC全等?3.板书课题:全等三角形定义:能够完全重合的两个三角形叫做全等三角形“全等”用“≌”表示,读着“全等于”如图中的两个三角形全等,记作:△ABC≌△DEF二、探究全等三角形中的对应元素1. 问题:你手中的两个三角形是全等的,但是如果任意摆放能重合吗?该怎样做它们才能重合呢?2.学生讨论、交流、归纳得出:⑴.两个全等三角形任意摆放时,并不一定能完全重合,只有当把相同的角重合到一起(或相同的边重合到一起)时它们才能完全重合。
人教版八年级上册第十二章12.1全等三角形(教案)
![人教版八年级上册第十二章12.1全等三角形(教案)](https://img.taocdn.com/s3/m/69ba954a54270722192e453610661ed9ac51554d.png)
一、教学内容
人教版八年级上册第十二章12.1全等三角形:
1.全等三角形的定义与性质;
2.全等三角形的判定方法:SSS、SAS、ASA、ห้องสมุดไป่ตู้AS、HL;
3.全等三角形的实际应用;
4.举例说明全等三角形在几何证明中的应用。
二、核心素养目标
1.培养学生的几何直观与空间想象能力,通过全等三角形的学习,使学生能够理解和运用全等变换,把握图形的运动和位置关系;
首先,我意识到需要更多地强调全等三角形判定方法的实际应用。学生们在理解了基本概念后,可能仍然不知道如何将这些知识运用到具体问题中。在未来的教学中,我打算引入更多与生活相关的实例,让学生们明白全等三角形不仅仅是一个几何学的概念,而是与我们的生活息息相关。
其次,我发现在小组讨论环节,有些学生参与度不高,可能是因为他们对全等三角形的应用还不够自信。为了提高学生的参与度,我考虑在下次课上进行一些小组竞赛,鼓励学生们积极思考,增强他们解决问题的信心。
举例:在证明全等三角形的过程中,学生需要明确指出哪些角是对应角,哪些边是对应边,而不是简单地比较三角形的角和边是否相等。
-难点三:将全等三角形的理论知识应用到解决实际问题中。学生在面对实际问题时,可能不知道如何将问题转化为全等三角形的问题来解决。
举例:在解决平面图形的面积问题时,学生需要能够识别图形中的全等三角形,并利用全等性质来简化计算过程。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解全等三角形的基本概念。全等三角形是指能够完全重合的两个三角形,它们的对应角相等,对应边相等。它是几何学中的一个重要概念,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了全等三角形在实际中的应用,以及它如何帮助我们解决问题。
人教版八年级数学上册教案:第12章 全等三角形 全等三角形(1课时)
![人教版八年级数学上册教案:第12章 全等三角形 全等三角形(1课时)](https://img.taocdn.com/s3/m/6a90e9f5844769eae109ed38.png)
12.1全等三角形一、基本目标【知识与技能】1.掌握全等形、全等三角形的概念,能运用符号语言正确表示两个三角形全等.2.能熟练地找出两个全等三角形的对应元素,理解全等三角形的性质.【过程与方法】经历探索全等三角形性质的过程,在观察中寻求新知,在探索中培养学生发现问题、解决问题的能力.【情感态度与价值观】在探究和运用全等三角形知识的过程中感受到数学活动的乐趣.二、重难点目标【教学重点】全等三角形的认识.【教学难点】全等三角形的性质的应用.环节1自学提纲,生成问题【5 min阅读】阅读教材P31~P32的内容,完成下面练习.【3 min反馈】1.能够完全重合的两个图形叫做全等形;能够完全重合的两个三角形叫做全等三角形.2.全等用符号≌表示,读作全等于.3.△ABC全等于三角形△DEF,用符号表示为△ABC≌△DEF.4.若△ABC≌△DEF,∠A的对应角是∠D,∠B的对应角是∠E,则∠C与∠F是对应角;AB与DE是对应边,BC与EF是对应边,AC与DF是对应边.5.全等三角形的对应边相等,对应角相等.环节2合作探究,解决问题活动1小组讨论(师生对学)【例1】如图,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO ≌△AEO,指出这两个三角形的对应角.【互动探索】(引发学生思考)全等三角形的对应元素该如何找?【解答】△BOD与△COE的对应边:BO与CO,OD与OE,BD与CE.△ADO与△AEO的对应角:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.【互动总结】(学生总结,老师点评)找全等三角形的对应元素的关键是准确分析图形.另外,记全等三角形时,对应顶点要写在对应的位置上,这样就可以比较容易地写出对应角和对应边了.【例2】如图,△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,求∠DEF的度数和CF 的长.【互动探索】(引发学生思考)求角和线段长,从全等三角形的性质出发去思考.【解答】∵△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,∴∠DEF=∠B=50°,BC=EF=7,∴CF=BC-BF=7-4=3.【互动总结】(学生总结,老师点评)全等三角形的对应边相等,对应角相等.活动2巩固练习(学生独学)1.已知图中的两个三角形全等,则∠α的度数是(D)A.72° B.60°C.58° D.50°2.如图,△ABC≌△DEF,BE=3,AE=2,则DE的长是(A)A.5 B.4C.3 D.23.如图,△ABC≌△FED,∠A=30°,∠B=80°,则∠EDF=70°.4.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1 cm,FH=1.1 cm,HM=3.3 cm,求MN和HG的长度.解:(1)∵△EFG≌△NMH,∠F与∠M是对应角,∴EF=NM,EG=NH,FG=MH,∠F=∠M,∠E=∠N,∠EGF=∠NHM,∴FH=GM,∠EGM=∠NHF.(2)∵EF=NM,EF=2.1 cm,∴MN=2.1 cm.∵FG=MH,FH+HG=FG,FH=1.1 cm,HM=3.3 cm,∴HG=FG-FH=HM-FH=2.2 cm.活动3拓展延伸(学生对学)【例3】如图,△ABC≌△ADE,∠CAD=10°,∠B=∠D=25°,∠EAB=150°,求∠ACB的度数.【互动探索】在△ACB中,已知∠B=25°,要求∠ACB,只要求出∠CAB即可,求∠CAB可以从全等三角形的性质出发.【解答】∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=150°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=150°,∴∠CAB=70°.∵∠B=25°,∴∠ACB=180°-∠CAB-∠B=180°-70°-25°=85°.【互动总结】(学生总结,老师点评)解题时,要将所求的角与已知角通过全等及三角形内角之间的关系联系起来.环节3课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!。
2024年人教版八年级数学上册教案及教学反思全册第12章 全等三角形12.1 全等三角形教案
![2024年人教版八年级数学上册教案及教学反思全册第12章 全等三角形12.1 全等三角形教案](https://img.taocdn.com/s3/m/31e3c89e4128915f804d2b160b4e767f5bcf8067.png)
第十二章全等三角形12.1 全等三角形一、教学目标【知识与技能】1.掌握全等形、全等三角形的概念,能应用符号语言表示两个三角形全等;2.能熟练地找出两个全等三角形的对应元素,理解全等三角形的性质,并解决相关简单的问题.【过程与方法】掌握全等三角形对应边相等,对应角相等的性质,并能进行简单的推理和计算,解决一些实际问题.【情感、态度与价值观】联系学生的生活环境,创设情景,使学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生的学习兴趣.二、课型新授课三、课时第1课时四、教学重难点【教学重点】全等三角形的概念、性质及对应元素的确定.【教学难点】全等三角形对应元素的识别.五、课前准备教师:课件、三角尺、全等图形等。
学生:三角尺、直尺、全等图形、三角形纸板。
六、教学过程(一)导入新课观察这些图片,你能找出形状、大小完全一样的几何图形吗?(出示课件2-3)(二)探索新知1.观察图形,学习全等图形教师问1:下列各组图形的形状与大小有什么特点?(出示课件5)学生回答:每一组图中的两个图形形状相同,大小相等.教师问2:观察思考:每组中的两个图形有什么特点?(出示课件6)学生回答:前三组图形的形状相同,大小也相等,第4组图形的形状相同,但是大小不相等,第5组图形的形状不相同,但是大小相等.教师问3:它们能够完全重合吗?你能再举出一些类似的例子吗?学生讨论分析,教师引导后学生回答:举例:学生手中含30度角的三角板;含45度角的三角板;学生手中的小量角器;由同一张底片洗出的尺寸相同的照片;两本数学书等.教师讲解:由图①②③中的图形,我们可以看到,它们的形状相同,大小相等,像这样,形状相同、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等形.教师问4:同学们讨论一下,全等图形有什么性质呢?学生回答:全等图形的形状相同,大小相等.总结点拨:全等图形定义:能够完全重合的两个图形叫做全等图形.全等形性质:如果两个图形全等,它们的形状和大小一定都相等.2.师生互动,认识全等三角形的概念教师问5:观察下边的两个三角形,它们的形状和大小有何特征?学生回答:它们的形状相同,大小相等.教师问6:这两个三角形能够完全重合吗?学生回答:能够完全重合教师问7:这两个三角形能够完全重合之后,△ABC的顶点A、B、C与△DEF的顶点D、E、F那两个点重合呢?它们的边呢?它们的角呢?学生回答:点A与点D重合,点B与点E重合,点C与点F重合,边AB 与边DE重合,边AC与边DF重合,边CB与边FE重合,∠A与∠D重合,∠B与∠E重合,∠C与∠F重合.教师总结:(出示课件9)像上图一样,把△ABC 叠到△DEF上,能够完全重合的两个三角形,叫做全等三角形. 把两个全等的三角形重叠到一起时,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.教师问8:平移、翻折、旋转前后的两个三角形什么变化,什么没有变化呢?学生讨论并回答:三角形的形状和大小没有变化,位置变化了.教师问9:把一个三角形平移、旋转、翻折,变换前后的两个三角形全等吗?(出示课件10)学生回答:平移、翻折、旋转前后的两个三角形全等.总结点拨:(出示课件11)一个图形经过平移、翻折、旋转后,位置变化了,但形状和大小都没有改变,即平移、翻折、旋转前后的两个图形全等.学生小组活动:教师提出下列要求:①请你用事先准备好的三角形纸板通过平移、翻折、旋转等操作得到你认为美丽的图形;②在练习本上画出这些图形,标上字母,并在小组内交流;③指出这些图形中的对应顶点、对应边、对应角.教师问10:请同学们观察分析,指出下列图形的对应边、对应角和对应顶点.学生分组做完后并点名回答教师问11:寻找对应元素有什么方法和规律吗?学生思考交流后,师生共同归纳、板书.(出示课件13)1. 有公共边,则公共边为对应边;2. 有公共角(对顶角),则公共角(对顶角)为对应角;3.最大边与最大边(最小边与最小边)为对应边;最大角与最大角(最小角与最小角)为对应角;4. 对应角的对边为对应边;对应边的对角为对应角.教师问12:全等三角形的对应边、对应角有什么数量关系?学生回答:全等三角形的对应边相等,全等三角形的对应角相等.教师问:全等三角形用什么表示呢?学生阅读教材32页内容回答:全等”用符号“≌”表示,△ABC全等于△DEF,记作△ABC≌△DEF.教师问13:全等三角形有哪些性质呢?学生讨论回答:全等三角形的对应边相等,对应角相等.总结点拨:全等的表示方法:“全等”用符号“≌”表示,读作“全等于”. (出示课件15)警示:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.全等的性质:(出示课件16-17)全等三角形的对应边相等,对应角相等.几何语言:∵△ABC≌△DEF(已知),∴AB=DE,AC=DF,BC=EF(全等三角形对应边相等),∠A=∠D,∠B=∠E,∠C=∠F(全等三角形对应角相等).例1:如图,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO≌△AEO,指出这两个三角形的对应角.(出示课件18)师生共同解答如下:解:△BOD与△COE的对应边为:BO与CO,OD与OE,BD与CE;△ADO与△AEO的对应角为:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.例2:如图,△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,求∠DEF的度数和CF的长.(出示课件20)师生共同解答如下:解:∵△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,∴∠DEF=∠B=50°,BC=EF=7,∴CF=BC–BF=7–4=3.例3:如图,△EFG≌△NMH,EF=2.1cm,EH=1.1cm,NH=3.3cm.(1)试写出两三角形的对应边、对应角;(2)求线段NM及HG的长度;(3)观察图形中对应线段的数量或位置关系,试提出一个正确的结论并证明.(出示课件22-23)师生共同解答如下:解:(1)对应边有EF和NM,FG和MH,EG和NH;对应角有∠E和∠N,∠F和∠M,∠EGF和∠NHM.(2)解:∵△EFG≌△NMH,∴NM=EF=2.1cm,EG=NH=3.3cm.∴HG=EG –EH=3.3 – 1.1=2.2(cm).(3)解:结论:EF∥NM证明:∵ △EFG≌△NMH,∴ ∠E=∠N. ∴ EF∥NM.总结点拨:全等三角形的性质:能够重合的边是对应边,重合的角是对应角,对应边所对的角是对应角.对应角所对的边是对应边;两个全等三角形最大的边是对应边,最小的边也是对应边; 两个全等三角形最大的角是对应角,最小的角也是对应角.(三)课堂练习(出示课件27-30)1.能够_________的两个图形叫做全等形.两个三角形重合时,互相__________的顶点叫做对应顶点.记两个全等三角形时,通常把表示___________顶点的字母写在_________的位置上.2.如图,△ABC≌ △ADE,若∠D=∠B,∠C= ∠AED,则∠DAE=_______;∠DAB=__________ .3.如图,△ABC≌△BAD,如果AB=5cm,BD=4cm,AD=6cm,那么BC 的长是( )A.6cmB.5cmC.4cmD.无法确定4.在上题中,∠CAB的对应角是( )A.∠DABB.∠DBAC.∠DBCD.∠CAD5. 如图所示,△ABD≌△CDB,下面四个结论中,不正确的是( )A.△ABD 和△CDB 的面积相等B.△ABD 和△CDB 的周长相等C.∠A +∠ABD =∠C +∠CBDD.AD∥BC,且AD = BC6.如图,△ABC ≌△AED,AB是△ABC 的最大边,AE是△AED的最大边,∠BAC 与∠ EAD是对应角,且∠BAC=25°,∠B= 35°,AB =3cm,BC =1cm,求出∠E,∠ ADE 的度数和线段DE,AE 的长度.参考答案:1. 重合重合对应相对应2. ∠BAC ∠EAC3.A4.B5.C6. 解:∵ △ABC ≌△AED,(已知)∴∠E= ∠B = 35°,(全等三角形对应角相等)∠ADE =∠ACB =180°–25°–35°=120 °,(全等三角形对应角相等) DE = BC =1cm,AE = AB =3cm.(全等三角形对应边相等)(四)课堂小结今天我们学了哪些内容:1.全等三角形的有关概念2.全等三角形的性质3.寻找对应元素的方法(五)课前预习预习下节课(11.2)教材35页到教材37页的相关内容。
全等三角形教案6篇
![全等三角形教案6篇](https://img.taocdn.com/s3/m/9c1108b5c9d376eeaeaad1f34693daef5ef7133c.png)
全等三角形教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!全等三角形教案6篇我们的教案需要定期更新以反映新的教育趋势,教师编写教案不仅促进了自我管理,还增强了他们的教育专业素养,以下是本店铺精心为您推荐的全等三角形教案6篇,供大家参考。
全等三角形教案【7篇】
![全等三角形教案【7篇】](https://img.taocdn.com/s3/m/10e174170166f5335a8102d276a20029bd646320.png)
全等三角形教案【优秀7篇】在教学工开展教学活动前,时常会需要准备好教案,教案是教学活动的总的组织纲领和行动方案。
那么优秀的教案是什么样的呢?这次帅气的我为您整理了7篇《全等三角形教案》,希望朋友们参阅后能够文思泉涌。
数学《全等三角形》教案篇一教学目标一、知识与技能1、了解全等形和全等三角形的概念,掌握全等三角形的性质。
2、能正确表示两个全等三角形,能找出全等三角形的对应元素。
二、过程与方法通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。
三、情感态度与价值观通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。
教学重点1、全等三角形的性质。
2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。
教学难点正确寻找全等三角形的对应元素。
教学关键通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。
课前准备:教师——————课件、三角板、一对全等三角形硬纸版学生——————白纸一张、硬纸三角形一个教学过程设计一、全等形和全等三角形的概念(一)导课:教师————(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。
(二)全等形的定义象这样的图片,形状和大小都相同。
你还能说一说自己身边还有哪些形状和大小都相同的图形吗?[学生举例,集体评析]动手操作1———在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的?[板书:能够完全重合]命名:给这样的图形起个名称————全等形。
[板书:全等形]刚才大家所举的各种各样的形状大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。
最新人教版八年级数学上册《全等三角形》优质教案
![最新人教版八年级数学上册《全等三角形》优质教案](https://img.taocdn.com/s3/m/a8403a967e21af45b207a800.png)
第十二章全等三角形12.1 全等三角形一、导学1.导入课题:观察下列几组图形:你能发现这几组图片中两个图形有什么关系吗?今天我们开始学习最简单的全等形——全等三角形.2.学习目标:(1)知道全等形及全等三角形的概念.(2)能够准确辨认全等三角形的对应元素.(3)知道全等三角形的性质,并能灵活运用全等三角形的性质解决相应的几何问题.3.学习重、难点:重点:全等三角形的性质.难点:运用全等三角形的性质解决几何问题.4.自学指导:(1)自学内容:探究三角形全等的意义和一个图形经过几何变换前后的关系.(2)自学时间:10分钟.(3)自学方法:操作、观察、比较、归纳.(4)探究提纲:①取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来.②通过上面的操作可以得到全等形的概念:能够完全重合的两个图形叫做全等形;全等三角形的概念:能够完全重合的两个三角形叫做全等三角形.③列举日常生活中两个图形全等的例子.学校教室的前后门,前后窗户.④观察下面甲、乙、丙三个图形的位置变化.如图甲将△ABC沿直线BC平移得△DEF;如图乙将△ABC沿BC翻折180°得到△DBC;如图丙将△ABC绕A旋转180°得△AED.a.各图中的两个三角形全等吗?你能找出图中全等三角形的对应线段(边)和对应角吗?b.根据对应顶点放在对应位置上的方法,图甲记作:△ABC ≌△DEF;图乙记作:△ABC ≌△DBC;图丙记作△ABC ≌△AED.c.一个图形经过平移、翻折、旋转后,形状和大小不变,即:平移、翻折、旋转前后的图形全等.⑤从全等的实际意义中你认为全等三角形有哪些性质吗?对应边相等,对应角相等.二、自学学生可结合自学指导进行自学.三、助学1.师助生:(1)明了学情:对于图甲这种类型的图形,学生能顺利地寻找出对应元素;但对于图乙、图丙这种有重合部分的图形,学生寻找对应元素会存在一定的难度,教师应予以重点关注.(2)差异指导:a.对于图乙、图丙,教师加强动画演示,引导学生观察图形经过翻折、旋转变换后的对应元素的位置;b.引导学生运用几何语言描述全等三角形的性质,用几何语言表示两个三角形全等的时候,一定要强调对应顶点放在对应位置上;c.教师强调同一组图形的记法并不唯一.2.生助生:学生相互交流帮助.四、强化1.基本概念:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号.记作:△ABC≌△A′B′C′,符号“≌”读作“全等于”.(注意强调书写时对应顶点字母写在对应的位置上)3.练习:(1)如图,△OCA≌△OBD,C和B,A和D是对应顶点,说出这两个三角形中相等的边和角.若∠A=20°,∠AOC=75°,你能求出∠B的度数吗?解:OC=OB,OA=OD,CA=BD,∠COA=∠BOD,∠C=∠B,∠A=∠D.∠B=∠C=180°-∠A-∠AOC=85°.(2)如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角.若BD=2cm,DE=3cm,你能求出DC的长吗?解:AB=AC,AE=AD,BE=CD,∠BAE=∠CAD.DC=BE=BD+DE=5cm.五、评价1.学生的自我评价:学生相互交谈自己的收获和困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果和不足进行点评.(2)纸笔评价:课堂评价检测.3.教师自我评价(教学反思):本课时通过学生在做模型、画图、动手操作等活动中的体验,完成对三角形全等的认识,重点在对“三角形全等”“对应”等含义的理解.对“全等三角形”的认识,可让学生采用复写纸、手撕、剪纸、扎针眼等方式获取,并鼓励学生间互相交流动手过程中的体验.教学过程中,强调学生自主探索和合作交流,经历观察、实验、归纳、类比、直觉、数据处理等思维过程,从中获得数学知识与技能,体验教学活动的方法,同时升华学生的情感、态度和价值观.一、基础巩固(第1题20分,第2题50分,共70分)1.判断题:(2)全等三角形的周长相等,面积也相等.(√)(3)面积相等的三角形是全等三角形.(×)(4)周长相等的三角形是全等三角形.(×)2.填空:(1)如图,点O是平行四边形ABCD的对角线的交点,△AOB绕O旋转180°,可以与△COD 重合,这说明△AOB≌△COD.这两个三角形的对应边是AO与CO,OB与OD,BA与DC;对应角是∠AOB与∠COD,∠OBA与∠ODC,∠BAO与∠DCO.(2)如图,△ABC≌△ADE,则,AB=AD,∠E=∠C.若∠BAE=120°,∠BAD=40°,则∠BAC=80°.(3)△ABC≌△DEF且△ABC的周长为12,若AB=3,EF=4,则AC=5.(4)△ABC≌△BAD,A和B,C和D是对应顶点,如果AB=8cm,BD=6cm,AD=5cm,BC=5cm.(5)如图,△ABE≌△ACD,AB=AC,BE=CD,∠B=50°,∠AEC=120°,则∠DAC的度数等于70°.二、综合应用(每题10分,共20分)3.已知:△DEF≌△MNP,EF=NP,∠F=∠P,∠D=48°,∠E=52°,MN=12cm,求:∠P的度数及DE的长.解:∵△DEF≌△MNP,EF=NP,∠F=∠P,∴∠M=∠D=48°,∠N=∠E=52°,DE=MN=12 cm.又∠M+∠N+∠P=180°∴∠P=80°4.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是(A)A.∠AB.∠BC.∠CD.∠B或∠C三、拓展延伸(10分)5.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是(C)A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD=BC人生格言:我们要知道别人能做到的事,只要自己有恒心,坚持努力,就没有什么事是做不到的。
全等三角形教学设计教案
![全等三角形教学设计教案](https://img.taocdn.com/s3/m/2c35d69048d7c1c709a14542.png)
全等三角形教学设计教案这是全等三角形教学设计教案,是优秀的数学教案文章,供老师家长们参考学习。
全等三角形教学设计教案第1篇一、教学目标【知识与技能】了解全等形和全等三角形的概念,掌握全等三角形的性质,能用符号正确表示两个三角形全等,能找出全等三角形的对应元素。
【过程与方法】在图形变换以及实际操作的过程中发展学生的空间观念,提高几何直觉和识图能力。
【情感态度与价值观】通过自主学习的发展体验获取数学知识的感受,提高勇于创新,多方位审视问题的创造技巧。
二、教学重难点【重点】全等三角形的概念、性质及对应元素的确定。
【难点】全等三角形对应元素的识别。
三、教学过程(一)导入新课欣赏一组图片,提出问题提问1:你能从图中找出形状和大小都相同的图形吗?其中一个图形是另一个图形如何变化而来?他们能完全重合吗?你能列举出一些类似的例子吗?(二)生成新知由上图形成全等的概念:形状相同、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等三角形。
多媒体演示三中全等变换(全等、翻折、旋转)并提出问题:平移、翻折、旋转前后得到的三角形全等吗?接下来学生小组活动:多媒体投影要求:请你用事前准备好的三角形纸板通过平移、翻折、旋转等操作得到你认为美丽的图形;在练习本上画出这些图形,标上字母,并在小组内交流;指出这些图形中的对应顶点、对应边、对应角。
多媒体展示学生可能得到的图形,寻找对应元素有什么方法和规律吗?学生思考交流后师生共同总结归纳、板书。
提问:全等三角形的对应边、对应角有什么数量关系?(三)应用新知(1)写出其他对应边及对应角;(2)求线段NM及线段HG 的长度。
(四)小结作业小结:通过这节课的学习,你有什么收获?你对今天的学习还有什么疑问吗?作业:想一想,生活中还有哪些事物是全等的?四、板书设计《全等三角形》教案五、教学反思全等三角形教学设计教案第2篇教学任务分析教学目标1、知道什么是全等形,全等三角形以及全等三角形对应的元素;2、能用符号正确地表示两个三角形全等;3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;4、知道全等三角形的性质,并能用其解决简单的问题要求学生会确定全等三角形的对应元素及对全等三角形性质的理解;5、通过感受全等三角形的对应美,激发热爱科学勇于探索的精神。
数学八年级上人教新课标12.1《全等三角形》教案
![数学八年级上人教新课标12.1《全等三角形》教案](https://img.taocdn.com/s3/m/56639ab5a8956bec0875e397.png)
最大最全最精的教育资源网教课方案科目数学年级八主备人课型课题12.2.4 三角形全等的判断( 4)课时新授1学习目标知识与技术:直角三角形全等的条件:“斜边、直角边”。
过程与方法:经历研究直角三角形全等条件的过程,领会一般与特别的辩证关系。
能运用全等三角形的条件,解决简单的推理证明问题。
感情态度与价值观:经过绘图、研究、概括、沟通使学生获取一些研究问题的经验和方法,发展实践能力和创新精神。
学习要点:运用直角三角形全等的条件解决一些实质问题。
要点学习难点:娴熟运用直角三角形全等的条件解决一些实质问题。
难点知识链接学具全等三角形纸片、三角板教具学习活动学法指导备注(手写)一、提出问题,复习旧知教学1、判断两个三角形全等的方法:、、、2、如图, AB⊥BE于 C, DE⊥BE于 E,(1)若∠ A=∠ D,AB=DE,则△ ABC与△ DEF (填“全等”或“不全等”)依据(用简写法)过(2)若∠ A=∠D, BC=EF,则△ ABC与△ DEF(填“全等”或“不全等”)依据(用简写法)(3)若 AB=DE,BC=EF,则△ ABC与△ DEF(填“全等”程或“不全等” )依据(用简写法)(4)若 AB=DE,BC=EF,AC=DF则△ ABC与△ DEF (填“全等”或“不全等” )依据(用简写法)二、创建情境,导入新课如图,舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形能否全等,但两个三角形都有一条直角边被花盆遮住无法丈量。
(播放课件)(1)你能帮他想个方法吗?(2)假如他只带了一个卷尺,能达成这个任务吗?第一种方法:用直尺量出斜边的长度,再用量角度量出此中一个锐角的大小,若它们对应相等,依据“ AAS”能够证明两直角三角形是全等的。
第二种方法:用直尺量出不被遮住的直角边长度,再用量角度量出此中一个锐角的大小,若它们对应相等,依据“ASA”或“AAS”,能够证明这两个直角三角形全等。
人教版八年级上数学教学设计《第12章全等三角形》
![人教版八年级上数学教学设计《第12章全等三角形》](https://img.taocdn.com/s3/m/5f5e7e594b7302768e9951e79b89680203d86bac.png)
人教版八年级上数学教学设计《第12章全等三角形》一. 教材分析人教版八年级上数学第12章《全等三角形》是初中数学中的重要内容,主要介绍了全等三角形的概念、性质和判定方法。
通过本章的学习,使学生理解和掌握全等三角形的判定和性质,能运用全等三角形的知识解决一些实际问题。
教材中安排了丰富的例题和练习题,有利于学生巩固所学知识。
二. 学情分析学生在学习本章内容前,已经掌握了相似三角形的知识,并具备一定的逻辑思维能力和空间想象能力。
但全等三角形与相似三角形既有联系又有区别,学生需要通过对比、分析、归纳等方法,理解和掌握全等三角形的概念和性质。
同时,学生需要通过大量的练习,提高运用全等三角形知识解决实际问题的能力。
三. 教学目标1.知识与技能目标:使学生理解和掌握全等三角形的概念、性质和判定方法,能运用全等三角形的知识解决一些实际问题。
2.过程与方法目标:通过观察、操作、对比、分析等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和克服困难的勇气。
四. 教学重难点1.教学重点:全等三角形的概念、性质和判定方法。
2.教学难点:全等三角形的判定方法以及在实际问题中的运用。
五. 教学方法1.情境教学法:通过生活实例引入全等三角形的概念,激发学生的学习兴趣。
2.对比教学法:对比全等三角形与相似三角形的异同,帮助学生深入理解全等三角形的性质。
3.实践操作法:让学生动手操作,通过实际操作得出全等三角形的判定方法。
4.小组合作学习法:培养学生团队合作精神,共同解决实际问题。
六. 教学准备1.教学课件:制作全等三角形的相关课件,包括图片、动画、例题等。
2.教学素材:准备一些全等三角形的实际问题,用于巩固和拓展学生的知识。
3.练习题:挑选一些具有代表性的练习题,用于检验学生对全等三角形知识的掌握程度。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实际问题,引导学生思考:如何判断两个三角形是否全等?从而引出全等三角形的概念。
人教版初中八年级数学上册《第十二章 全等三角形》大单元整体教学设计
![人教版初中八年级数学上册《第十二章 全等三角形》大单元整体教学设计](https://img.taocdn.com/s3/m/320b5d2a7ed5360cba1aa8114431b90d6d858957.png)
人教版八年级数学上册《第十二章全等三角形》——大单元整体教学设计一、内容分析与整合(一)教学内容分析《全等三角形》作为人教版初中八年级数学上册第十二章的核心内容,不仅是几何学知识体系中的一个重要里程碑,也是学生深化几何思维、培养逻辑推理能力的关键章节。
本章内容设计逻辑严密,层次分明,旨在通过系统的学习,使学生全面掌握全等三角形的基本概念、判定方法及其在实际问题中的应用,为后续深入探索相似三角形、三角函数等更高级的数学概念打下坚实的基础。
本章首先从全等三角形的定义切入,明确了两个三角形在完全重合时被称为全等三角形,这一基本概念为后续的学习奠定了理论基础。
教材详细展开了三角形全等的几种主要判定方法,即SSS(三边相等)、SAS(两边及夹角相等)、ASA(两角及夹边相等)和AAS(两角及非夹边相等),每一种判定方法都配以清晰的图形说明和严密的逻辑推理,帮助学生理解并掌握如何根据给定的条件判断两个三角形是否全等。
为了增强学生的实践能力和探索精神,本章还特别融入了“信息技术应用:探究三角形全等的条件”这一环节,鼓励学生利用计算机软件或数学工具进行动态演示和实验操作,通过直观的视觉体验加深对三角形全等判定方法的理解。
这种信息技术与数学教学的深度融合,不仅丰富了教学手段,也极大地提升了学生的学习兴趣和参与度。
本章末尾引入了“角的平分线的性质”这一内容,进一步拓展了全等三角形的应用范畴。
通过学习角的平分线如何影响三角形的形状和大小,学生能够从更广阔的视角理解全等三角形的本质,同时也为后续学习其他几何概念提供了有力的支撑。
《全等三角形》这一章节不仅是对几何学基础知识的深入探索,更是培养学生逻辑思维、空间想象能力和实践操作能力的重要载体。
通过本章的学习,学生不仅能够建立起全等三角形的完整知识体系,还能够在解决实际问题的过程中,体验到数学的严谨之美,为后续的数学学习和个人发展奠定坚实的基础。
教师应充分利用教材资源,结合多样化的教学方法,激发学生的学习兴趣,引导他们主动探索,从而在掌握知识的同时,培养良好的数学素养和创新能力。
人教版八年级上册数学全册教案
![人教版八年级上册数学全册教案](https://img.taocdn.com/s3/m/da14e330a66e58fafab069dc5022aaea988f414b.png)
11.1全等三角形(1课时)教学目标通过实例表述全等图形的概念和特征,并能找出全等图形;能叙述全等三角形的定义及其相关概念,并能找出两个全等三角形的对应边和对应角;总结出全等三角形的性质,并能进行简单的推理和计算,解决一些实际问题。
教学重、难点重点:全等三角形的概念、性质。
难点:对应边和对应角的确定。
课时安排:1课时教学过程设计(一)生活导入我们身边经常看到“一模一样”的图形,比如同一版面的记念邮票,同一版面的人民币、用两张纸叠在一起剪出的两张窗花等,请大家举出这类图形的例子。
(二)新课问题1:几何中,我们把上述所例举的“一模一样”的图形叫做“全等形”,以下是描述全等形的三种不同的说法,你认为哪种说法是恰当的?(l)形状相同的两个图形叫全等形。
(2)大小相等的两个图形叫全等形。
(3)能够完全重合的两个图形叫全等形。
总结概念:能够完全重合的两个三角形叫做全等三角形。
做一做:请你用两张半透明的薄纸分别描出下中的两个三角形.然后把它们叠放在一起,观察这两个图形是否完全重合.(提高学生的动手能力和观察能力)思考:课本图11.1、11.2、11.3中,各图中的两个三角形全等吗?总结出结论:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。
小组讨论,得出全等三角形有这样的性质:全等三角形的对应边相等;全等三角形的对应角相等。
(三)练习课本课后的练习1、2。
(五)小结引导学生总结出本节的主要知识点。
(六)布置作业:创新作业11.2 三角形全等的条件 (共4课时)教学目标能叙述三角形全等的条件,体会三角形的稳定性;能灵活地运用三角形全等的条件,进行有条理的思考和简单的推理,并能利用三角形的全等解决实际问题;提高动手能力。
教学重、难点重点:三角形全等的条件。
难点:利用三角形全等的条件解题。
课时安排:4课时教学过程设计第一课时(一)复习提问1.怎样的两个三角形是全等三角形?2.全等三角形的性质?(二)SSS定理的得出给出任意两个三角形,有些是全等的,有些不是全等的,我们知道如果△ABC与△A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C ′这六个条件,就能保证△ABC≌△A′B′C′。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)全等三角形的对应边相等,对应角相等.( )
(2)全等三角形的周长相等.( )
(3)面积相等的三角形是全等三角形.( )
(4)全等三角形的面积相等.( )
检查学生对本节课的掌握情况.
小结与作业
课堂小结
1.回忆这节课:在自己动手实际操作中,得到了全等三角形的哪些知识?
2.找全等三角形对应元素的方法,注意挖掘图形中隐含的条件,如公共元素、对顶角等,但公共顶点不一定是对应顶点;
“全等”用≌表示,读作“全等于”
两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如 全等时,点A和点D,点B和点E,点C和点F是对应顶点,记作
3.总结寻找全等三角形对应元素的方法,渗透全等变换的思想.
4.思考:如上图, ,对应边有什么关系?对应角呢?
全等三角形性质:
全等三角形的对应边相等;
3.在运用全等三角形的定义和性质时应注意规范书写格式.
对于学生的发言,教师要给予肯定的评价.
布置作业
1.必做题:
2.选做题:
问题:你还能举出生活中一些实际例子吗?
这些形状、大小相同的图形放在一起能够完全重合。能够完全重合的两个图形叫做全等形
能够完全重合的两个三角形叫做全等三角形
通过构图,为学生理解Байду номын сангаас等三角形的有关概念奠定基础.
解析、应用与拓广
1.学生用半透明的纸描绘下图中左边的△ABC,然后按要求在三个图中依次操作.体验“平移、翻折、旋转前后的两个图形全等”.
目的是使学生在操作的过程中理解全等三角形的概念,发展空间观念.鼓励学生根据全等三角形的概念和性质,通过观察、尝试找到分割的方法,并可用分出来的图形是否重合来验证所得的结论.
巩固练习
1.全等用符号_______表示.读作_______·
2.△ABC全等于三角形△DEF,用式子表示为_______·
3.△ABC≌△DEF,∠A的对应角是∠D,∠B的对应角∠E,则∠C与_______是对应角;AB与_______是对应边,BC与_______是对应边,AC与_______是对应边.
全等三角形的对应角相等
善于对基本三角形变换出各种图形,观察它们的对应边、对应角的变化,体会当公共边、公共角完全或部分重叠时,如何快速寻找.培养学生的动手操作能力.
拓展与延伸
1.议一议:右图是一个等边三角形,
你能把它分成两个全等的三角形吗?
你能把它分成三个、四个全等的三
角形吗?
2.例1:已知△ABC≌△DFE,∠A=96°,∠B=25°,DF=10 cm.求∠E的度数及AB的长.
情感态度价值观
培养学生的观察能力、动手操作能力和自主学习能力,发展学生的空间观念。
教学重点
掌握全等三角形对应边相等、对应角相等的性质
教学难点
理解全等三角形边、角之间的对应关系.
教学准备
复写纸、剪刀、半透明的纸、多媒体课件(几个重要片断中使用).
教学过程(师生活动)
设计理念
问题情境
1.展现生活中的大量图片或录像片断。
片断1:图案.
片断2:教科书第31页的4幅图案.
2.学生讨论:
(1)从上面的片断中你有什么感受?
(2)你能再举出生活中的一些类似例子吗?
丰富的图形容易引起学生的注意,使他们能很快地投入到学习的情境中.
它反映了现实生活中存在着大量的全等图形.
教师明晰,建立模型
观察下列图案,指出这些图案中中形状与大小相同的图形
你发现变换前后的两个三角形有什么关系?
结论:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。
2.介绍对应边、对应角以及两个三角形全等的符号表示、读法、写法。
把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合
的角叫做对应角
12.1
教学目标
知识与技能
通过实例理解全等形的概念和特征,并能识别图形的全等.
②知道全等三角形的有关概念,能正确地找出对应顶点、对应边、对应角;掌握全等三角形对应边相等,对应角相等的性质.
③能运用性质进行简单的推理和计算,解决一些实际问题.
过程与方法
通过两个重合的三角形变换其中一个的位置,使它们呈现各种不同位置的活动,让学生从中了解并体会图形变换的思想,逐步培养学生动态的研究几何图形的意识.